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 Federated learning (FL) enables collaborative model training from decentralized data while 

preserving privacy. However, biases manifest due to sample selection, population drift, 

locally biased data, societal issues, algorithmic assumptions, and representation choices. 

These biases accumulate in FL models, causing unfairness. Tailored detection and 

mitigation methods are needed. This paper analyzes sources of bias unique to FL, their 

effects, and specialized mitigation strategies like robust aggregation, cryptographic 

protocols, and algorithmic debiasing. We categorize techniques and discuss open challenges 

around miscoordination, privacy constraints, decentralized evaluation, data poisoning 

attacks, systems heterogeneity, incentive misalignments, personalization tradeoffs, 

emerging governance needs, and participation. As FL expands into critical domains, 

ensuring equitable access without ingrained biases is imperative. This study provides a 

conceptual foundation for future research on developing accurate, robust and fair FL 

through tailored technical solutions and participatory approaches attuned to the 

decentralized environment. It aims to motivate further work toward trustworthy and 

inclusive FL. 
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1. INTRODUCTION 

 

Machine Learning (ML) has become pervasive across 

domains, powering services from image recognition to 

personalized recommendations. The success of ML critically 

depends on access to massive datasets that fuel model 

development. However, aggregation of large centralized 

datasets poses significant privacy concerns and security risks 

[1]. Federated learning (FL) is a distributed collaborative 

learning paradigm introduced to address this limitation. 

In FL, data remains decentralized on the client devices like 

mobile phones or hospital servers. A shared global model is 

trained collectively without direct access to raw private data 

[2]. The model training process involves multiple rounds of 

communication between the clients and a central aggregation 

server [3]. In each round, the server first broadcasts the current 

state of the global model to a subset of available clients. Each 

client then performs local computation on this model using 

their private local dataset to generate model parameter updates. 

Only these update vectors are shared with the server which are 

aggregated to improve the global model. After several rounds 

of this federated training loop, the model converges to an 

optimal solution trained on the collective data [4, 5]. 

FL provides multiple advantages compared to ML: 

• Enhanced privacy and confidentiality as raw data 

remains decentralized. 

• Reduced security risks from single point of failure. 

• Compliance with regulations on control of user data. 

• Mitigates data silos problem across different entities. 

• Ability to leverage scattered, non-Independent and 

Identically Distributed (non-IID) data located on 

endpoints. 

This has enabled deployment of FL across diverse 

applications like next word prediction on smartphones [6], 

disease detection in healthcare [7], fraud detection in finance 

[8] and more. Leading technology companies like Google, 

Apple, Meta, Microsoft, Uber and IBM have incorporated FL 

into products and services [2]. The decentralized nature of FL 

also makes it suitable for emerging paradigms like edge 

computing which push intelligence to the network edge [9]. 

However, FL introduces statistical and systems challenges 

compared to centralized ML [5]: 

• Non-IID, unbalanced and sparse local client data. 

• Systems heterogeneity in compute capabilities of 

clients. 

• Threat of inference attacks and privacy leaks. 

• Communication overhead and convergence issues. 

• Misaligned incentives between competitive clients. 

These unique constraints impact the collaborative learning 

and can introduce biases that lead to discrimination and 

unfairness issues [10]. Recent studies have empirically shown 

that ignoring the heterogeneous decentralized distributions in 

FL can lead to suboptimal accuracy and algorithmic harms 

against certain subgroups [11, 12]. 

There are growing societal concerns around potential biases 

encoded in AI systems [13]. Bias refers to any systematic error 

which can lead to unfairness, discrimination and suboptimal 

model performance on certain subgroups [14]. Biases manifest 
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due to historical prejudices, representation imbalance a 

systemic inequity ingrained in the data get propagated into the 

algorithms, leading to discriminatory predictions and 

decisions [15]. Some sources of bias specific to FL include: 

• Sample selection bias: The local datasets available to 

different FL clients may not represent the true 

population distribution. This can introduce sampling 

bias against minorities who are underrepresented. 

Location biases are common as the data may 

overrepresent certain geographic regions based on app 

usage. 

• Population distribution shift: The demographics and 

data distributions often drift over time and vary across 

clients. Models trained on past biased data may not 

generalize fairly to new user populations [16]. 

• Biased local data: The local data itself can contain 

systemic biases and discrimination against protected 

groups which get encoded into the models [11]. For 

instance, differential judgement and labeling of 

minority groups. 

• Algorithmic biases: The objective functions and 

model architectures may implicitly embed assumptions 

that disadvantage certain subgroups. Optimizing 

accuracy often comes at the cost of fairness [17]. 

• Systemic societal biases: Long-standing structural 

inequalities along gender, racial and socioeconomic 

divides manifest as background statistical biases [14]. 

These biases accumulate during training and get propagated 

to the global model. Ignoring fairness can exacerbate harms 

against already marginalized communities. This underscores 

the critical need for tackling biases in FL to prevent exclusions 

and ensure equitable access to the technology benefits. 

However, mitigating biases is significantly more complex in 

federated settings compared to centralized ML due to 

constraints around visibility into local client distributions, 

coordination between distrusting entities, systems 

heterogeneity, and misaligned incentives [2]. Care must be 

taken to balance accuracy, fairness and privacy tradeoffs given 

the decentralized nature of FL [14]. Therefore, tailored 

solutions are required that account for the unique challenges. 

In this paper, we provide a comprehensive analysis of the 

various sources of bias that can manifest in FL systems and 

examine mitigation strategies tailored to the decentralized 

environment. We categorize techniques based on principles 

such as robust aggregation algorithms, cryptographic 

protocols, algorithmic and data debiasing, personalized 

modeling, and participative evaluation. We also discuss key 

open challenges around miscoordination, privacy constraints, 

security, systems heterogeneity, incentives, governance, and 

participation that remain to be addressed to realize trustworthy 

and fair FL. 

The key contributions of this work are: 

• A taxonomy of bias sources unique to FL including 

sample selection bias, population drift, locally biased 

data, societal biases, algorithmic biases, and 

representational biases. 

• Categorization of bias mitigation techniques tailored 

for FL based on principles like robust aggregation 

algorithms, cryptographic protocols, data and 

algorithmic debiasing, personalized modeling, and 

participative evaluation. 

• Discussion of open research challenges around 

miscoordination, privacy, systems heterogeneity, 

incentives, governance, and participation that remain to 

be tackled. 

The rest of this paper is organized as follows: Section 2 

provides background on FL, contrasting it with centralized ML 

and discussing architectures, algorithms, applications, and 

challenges. Section 3 analyzes sources of bias in FL and their 

effects. Section 4 examines bias mitigation techniques in FL, 

categorizing them into data-based, algorithmic, and hybrid 

approaches. Section 5 examines key open research issues and 

future directions around developing fair and accountable FL 

systems. Finally, Section 6 concludes with a summary and 

outlook on bias mitigation for trustworthy FL. 

 

 

2. BACKGROUND ON FEDERATED LEARNING 

 

As mentioned above, FL enables training ML models 

collaboratively without directly sharing private raw data from 

participants. It involves coordinating decentralized clients like 

mobile devices or hospitals to build shared models while 

keeping data localized [2]. In this section, we provide 

background on FL and contrast it with centralized approaches. 

We also discuss architectures, algorithms, applications, and 

key challenges. 

 

2.1 Centralized vs federated learning 

 

In traditional centralized ML, data from various sources is 

aggregated to a single centralized server or data warehouse for 

model training [2]. This allows applying powerful 

computational resources and statistical techniques optimized 

for independent and identically distributed data [18]. However, 

centralizing raw data from diverse sources raises significant 

privacy and security concerns. Sharing personal data like 

healthcare records or financial information to a centralized 

pool also risks violating regulations and user trust [19]. 

 

 
 

Figure 1. Federated Learning Architecture [5] 

 

With increasing focus on data privacy and confidentiality, 

FL has emerged as an alternative distributed approach that 

enables collaborative training of ML models without directly 

pooling private raw data [2]. As depicted in Figure 1, FL 

coordinates many decentralized edge devices or organizations 

to build shared models, while keeping sensitive data localized 

on the devices. In FL, individual clients train models locally 



 

using their own private data subsets. The clients could be 

hospitals, banks, smartphones, wearables, vehicles, etc. Rather 

than sharing this local private data, the clients transmit only 

model parameter updates to a central aggregation server [4, 

20]. The server averages these updates from several clients to 

build an enhanced global model. This global model is then 

shared back with the clients for further improvement in the 

next round. Over several rounds of this federated training loop, 

the ML model converges to an optimal state, learning from the 

collective data at all the clients without directly accessing any 

raw private data. Differential privacy techniques may be used 

to anonymize the model updates [21]. Data remains 

decentralized throughout, enhancing privacy and compliance. 

 

Table 1. Comparison of centralized ML and FL 

 
Parameter Centralized ML FL 

Data Storage 
Centralized data 

warehouse 

Decentralized on client 

devices 

Data Privacy 
Low, single point of 

failure 

High, data remains 

localized 

Data Variety Typically, IID Non-IID, unbalanced 

Scalability 
Limited by 

centralized compute 

Highly scalable with 

distributed clients 

Model Training 
On centralized 

servers 
Distributed across clients 

Communication Low overhead 
High overhead for 

coordination 

Incentives Single objective 
Potentially misaligned 

incentives 

Personalization 
Global model for all 

users 

Scope for personalized 

models 

Trust 
High, single trusted 

entity 

Varying trust across 

clients 

Robustness 
Vulnerable to data 

poisoning 

Robust against single 

point failure 

Regulations Difficult to comply Better compliance 

 

As shown in Table 1, some key differences between 

centralized and FL include [2, 3]: 

• FL enhances privacy as raw data stays localized on 

devices while centralized ML aggregates data to 

servers. 

