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c Institut de Mécanique des Fluides de Toulouse, Université de Toulouse, CNRS-INPT-UPS, Toulouse, France
d U.S. 1116 AGROCLIM, INRAECentre de Recherche PACA, Avignon, France

e Institute for Geosciences, Department of Meteorology, Universität Bonn, Bonn, Germany
f Laboratory for Clouds and Precipitation Exploration, Geoverbund ABC/J, Bonn, Germany

g Faculty of Engineering Science, Department of Civil Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
h Department of Meteorological Observations and Research, Royal Meteorological Institute of Belgium, Brussels, Belgium

(Manuscript received 9 July 2022, in final form 14 April 2023, accepted 14 April 2023)

ABSTRACT: Quantitative precipitation nowcasts (QPN) can improve the accuracy of flood forecasts, especially for lead
times up to 12 h, but their evaluation depends on a variety of factors, namely, the choice of the hydrological model and the
benchmark. We tested three precipitation nowcasting techniques based on radar observations for the disastrous mid-July
2021 event in seven German catchments (140–1670 km2). Two deterministic [advection-based and spectral prognosis
(S-PROG)] and one probabilistic [Short-Term Ensemble Prediction System (STEPS)] QPN with a maximum lead time of
3 h were used as input to two hydrological models: a physically based, 3D-distributed model (ParFlowCLM) and a concep-
tual, lumped model (GR4H). We quantified the hydrological added value of QPN compared with hydrological persistence
and zero-precipitation nowcasts as benchmarks. For the 14 July 2021 event, we obtained the following key results. 1) According
to the quality of the forecasted hydrographs, exploiting QPN improved the lead times by up to 4 h (8 h) compared with adopting
zero-precipitation nowcasts (hydrological persistence) as a benchmark. Using a skill-based approach, obtained improvements
were up to 7–12 h depending on the benchmark. 2) The three QPN techniques obtained similar performances regardless of the
applied hydrological model. 3) Using zero-precipitation nowcasts instead of hydrological persistence as benchmark reduced the
added value of QPN. These results highlight the need for combining a skill-based approach with an analysis of the quality of
forecasted hydrographs to rigorously estimate the added value of QPN.

KEYWORDS: Extreme events; Ensembles; Nowcasting; Hydrologic models; Model evaluation/performance;
Flood events

1. Introduction

Precipitation extremes are intensifying due to human-
driven climate change (Fowler et al. 2021). This means more
severe and more frequent flooding events, which will lead to
costlier damages to infrastructures and heavier human losses
(Dottori et al. 2018; Dougherty and Rasmussen 2020). To mit-
igate these damages, operational and efficient flood warning
systems are needed more than ever (Pappenberger et al.
2015a). These provide flood forecasts by relying on hydrologi-
cal models fed with meteorological forecasts from numerical
weather prediction (NWP) systems (Alfieri et al. 2012; Cloke
and Pappenberger 2009). With ensemble modeling, data assimi-
lation, and improved representation of physical processes en-
abled by the development of convection-permitting schemes
(Speight et al. 2021; Clark et al. 2016), the skill of NWP has sig-
nificantly increased during the last decades (Bauer et al. 2015),
making it the best input for flood forecasting at the regional
scale and for long horizons (.6 h; Lin et al. 2005). However,

their use for short lead times (,6 h) in small-scale applications
(enabled by using convection-permitting NWP) is hindered by
the time needed for their spinup and their too coarse spatial res-
olution for hydrological needs.

Statistical extrapolation of the up-to-date weather radar ob-
servations (or nowcasting) can fill this gap by providing quan-
titative precipitation nowcasts (QPN) at high spatial and
temporal resolutions (up to 1 km2 and 5 min, respectively;
see, e.g., Reinoso-Rondinel et al. 2022), which can outperform
the NWP for short lead times (Berenguer et al. 2012). This
level of detail is particularly useful to forecast flash floods
from convective precipitation events especially in urban areas
and rapidly responding catchments (Berenguer et al. 2005;
Foresti et al. 2016; Ochoa-Rodriguez et al. 2015). Most QPN
are generated by 1) estimating the motion field from remote
sensing products, such as radar or satellite images, and 2) ap-
plying this motion field to displace the most recently observed
precipitation field (Ayzel et al. 2019). These two steps form
the core of most deterministic nowcasting techniques such as
TREC (Tracking Radar Echo with Correlations; Rinehart
and Garvey 1978), MAPLE (McGill Algorithm for Precipita-
tion nowcasting by Lagrangian Extrapolation; Germann and
Zawadzki 2002), S-PROG (Spectral Prognosis; Seed 2003),
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and SWIRLS (Short-range Warning of Intense Rainstorms
in Localized Systems; Woo and Wong 2017). To account for
uncertainties in the motion field as well as in the evolution
of the precipitation cells, many techniques adopt a stochas-
tic approach by adding random perturbations based on
corresponding spatiotemporal properties to produce an
equally likely ensemble of QPN. Examples of these proba-
bilistic techniques include STEPS (Short-Term Ensemble
Prediction System; Bowler et al. 2006), STEPS-BE (STEPS
system for Belgium; Foresti et al. 2016), SBMcast (String of
Beads Model; Berenguer et al. 2011), and ENS (Sokol et al.
2017).

To evaluate the skill of QPN, several studies quantified the
ability of nowcasting techniques to provide accurate short-
term predictions of observed precipitation (see Table 1;
Berenguer et al. 2011; Atencia and Zawadzki 2014, 2015;
Mejsnar et al. 2018; Imhoff et al. 2020; Reinoso-Rondinel et al.
2022). Their approach compares the predicted precipitation
from QPN for a given lead time with quantitative precipita-
tion estimates (QPE) obtained from radar observations.
These studies focused on improving the nowcasting methods

to account for uncertainties in the prediction of precipitation
fields and highlighted the limits of the applied methods in the
case of warm-season and convective events (Mejsnar et al.
2018). To characterize and enhance the hydrological predict-
ability of associated flash floods, Imhoff et al. (2020) analyzed
the effect of catchment properties and event characteristics
(such as the size and location) on the nowcasting skill. Toward
a nationwide nowcasting system, Reinoso-Rondinel et al.
(2022) improved the S-PROG technique by introducing spa-
tially localized parameters for the inherent autoregressive
model and evaluated the skill with respect to radar-based
QPE for 10 observed rain events in Germany.

An alternative evaluation framework exploits (ensemble)
QPN to serve as input to a hydrological model (see Table 1;
Šálek et al. 2006; Berenguer et al. 2005; Vivoni et al. 2006;
Xuan et al. 2014; Heuvelink et al. 2020; Lovat et al. 2022;
Imhoff et al. 2022). The resulting simulated discharge time
series are then compared to a reference discharge time series,
which can be either the observed discharge, if available, or the
simulated discharge by the hydrological model with QPE (i.e.,
observed precipitation) as input precipitation. This framework is

TABLE 1. Summary of applications using deterministic and probabilistic precipitation nowcasting methods with and without
hydrological evaluation.

Reference QPN method Location Hydrological model

Berenguer et al. (2011) SBMcast (probabilistic) Barcelona, Spain }

Atencia and Zawadzki
(2014, 2015)

Two probabilistic nowcasting methods United States }

Mejsnar et al. (2018) COTREC (deterministic; Li et al. 1995) Czech Republic }

Imhoff et al. (2020) Four deterministic and probabilistic
methods, namely, Sparse,
DenseRotation, S-PROG, and STEPS,
implemented within Rainymotion
(Ayzel et al. 2019) and pySTEPS
(Pulkkinen et al. 2019)

12 catchments in
the Netherlands

}

Reinoso-Rondinel
et al. (2022)

S-PROG (deterministic; Seed 2003) Germany }

Berenguer et al. (2005) S-PROG (deterministic; Seed 2003),
Lagrangian advection and Eulerian
persistence (deterministic)

Barcelona, Spain DiCHiTop (distributed)

Šálek et al. (2006) COTREC (deterministic; Li et al. 1995) Czech Republic HYDROG (distributed)
Vivoni et al. (2006) STNM algorithm (deterministic; Wolfson

et al. 1999)
Midwestern

United States
tRIBS (physically based,

distributed)
Xuan et al. (2014) STEPS (probabilistic; Bowler et al. 2006) 1 catchment in the

United Kingdom
PDM (lumped)

Heuvelink et al. (2020) Lagrangian persistence/COTREC
(deterministic; Li et al. 1995) and
SBMcast (probabilistic; Berenguer
et al. 2011)

3 catchments in the
Netherlands

WALRUS (lumped)

Lovat et al. (2022) AROME-NWC (deterministic, NWP-
based; Auger et al. 2015) and PIAF
(combination of radar nowcasts and
NWP; Moisselin et al. 2019)

19 catchments in
southeastern France

ISBA-TOP (distributed)

Imhoff et al. (2022) Four deterministic and probabilistic
methods, namely, Sparse,
DenseRotation, S-PROG, and STEPS,
implemented within Rainymotion
(Ayzel et al. 2019) and pySTEPS
(Pulkkinen et al. 2019)

12 catchments in
the Netherlands

SOBEK (semidistributed)
and WALRUS (lumped)
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more relevant for flood forecasting applications since it quantifies
the added value of QPN, with respect to, e.g., zero-precipitation
nowcasts, in improving the lead time of hydrological forecasts.
All studies found that radar-based QPN enhanced the fore-
casting skill achieved by the hydrological model, especially
when blended with NWP forecasts (Lovat et al. 2022). More-
over, the forecasting skill depended on the physical properties
of the catchment (such as size and topography), the type of
the event (convective versus stratiform), and the season (rain
versus snow).