• Statistical assumptions differ, with centralized ML 

relying on abundant IID. data while FL handles 

decentralized non-IID. data. 

• Communication overhead is higher in FL to coordinate 

clients and transmit model updates. 

• There is a lack of coordination between competitive 

clients with misaligned incentives in FL. 

• FL enables learning from data siloed across 

organizations by coordinating privately without direct 

data sharing. 

• Hardware is homogeneous in centralized ML whereas 

FL must account for heterogeneous systems like 

smartphones, servers, IoT devices. 

• Centralized learning converges faster with IID. data 

while FL can be slower and unstable due to systems 

heterogeneity and statistical variations. 

While FL enhances privacy and decentralized participation, 

the heterogeneous and sparse data as well as systems diversity 

introduce new challenges compared to centralized settings [3]. 

Common issues include: 

 

2.1.1 Statistical challenges 

The decentralized data in FL often exhibits properties like 

non-IID distributions, unbalanced quantities, sparsity, and 

concept drift over time. Specific statistical issues include: 

• Non-IID data: The data distributions across clients can 

vary significantly based on their location, 

demographics, usage patterns and other factors. 

• Unbalanced data: The quantity of local data available 

at each client may differ, with some having relatively 

small datasets. 

• Sparse local data: Each client typically has limited 

local data compared to the population level. 

• Concept drift: The data distributions can shift 

dynamically over time rather than being static. 

 

2.1.2 Systems challenges 

There is typically significant diversity in the capabilities of 

client devices participating in FL. Heterogeneity in systems 

resources leads to challenges including: 

• Systems heterogeneity: The capabilities like compute, 

storage, network capacity can vary greatly across 

different hardware clients like mobiles, edge devices, 

servers. 

• Limited communication: Bandwidth constraints 

limiting coordination especially for remote clients. 

• Client availability: Not all clients may always be 

online to participate in each training round. 

• Client reliability: Some devices may drop out halfway 

due to technical glitches or lost connectivity. 

• Constraints on local computation: Power or 

connectivity limitations restricting local model training. 

 

2.2 Applications and benefits 

 

The decentralized and privacy-preserving nature of FL has 

led to adoption across diverse domains, both in industry and 

academia [22-27]. As shown in Figure 2, real-world 

applications of FL include: 

• Next word prediction: Google deployed FL in Gboard 

mobile keyboard to improve word suggestions without 

accessing typed data [28]. 

• Fraud detection: Banks can jointly build models to 

detect fraudulent transactions while keeping client data 

decentralized [8, 29]. 

• Disease prediction: Hospitals can collaboratively 

improve models for risk prognosis without sharing 

private health records [30, 31]. 

• Intrusion detection: Network providers can 

coordinate edge devices like routers and mobiles to 

identify threats without direct data access [32-34]. 

• Personalized recommendation: Retailers can 

collectively train models to provide individualized 

product recommendations which maintains user 

privacy [20, 35]. 

• Traffic flow optimization: Automotive companies can 

coordinate vehicles to predict congestion without 

tracking individual cars [36, 37]. 

• User profiling: Firms can derive insights from user 

preferences across applications to improve services 

while respecting privacy [38, 39]. 

• Smart agriculture: In precision agriculture, FL can be 

employed for crop yield prediction and pest control by 

aggregating data from various farms without disclosing 

specific farm details [40, 41]. 

Some key potential benefits of FL include [2]: 



 

• Privacy and confidentiality as raw data remains 

decentralized rather than getting pooled. This provides 

strong safeguards for sensitive data like healthcare 

records and financial information. 

• Compliance with regulations that limit sharing of raw 

private data across borders or economic sectors. 

Federated models rely only on aggregated model 

updates. 

• Mitigates the problem of isolated data silos spread 

across organizations by enabling collaborative learning 

without direct data exchange. This unlocks previously 

trapped data. 

• Robustness against single points of failure since 

compromising any one device does not reveal full raw 

data. Attacks require coordinated access to many 

federated nodes. 

• Inclusive utilization of widely distributed data on 

heterogeneous nodes like mobiles and edge devices. 

Allows leveraging data where it already resides. 

• Scalability due to distributed compute across nodes. 

Training tasks get divided across available clients. 

• Personalization by allowing individual nodes to build 

models customized for their local population from on-

device data. 

 

 
 

Figure 2. Applications of Federated Learning 

 

 
 

Figure 3. Growing Adoption of Federated Learning 

 

The adoption of FL has rapidly increased over the past few 

years as illustrated in Figure 3. The global FL market size 

reached nearly $118.70 million in 2022. The market is 

projected to grow at a Compound Annual Growth Rate 

(CAGR) of 10.7% between 2023 and 2030 to reach a value of 

around $266.77 million by 2030, according to a new study by 

Polaris Market Research [42]. 

Technology companies at the forefront of deploying FL 

include Google, Apple, Samsung, Huawei, IBM, Microsoft, 

Intel, and Nvidia [3, 43-45]. Various open source frameworks 

have been developed like TensorFlow Federated and PySyft to 

support wider adoption [44, 46]. Academic research on FL is 

also accelerating with new innovations in algorithms, system 

design and applications [47-51]. However, there are still 

challenges and open problems related to systems heterogeneity, 

statistical variations, communication overhead, privacy, 

security, and incentive alignments that must be addressed to 

fully realize the potential benefits of FL [4, 47-51]. As 

solutions emerge to the unique constraints of decentralized 

orchestration, FL is poised to see massive growth as an enabler 

for collaborative intelligence while preserving confidentiality. 

 

2.3 Architectures 

 

Based on network topology, FL systems can be categorized 

into centralized and fully decentralized architectures [52]: 

 

2.3.1 Centralized federated learning (Cross-device) 

As shown in Figure 1, even though FL is typically 

considered as a decentralized approach, a centralized server is 

required to collect clients’ model updates and aggregate them 

to the global model. However, in contrast to traditional 

centralized ML, the raw private data stays on device in FL. 

Only model updates are communicated with the server. For 

example, Google uses centralized FL in Gboard mobile 

keyboard to train next-word prediction models from user 

typing data, without directly accessing sensitive text. The 

global model is optimized by aggregating updates from 

millions of mobiles while keeping data localized on device. 

 

2.3.2 Fully decentralized federated learning (Cross-silo) 

 

 
 

Figure 4. Fully Decentralized Federated Learning 

 

As shown in Figure 4, fully decentralized FL eliminates the 

central aggregation server [53]. Clients communicate with 

each other in a Peer-to-Peer (P2P) manner to improve their 

local models. Key steps include [10]: 

• Clients discover neighborhood peers based on 

proximity or other metrics. 

• Model updates are exchanged over P2P links. 

• Updates from peers are aggregated into local models 

using decentralized algorithms. 



 

• Useful updates propagate across the network through 

transient links. 

• Individual models converge to shared states through 

continual P2P exchanges. 

Fully decentralized approaches have the advantage of not 

relying on any trusted central entity. However, they introduce 

challenges related to discovery, incentive alignment, and 

convergence guarantees [53]. Hybrid architectures that 

balance centralized and peer-based control may provide 

optimal solutions. 

 

2.4 Aggregation algorithms 

 

A variety of aggregation algorithms have been developed to 

enable robust and efficient FL that accounts for statistical and 

systems heterogeneity, while preserving privacy. These 

aggregation algorithms customize the training process for 

decentralized environments. Key algorithms adapted for 

federated settings include: 

 

2.4.1 Federated averaging (FedAvg) 

This aggregates client updates on the central FL server by 

taking a weighted average. The weight assigned to each client 

is determined based on factors like the size and quality of its 

local dataset. This gives higher priority to updates from clients 

with more representative data. FedAvg is employed in a big 

number of solutions like Google’s federated keyboard 

predictions [54]. 

 

2.4.2 Federated stochastic gradient descent (FedSGD) 

This applies distributed stochastic gradient descent, where 

gradients are computed locally on each client using their data 

and then averaged to optimize the global model. FedSGD is 

well-suited for non-IID data distributions prevalent in 

federated settings. It has been applied in domains like patient 

monitoring [31, 55]. 

 

2.4.3 FedProx 

To address the challenges of heterogeneity in FL 

environments, Li et al. [55] proposed FedProx. As stated by 

the authors, “FedProx algorithm can be viewed as a 

generalization and re-parametrization of FedAvg”. They 

proposed to add a proximal term to the local subproblem that 

helps to effectively limit the impact of variable local updates, 

and thus improve the stability of the method. Moreover, they 

proved that FedProx achieves better convergence and stability 

compared to FedAvg in heterogeneous FL environments. 

 

2.4.4 Secure aggregation 

This employs cryptographic protocols like differential 

privacy [56], multi-party computation [57] and homomorphic 

encryption [58, 59] during model aggregation to preserve 

privacy of the updates. This prevents inference attacks while 

aggregating updates from untrusted clients. 

 

2.5 Privacy and incentive considerations  

 

Although raw private data remains decentralized in FL, 

additional precautions are necessary to prevent inference 

attacks and preserve privacy [2, 60]. Participants may try to 

reconstruct sensitive attributes about data at other clients from 

the model updates. Common privacy risks include: 

• Membership inference: Determining if a sample was 

part of a client’s training set. 

• Attribute inference: Predicting sensitive attributes 

like illness status. 

• Model inversion: Reconstructing parts of the training 

data. 

• Generative modelling: Synthesizing realistic proxy 

data. 