Despite these findings, previous studies did not focus on
the evaluation methodology of the nowcasting techniques.
Namely, all of the listed studies (except Imhoff et al. 2022)
adopted a single modeling approach (i.e., either lumped or
distributed, conceptual or physically based), which did not al-
low for considering how the choice of the hydrological model
structure impacted the evaluation of the nowcasting techni-
ques (such as done by Poméon et al. 2020). In addition, the
impact of the benchmark nowcasting model (such as zero-
precipitation nowcasts or hydrological persistence) on the forecast-
ing skill remains poorly investigated while it can have significant
impact on the estimated added value of QPN (Pappenberger et al.
2015b).

To tackle these gaps, we evaluated one probabilistic
(STEPS) and two deterministic nowcasting techniques (ad-
vection-based and S-PROG) by measuring their ability in
forecasting simulated hydrographs with QPE. Our study fo-
cuses on the disastrous mid-July 2021 events in seven catch-
ments located in western Germany. These events caused
more than 220 deaths and cost up to e32.05 billion in total
losses in Germany alone, making them one of the most severe
natural disasters caused by heavy rain and flooding in Germany
(Mohr et al. 2023). We adopted a novel multimodeling ap-
proach by evaluating QPN as inputs to a conceptual, lumped

model (GR4H) and to a physically based, 3D-distributed model
(ParFlowCLM). Thus, the aim of this study is to investigate
whether a more detailed representation of hydrological pro-
cesses leads to a better discrimination of QPN compared
to a simpler, lumped one. Moreover, we checked whether
different choices of skill evaluation and benchmarks im-
pact the estimation of the added value of the nowcasting
techniques.

This paper is organized as follows. Section 2 presents the
case study, the catchment set, and the QPE product used to
produce the QPN. Section 3 introduces the tested nowcasting
techniques, the hydrological models, and the evaluation
framework, while sections 4 and 5 comment and discuss the
results. Finally, section 6 concludes our study.

2. Catchment set and QPE product

In July 2021, sustained stratiform rain connected to a cutoff
low pressure system (Junghänel et al. 2021) led to record-breaking
precipitation amounts and disastrous floods (Kreienkamp
et al. 2021; Mohr et al. 2023), especially over relatively high al-
titudes at the Eifel range on the left bank of the Rhine River
and the Bergisches Land on the right bank (Figs. 1 and 2). On
14 July 2021, observed total precipitation sums exceeded 160 mm
at some rain gauges (Fig. 2c), which is equivalent to 2–3 months
of accumulated precipitation based on the annual averages (i.e.,
by dividing 160 mm by the annual averages listed in Table 2).
Since rain gauges do not provide a detailed description of
the spatial variability of precipitation, measurements from
four polarimetric C-band radars (located at Essen, Flechtdorf,
Neuheilenbach, and Offenthal; Fig. 2a), operated by the German
Weather Service (DWD), were exploited to derive a gridded
QPE product for the 14 July 2021 (Fig. 2b) with 1-km horizontal
resolution and 5-min temporal resolution. This hybrid product

FIG. 1. (a) Location, topography, and hydrographic network of study catchments, where contours indicate the
catchment polygons, and (b) hypsometric curves of the catchment set. Negative elevations are due to the existence of
open-pit mines in the region.
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combines precipitation estimates derived from specific at-
tenuation at vertical polarization AV, R(AV), with retrievals
of specific differential phase KDP for horizontal reflectivity
rates Zh higher than 40 dBZ, R(KDP). This product clearly
outperformed retrievals based on horizontal reflectivity
alone (Chen et al. 2021; Saadi et al. 2023). The hybrid QPE
product, referred to as RAVKDP in the following, served as
input for QPN algorithms.

To hydrologically evaluate the benefits of QPN, we selected
a set of seven catchments located in western Germany that
drain parts of the Eifel mountain range (Fig. 1a), character-
ized by a rolling plateau at elevations up to 750 m MSL
(Fig. 1b). These catchments have areas ranging between 140
and 1670 km2 (Table 2). Three of the seven catchments are lo-
cated in the federal state of North Rhine–Westphalia and are
drained by the Erft and the Rur Rivers. The remaining four
catchments are located in the federal state of Rhineland–
Palatinate and are drained by the Ahr and the Kyll Rivers.
The region is characterized by a temperate climate under
maritime influence, which is reflected by the range of the
average annual precipitation amounts (710–1070 mm yr21)
and the values of the aridity index as defined by the United
Nations Environment Programme (1.13–1.92; UNEP 1992).
The land cover of the catchments is mainly occupied by forest
and agricultural areas according to the CORINE Land Cover
database of 2018 (Langanke et al. 2016). Soils are dominated by
sand (34%–41%) and silt contents (29%–38%; Panagos 2006).

To estimate total precipitation amounts on 14 July 2021
at the catchment scale, we applied the Thiessen polygon
method on measurements from rain gauges and on RAVKDP.
Estimated precipitation amounts from rain gauges varied
between 66 and 121 mm across our catchment set (Table 2),
reflecting the severity of the event and its variability from one
catchment to another. Based on RAVKDP, obtained estimates
totaled only 34–90 mm (Table 2), indicating an underestima-
tion with respect to estimated amounts from rain gauges. This
underestimation is partly attributed to collision–coalescence
processes that took place close to the surface, i.e., below the
heights monitored by the radars (Saadi et al. 2023; Chen et al.
2022).

3. Evaluation of the added value of QPN

a. Tested nowcasting techniques

Based on the QPE product RAVKDP, we computed 3-h-
long QPN with 1-km spatial and 5-min temporal resolution.
In this study, three nowcasting strategies following Reinoso-
Rondinel et al. (2022) have been applied:

1) The deterministic method based on Lagrangian persis-
tence (advection-based) assumes a constant precipitation
field (i.e., with no growth or decay) advected using a static
motion field. First, the motion field was estimated from
the RAVKDP product using the optimal-flow method

FIG. 2. (a) Location of the four C-band radars (Essen, Flechtdorf, Neuheilenbach, and Offenthal) operated by the
German Weather Service (DWD) and used to derive the QPE product RAVKDP. (b) Total precipitation amounts
on 14 Jul 2021 (from 0000 UTC 14 Jul 2021 to 0000 UTC 15 Jul 2021) estimated from the radar-based QPERAVKDP
and (c) from 63 rain gauges. For the 63 rain gauges, the ratio of total precipitation from RAVKDP to that from the
rain gauge varied between 0.27 and 3.00, with a median value of 0.72. The light gray contours indicate the borders
with the neighboring countries (The Netherlands, Belgium, Luxembourg, and France).
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DARTS (Ruzanski et al. 2011). Then, the latest observed
precipitation field is advected along the estimated motion
trajectories for the next 3 h using a semi-Lagrangian back-
ward scheme (Germann and Zawadzki 2002).

2) The deterministic method S-PROG (Seed 2003) assumes
that the spatial scale of precipitation features is on par
with its lifetime and thus its predictability. This means
that larger precipitation features tend to last longer and
can be predicted with larger lead times. First, the precipi-
tation field is decomposed into a multiplicative cascade of
spatial scales. Second, an autoregressive model (AR) is
used to model and forecast the temporal evolution and to
advect each cascade level. Finally, the nowcasted field is
computed as the aggregation of the advected cascade lev-
els. This leads to a smoothing of the precipitation field as
the small-scale, high-frequency features tend to vanish
with time according to the AR model. Compared with
Seed (2003), we kept the order of the AR model at 1 in-
stead of 2, and we fixed the number of levels of the multi-
plicative cascade at 6, resulting in the following spatial
scales of 900, 56, 20, 7, 3, and 1 km. Moreover, we used
the precipitation field instead of the reflectivity field. Since the
precipitation field does not follow a Gaussian distribution, the
above processes were applied to the log-transformed values of
precipitation, which we assumed to have a near-Gaussian dis-
tribution. After extrapolation, an inverse transformation was
applied to the nowcasted precipitation field. These choices
follow the study byReinoso-Rondinel et al. (2022).