Differential privacy techniques can be applied to perturb 

model updates before sharing to minimize risks of sensitive 

leakage [56, 61]. Noise is carefully calibrated and added to 

updates to prevent precise reconstruction while preserving 

utility. Secure multiparty computation protocols like 

homomorphic encryption and secret sharing can also enhance 

privacy during aggregation [57-59]. Moreover, access control 

mechanisms restricting visibility of updates from other 

participants based on trust can also improve privacy [62]. For 

example, a hospital may only share updates within 

consortiums of trusted healthcare institutions rather than with 

all clients. Fine-grained access policies, data sandboxing and 

hardware-based trusted execution environments are also being 

explored [63]. 

Furthermore, there is also a lack of coordination between 

clients who may be competing entities or have misaligned 

incentives, unlike the centralized setting. Individual users and 

organizations may act strategically to try to influence the 

model towards their local objectives rather than global 

accuracy [64, 65]. For example, a client may selectively 

contribute only biased updates that exclude certain 

demographics. Malicious clients can launch data poisoning 

attacks by submitting intentionally corrupted updates to 

compromise model integrity and performance [66]. Carefully 

addressing these emerging considerations around adversarial 

threats, incentive misalignments, and mechanisms for privacy-

preserving coordination between untrusting participants 

remains an active research challenge for FL [66]. 

 

 

3. BIAS IN FEDERATED LEARNING 

 

As mentioned in Section 1, bias refers to any systematic 

error in the data or algorithms that can lead to unfairness, 

discrimination, or suboptimal performance on certain 

subgroups [14, 67]. Biases can manifest in FL systems due to 

historical prejudices ingrained in the data, representation 

imbalance across decentralized datasets, systemic inequities 

encoded in the algorithms, as well as feedback loops that 

exacerbate minor statistical variations [68]. As shown in 

Figure 5, sources of bias that can arise in FL include sample 

selection biases, population distribution shift, biased local data, 

systemic societal biases propagated through data, algorithmic 

biases from objectives and assumptions, as well as social 

biases reflecting cultural prejudices [13]. These biases 

accumulate during the federated training process and get 

imprinted into the global model, leading to issues around 

fairness, accountability and exclusion of underrepresented 

groups. Therefore, technical solutions tailored to the unique 

characteristics of FL are necessary to mitigate biases and 

ensure equitable access to the benefits of this technology. In 

the following subsections, we analyze the sources of biases 

that can manifest in FL systems, how they may impact the 

models, and what are the potential mitigations. Table 2 

provides a comparative summary of the different categories of 

bias that can manifest in FL, along with their associated factors, 

detrimental effects, and potential mitigation strategies. 



 
 

Figure 5. Taxonomy of Biases in Federated Learning 

 

Table 2. Summary of Biases in Federated Learning 

 

Bias Type Factors Effects Potential Mitigations 

Sample Selection 

Bias 

Device and connectivity biases; user 

demographic biases; adversarial 

manipulation. 

Model unfairness; bias amplification; 

adversarial manipulation; lack of 

visibility into representativeness. 

Careful client selection; robust 

aggregation; statistical bias detection; 

differential privacy. 

Population 

Distribution Shift 

User demographic shifts; user behavior 

shifts; app/device version shifts; 

adversarial drift injection. 

Overall performance degradation; 

subgroup performance issues. 

Local drift detection; personalized 

FL; robust optimization; continuous 

analytics; synthetic data; hybrid cloud 

FL; adversarial adaptation. 

Biased Local Data 

Biased data collection; measurement 

biases; omitted variables; proxy 

encoding. 

Data poisoning attacks; model evasion; 

difficulty auditing. 

Client-side auditing; local debiasing; 

secure aggregation for bias; 

reputation systems; incentives. 

Systemic Biases in 

Data 

Historical discrimination; measurement 

biases; proxy discrimination; anchor 

biases; social stereotypes; unexamined 

assumptions. 

Underrepresentation; measurement & 

feature bias; objective bias; 

miscalibration. 

Decentralized bias auditing; data 

augmentation; re-weighting; 

debiasing algorithms; inclusive data 

collection; regulations. 

Social Biases 

Historical discrimination; 

representation imbalances; social 

stereotypes; anchor biases; implicit 

associations; feedback loops. 

Underrepresentation; feature biases; 

poor generalization; stereotyping; 

exclusion; denial of opportunities; 

abusive targeting; loss of autonomy. 

Diverse clients; bias auditing; data 

augmentation; nutrition labels; 

algorithmic fairness; subgroup 

validation. 

Algorithmic Biases 

Biased objectives; regularization; 

model assumptions; complex models; 

aggregated algorithmic biases. 

Suboptimal performance; historical bias 

perpetuation; opportunity denial; 

privacy violations; deflected 

accountability. 

Subgroup validation; fairness 

regularization; flexible model 

selection; multimodal modeling; 

counterfactual evaluation; modular 

transparency. 

Representational 

Biases 

Biased data formatting; problem 

framing; global model design; 

evaluation metrics. 

Poor personalization; limited 

accessibility; skewed optimization; 

privacy violations; entrenched biases; 

lack of recourse. 

Inclusive design; personalized 

models; subgroup validation; bias 

metrics, nutrition labels. 

 

3.1 Sample selection bias 

 

Sample selection bias can arise in FL due to differences in 

participation and selection of clients for training rounds [69]. 

The decentralized datasets in FL are determined by which 

users, devices or organizations participate as clients in the 

model training process. However, the client population may 

not accurately represent the true underlying population 

distribution [70]. Certain subgroups may end up being 

overrepresented or underrepresented among the clients based 

on factors like geographic location, demographics, device 

types, etc. [69]. For example, patients from larger hospitals 

may dominate in healthcare FL while smaller clinics are 

underrepresented [7]. This can lead to biased, non-

representative data distributions among the decentralized 

client datasets. Minority demographic groups and less 

dominant data patterns may get excluded or underrepresented. 

Overrepresented groups will have an outsized influence on the 

model compared to underrepresented groups. As a 

consequence, the global model may not sufficiently capture 

diverse perspectives and vulnerabilities, potentially resulting 

in discrimination against certain minorities excluded from the 

training process. Furthermore, the model may also not 

generalize well to underrepresented segments of the 

population [71]. Without corrective techniques, this sample 

selection bias can get imprinted into the global model during 

federated training [72]. 

For instance, in Google's implementation of FL for Gboard, 

the mobile keyboard app, sample selection bias was observed 

due to uneven participation of users. Users with high-end 

devices and reliable internet connections were more likely to 

participate in training rounds, leading to overrepresentation of 

certain demographic groups. This resulted in the language 

model performing better for these groups while 

underperforming for underrepresented demographics. The 

bias manifested as less accurate next-word predictions for 

users from underrepresented groups, affecting user experience 

and potentially widening the digital divide. 



 

 

3.1.1 Factors 

There are several factors that can skew the sampling of 

clients in FL: 

• Device and Connectivity Biases: Clients participate 

voluntarily based on device capabilities and 

connectivity. Lower-resourced devices may drop out 

due to power or bandwidth limitations [3]. Regions 

with poor connectivity provide limited client samples. 

This leads to biased geographic and demographic 

representations. 

• User Demographic Biases: Due to variability in 

technology adoption, the decentralized samples tend to 

overrepresent certain population segments more 

proficient with technology, while underrepresenting 

minorities [21]. Age, income, education and cultural 

gaps can skew the client population. 

• Adversarial Manipulation: Malicious entities can 

deliberately poison or manipulate client sampling 

through targeted device infections or Sybil attacks 

simulating fake clients [5]. This allows injecting biases 

by influencing which devices participate in FL. 

 

3.1.2 Effects 

These sampling biases lead to some groups being 

overrepresented while minorities are underrepresented among 

the clients. This has several detrimental effects [2]: 

• Model fairness can degrade for underrepresented or 

excluded groups. Predictions tend to favor majority 

demographics. 

• Biases against minorities and protected groups are 

amplified without diversity in sampling. 

• Groups not represented in the client sample can be 

negatively affected by model decisions. 

• There is a lack of visibility into client sample 

representativeness at the central server. 

 

3.1.3 Potential mitigations 

Addressing sample selection bias remains an active area of 

research in FL. A range of techniques have been proposed to 

detect, limit and correct for sampling biases in the 

decentralized client population: 

• Careful client selection and recruitment strategies can 

help improve coverage of the underlying population 

distribution. The server can selectively recruit new 

clients to improve diversity on dimensions like 

geographic location, device types and demographics 

[73]. Incentive mechanisms through rewards or service 

benefits can also encourage broader user participation 

[74, 75]. However, this requires additional coordination 

overhead. 

• Robust aggregation algorithms help limit the influence 

of any manipulated or biased local updates on the 

global model [16]. Techniques like trimmed mean 

ignore extreme outlier updates during aggregation [76]. 

The Federated Averaging algorithm assigns weights to 

clients based on characteristics like data size and 

reliability. This reduces the impact of falsified model 

contributions. 

• Statistical bias detection techniques can diagnose 

sampling issues before launching each training round 

[77]. Exploratory analysis of client characteristics helps 

identify underrepresented groups. Proxy metrics can be 

derived to estimate representation biases. This enables 

corrective actions like targeted recruitment. 

• Differential privacy mechanisms add noise to updates 

before aggregation to cloak client identities [78]. This 

limits reconstructing sensitive attributes that could 

enable manipulating client samples. Cryptographic 

secure aggregation also prevents leaking client 

properties [1]. 

While these approaches help mitigate sample selection bias, 

fully addressing the root causes requires expanding 

decentralized participation. Better incentives, user 

engagement and representativeness metrics can enhance 

diversity over time. 

 

3.2 Population distribution shift 

 

The independent datasets distributed across clients in FL are 

not static over time. There can be significant drift in the 

underlying data distributions as user populations and 

behaviors evolve [79, 80]. For example, demographics like age 

groups, language preferences, cultural affiliations, etc. can 

change across geographic regions that are represented by 

different clients [1]. 