3) The probabilistic method STEPS (Bowler et al. 2006)
builds on S-PROG by adding stochastic perturbations to ac-
count for the uncertainties in the estimated motion field and

the evolution of the precipitation cells. More precisely, each
cascade level is perturbed byGaussianwhite noise that is corre-
lated with the spatial properties of the last observed precipita-
tion field (Seed et al. 2013), which leads to an ensemble of
QPN. In our study, we considered an ensemble of 20members.

For each QPN method, we generated 3-h long time series
of nowcasted precipitation every 5 min (i.e., at 0000, 0105,
0110 UTC 14 July 2021, etc.) with a temporal resolution of
5 min. Since we chose to feed these QPN to hourly hydrological
models, we kept only QPN that were issued at round hours (i.e.,
at 0100 UTC, at 0200 UTC, … , and at 1800 UTC 14 July 2021)
and discarded the remaining ones. In addition, we aggregated
the 5-min QPN time series to obtain hourly accumulations of
precipitations.

b. Hydrological models

We analyzed the impact of the hydrological model on the
evaluation of QPN by selecting two contrasting modeling ap-
proaches, for which the implementation is described in Table 3.
As a physically based, distributed model, we used ParFlow with
its internal land surface module CLM (Common Land Model),
hereafter ParFlowCLM (Kollet andMaxwell 2006; Kuffour et al.
2020; Maxwell 2013). CLM estimates the actual evapotranspira-
tion, infiltration, and net precipitation (i.e., the part that gives
rise to runoff) by resolving the energy budget at the land surface
and the water exchange at the interface between the atmo-
sphere, the land, and the soil. ParFlow solves the 3D Richards’
equation for variably saturated subsurface and groundwater
flow and the kinematic wave equation for the overland flow
routing. These two equations are coupled at the land surface by

TABLE 2. Summary of catchment characteristics. Catchment-average, total precipitation amount on 14 Jul 2021 (from 0000 UTC
14 Jul 2021 to 0000 UTC 15 Jul 2021) are extracted from RAVKDP, the radar-based QPE product, and from rain gauges using
Thiessen polygons. In the far-right column, the total number of rain gauges used for the 14 Jul 2021 for each catchment is provided
in parentheses. For the columns labeled artificial, agricultural, and forest, these metrics were computed based on the CORINE Land
Cover classification of the Copernicus Land Monitoring Service (Langanke et al. 2016); they correspond to the proportion of the
catchment that is occupied by the classes belonging to 1) “artificial surfaces” for artificial, 2) “agricultural areas” for agricultural, and
3) “forest and seminatural areas” for forest. See https://land.copernicus.eu/user-corner/technical-library/corine-land-cover-nomenclature-
guidelines/html (last accessed 14 Apr 2023).

Rivera
Area
(km2)

Average
precipitation
(mm yr21)

Aridity
indexb

(})

Average
discharge
(mm yr21)

Artificial
(%)

Agricultural
(%)

Forest
(%)

Total precipitation
amount on

14 Jul 2021 (mm)
from RAVKDP/

rain gauges (No. of
rain gauges)

Erft at Neubrueck 1668 740 (2006–21) 1.16 180 (2000–20) 17.7 64.3 17.8 66/99 (13)
Kyll at Kordel 840 830 (2006–21) 1.41 370 (1967–2021) 5.4 51.9 42.7 80/103 (10)
Ahr at Altenahr 757 750 (2006–21) 1.27 280 (1945–2021) 3.5 39.5 57 89/108 (7)
Erft at Bliesheim 552 710 (2006–21) 1.13 130 (2000–20) 12.6 59.1 28.2 88/108 (7)
Kyll at Densborn 473 890 (2006–21) 1.54 450 (1972–2021) 4 47.7 48.2 87/115 (7)
Ahr at Muesch 346 790 (2006–21) 1.34 280 (1972–2021) 4 52.9 43.1 90/121 (6)
Rur at Monschau 144 1070 (2006–21) 1.92 760 (2000–21) 6.1 25.4 62.9 34/66 (1)
a All catchments contain at least one reservoir (lake or dam) according to the database at https://dewiki.de/Lexikon/Liste_von_Talsperren_
in_Deutschland (in German, last accessed 14 Apr 2023).
b The aridity index was computed as the ratio of average annual precipitation to average annual atmospheric evaporative demand, which
we expressed as the average annual potential evapotranspiration (UNEP 1992). Potential evapotranspiration was computed using a
temperature-based formula (Oudin et al. 2005).
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estimating the boundary fluxes for the kinematic wave model from
Richards’ equation, and vice versa. Thanks to this coupling, the
model represents a variety of runoff processes (Hortonian versus
Dunne runoff) as well as the reinfiltration and exfiltration processes
along the hydraulic pathway. We implemented ParFlowCLM at a
resolution of 611 m with 15 vertical layers down to 60 m below the
surface (Belleflamme et al. 2023). It was forced with gridded

weather inputs over a spinup period starting from 2007, with only
one parameter set for each catchment based on landscape proper-
ties, as detailed in Table 3.

As a conceptual, lumped model, we chose GR4H (Ficchı̀
et al. 2019). This model estimates net precipitation and actual
evapotranspiration using a soil-moisture accounting reservoir.
The net precipitation gives rise to runoff through two routing

TABLE 3. Details of ParFlowCLM and GR4H implementation: resolution, parameter estimation, and sources of hydroclimatic data
needed for each model. ASTER 5 Advanced Spaceborne Thermal Emission and Reflection Radiometer; DEM 5 digital elevation model;
MERIT 5 Multi-Error-Removed Improved Terrain; USDA 5 United States Department of Agriculture; IHME1500 5 International
Hydrogeological Map of Europe at the scale of 1:1 500 000; CORINE 5 Coordination of Information on the Environment;
CLMS 5 Copernicus Land Monitoring Service; IGBP 5 International Geosphere-Biosphere Programme; RADOLAN 5 Radar-Online-
Aneichung; DWD 5 Deutscher Wetterdienst (German Weather Service).

Model
Spatial and temporal

resolution Parameter estimation Hydroclimatic data

ParFlowCLM ;611-m horizontal
resolution with a
geometrically
varying vertical
resolution, hourly

Topography: ASTER DEM (Abrams et al.
2020; https://lpdaac.usgs.gov/products/
astgtmv003) combined with MERIT
Hydro (Yamazaki et al. 2019).

Precipitation: RADOLAN of the DWD
(Winterrath et al. 2018), which is a
Germany-wide, radar-based near-real
time precipitation product available at
1-km resolution and hourly time steps
obtained using relationships between
horizontal reflectivity and precipitation
rates, and then adjusted to rain gauges
(i.e., RADOLAN-RW, https://opendata.
dwd.de/, last accessed 14 Apr 2023).
RAVKDP was used for precipitation on
14 Jul 2021 (Chen et al. 2021).

Soil and geology: SoilGrids250m (Hengl et al.
2017), reclassified into 12 USDA texture
types, and IHME1500 (Duscher et al. 2015)
for the typology below the depth to
bedrock; ROSETTA model (Schaap et al.
2001) to obtain hydraulic parameters
(hydraulic conductivity, residual and
saturated water content, and van Genuchten
parameters) depending on soil types.

Land cover: CORINELandCover database
of the CLMS for the year 2018 (https://land.
copernicus.eu/pan-european/corine-land-
cover/clc2018; Langanke et al. 2016),
reclassified into 18 IGBP categories. A
uniformManning’s coefficient at 0.2 s?m21/3

(Schalge et al. 2019) was used for the whole
domain.

2-m air temperature, surface pressure,
downward solar and thermal radiation,
specific humidity, and eastward and
northward components of the 10-m wind:
ERA5-Land dataset (Muñoz-Sabater et al.
2021), available at 9-km resolution.

Only one parameter set for each catchment
(Belleflamme et al. 2023)

GR4H Lumped, hourly Four catchment-scale parameters
representing the maximum retention
capacity of the soil, the exchange
between surface water and groundwater,
the surface flow dynamics and the
baseflow dynamics. These parameters are
calibrated on historical discharge
measurements using a gradient-descent
based algorithm (Coron et al. 2017;
Edijatno et al. 1999).

Catchment-averaged precipitation:
RADOLAN of the DWD (Winterrath
et al. 2018), available at 1-km and hourly
resolutions, estimated based on
horizontal reflectivity and adjusted to
rain gauges (i.e., RADOLAN-RW,
https://opendata.dwd.de/, last accessed
14 Apr 2023). RAVKDP was used for
precipitation on 14 Jul 2021 (Chen et al.
2021). Thiessen polygons were used to
estimate the catchment-average
precipitation at each hour.

12 optimal sets of 4 parameters for each
catchment (Saadi et al. 2023)

Catchment-averaged potential
evapotranspiration: obtained from
catchment-average, 2-m air temperature
using a temperature-based formula
(Oudin et al. 2005).

Discharge: used for model calibration,
available at daily resolution (https://
www.elwasweb.nrw.de; https://
wasserportal.rlp-umwelt.de, last accessed
20 Sep 2021).
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branches. The quick flow branch transfers 10% of net precipi-
tation via a unit hydrograph, while the slow flow branch trans-
fers the remaining 90% via a unit hydrograph and a nonlinear
reservoir. Over both branches, an exchange between surface
flow and groundwater is enabled. GR4H uses catchment-average
weather inputs to simulate the discharge at the catchment outlet.
Model parameters were estimated using historical discharge
measurements over the period 2007–21, with a spinup over the
year 2006 to limit the effect of model initialization on calibration.
We tested several choices of calibration combining the subperiod
of calibration, the cost function, and the weights attributed to dis-
charge measurements to emphasize high values, yielding 12 opti-
mal parameter sets for each catchment (Saadi et al. 2023).

c. Comparison and evaluation framework of QPN

Following Berenguer et al. (2005), we evaluated the skill of
QPN on two levels. On the first level, we analyzed how QPN
succeeded in matching QPE for each lead time, first at the grid-
cell scale, then at the catchment scale by averaging the precipita-
tion fields using the catchment polygon. At the gridcell scale,
we adopted the mean absolute error (MAE; mm h21) and the
root-mean-square error (RMSE; mm h21) as evaluation metrics,
expressed as

MAE(L) 5 1
NtNc

∑
Nc

i51
∑
Nt

t51
|P̂t1L|t (i) 2 Pt1L(i)|, (1)

RMSE(L) 5
������������������������������������������
1

NtNc

∑
Nc

i51
∑
Nt

t51
[P̂t1L|t (i) 2 Pt1L(i)]2

√√
, (2)

where Nt is the number of initialization time steps (i.e., hours
or 5-min time steps between 0100 and 1800 UTC 14 July 2021),
Nc is the number of grid cells, L is the lead time, P̂t1L|t (i) is the
QPN intensity for the time step t 1 L issued at time step t for
the grid cell i, and Pt1L(i) is the QPE intensity at time step t1 L
for the grid cell i. Both RMSE (mm h21) and MAE (mm h21)
vary between 0 (perfect match) and 1‘. Note that for the
computation of the spatial average of MAE and RMSE, we
excluded the grid cells for which the total precipitation amount
on 14 July 2021 (according to RAVKDP) was equal to zero.
By this choice, we aimed at limiting the number of grid cells for
which the errors are equal or very close to zero, the inclusion of
which would artificially decrease the two accuracy measures. At
the catchment scale, we first averaged the precipitation time
series using the catchment polygon, then we computed the
MAE between the resulting catchment-scale QPE time series
and catchment-scale QPN time series.

For the probabilistic STEPS method, since each member
served as input to the hydrological models, both MAE and
RMSE scores were estimated for each of the 20 members, then
for a deterministic nowcast STEPS-m taken as the ensemble
mean at each grid cell and at each time step. Following the ap-
proach by Foresti et al. (2016), we also aimed at analyzing the
spread of the ensemble with respect to the errors of the determin-
istic forecast (i.e., S-PROG or STEPS-m) in order to qualify
whether the ensemble was underdispersive (i.e., underestimating
the uncertainty in the evolution of the precipitation field) or

overdispersive (i.e., overestimating the uncertainty in the evolu-
tion of the precipitation field; see Foresti et al. 2016). To this aim,
we estimated the spread of the ensemble at the gridcell scale at
each lead time using the following equation (Foresti et al. 2015):

spread(L) 5
������������������������������������������������������������
1

NtNc

∑
Nc

i51
∑
Nt

t51

1
M 2 1

∑
M

m51
[P̂t1L|t (i,m) 2 P̂t1L|t (i)]2

√√
,

(3)

where M 5 20 is the total number of members, P̂t1L|t (i, m) is
the QPN intensity for the time step t 1 L issued at time step t

for the grid cell i by the STEPS member m, and P̂t1L|t (i) is
the intensity of the STEPS ensemble mean nowcast at time
step t 1 L issued at time step t for the grid cell i. Ideally, the
spread should be of the same order of variability of the QPE
around the ensemble mean, measured in our case by the RMSE
of the ensemble mean nowcast STEPS-m. When the spread is
higher than this RMSE, the ensemble is overdispersive, other-
wise the ensemble is underdispersive (Foresti et al. 2016).

On the second level, QPN were used to extend the precipi-
tation input to the hydrological models. First, both models
were run prior to 0100 UTC 14 July 2021 with the version of
RADOLAN that was adjusted to rain gauges (i.e., RADOLAN-
RW; Winterrath et al. 2018) as input precipitation (see Table 3).
These runs started from January 2021 for ParFlowCLM and from
2007 for GR4H. Starting from 0100 UTC 14 July 2021, the
QPE product RAVKDP was used instead of RADOLAN for
our study region. At each initialization hour (e.g., 0100 UTC
14 July 2021), the QPE was replaced by the 3-h QPN (e.g., at
0200, 0300, and 0400 UTC) followed by zero precipitation (e.g.,
from 0500 UTC onward). Then, the resulting forecasted hydro-
graphs were compared to the simulated hydrograph with the QPE
product RAVKDP as input for 14 July 2021 and RADOLAN as
input for the remaining days (i.e., the hindcasted hydrograph).

In a first step, we evaluated the quality of the hydrological
forecasts obtained by the use of QPN and the benchmarks using
the Nash–Sutcliffe efficiency score (NSE; Nash and Sutcliffe
1970), computed as

NSE(L) 5 1 2

∑
Nt

t51
(Qt1L 2 Q̂t1L|t )2

∑
Nt

t51
(Qt1L 2 Qt1L )2

, (4)

where Q̂t1L|t is the forecasted discharge values at the time
step t 1 L initialized at the time step t, Qt1L the hindcasted
discharge values (i.e., simulated hydrographs using QPE) at
time step t 1 L and Qt1L their average. NSE varies between
2‘ and 1, the latter being the ideal value. As the lead time in-
creases, NSE is expected to decrease. Figure 8 of Berenguer
et al. (2005) and Fig. 2 of Heuvelink et al. (2020) illustrate the
application of this evaluation method.

The added value of each QPN can be estimated by compar-
ison with a benchmark/reference option (Pappenberger et al.
2015b). To measure this added value, we computed the gain
in lead time defined as (Berenguer et al. 2005)
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gain in lead time 5 LQPN(NSEth) 2 LRef(NSEth), (5)

where LQPN(NSEth) is the lead time at which the obtained NSE
with the QPN as input to the hydrological model equals NSEth

for the first time, and LRef(NSEth) is the lead time at which the
obtained NSE with the benchmark Ref equals NSEth for the first
time. Following Heuvelink et al. (2020), we adopted a threshold
of NSEth 5 0.9. To analyze the impact of this threshold, we com-
puted the gain for an additional threshold of NSEth 5 0.5.

In a second step, we applied the average of the continuous
ranked probability score (CRPS) (Hersbach 2000), expressed
for each lead time L as

CRPS (L) 5 1
Nt

∑
Nt

t51

�1‘

0
[F

Q̂t1L|t
(x) 2 1{Qt1L # x}]2dx (6)

where F
Q̂t1L|t

is the cumulative distribution function of the

forecasted discharge values Q̂t1L|t initialized at the time step t
for the time step t1 L, andQt1L is the value at time step t 1 L
of the simulated hydrograph using QPE (i.e., the hindcasted
hydrograph). The term 1{y# x} is the Heaviside step function
that equals 1 if y # x and 0 otherwise. CRPS was chosen
because it helps undistinguishably evaluate both the probabil-
istic and the deterministic nowcasting methods. For a deter-
ministic forecast, it is equivalent to MAE.