New trends and emerging use cases lead to shifts in usage 

patterns and data characteristics. The interests and needs of 

users may also vary over time. In healthcare, new patient 

groups and disorders can arise while incidence of existing 

diseases may decline [7]. Such changes can lead to the 

problem of concept drift, where models trained on past client 

data distributions do not generalize well to new emerging 

distributions [81, 82]. Historical biases can get entrenched into 

the models without accounting for shifting populations and 

trends over time. As an illustration, consider banks training 

fraud detection models using FL across their branches. If the 

model was trained only on historical data, it may not catch new 

fraud patterns arising at a faster rate in certain newer regions 

[83]. Without explicit retraining or adaptation, model 

performance can degrade rapidly. 

 

3.2.1 Factors 

Several factors can cause shifts in the decentralized 

distributions that client devices see: 

• User Demographic Shifts: Populations inherently 

change as new user groups emerge and old cohorts 

decline. For example, generational differences lead to 

varying app usage patterns [84]. Geographic migration 

also causes distribution drifts. 

• User Behavior Shifts: Interests, habits and needs of 

users evolve over time. Social trends lead to changing 

how apps and devices are utilized. For instance, growth 

of short-form video apps like TikTok [85]. 

• App and Device Version Shifts: As apps get updated 

with new features, the resulting data patterns change. 

New device models alter data types, apps, and usage. 

Software and hardware evolution leads to drift [86]. 

• Adversarial Drift Injection: Attackers can manipulate 

the local data or model updates to intentionally cause 

distribution shifts that degrade model performance over 

time [87]. They may target particular subpopulations. 

3.2.2 Effects 

Unchecked, such drift can lead to models becoming stale 

and inaccurate on new data distributions, even if they were 

robust when first deployed [88]. Two key effects include: 



 

• Overall Performance Degradation: The global model 

starts making increasingly erroneous predictions as its 

assumptions become outdated [89]. Metrics like 

accuracy drop without realizing data has changed. 

• Subgroup Performance Issues: Model quality 

deteriorates rapidly on segments of users exhibiting the 

most distribution drift without being detected [90]. 

Minority groups often suffer the most. 

 

3.2.3 Potential mitigations 

As user behaviors, environments, and systems evolve in FL, 

adaptive solutions are necessary to detect and respond to 

concept drift across decentralized devices [91-93]: 

• Local drift detection techniques can analyze data 

distributions before aggregation to identify shifts from 

historical baselines [94]. Devices flag significant 

deviations to the central server prompting retraining. 

However, drift invisible to individual clients can 

accumulate globally. 

• Personalized FL customizes models to adapt to 

changing local distributions [95]. This allows 

specializing in emerging user cohorts and data types. 

However, personalization risks fragmenting the global 

model. 

• Robust optimization methods like distributionally 

robust optimization assume worst-case distributions to 

maintain performance despite drift [96]. Model rigor 

comes at the cost of lower accuracy on stable 

distributions. 

• Continuous aggregated analytics helps detect 

distribution shifts globally by monitoring metrics like 

decreasing accuracy, increasing loss, and higher 

variance in updates [97]. Retraining can then 

recalibrate models. 

• Simulating anticipated drifts via synthetic data allows 

proactively adapting models [98]. But this requires 

resources to generate future data profiles. And 

unexpected shifts may still occur. 

• Hybrid cloud-federated architectures utilize centralized 

cloud resources to rapidly retrain models when 

unmanageable drift is detected [99]. But this partially 

compromises privacy. 

• Adversarial domain adaptation explicitly trains models 

to adapt to different distributions, enhancing 

generalization [94]. But assumptions of shiftable 

domains are required. 

• Fully tackling decentralized drift requires coordination 

frameworks to align client objectives, server oversight 

to diagnose drift, and configurable robustness against 

uncertainty [16]. 

 

3.3 Biased local data 

 

In FL, biases can originate from the local datasets held by 

the clients themselves even before training begins [100]. The 

data collection and annotation process may be skewed against 

certain protected groups leading to underrepresentation or 

measurement bias. 

For instance, a study by Kaissis et al. [101] demonstrated 

that FL models for medical imaging inherited biases from local 

datasets. Hospitals with more advanced imaging equipment 

contributed higher-quality data, while those with older 

equipment supplied lower-quality images. This disparity led to 

a model that performed better on data similar to that from 

hospitals with advanced equipment, disadvantaging patients 

from under-resourced hospitals. 

 

3.3.1 Factors 

There are several factors that can introduce bias into the 

decentralized data: 

• Biased Data Collection: The data collection process 

may systemically underrepresent certain population 

groups. For example, clinical trials often focus on 

majority demographics while excluding minorities 

[102]. 

• Measurement Biases: Systemic issues in how data is 

measured and annotated can lead to bias. Examples 

include label skew, stereotypes in human labeling, and 

distortion in self-reported data [103]. 

• Omitted Variables: Relevant factors needed to make 

fair decisions may be missing from the data. Sensitive 

attributes like race, age or gender might be excluded. 

• Proxy Encoding: Even if sensitive attributes are 

excluded, other features may encode similar 

information leading to indirect bias [104]. Location or 

income data could correlate to race for instance. 

The local datasets may also disproportionately represent 

and further amplify existing societal biases [104]. 

Discrimination faced by marginalized communities 

propagates into the data. Seemingly objective data can 

perpetuate systemic inequities. If such issues in the 

decentralized data are not addressed, the biases will naturally 

get propagated to the global model during federated training 

and aggregation [11]. 

 

3.3.2 Effects 

If left unaddressed, these biases in local data can get 

propagated to the global model during federated training. 

Biased data also makes models vulnerable to deliberate 

manipulation: 

• Data Poisoning Attacks: Bad actors can inject 

poisoned local data with backdoors or malevolent 

biases that taint the global model [105]. This is harder 

to detect in decentralized models. 

• Model Evasion: Biased data can be used to generate 

adversarial examples to evade detection by models like 

fraud classifiers [106]. 

• Difficult to Audit: Due to privacy requirements, 

auditing local data quality directly is difficult in FL, 

allowing bad data to go undetected. 

Biased local data can thus lead to loss of fairness, 

performance issues, and security vulnerabilities. But 

mitigating decentralized data bias raises challenges around 

coordination, privacy, and incentive alignment between 

competitive clients [2]. 

 

3.3.3 Potential mitigations 

Addressing biases in the decentralized datasets of FL clients 

poses unique challenges around preserving privacy and 

securely coordinating among untrusting parties. A range of 

techniques have been proposed to detect, limit, and correct for 

biases in local client data: 

• Client-Side Data Auditing: Adapting centralized 

dataset auditing tools for decentralized execution 

allows clients to analyze their local data for biases and 

coverage issues before training models [107]. Privacy-

preserving metrics quantify label skew, profiling gaps, 

stereotypes in annotations, proxy discrimination 



 

through related variables, and other data quality issues 

without requiring to share actual data [108]. 

Aggregated reports allow assessment of biases across 

the federated network to prioritize improvements. 

• Local Data Debiasing: Similar to centralized 

debiasing, privacy-preserving algorithms can pre-

process local datasets to remove biases while 

preserving utility [109]. Removal or anonymization of 

sensitive variables, reweighting, resampling, and 

generative data augmentation changes balance 

representations before training. Debiasing also makes 

models more robust to data poisoning attacks. 

• Secure Aggregation for Bias: Using secure multiparty 

computation and differential privacy, aggregation 

queries can be run across decentralized clients to detect 

outliers indicative of manipulated or intentionally 

poisoned local data [78, 110]. Noise addition during 

aggregation provides privacy for such diagnostics. Data 

trusts which hold local data encrypted can also run 

validation. 

• Reputation Systems: Central servers can track metrics 

like variance between updates from a client, prediction 

errors on new data, anomalies in parameters, etc. to 

build reputation scores for reliable clients over time 

[105]. Biased or manipulated data contributions then 

get lower weightage during aggregation. 

• Incentive Mechanisms: Proper incentives that reward 

good behavior can help improve data quality [111-113]. 

For example, well-behaved clients who provide useful 

updates are paid or provided higher model quality. 

Penalties can deter detectable manipulations and data 

poisoning. 

• Robust Secure Aggregation: Carefully designed 

robust federated algorithms ignore or down-weight 

extreme parameter updates and give higher priority to 

trusted clients [76, 114]. This limits the impact of 

intentionally poisoned data contributions, but may 

overlook valid outliers. 

While these help in mitigating biased local data, approaches 

to expand diversity and inclusion in data collection are also 

needed to address systemic root causes. Careful alignment of 

incentives, coordination and education can enhance data 

quality over time. 

 

3.4 Systemic biases in data 

 

The data used to train ML models often reflects and 

amplifies systemic societal biases that have persisted 

historically against certain groups [14]. Even datasets that 

appear neutral on the surface can propagate unfair social 

prejudices if not carefully examined [115]. For instance, 

healthcare data has been shown to contain inherent biases that 

disadvantage ethnic minorities. Clinical studies 

disproportionately focus on majority populations, excluding 

historically marginalized groups like racial minorities and 

poorer socioeconomic segments [116]. Predictive models 

trained on such data perpetuate the sampling and coverage 

biases, leading to inequitable healthcare access and outcomes 

for minorities. Further, face recognition systems have higher 

error rates for darker skin tones due to unbalanced training 

data [117]. Furthermore, finance data also reflects systemic 

biases in lending practices and income disparities across 

demographic factors like gender and race. Models built on 

such data can deny opportunities to minorities by repeating 

historical discrimination [118]. 