To evaluate the added value of the QPN methods with
respect to a benchmark, a skill score based on the CRPS was
computed as follows (Chen et al. 2017):

SkillCRPS, Ref 5
CRPS(Ref)

CRPS(QPN) 1 CRPS(Ref) , (7)

which is a bounded (between 0 and 1) and a scale-independent
metric. A skill higher than 0.5 indicates that the forecasts ob-
tained with QPN are better than the ones obtained with the
benchmark [i.e., CRPS (QPN) , CRPS (Ref)], and vice
versa.

To investigate the effect of the benchmark choice on the
evaluation of QPN, we evaluated the skill of QPN with re-
spect to 1) a hydrological persistence model (Berthet et al.
2009) that forecasts the future discharge to be constant and
equal to the hindcasted discharge at the hour of initializa-
tion (SkillCRPS,Q), and 2) a forecasted hydrograph using
zero precipitation nowcasts (ZNC; Heuvelink et al. 2020;
Berenguer et al. 2005) as QPN (SkillCRPS,ZNC). The latter is
costlier than the former because it involves running the hy-
drological model for the ZNC. Finally, for the CRPS-based
skill in Eq. (7), we retrieved the lead time up to which QPN
is considered to be “useful” with respect to the benchmark
using two skill thresholds: the theoretical one at 0.5, and a
more demanding one [2/3 ’ 0.67, which is equivalent to
CRPS(QPN), CRPS(Ref)/2].
To qualitatively analyze the effect of catchment properties

on the added value of QPN with respect to the benchmark,
the gains in lead time based on NSE [Eq. (4)] and based on
the skills [Eq. (7)] were ranked first with respect to catchment
area, and second with respect to the Gravelius index of the
catchment, defined as (Bendjoudi and Hubert 2002)

K 5
P

2
�����
pA

√ , (8)

where P is the perimeter of the catchment polygon (in km)
and A the catchment area (in km2). Catchments with lower K
tend to have compact or circular shapes, which would gener-
ally result in flashier hydrological responses for a given pre-
cipitation event covering the whole catchment.

4. Results

a. Evaluation of QPN with respect to QPE

Aggregating the QPN time series to the hourly time step
reduced the differences between the three methods and modi-
fied their ranking, as can be seen in Fig. 3. At 5-min resolution
(Figs. 3a,b), QPN obtained by advection and STEPS had similar
MAE and RMSE scores over the domain during the lead times.
As the lead time increased, S-PROG clearly outperformed the
other two QPNmethods. At 1-h resolution (Figs. 3c,d), the three
methods obtained lower MAE and RMSE values compared
with the 5-min resolution, S-PROG preserved its ranking with
respect to advection and STEPS, whereas advection slightly
outperformed the STEPS ensemble, suggesting that changing
the accumulation window can modify the ranking of the QPN
methods. For both time resolutions, the STEPS ensemble
mean (STEPS-m) outperformed all the other members for all
time steps, suggesting that the stochastic perturbations of the
S-PROG method (materialized by STEPS members) got
penalized for this event. Finally, there were very small differ-
ences between the different STEPS members in terms of MAE
and RMSE (hardly visible in Fig. 3), which is somewhat ex-
pected from averaging the errors in space (over the domain)
and time (across the initialization time steps) for members gen-
erated randomly and independently for each initialization. The
small spread of STEPS members compared with the RMSE of
the ensemble mean STEPS-m or the RMSE of the deterministic
S-PROG method suggests that the ensemble nowcasts were
underdispersive (Foresti et al. 2016), i.e., that they underesti-
mated the uncertainty in the nowcasted precipitation field for
this event.

At the hourly time step, the three QPN methods showed
comparable performances in reproducing the observed pre-
cipitation at the gridcell scale, with a slightly higher perfor-
mance for S-PROG, as shown in Fig. 4. The spatial pattern of
MAE followed that of the precipitation sums for the event
(Fig. 2b), with a slight shift for the part of the event cell lo-
cated over the catchment set to the southwest. Unsurprisingly,
the errors were minimal for the shortest lead time (i.e., 1 h)
and increased with increasing lead time. For the 1-h lead time,
domain-average MAE values were around 0.36–0.37 mm h21

for the advection and S-PROG methods, whereas they
reached 0.39 mm h21 on average for STEPS members, indi-
cating a slightly deteriorated accuracy for the probabilistic
QPN. For the 3-h lead time, these errors more than doubled
and reached 0.77 mm h21 for advection, 0.7 mm h21 for
S-PROG, and 0.79 mm h21 on average for STEPS, indicating
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a better performance of the S-PROG method over the
domain.

At the catchment scale, the advection method obtained
slightly better results than S-PROG and STEPS, as shown in
Fig. 5. The change in the ranking of the QPN methods with
respect to Fig. 3 may be explained by the catchment-scale ag-
gregation of the precipitation fields prior to the computation
of the errors, or the fact that the catchments do not cover the
whole domain on which MAE values of Fig. 3 were computed
(see Figs. 2b and 4). Moreover, advection does not change
QPE intensities across the lead times, whereas S-PROG filters
the observed QPE field, leading to smoother QPN field and
to an underestimation of precipitation for persistent and heavy
events. This results in advection mimicking better the QPE
than S-PROG, especially over our catchment set where the
July 2021 event was persistent and heavy. Overall, QPN had
better success in reproducing the average precipitation for the
catchments drained by the Rur at Monschau and the Erft than
for the catchments drained by the Kyll and the Ahr. The vari-
ability in the ensemble errors of STEPS increased with in-
creasing lead time. In addition, the errors of the STEPS
method bracketed those of the two deterministic methods ex-
cept for some cases where the advection showed a lower error
than the whole STEPS ensemble. The evolution of the errors

does not indicate a dependency on catchment size, although
the largest catchment (Erft at Neubrueck) showed lower
MAE errors for a lead time of 3 h. The variability of errors
across the catchments reflects the effect of their location with
respect to the precipitation field.

b. Added hydrological value of QPN

To investigate the added value of the tested QPN methods
from a hydrological point of view, we first show in section 4b(1)
the hindcasted hydrographs using RADOLAN and the QPE
product RAVKDP for the 14 July 2021 event (Fig. 6) based
on which the quality of the forecasted hydrographs is esti-
mated using NSE (Fig. 7). Second, in section 4b(2), we
show the skill of the QPN methods computed using the
CRPS between the corresponding forecasted hydrographs
and the hindcasted hydrograph using QPE, with respect
to the benchmarks of the hydrological persistence or the
zero-precipitation nowcasts (Figs. 8 and 9). Finally, in
section 4b(3), we show the gains in lead time obtained us-
ing either the efficiency-based approach (with NSE) or the
skill-based approach (with CRPS) and depending on the
benchmark (hydrological persistence or zero-precipitation
nowcasts; Fig. 10).
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QPN method Advection S−PROG STEPS STEPS−m spread

FIG. 3. Evolution of the spatial average of mean absolute errors (MAE) and root-mean-square errors (RMSE) of
QPN with respect to precipitation rates from the QPE product RAVKDP for different lead times at (a),(b) 5-min res-
olution updated each 5 min and (c),(d) 1-h resolution updated each hour. In (b) and (d), “spread” indicates the spread
of the STEPS ensemble [Eq. (3)]. STEPS-m indicates the ensemble mean, i.e., the nowcast made by taking the aver-
age of the nowcasted depths from the 20 STEPS members at each grid cell and each time step. The spatial average
was computed on all domain grid cells except the ones with zero-precipitation amounts on 14 Jul 2021 according to
the QPE product RAVKDP. The ensemble of MAE and RMSE errors for the STEPS method is hardly visible due to
very small differences between the members.
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FIG. 4. Mean absolute errors (MAE) of QPN obtained using (left) advection, (center) S-PROG, and (right) STEPS for the (top) 1-,
(middle) 2-, and (bottom) 3-h lead time. MAE values were computed with respect to observed precipitation rates from RAVKDP. For
STEPS, the median errors over the 20 members are shown.
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1) HINDCASTED HYDROGRAPHS AND QUALITY OF THE

FORECASTED HYDROGRAPHS

To illustrate the dynamics of the catchment responses to
the extreme rainfall event of 14 July 2021, simulated hydro-
graphs using RADOLAN (prior to 14 July 2021) and the
QPE product RAVKDP (for 14 July 2021) by GR4H and
ParFlowCLM are presented in Fig. 6. They indicate that the
highest recorded peak flow prior to July 2021 (in orange dashed
lines) was surpassed by model simulations at least once in all the
catchments except the Rur at Monschau. However, where avail-
able, the last measured peak flow before the unavailability of

records was surpassed by model simulations only for the catch-
ments drained by the Ahr river. Qualitatively, GR4H and
ParFlowCLM agreed for the catchments drained by the Ahr
and the Kyll, whereas they significantly disagreed over the Erft
and the Rur. Finally, the spread in the GR4H simulations re-
flects the large uncertainty in simulated hydrographs due to
parameter uncertainty (Saadi et al. 2023).