 

3.4.1 Factors 

There are several factors that allow systemic biases to 

manifest in data: 

• Historical Discrimination: Past discrimination faced 

by groups like racial minorities due to unethical laws, 

policies and practices over decades gets captured in 

data documenting those eras [119, 120]. Datasets thus 

bake in historical harms. 

• Measurement Biases: The practices and tools used for 

data collection may systemically underrepresent certain 

population segments leading to sampling bias [121]. 

Surveys that fail to sample minorities, sensors 

unavailable in low-income regions, human annotation 

from majority demographics, etc. cause systemic data 

collection biases. 

• Proxy Discrimination: Even when sensitive attributes 

like race, gender or age are explicitly excluded, other 

superficial attributes may correlate to them enabling 

indirect systemic biases [122]. Geography, income, 

language, profession and other factors can act as 

proxies. 

• Anchor Biases: When labeling training data or 

defining categories, majority priorities and contexts are 

unconsciously anchored on leading to biases against 

minorities with different needs [123]. 

• Social Stereotypes: Human cognitive biases and 

prevailing societal prejudices unconsciously get 

imprinted into data [124, 125]. Cultural stereotypes 

around race, gender, age, ethnicity, etc. distort human 

annotation of training data as well as user-generated 

data. 

• Unexamined Assumptions: Design choices that 

ignore minority interests perpetuate the status quo. 

Questionnaire design, feature selection, problem 

formalization and other assumptions disadvantage 

minorities [126-128]. 

 

3.4.2 Effects 

When applied to data reflecting systemic biases, machine 

learning models inherit these issues which then get amplified 

due to feedback loops: 

• Underrepresentation: Minority groups most impacted 

by systemic biases have insufficient data leading to 

outcomes optimized for the majority groups [129]. 

Their interests are excluded. 

• Measurement and Feature Bias: Systemically 

distorted data provides inaccurate ground truth for 

modeling minority behavior leading to skewed models, 

and sensitive attributes may be proxied [14]. Moreover, 

Models latch onto features correlated with identity 

rather than meaningful drivers leading to proxy 

discrimination [130]. 

• Objective Bias: Model objectives like accuracy 

optimize for the majority groups at the cost of 

minorities by assuming balanced data [131]. 

• Miscalibration: Even when overall metrics seem 

robust, performance on minority groups suffers due to 

systemic underrepresentation and measurement biases 

[129]. 

While FL keeps the sensitive raw data decentralized, the 

models can still ingest systemic biases present in the local 

datasets. This can lead to scenarios where the AI systems 



 

exclude, misrepresent or disproportionately target groups 

suffering from structural marginalization [132]. Unless 

countermeasures are taken, the aggregated models will reflect 

the accumulated societal biases. Techniques to audit datasets 

and algorithms as well as incentivize equitable engagement are 

necessary to mitigate harm from historically ingrained biases 

[133]. The compounding effects of minor data imbalances also 

need to be considered. 

 

3.4.3 Potential mitigations 

Addressing systemic biases that have accumulated in data 

requires a multifaceted approach: 

• Decentralized Bias Auditing: Tools adapted for 

decentralized execution can allow clients to audit local 

data and coordinate audits on aggregated data to 

quantify bias and identify impacted groups [108]. 

Privacy-preserving metrics assess representation 

imbalances, distortion, profiling harms. 

• Dataset Nutrition Labels: Attaching documentation 

detailing known gaps, assumptions, reporting 

subgroups, etc. provides transparency into limitations 

to address in system design. Data statements enable 

informed usage. 

• Dataset Augmentation: Synthetically generating 

additional data samples from minority groups can 

improve coverage [134]. However, measuring impact 

on bias needs care. 

• Re-weighting Data: Assigning higher weights to 

minority samples during model training can rebalance 

contributions [135]. But directly optimizing on biased 

data has risks. 

• Debiasing Algorithms: Algorithms that pre-process 

data to remove proxy variables, reweight groups, and 

normalize representations can be applied locally before 

federated training [136, 137]. 

• Inclusive Data Collection: Expanding diversity in 

data collection practices to cover beyond majority 

demographics, languages, contexts, etc. provides more 

representative data. 

• Regulations and Standards: Requiring standardized 

reporting, impact assessments, risk management and 

other oversight measures allows governing use of 

systemically biased data [138]. 

The unique constraints of FL require adapting anti-bias 

approaches to the decentralized environment. Key technical 

interventions include improving local data quality, algorithmic 

debiasing, and rigorous subgroup validation. However, 

technical steps alone are insufficient to address systemic 

societal issues. Participative auditing, representation in 

governance, ensuring accountability, and reforming unjust 

structures are imperative [139]. 

 

3.5 Social biases 

 

ML systems do not operate in isolation, but rather reflect 

prevailing societal attitudes and ingrained human prejudices 

[140]. Data generated by humans naturally captures embedded 

cultural stereotypes and unconscious biases around factors like 

race, gender, age, ethnicity, etc. [141]. When datasets 

exhibiting social biases are used to train AI systems, the 

models inherit and amplify these biases. Seemingly neutral 

factors can encode demographic attributes leading to proxy 

discrimination [142]. 

 

3.5.1 Factors 

There are various complex sociotechnical factors that allow 

social biases to become ingrained in data and algorithms [143]: 

• Historical Discrimination: Legacies of unethical laws, 

policies, practices, and social norms against minority 

groups in the past propagate biases. Discriminatory 

practices get captured in historical datasets 

documenting those eras [119, 120]. Models trained on 

such data perpetuate historical prejudices. 

• Representation Imbalances: Due to gaps in access, 

awareness, and technical skills, certain demographic 

segments end up underrepresented in datasets used to 

train AI systems. Without diversity, systems optimize 

for majority groups [129]. 

• Social Stereotypes: Human cognitive biases and 

prevailing cultural stereotypes unconsciously get 

imprinted into data generated by people. Annotators 

apply societal prejudices when labeling training data, 

which gets propagated into models [124]. 

• Anchor Biases: When defining problems, choosing 

categories, and labeling data, majority priorities, 

contexts and needs are anchored onto. Minority 

interests are overlooked, leading to biases against them. 

• Implicit Associations: Models pick up on correlations 

in data that reflect social stereotypes and societal 

associations, even if not present in the variables directly 

used for training [144]. It get imprinted into models. 

• Feedback Loops: Due to self-reinforcing cycles, 

minor biases accumulate and get amplified over time. 

Biased models produce skewed outputs which further 

distort data used for retraining [145]. 

 

3.5.2 Effect 

Unchecked social biases perpetuated through data and 

algorithms lead to the following discriminatory impacts [143]: 

• Underrepresentation: Minority groups left out of 

training data receive lower quality outcomes as models 

never learn to optimize for them. Their interests are 

excluded. 

• Feature Biases: Models rely on factors correlating 

with sensitive attributes like race or gender rather than 

meaningful drivers of decisions. This leads to proxy 

discrimination. 

• Poor Generalization: Performance disparities arise for 

minority dialects, cultural contexts, age groups, etc. 

that differ from majority training data. 

• Stereotyping: Recommendations align with and 

reinforce stereotypes around race, gender, age or 

ethnicity leading to pigeonholing. 

• Exclusion: Requirements like video interviews, 

majority cultural settings, etc. disadvantage subgroups 

with less access to technology and dominant cultures. 

• Denial of Opportunities: Biased models result in 

fewer opportunities in areas like credit, employment, 

housing, etc. for impacted groups. 

• Abusive Targeting: Models explicitly target 

minorities for predatory practices like aggressive 

policing, high interest loans, or addiction promotion. 

• Loss of Autonomy: Biased systems override minority 

self-determination by encoding majority priorities and 

perspectives. 

Social biases in FL lead to disproportionate errors, 

exclusion or problematic recommendations against protected 



 

groups facing structural inequities [146-148]. Without 

concerted efforts, federated models will encode accumulated 

societal prejudices leading to discriminatory impacts. 

 

3.5.3 Potential mitigations 

Addressing social bias remains an active area of research in 

FL requiring a multifaceted approach: 

• Diverse Clients: Promoting participation from a 

diverse and representative range of users, devices, and 

organizations helps create more varied decentralized 

data to train on. 

• Bias Auditing: Adapting bias quantification tools to 

run locally allows clients to audit their data. Secure 

aggregation enables collective auditing to identify 

systemic issues [108, 149]. 

• Data Augmentation: Generative models can be used 

to synthesize new data samples from underrepresented 

groups, locally improving data diversity [150]. 

• Dataset Nutrition Labels: Attaching documentation 

about known data biases improves transparency for 

those aggregating models [151]. 

• Algorithmic Fairness: Regularization terms and 

constraints are incorporated into the global model 

optimization to encourage fairness across groups [152]. 

• Subgroup Validation: Maintaining segmented test 

sets for evaluating model performance on minority 

groups allows detecting disparities [153]. 

 

3.6 Algorithmic biases 

 

In addition to data issues, biases can also arise from the 

model architectures, objective functions, and assumptions 

made during the ML pipeline [14]. Choices that seem neutral 

can unintentionally introduce algorithmic harms against 

certain groups. For instance, commonly used performance 

metrics like accuracy implicitly assume class balance and can 

optimize for the majority groups, disadvantaging minorities 

[124]. Maximizing accuracy leads models to 

disproportionately focus on improving predictions for well-

represented groups. 

For instance, an implementation of FL for music 

recommendation revealed algorithmic bias due to the 

optimization objective favoring majority user preferences 

[154]. The model prioritized genres favored by the dominant 

user groups in the training data, underrepresenting music 

genres preferred by minority users. 

 

3.6.1 Factors 

There are various ways that bias can inadvertently become 

encoded into the algorithms and models themselves: 

• Model objectives like accuracy and Root Mean Square 

Error (RMSE) optimize for overall aggregate 

performance but ignore effects on subgroups. 

Maximizing accuracy leads systems to focus on 

improving predictions for well-represented majority 

groups at the cost of minorities [131]. Classifier 

performance metrics assume balanced data and 

proportional subgroups. 

• Many regularization techniques to prevent overfitting 

like parameter norm penalties are optimized for 

centralized settings with abundant IID data. They do 

not sufficiently account for the decentralized 

unbalanced distributions often present in FL [54]. This 

degrades model robustness and fairness on 

underrepresented groups. 

• The choice of model family, architectures and 

hyperparameters reflects inherent assumptions that 

may not universally hold across diverse subgroups. 

Different subgroups may require different model forms 

to capture nuanced data relationships. 

• Deep learning models can latch onto spurious 

correlations during training that reflect historical biases 

and discrimination rather than meaningful drivers of 

decisions [155]. The black box nature of complex 

models makes auditing these latent biases difficult. 

• During federated training, the process of aggregating 

algorithmic biases from various decentralized clients 

can compound harms. Differing optimization 

constraints and incentives between competitive clients 

further complicate the effects [5]. 

 

3.6.2 Effect 

Unchecked algorithmic biases can result in the following 

discriminatory impacts on minority groups: 

• Suboptimal performance due to poor generalization on 

data patterns not fitting simplified modeling 

assumptions based on majority trends [129]. Tailored 

model selection is needed to address subgroup needs. 

• Perpetuating historical harms by replicating ingrained 

patterns of discrimination that correlate superficially in 

the data but have no true explanatory relationship [156]. 

• Denying opportunities by optimizing only for the 

overall metric improvements which enables sacrificing 

minority subgroups if it benefits the majority aggregate. 

• Violating privacy and self-determination by enabling 

inference of sensitive attributes from model outputs 

even if not an explicit input [157]. Individuals lose 

control over use of their personal information. 

• Avoiding accountability by providing ambiguous 

opaque systems that deflect responsibility for unfair 

outcomes by attributing them to algorithmic 

determinism [158]. 

Unless algorithmic biases are mitigated through thoughtful 

selection of performance metrics, model forms and training 

objectives, FL risks exacerbating discrimination through its 

algorithms. 

 

3.6.3 Potential mitigations 

While data biases entering models can be addressed through 

preprocessing and augmentation techniques, biases can also 

arise from the model development process itself. From unfair 

performance metrics to poor generalizability on minority data 

patterns, a range of technical choices can inadvertently 

introduce algorithmic harms: 

• Subgroup Validation: Maintain segmented test sets 

for each demographic group to evaluate model 

performance across subgroups and detect disparities 

[153, 159]. 

• Fairness Regularization: Incorporate constraints or 

terms in the global model optimization that penalize 

discrimination and encourage fairness across groups 

[160, 161]. 

• Flexible Model Selection: Use adaptive model 

selection and hyperparameter tuning tailored to 

optimize performance for individual clients to improve 

personalization [95]. 



 

• Multimodal Modeling: Ensemble approaches 

combining diverse model families tuned on 

representations learned from subset data can improve 

robustness. 

• Counterfactual Evaluation: Assess models by 

systematically simulating conditions with biases 

removed to quantify impact on subgroups [162]. 

• Modular Transparency: Adopt interpretable, 

modular and auditable model architectures to enable 

better oversight [163]. 

While technical interventions help, addressing algorithmic 

biases requires examining how problems are formulated, 

performance is measured, and who is centered in development. 

Wider community participation in designing and auditing 

algorithms can surface harmful assumptions [164]. 

 

3.7 Representational biases 

 

Representational biases refer to issues that arise from how 

data is structured, problems formalized, and models designed 

in ways that marginalize certain populations [115, 158]. 

Choices that may seem neutral can inadvertently encode 

assumptions that disadvantage minority groups. For example, 

the way data is formatted often normalizes attributes common 

in majority demographics while minorities end up represented 

as edge cases or exceptions [159]. 

For instance, FL models trained on text data from globally 

distributed users may underrepresent low-resource languages 

[165, 166]. Users typing in less common languages contribute 

less to the model updates, leading to poorer language 

processing capabilities for those languages. 

 

3.7.1 Factors 

There are various ways that representational biases can 

manifest in the FL pipeline: 

• Client Data Formatting: The way local decentralized 

data is preprocessed, formatted and encoded often 

normalizes attributes common in majority 

demographics while minorities are edge cases [14]. 

• Problem Framing: Objectives set by aggregators 

often ignore needs of underrepresented groups. Narrow 

assumptions result in poor personalization [151]. 

• Global Model Design: Choices in model family, 

architecture, hyperparameters may be suboptimal for 

tailoring to diverse clients’ data patterns [115]. 

• Evaluation Metrics: Global validation datasets and 

metrics like overall accuracy insufficient to assess 

subgroup impacts [167]. 

Together these representational choices by central 

aggregators can center majority groups while marginalizing 

minorities in the federated environment. This leads to 

embedding biases that disadvantage subgroups among the 

decentralized clients. 

 

3.7.2 Effect 

Representational biases manifest in FL models through the 

following effects: 

• Poor Personalization: Global models fail to specialize 

well for minority clients with atypical data distributions, 

dialects, and use cases [168-170]. 

• Limited Accessibility: Systems lack localization, 

inclusivity, and accessibility limiting adoption by 

diverse decentralized groups [171]. 

• Skewed Optimization: Aggregate metrics like overall 

accuracy lead to models optimized for majority clients 

at the cost of minorities [16]. 

• Privacy Violations: Centralized coordinators could 

infer sensitive attributes about local client data from 

model updates [78]. 

• Entrenched Biases: Global models perpetuate 

systemic representational biases without reforms to 

inclusive coordination [172]. 

• Lack of Recourse: Opaque federated systems deflect 

accountability for unfair outcomes by attributing them 

to algorithmic determinism [165]. 

Decentralized participatory approaches are necessary to 

ensure representations do not exclude or disadvantage 

minority clients. 

 

3.7.3 Potential mitigations 

Addressing representational biases remains an active area of 

research in FL requiring technical interventions combined 

with inclusive participative design and decentralized 

governance approaches: 

• Inclusive Design: Engage wider community 

participation in problem formulation, model 

prototyping and testing to surface excluded perspectives. 

• Personalized Models: Adapt model selection and 

hyperparameters for each client to improve 

personalization and prevent one-fits-all effects [95]. 

• Subgroup Validation: Use segmented test sets and 

metrics to ensure model performance is evaluated 

across diverse clients and environments. 

• Bias Metrics: Define quantifiable metrics to assess 

model fairness and inclusion issues during development 

[108]. 

• Nutrition Labels: Require documentation of design 

choices, assumptions, limitations to inform aggregation 

and oversight. 

While technical interventions help, addressing root causes 

requires examining who is centered in FL design. Participative, 

decentralized, peer-based approaches can help reform 

exclusionary assumptions and structures. Community voices 

should guide problem formulation, not just passive data 

contributors. Standards preventing extractive, unethical data 

practices are also necessary [173]. Dual technical and social 

responses attuned to marginalized groups can accelerate 

progress. 

 

 

4. BIAS MITIGATION TECHNIQUES IN FEDERATED 

LEARNING 

 

In this section, we provide a detailed examination of 

specific bias mitigation techniques in FL, highlighting 

concrete examples and comparing their effectiveness. We 

categorize these techniques into: (1) data-based, (2) 

algorithmic, and (3) hybrid approaches and discuss their 

implementations and outcomes in real-world scenarios. Table 

3 summarizes and compares these techniques. 

 

4.1 Data-based mitigation techniques 

 

Data-based techniques focus on manipulating the training 

data to reduce biases. These methods are implemented at the 

client level, where the data resides: 

 



 

Table 3. Comparison of Bias Mitigation Techniques in Federated Learning 

 

Technique Category Advantages Limitations 

q-FFL [16] 
Data-Based / 

Algorithmic 

Improves fairness across clients; simple 

implementation. 

May slow convergence; requires client loss 

information. 

FAug [150] Data-Based Enhances data diversity; no raw data sharing. 
Requires client coordination; may not address all 

biases. 

Local Adversarial 

Debiasing [174] 
Data-Based Reduces bias at source; preserves privacy. 

Requires sensitive attribute labels; potential utility 

loss. 

AFL [152] Algorithmic 
Robust to data heterogeneity; improves worst-case 

performance. 

May reduce overall accuracy; conservative 

optimization. 

GKT [175] Algorithmic 
Preserves group characteristics; improves group 

fairness. 

Increased communication and computation due to 

clustering. 

SCAFFOLD [176] Algorithmic Corrects client drift; improves convergence. 
Additional communication overhead for control 

variates. 

FedHealth [91] Hybrid 
Benefits clients with limited data; improves 

personalization. 
Requires feature alignment; privacy concerns. 

MOCHA [177] Hybrid 
Adapts to client-specific distributions; reduces 

biases. 

Computationally intensive; complex 

optimization. 

 

4.1.1 Reweighting and resampling strategies 

These type of techniques aim to address sample selection 

bias and class imbalances by adjusting the importance of data 

samples or altering the sampling probability. In this direction, 

a solution, called q-Fair Federated Learning (q-FFL), proposed 

by Li et al. [16] introduces a fairness-aware objective function 

that adjusts weights based on the inverse of the client’s loss. 

This approach emphasizes underperforming clients or 

minority groups by allocating them more weight during 

aggregation. q-FFL has been shown to improve fairness across 

clients in terms of model performance disparities. However, it 

may slow down overall convergence and requires careful 

calibration of the fairness parameter q. Additionally, it 

depends on clients sharing their loss values, which may raise 

privacy concerns. 