From the hydrological viewpoint, the three QPN methods
yielded very similar hydrological forecasts across the seven
catchments, as suggested by their NSE scores in Fig. 7. At
the threshold of NSEth 5 0.9, the three methods yielded
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satisfactory hydrological forecasts for lead times ranging from
1 up to 5 h (GR4H for the Erft at Neubrueck, ParFlowCLM
for the Rur at Monschau). The benchmark of the hydrological
persistence (Q) obtained the fastest decreasing NSE curves,
which is expected given its limits for a highly variable catch-
ment response during the event. However, the benchmark
of the zero-precipitation nowcasts (ZNC) succeeded in
yielding better hydrological forecasts using ParFlowCLM
for the catchments drained by the Kyll. For these two catch-
ments, the use of the QPN products led to early increases of
the forecasted hydrographs with respect to the hindcasted
hydrograph, resulting in deteriorated NSE values compared
with the ZNC benchmark in the early lead times. Finally,
the QPN methods led to more satisfactory hydrological

forecasts when using GR4H than when using ParFlowCLM,
except for the Rur at Monschau.

2) SKILL OF THE QPN METHODS

The three QPN methods were also similar in terms of
their skill with respect to the benchmark of hydrological
persistence, as can be seen in Fig. 8. The skill indicates that using
QPN yielded better forecasts than the persistence model for
lead times higher than 30 h, except for the Rur at Monschau
where the skill dropped after only 16 h. Note that this should be
interpreted in the light of the quality of the forecasted hydro-
graphs by both the QPN methods and the benchmark of the hy-
drological persistence, which in all cases had negative NSE
values after a lead time of 12 h (see Fig. 7). The evolution of the
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FIG. 6. Simulated hydrographs for the July 2021 events using 12 parameter sets with GR4H (shaded area in green) and one parameter
set with ParFlowCLM (in black). Orange dashed lines indicate the highest recorded peak flow (QHistPeak) prior to July 2021. Subject to
availability, red dashed horizontal lines indicate the reported last measured peak flows before the failure of the monitoring devices
(QLastMes), and red dashed vertical lines are their timings. Hydrographs are simulated using the QPE product RAVKDP on 14 Jul 2021
and RADOLAN for the remaining time steps. For GR4H, the shaded area is delimited by the minimum–maximum of the simulations at
each time step using 12 parameter sets for each catchment.
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skill was somewhat distinct for each catchment, but similar for
the catchments drained by the same river, which indicates a de-
pendency on location with respect to the precipitation event.
The rebound in the skill curve for the catchments drained by the
Ahr River may reflect the change in the forecasted part of the
hydrograph from the rising to the falling limb. Finally, both
models showed similar evaluation of the three QPN methods,
with GR4H showing slightly higher skill scores than ParFlowCLM
at the very short lead times.

Changing the benchmark to zero-precipitation nowcasts
(ZNC) had a limited impact on the skill of the tested QPN, as
suggested by Fig. 9. Namely, the skill slightly decreased com-
pared with the hydrological persistence in Fig. 8, indicating
that the ZNC is a more challenging benchmark to beat than
the hydrological persistence. This is somewhat expected given
the better performances of ZNC compared with hydrological
persistence, as can be seen in Fig. 7. This is not, however, the
case for all catchments. The Rur at Monschau indicates that

GR4H ParFlowCLM

0 2 4 6 8 10 12 0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

Lead time (h)

N
SE

Erft @ Neubrueck − 1668 km2

GR4H ParFlowCLM

0 2 4 6 8 10 12 0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

Lead time (h)
N

SE

Kyll @ Kordel − 840 km2

GR4H ParFlowCLM

0 2 4 6 8 10 12 0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

Lead time (h)

N
SE

Ahr @ Altenahr − 757 km2

GR4H ParFlowCLM

0 2 4 6 8 10 12 0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

Lead time (h)

N
SE

Erft @ Bliesheim − 552 km2

GR4H ParFlowCLM

0 2 4 6 8 10 12 0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

Lead time (h)

N
SE

Kyll @ Densborn − 473 km2

GR4H ParFlowCLM

0 2 4 6 8 10 12 0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

Lead time (h)
N

SE

Ahr @ Muesch − 346 km2

GR4H ParFlowCLM

0 2 4 6 8 10 12 0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

Lead time (h)

N
SE

Rur @ Monschau − 144 km2

QPN method
Advection S−PROG STEPS

Q (Hydro. persistence) ZNC

FIG. 7. Evolution of the Nash–Sutcliffe efficiency (NSE) of the forecasted hydrographs using the QPN methods and the benchmarks
(hydrological persistence Q, zero-precipitation nowcasts ZNC) with respect to lead time. Red dashed lines indicate the NSE threshold
NSEth 5 0.9. For GR4H, the curves represent the median score from the 12 simulations. For STEPS, the curves represent the median
score from the 20 members.

S AAD I E T A L . 1253JULY 2023

Unauthenticated | Downloaded 01/09/25 11:46 AM UTC



the ZNC benchmark is easier to outperform than the hydro-
logical persistence. The rebound effect observed in Fig. 8 for
the Ahr catchments disappeared with the ZNC benchmark, as
all QPN tend to be equal to ZNC after the end of the event.

3) GAINS IN LEAD TIME WITH RESPECT TO

THE BENCHMARKS

The gain in lead time reflects the dependency on the evalu-
ation method, the benchmark and the chosen threshold for
NSE or for the skill, as shown in Fig. 10. Based on NSE and

for a threshold at NSEth 5 0.9 (Figs. 10a,b), gains in lead time
ranged between 1 and 5 h with GR4H (on average) and be-
tween 0 and 5 h with ParFlowCLM with respect to the hydro-
logical persistence. With respect to ZNC, gains ranged between
0 and 4 h with GR4H (on average) and in some cases there
were losses with ParFlowCLM, specifically in the catchments
drained by the Kyll and the Ahr at Muesch. Changing the
threshold from NSEth 5 0.9 to 0.5 led to increases in the gains
only with respect to the hydrological persistence (Figs. 10c,d).
In this case, the gains ranged between 2 and 8 h with GR4H
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and between 0 and 7 h with ParFlowCLM. With respect to
ZNC, changing the NSE threshold from 0.9 to 0.5 resulted in
poorer gains, especially for ParFlowCLM (range: from 23 to
4 h). This is caused by faster decreases in the quality of the
forecasted hydrographs with the QPN methods compared
with those forecasted with ZNC (Fig. 7)

Using the skill-based approach, choosing the default thresh-
old (0.5, Figs. 10e,f) yielded much larger gains in lead time
compared with a more demanding threshold (0.67, Figs. 10g,h).
With a threshold of 0.5 (Figs. 10e,f), the improvements were up

to 48 h, the maximum range to which we limited our analysis,
which should be interpreted in the light of the poor perf-
ormances of the benchmarks (Fig. 7). With a threshold of
0.67, the use of QPN improved the forecast lead time by
4 h up to 9 h with GR4H, and by 1 h up to 12 h with
ParFlowCLM (Erft at Neubrueck, the largest catchment)
with respect to the hydrological persistence as benchmark
(Fig. 10g). With respect to ZNC (Fig. 10h), the improvements
ranged between 1 and 7 h with GR4H and between 0 and 5 h
with ParFlowCLM.
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Finally, we found no consistent pattern in the gains in lead
time with respect to catchment area (not shown here). How-
ever, when the catchments are ranked by their Gravelius in-
dex [Eq. (8)], the added value of the QPN methods with

respect to the hydrological persistence using ParFlowCLM in-
creased as the Gravelius index decreased (Figs. 10a,c,g). This
suggests that with ParFlowCLM, using the QPN methods was
more beneficial for catchments with a more compact shape.