 

4.1.2 Federated data augmentation 

Data augmentation techniques enhance the diversity of 

training samples by generating synthetic data, reducing biases 

due to limited or skewed local datasets. Federated 

Augmentation (FAug) introduced by Jeong et al. [150] allows 

clients to share data augmentation strategies instead of actual 

data. By agreeing on common augmentation policies, clients 

can simulate a more balanced and diverse dataset locally. 

FAug improves model generalization and reduces biases 

arising from data heterogeneity. However, it requires 

coordination among clients to agree on augmentation policies, 

which may not be feasible in all federated settings. 

 

4.1.3 Client-side data debiasing 

Clients perform local data preprocessing and debiasing to 

mitigate biases inherent in their datasets. In this direction, 

Local Adversarial Debiasing proposed by Du et al. [174] 

involves training a debiasing model adversarially to remove 

sensitive attribute information from the representations 

learned locally. This approach reduces biases related to 

sensitive attributes (e.g., gender, race) at the source and 

preserves privacy since debiasing is performed locally. 

However, it requires clients to have access to sensitive 

attribute labels, which may not always be available or 

permissible due to privacy regulations. 

 

4.2 Algorithmic mitigation techniques 

 

Algorithmic techniques modify the FL process to 

incorporate fairness directly into model training and 

aggregation. 

 

4.2.1 Fair federated learning algorithms 

These algorithms adjust the training objective to consider 

fairness across clients or groups. For example, Agnostic 

Federated Learning (AFL) proposed by Mohri et al. [152] 

optimizes for the worst-case weighted combination of client 

losses. By focusing on the minimax optimization problem, 

AFL aims to improve fairness and robustness across 

heterogeneous client data distributions. AFL has demonstrated 

improved fairness metrics and robustness to non-IID data. 

However, it may lead to a reduction in overall model accuracy 

due to its conservative optimization approach that prioritizes 

the worst-performing clients. 

 

4.2.2 Fair averaging and aggregation 

Aggregation methods can be designed to account for 

fairness during the model update phase. For instance, Group 

Knowledge Transfer (GKT) introduced by Wang et al. [175] 

clusters clients into groups based on data distributions and 

aggregates models within each group before combining them 

globally. This preserves group-specific characteristics and 

mitigates biases due to group differences. GKT improves 

fairness by ensuring that group-specific information is not lost 

during aggregation. The method may increase communication 

overhead and computational complexity due to the need for 

clustering and multiple aggregations. 

 

4.2.3 Adaptive optimization techniques 

These methods adjust the learning rates or update rules to 

account for data heterogeneity. SCAFFOLD proposed by 

Karimireddy et al. [176] uses control variates to correct for 

client drift resulting from heterogeneity in data distributions. 

It introduces a variance reduction technique to better align 

local updates with the global objective. SCAFFOLD achieves 

faster convergence and reduces the biases caused by client 

drift. The trade-off includes additional communication 

overhead due to the need to transmit control variates between 

clients and the server. 
 

4.3 Hybrid mitigation techniques 

 

Hybrid techniques combine data-based and algorithmic 

approaches to leverage the strengths of both.

  



 

4.3.1 Federated transfer learning 

It enables clients with limited data to benefit from models 

trained on larger datasets from other clients. For instance, 

FedHealth proposed by Chen et al. [91] is a federated transfer 

learning framework designed for wearable healthcare data. It 

leverages knowledge from rich datasets at some clients to 

improve the personalized models at others. FedHealth 

improves model accuracy and fairness for clients with scarce 

data and reduces biases due to data scarcity. Challenges 

include ensuring feature space alignment across clients and 

managing privacy concerns. 

 

4.3.2 Multi-Task learning approaches 

Multi-task learning allows clients to learn personalized 

models while sharing representations. For example, MOCHA 

proposed by Smith et al. [177] is a federated multi-task 

learning framework that models each client’s task separately 

but jointly learns shared representations. MOCHA reduces 

biases by accommodating client-specific data distributions and 

enhances personalization. It requires solving complex 

optimization problems and may have higher computational 

demands. 
 

 

5. CHALLENGES AND OPEN ISSUES 

 

While progress has been made in developing bias mitigating 

solutions tailored to FL, significant open questions and 

challenges remain to be addressed. The unique constraints 

arising from decentralization, systems heterogeneity, 

competing incentives, and privacy considerations pose 

difficulties in directly applying centralized techniques. Novel 

advancements are needed across areas ranging from 

coordinated evaluation to privacy-preserving auditing and 

incentive mechanisms for promoting voluntary adoption of 

debiasing techniques. The emerging field of fair and 

accountable FL continues to be an active research domain, 

with impacts on developing trustworthy and inclusive AI 

systems. In this section, we explore critical unresolved 

challenges and promising research directions to fully harness 

FL's potential for addressing societal needs and enhancing 

public welfare. These challenges span technical, ethical, and 

practical dimensions that must be examined to ensure FL can 

effectively serve humanitarian causes. 

 

5.1 Lack of coordination 

 

A core assumption in many bias mitigation techniques is the 

ability to coordinate across the full dataset or training process. 

However, FL involves decentralized clients that are often 

distrusting entities with misaligned incentives and competing 

objectives. This poses challenges for bias mitigation compared 

to traditional centralized training where full coordination can 

be enforced. For example, techniques like reweighting 

underrepresented groups or oversampling minorities require a 

global view of the overall data distribution to ensure proper 

balancing. But transparency into other clients' local data 

distributions to calculate appropriate weights may violate 

privacy expectations and business interests. Introducing fake 

simulated data also needs coordination to prevent overlapping 

samples. 

Furthermore, distributed validation of models on segmented 

test sets representing diverse groups is important to assess 

biases consistently. But this requires collective coordination in 

defining evaluation methodology and sharing results. 

Adversarial attacks exploiting lack of coordination are also 

harder to detect without global visibility across clients. 

Moreover, mechanisms for limited coordination could help 

balance these tensions. For example, secure distributed 

analytics and differential privacy may provide aggregated 

insights into bias without exposing raw client data. Further, 

economic incentives and reputation systems could encourage 

coordination behaviors aligned with mitigating bias. 

Furthermore, transfer learning can propagate useful patterns 

across models without sharing actual data [178]. 

However, fully decentralized bias mitigation without any 

coordination remains an open research challenge. Options like 

trusted industry-specific authorities to govern coordination, 

norms-based self-organization, and voluntary coordination 

around social responsibilities may help in specific contexts. 

But ensuring mitigation at scale without centralized oversight 

remains an open issue. 

 

5.2 Privacy constraints 

 

While transparency and auditing can help identify biases, 

strict privacy protections in FL pose challenges. Directly 

analyzing raw decentralized data to quantify bias metrics 

would provide the most insight but violates client privacy 

expectations [179]. Furthermore, differential privacy and 

secure aggregation techniques allow some validation and 

analytics in a privacy-preserving manner. But these introduce 

noise that limits utility [180]. The level of noise required to 

fully mask membership or attribute inference may render 

validation metrics too distorted to draw fair conclusions. 

Moreover, transparency reports on aggregate demographics 

and bias metrics can help coordinate mitigation efforts. But 

this reveals sensitive information about clients so is often 

avoided. Detailed model cards on performance across groups 

require profiling users. Therefore, novel privacy-preserving 

auditing techniques are needed that enable unbiased evaluation 

without compromising confidential data. Secure multi-party 

computation shows promise to run distributed diagnostics. 

Models can also be trained to predict biases without exposing 

data [181]. 

However, partially relaxing privacy, such as within industry 

consortiums, can enable transparency for bias mitigation. But 

this risks exclusion if marginalized groups lie outside such 

consortiums. Limited, accountable disclosure may help 

balance risks [94]. Thus, fully decentralized approaches 

without transparency remain challenging. Social coordination 

through norms and voluntary self-disclosure could raise 

accountability. But ensuring comprehensive, privacy-

preserving auditing at scale remains an open research area. 

 

5.3 Evaluating decentralized Non-IID data 

 

A key challenge in FL is evaluating models for bias on 

decentralized non-IID client data. Overall performance 

metrics like accuracy, calculated centrally after aggregating 

model updates, can miss disparate impacts on 

underrepresented groups that exhibit distribution skew [14]. 

Drilling down to assess model behavior across heterogeneous 

local datasets is important to quantify fairness. However, this 

requires sharing samples from sensitive client data, which 

violates privacy expectations. 

While centralized evaluation on representative test sets is 

common in ML, this poses difficulties in federated settings. 



 

Clients are often unwilling to share local data for pooled 

validation due to confidentiality concerns. Coordinating 

clients to create standardized test sets that cover diverse 

subgroups is also arduous. Differences in evaluation 

methodology, metrics, and labeling schemas across 

organizations further complicate consistent assessment [182]. 

Therefore, new decentralized protocols are required that can 

validate model performance and fairness on heterogeneous 

local data in a privacy-preserving manner. Secure multiparty 

computation techniques enable aggregating subgroup metrics 

across clients without exposing raw data. Differentially private 

mechanisms allow discerning bias while limiting attribute 

disclosure. Emerging techniques like federated meta-learning 

assess models by exchanging trainable parameters instead of 

actual data samples. 

However, practical adoption of such emerging secure 

evaluation techniques faces barriers. Compliance from 

competitive clients is difficult to ensure without oversight 

[183]. For instance, peer auditing raises additional tensions 

around proprietary model comparisons. Relative 

benchmarking against fluctuating baselines provides limited 

insight into absolute model biases. Thus, beyond technical 

solutions, progress requires establishing community standards, 

participative governance and incentives promoting 

accountability [184]. 