GR4H ParFlowCLM

KyllKordel

ErftNeubrueck

KyllDensborn

AhrMuesch

AhrAltenahr

ErftBliesheim

RurMonschau

KyllKordel

ErftNeubrueck

KyllDensborn

AhrMuesch

AhrAltenahr

ErftBliesheim

RurMonschau

0

2

4

6

8

G
ai

n 
in

 le
ad

 ti
m

e 
(h

)

NSE > 0.9 | Benchmark: Q (Hydro. persistence)(a)
GR4H ParFlowCLM

KyllKordel

ErftNeubrueck

KyllDensborn

AhrMuesch

AhrAltenahr

ErftBliesheim

RurMonschau

KyllKordel

ErftNeubrueck

KyllDensborn

AhrMuesch

AhrAltenahr

ErftBliesheim

RurMonschau

−4

−2

0

2

4

G
ai

n 
in

 le
ad

 ti
m

e 
(h

)

NSE > 0.9 | Benchmark: ZNC(b)

GR4H ParFlowCLM

KyllKordel

ErftNeubrueck

KyllDensborn

AhrMuesch

AhrAltenahr

ErftBliesheim

RurMonschau

KyllKordel

ErftNeubrueck

KyllDensborn

AhrMuesch

AhrAltenahr

ErftBliesheim

RurMonschau

0

2

4

6

8

G
ai

n 
in

 le
ad

 ti
m

e 
(h

)

NSE > 0.5 | Benchmark: Q (Hydro. persistence)(c)
GR4H ParFlowCLM

KyllKordel

ErftNeubrueck

KyllDensborn

AhrMuesch

AhrAltenahr

ErftBliesheim

RurMonschau

KyllKordel

ErftNeubrueck

KyllDensborn

AhrMuesch

AhrAltenahr

ErftBliesheim

RurMonschau

−4

−2

0

2

4

G
ai

n 
in

 le
ad

 ti
m

e 
(h

)

NSE > 0.5 | Benchmark: ZNC(d)

GR4H ParFlowCLM

KyllKordel

ErftNeubrueck

KyllDensborn

AhrMuesch

AhrAltenahr

ErftBliesheim

RurMonschau

KyllKordel

ErftNeubrueck

KyllDensborn

AhrMuesch

AhrAltenahr

ErftBliesheim

RurMonschau

0
8

16
24
32
40
48

Le
ad

 ti
m

e 
(h

)

SkillCRPS, Q > 0.5(e)
GR4H ParFlowCLM

KyllKordel

ErftNeubrueck

KyllDensborn

AhrMuesch

AhrAltenahr

ErftBliesheim

RurMonschau

KyllKordel

ErftNeubrueck

KyllDensborn

AhrMuesch

AhrAltenahr

ErftBliesheim

RurMonschau

0
8

16
24
32
40
48

Le
ad

 ti
m

e 
(h

)

SkillCRPS, ZNC > 0.5(f)

GR4H ParFlowCLM

KyllKordel

ErftNeubrueck

KyllDensborn

AhrMuesch

AhrAltenahr

ErftBliesheim

RurMonschau

KyllKordel

ErftNeubrueck

KyllDensborn

AhrMuesch

AhrAltenahr

ErftBliesheim

RurMonschau

0
2
4
6
8

10
12

Le
ad

 ti
m

e 
(h

)

SkillCRPS, Q > 0.67(g)
GR4H ParFlowCLM

KyllKordel

ErftNeubrueck

KyllDensborn

AhrMuesch

AhrAltenahr

ErftBliesheim

RurMonschau

KyllKordel

ErftNeubrueck

KyllDensborn

AhrMuesch

AhrAltenahr

ErftBliesheim

RurMonschau

0

2

4

6

8

Le
ad

 ti
m

e 
(h

)

SkillCRPS, ZNC > 0.67(h)

QPN method Advection S−PROG STEPS
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This dependency on the catchment shape was not detectable
with GR4H.

5. Discussion

For the major flooding event of July 2021 in our study re-
gion, the three tested QPN products obtained very similar
performances in terms of both the reproduction of observed
precipitation and hydrological forecasting. The highly similar
performances of the three methods can be attributed to two
factors. First, the aggregation to the hourly time step may
have filtered out the differences between the three methods,
which are reported by previous studies to be in the order of a
few to tens of minutes (Ayzel et al. 2019; Berenguer et al.
2005; Heuvelink et al. 2020; Imhoff et al. 2020). Figure 3
shows, however, that the methods are already similar at 5-min
resolution, with a slightly better performance for S-PROG.
Second, the persistent nature of the event (see event hyeto-
graphs in Fig. 6) might have made it as easy to be forecasted
by simple nowcasting methods (advection) as by more sophis-
ticated ones (S-PROG and STEPS). The poor performances
of the STEPS ensemble compared with the ensemble mean
STEPS-m suggests that the perturbations of the deterministic
forecast got penalized for this event (Heuvelink et al. 2020).
In addition, comparing the spread in the STEPS ensemble
with the deterministic STEPS-m or S-PROG forecasts sug-
gests that the STEPS ensemble might have underestimated
the uncertainty in the evolution of the precipitation field for
this event (Foresti et al. 2016). Nevertheless, the similarity in
terms of performances between STEPS and the deterministic
methods should not undermine its benefits in providing prob-
abilistic nowcasts, which are of greater value for decision
makers than deterministic ones (Fundel et al. 2019; Merz et al.
2020).

Overall, our results show that the QPN methods improved
the hydrological forecasts compared with hydrological persis-
tence or with the zero-precipitation nowcasts. Previous studies
such as Heuvelink et al. (2020), Berenguer et al. (2005), and
Vivoni et al. (2006) reported improvements of 2–6 h for catch-
ments of;103 km2 of size. First, some of the differences may be
explained by the hydroclimatic settings of the studied catch-
ments and/or their characteristic response times (or concentra-
tion times). Berenguer et al. (2005) studied catchments located
in the Mediterranean region (northeast of Spain), for which the
fast response may explain the absence of significant improve-
ments using QPN beyond 2 h. On the contrary, Heuvelink et al.
(2020) showed that significant improvements in the hydrological
forecasts can be obtained when using 3-h-long QPN for catch-
ments under humid, temperate climate (Netherlands) and
characterized by slower responses than Mediterranean catch-
ments. In our case, the improvements are in general limited
to 4 h with respect to a benchmark of zero-precipitation now-
casts, with a high variability from one catchment to another
(Figs. 10b,d). For some catchments (drained by the Kyll and
the Ahr at Muesch), the QPN methods showed worse per-
formances compared with the zero-precipitation nowcasts, espe-
cially with ParFlowCLM. The variability in the performances of
the QPN from one catchment to another can be either explained

by the location of each catchment within the precipitation field,
or their properties that modulate the delay between the precipi-
tation and the catchment response.

Second, some of the differences can be attributed to meth-
odological choices. Using the same approach as in Heuvelink
et al. (2020) and Berenguer et al. (2005) based on the quality
of the forecasted hydrographs measured by NSE, we obtained
similar improvements up to 4–5 h with an NSE threshold at
0.9, depending on the benchmark (Figs. 10a,b). However, this
NSE-based approach suffers from the arbitrary selection of
an efficiency threshold, which, according to Figs. 10a–d, im-
pacted the estimation of the added value of QPN, especially
with respect to the hydrological persistence as benchmark.
We attempted to circumvent this issue by following a skill-
based approach, which provides an a priori objective thresh-
old [i.e., 0.5, see Eq. (7)], but leads to too optimistic results
and suggests that the skill of QPN lasts for much longer lead
times (Figs. 8 and 9, except for the Rur at Monschau in Fig. 8
and the catchments drained by the Kyll in Fig. 9). By adopting
a more demanding threshold such as 0.67, our skill-based
approach leads to results that agree with previous studies
(Figs. 10g,h; Heuvelink et al. 2020; Berenguer et al. 2005).
The combination of a skill-based approach with an analysis of
the quality of forecasted hydrographs helped objectively esti-
mate the added value of the QPN products and avoid a dis-
torted evaluation when the benchmark performs poorly. In all
cases, the obtained improvements may look small, but they
can still be of high value for emergency management and the
fire services involved in event response (Speight et al. 2021).
However, if observed hydrographs of the event were available
and used, they would probably have led to lower added value
of QPN because of additional errors resulting from the dis-
agreement between the QPE product and corresponding
hindcasted hydrographs with the observed precipitation and
observed hydrographs, respectively.

Several studies reported a dependency of improvements on
the catchment size and the event type (convective versus
stratiform; Berenguer et al. 2005; Heuvelink et al. 2020;
Imhoff et al. 2020). We showed that, in addition, there is also
a dependency on methodological choices, namely, the chosen
benchmark and the applied hydrological model. The depen-
dency on the benchmark used to estimate the skill was visible
(albeit to a limited extent) from comparing Figs. 8 and 9,
which warns that choosing a simple model (such as hydrologi-
cal persistence) may lead to overly optimistic interpretations
of the improvements (Pappenberger et al. 2015b). The depen-
dency on catchment size was hardly visible over our catch-
ment set for the studied event, except for the largest
catchment (Erft at Neubrueck, 1668 km2) which showed a
slow decrease in the skill with respect to lead time. The low
sensitivity of the skills to catchment size is perhaps a result of
working on a single event, which emphasizes the impact of
the differences of precipitation amounts registered in the
study catchments. Nevertheless, we noticed a dependency on
catchment shape when the hydrological persistence is chosen
as benchmark and with ParFlowCLM as a hydrological model
(Figs. 10a,c,g), but not with GR4H. The fact that GR4H did
not mirror the effect of catchment shape can be explained by
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the sensitivity of GR4H parameters to the anthropogenic ef-
fects through calibration on historical observations (Saadi
et al. 2020), which are behind the large differences between
model simulations for the Erft at Neubrueck and the Rur at
Monschau in Fig. 6. Accounting for the anthropogenic effects
by GR4H (even implicitly) may have buffered the effect of
catchment shape on the catchment response.

The dependency of the skill on the catchment response, i.e.,
the event hydrograph, was accentuated by the adoption of the
hydrological persistence as benchmark. Since the reference
event hydrograph is the one simulated by the hydrological
models using the QPE, the NSE curves in Fig. 7 suggest
that the flashier and the higher the hindcasted peak flow, the
higher the benefit of the use of QPN. This can be seen from
comparing the hindcasted hydrographs by GR4H and
ParFlowCLM for the Erft at Bliesheim (Fig. 6), where GR4H
hindcasted an earlier peak flow than ParFlowCLM, mirrored
by better NSE values for the three QPN methods when
GR4H was applied for this catchment (Fig. 7). Conversely,
the simulated hydrograph by GR4H for the Rur at Monschau
was smoother than the one simulated by ParFlowCLM, which
was accompanied by better gains in lead times for QPN with
ParFlowCLM (Fig. 7). The smoother hydrographs led to
less gains because the use of QPN led to earlier rises in the
forecasted hydrographs, which penalized their use. These dif-
ferences also reflect the errors of QPN with respect to the
QPE product, which are highlighted by the distributed
ParFlowCLM for the catchments drained by the Kyll, where
the zero-precipitation nowcasts showed similar or better NSE
scores at the early time steps (Fig. 7).

Nevertheless, the choice of the adopted hydrological model
did not much alter the conclusions regarding the similarity of
the tested QPN methods. The agreement between QPN ac-
cording to the distributed ParFlowCLM model suggests that
the methods agreed also in the spatial distribution of precipi-
tation for this particular event at least from a hydrological
point of view, in line with the MAE patterns in Fig. 4. Effects
of uncertainties in parameter estimation of the hydrological
models were not included here, but they would be relatively
low given the general agreement of the three methods in
terms of predicting the observed QPE. Effects of uncertain-
ties in initial moisture conditions were minimized by the long
spinup period of both GR4H and ParFlowCLM models prior
to the event.

Focusing only on one event limits our investigation of other
factors that could have impacted the skill of the tested now-
casting methods, such as the type of the event and the season
(Imhoff et al. 2020). The absence of observed discharge values
limits the evaluation of the accuracy of model simulations, but
that should not undermine the obtained improvements by the
use of QPN. Quantifying the added value of the tested QPN
with respect to an NWP-based benchmark for this event
would give more convincing results from an operational point
of view, given the relative poorness of the adopted bench-
marks in our study. Finally, the relatively heavy cost of model
simulations with ParFlowCLM (especially when applied with
the probabilistic STEPS nowcasts) hampers its test with more
parameter sets, which could have an impact on the evaluation

of the skill, especially with respect to the hydrological persis-
tence as a benchmark.

6. Conclusions and future work

We investigated the usefulness of using precipitation
nowcasts to improve the skill of two hydrological models in
forecasting the response of seven catchments located in the
west of Germany for the disastrous July 2021 event. We eval-
uated three precipitation nowcasting techniques, namely, the
Lagrangian advection, S-PROG, and the probabilistic method
STEPS. Our evaluation consisted of analyzing their ability in
forecasting the observed precipitation at 5-min and hourly
time steps, then in improving the ability of two contrasting
hydrological models, GR4H and ParFlowCLM, in reproduc-
ing the simulated hydrographs by the hydrological models
using observed precipitation (or hindcasted hydrographs).
For the July 2021 events in our study region, our main conclu-
sions are as follows:

1) The three methods improved the forecasting skill of the
hydrological models with respect to two benchmarks, the
hydrological persistence and the zero-precipitation now-
casts. These improvements varied from one catchment to
another, and reached up to 4–5 h according to an NSE at
0.9 and up to 12 h according to the CRPS skill at a thresh-
old of 0.67 (i.e., the use of QPN halved the forecasting er-
rors of the benchmarks).

2) The three methods obtained very similar performances in
terms of both precipitation and discharge forecasting.
In particular, the deterministic methods (advection and
S-PROG) performed as good as the average/median
probabilistic one (STEPS).

3) The use of a conceptual, lumped model (GR4H) led to sim-
ilar conclusions as with a physically based, 3D-distributed
model (ParFlowCLM). However, the gains in lead time
were on average lower with ParFlowCLM than with
GR4H. The differences between the two models can be
attributed to the anthropogenic influences in the catch-
ments, which are implicitly accounted for by GR4H through
its calibrated parameters on historical observations.

4) The choice of the evaluation method, the benchmark and
the skill threshold impacted the estimation of the added
value of the QPN methods.

As future work, more robust conclusions would be ob-
tained by considering a large sample of events with a variety
of seasons and typologies. Increasing the horizon of the input
precipitation to the models with quantitative precipitation
forecasts that make use of (convection-permitting) NWP out-
puts through blending approaches (Lovat et al. 2022; Speight
et al. 2021; Clark et al. 2016) would shed more light on the
ability of the current hydrometeorological chains in hedging
the damages by issuing useful and timely flood warnings.
Quantifying the economic gains from including precipitation
nowcasts (Le Bihan et al. 2017; Pappenberger et al. 2015a)
would provide more convincing arguments about their useful-
ness. Finally, the added value of the nowcasting techniques
presented in this work motivates exploiting their benefit in
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generating nationwide and useful short-time forecasts for bet-
ter disaster preparedness (Reinoso-Rondinel et al. 2022).
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Hagedorn, 2019: Promoting the use of probabilistic weather
forecasts through a dialogue between scientists, developers
and end-users. Quart. J. Roy. Meteor. Soc., 145, 210–231,
https://doi.org/10.1002/qj.3482.

Germann, U., and I. Zawadzki, 2002: Scale-dependence of the
predictability of precipitation from continental radar images.
Part I: Description of the methodology. Mon. Wea. Rev., 130,
2859–2873, https://doi.org/10.1175/1520-0493(2002)130,2859:
SDOTPO.2.0.CO;2.

Hengl, T., and Coauthors, 2017: SoilGrids250m: Global gridded
soil information based on machine learning. PLOS ONE, 12,
e0169748, https://doi.org/10.1371/journal.pone.0169748.

Hersbach, H., 2000: Decomposition of the continuous ranked
probability score for ensemble prediction systems. Wea. Fore-
casting, 15, 559–570, https://doi.org/10.1175/1520-0434(2000)
015,0559:DOTCRP.2.0.CO;2.

Heuvelink, D., M. Berenguer, C. C. Brauer, and R. Uijlenhoet,
2020: Hydrological application of radar rainfall nowcasting in
the Netherlands. Environ. Int., 136, 105431, https://doi.org/10.
1016/j.envint.2019.105431.

Imhoff, R. O., C. C. Brauer, A. Overeem, A. H. Weerts, and
R. Uijlenhoet, 2020: Spatial and temporal evaluation of
radar rainfall nowcasting techniques on 1,533 events. Water
Resour. Res., 56, e2019WR026723, https://doi.org/10.1029/
2019WR026723.

}}, }}, K. J. van Heeringen, R. Uijlenhoet, and A. H. Weerts,
2022: Large-sample evaluation of radar rainfall nowcasting
for flood early warning. Water Resour. Res., 58, e2021WR031591,
https://doi.org/10.1029/2021WR031591.

Junghänel, T., and Coauthors, 2021: Hydro-klimatologische
Einordnung der Stark- und Dauerniederschläge in Teilen
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