 

5.4 Adversarial attacks and model poisoning 

 

The decentralized nature of FL makes models susceptible to 

adversarial attacks and intentional data poisoning aimed at 

compromising fairness [185]. Malicious clients could inject 

poisoned updates with embedded biases against certain 

subgroups that taint the global model. Since the origin of 

contributed updates is obscured, it becomes challenging to 

detect such manipulated contributions encoding malevolent 

biases. Discriminatory attacks that would be evident in 

centralized settings can remain invisible in FL without full 

visibility into heterogeneous client behaviors [186]. 

While techniques like robust aggregation can ignore or 

downweight outlier updates, advanced attacks craft poisoned 

updates that appear as normal local changes to bypass defenses. 

Carefully coordinated injection of poisoning data across 

multiple colluding devices can further mask bias detection, 

which is harder without global oversight. Simulating 

centralized retraining on all raw data can diagnose poisoning 

but leaks private data. Developing robust anomaly detection 

tailored to federated environments remains an open area 

needing novel privacy-preserving inspection of contributions 

across distrusting parties to identify manipulation of biases. 

Monitoring metrics indicating emerging skew against 

protected groups can help [187]. Cryptographic reward 

systems that incentivize fair updates and flag suspicious 

behaviors could enhance resilience. Addressing these 

emerging threats is critical for securing FL against 

adversarially encoded biases. 

 

5.5 Communication and computation constraints 

 

Many bias detection and mitigation techniques designed for 

centralized environments involve additional communication 

and computational overhead, which poses challenges in 

adopting them for FL. Complex multi-round algorithms or 

hosting large validation datasets may be infeasible given the 

limitations of decentralized devices and connectivity 

constraints. For example, bandwidth-heavy gradient exchange 

between clients for consensus-based federated averaging 

results in high latency [188]. Similarly, continuously 

monitoring detailed metrics and rerunning expensive model 

diagnostics like full factorization for bias can be prohibitive 

[1]. 

Therefore, developing efficient and optimized solutions is 

crucial to enable practical bias mitigation under federated 

constraints. Approaches tailored to minimize communication 

such as exchanging only model updates rather than full 

parameters can assist adoption. Further, strategies like secure 

hierarchical aggregation avoids all-to-all exchanges. 

Furthermore, predictive modeling using proxy data can 

analyze biases without heavy diagnostics. Moreover, sparse 

collective matrices reduce intersection computations. 

Parallelizing operations across clients hastens convergence. 

Thus, achieving efficacy and robustness against biases within 

the cost limitations of decentralized environments remains an 

active research goal needing novel frugal approaches. 

 

5.6 Personalization Vs. fragmentation for bias mitigation 

 

There exists a tradeoff between customizing FL models to 

mitigate local biases versus maintaining a synchronized global 

model. Personalization allows adapting to address distinct 

biases arising from localized data distributions and needs [95]. 

However, excessive flexibility can fragment the global model 

with heterogeneous variations that compound bias [189]. 

On one hand, personalized federated algorithms tailored to 

each client's constraints and subgroups enable improved 

fairness on specific populations [91]. Specialization captures 

nuanced correlations behind local biases invisible in one-size-

fits-all models [190]. However, unchecked personalization can 

result in clients diverging into isolated localized models that 

overfit unique biases and fail to generalize fairly. 

Carefully regulating model customization is therefore 

necessary to balance bias mitigation gains from specialization 

with robustness arising from global coordination. Selective 

relaxation of certain parameters for local adaptation while 

coordinating on a shared core model offers one path. 

Regularization terms that penalize divergence away from 

global fairness solutions incentivize alignment. Peer-based 

consensus algorithms propagating useful personalized 

variations globally provide another approach. Further research 

is needed to develop adaptive, secure frameworks enabling 

responsible flexibility balanced with coordination for bias 

mitigation. 

 

5.7 Incentives for voluntary bias mitigation 

 

In federated settings without centralized control, 

competitive clients lack inherent incentives to employ 

voluntary bias mitigation practices that may compromise their 

individual utilization goals. Enterprises may resist techniques 

like restricting sensitive attributes or balanced sampling that 

reduce biases but lower accuracy on their local objectives. 

Uncoordinated self-interests can perpetuate inequities even if 

harms are collectively suboptimal [112]. 

To encourage voluntary adoption of debiasing techniques, 

novel incentive mechanisms tuned to the decentralized nature 

of FL are needed. Crypto-economic approaches based on 

token rewards for good behavior show promise to incentivize 

fairness [191]. For example, clients can be compensated for 

adopting updates that enhance equity while temporarily 



 

reducing private metrics. Gamification through leaderboards 

celebrating top contributors tackling bias creates motivational 

incentives. However, malicious actors may still manipulate 

such mechanisms if robustness is insufficient [192]. Careful 

incentive alignment balanced with security remains an open 

research challenge. Beyond technical solutions, legislation and 

policies may also be required to mandate responsible bias 

mitigation practices. 

 

5.8 Emerging best practices for bias mitigation 

 

As FL expands, best practices around ethical data sharing, 

representation, model interpretability, and algorithmic 

accountability tailored to decentralized environments are still 

evolving. While technical interventions help, holistic 

responses spanning governance, transparency, and 

participative design are imperative for mitigating bias. 

Establishing norms against excluding subgroups, requiring 

localized testing, instituting peer audits, attaching model fact 

sheets, and enacting regulations around algorithmic harms can 

steer progress. Community participation in shaping problem 

formulation, metrics, and standards prevents narrowly 

technocratic solutions. Translating technical insights about 

model behaviors and uncertainties using interactive 

visualizations improves transparency. 

However, operationalizing responsible bias mitigation 

practices faces barriers around coordination, privacy, and 

misaligned incentives in federated ecosystems. Developing 

minimal disclosures, distributed audits, and incentives 

balancing rigor with confidentiality offers paths forward. 

Focusing bias mitigation on enhancing equity instead of just 

detecting deficiencies reorients efforts towards social impact. 

Ultimately, the path towards trustworthy and inclusive FL 

necessitates interdisciplinary perspectives attuned to 

marginalized communities. 

 

5.9 Governance, transparency and participation 

 

Beyond specific technical solutions, addressing biases in FL 

raises broader societal questions around governance, 

transparency, and participation that remain open issues. 

Mechanisms for oversight and accountability are unclear in 

decentralized ecosystems involving distrusting parties. 

Standards and policies specifically regulating bias and 

representation in federated contexts are still emerging across 

sectors [193]. 

Transparency around bias mitigation practices, performance 

differences, and accountability is limited but critical for 

detecting exclusion errors. However, this conflicts with 

privacy expectations in federated ecosystems. Developing 

minimal, participative transparency frameworks balancing 

accountability with confidentiality is an open challenge. 

Enabling impacted communities to shape problem formulation, 

audit biases, and steer solutions centrally recognizes their self-

determination. 

Realizing the benefits of FL for social good requires 

inclusive governance and participative design. Co-creating 

decentralized architectures integrating peer oversight, 

contestations, and transparency with marginalized groups' 

interests centered can enhance legitimacy and representation. 

Beyond technical bias mitigation, broader questions around 

reforming unjust social structures enabling comprehensive 

participation remain imperative [194]. 

 

5.10 Scalability concerns 

 

As FL systems expand to include a large number of clients, 

implementing bias mitigation strategies introduces scalability 

challenges. Techniques such as robust aggregation, 

personalized modeling, and cryptographic protocols may incur 

significant computational and communication overhead when 

applied at scale. The diversity in client devices and network 

conditions can further complicate the efficient deployment of 

these strategies in larger networks. Addressing scalability is 

crucial to ensure that bias mitigation remains practical and 

effective as FL systems grow, enabling widespread adoption 

without compromising performance or fairness. 

 

 

6. CONCLUSIONS 

 

In this paper, we provided a comprehensive analysis of the 

various sources of bias that can manifest in FL systems and 

examined tailored mitigation strategies. The decentralized and 

privacy-preserving nature of FL poses unique constraints 

compared to centralized ML when addressing biases. Care 

must be taken to balance fairness, accuracy, and 

confidentiality. We discussed how sample selection biases, 

population distribution shifts, locally biased data, systemic 

societal biases, algorithmic biases, and representational biases 

can accumulate in federated models, leading to discrimination 

and exclusion. 

Our key contributions include developing a taxonomy of 

bias sources unique to FL, categorizing bias mitigation 

techniques tailored for FL, and discussing open research 

challenges. We categorized mitigation strategies into data-

based, algorithmic, and hybrid approaches, highlighting 

specific methods such as reweighting and resampling 

strategies, federated data augmentation, fair federated learning 

algorithms, and privacy-preserving fairness regularization 

techniques. By analyzing these techniques, we provided 

insights into their practical implementations, advantages, and 

limitations in real-world scenarios. 

Additionally, we summarized key open challenges and 

future directions around miscoordination, privacy constraints, 

decentralized evaluation, data poisoning attacks, systems 

heterogeneity, incentive misalignments, personalization trade-

offs, emerging governance needs, participation, and scalability 

concerns that remain to be addressed. Addressing these 

challenges is crucial for developing fair and trustworthy FL 

systems. 

This study aims to provide a conceptual foundation and 

starting point for future research focused on developing 

trustworthy and fair FL systems. As FL expands into critical 

domains like healthcare, finance, and mobility, ensuring 

equitable and inclusive access free from embedded biases will 

be imperative. Both technical solutions tailored to the 

decentralized environment, as well as participatory 

approaches, are needed to unlock the full potential of this 

emerging technology for social good. By combining advances 

in bias mitigation techniques with inclusive governance and 

community participation, we can work towards federated 

learning systems that are not only accurate and efficient but 

also fair and equitable for all stakeholders.
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