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Nonlinear neural patterns are revealed in high frequency functional near 
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A B S T R A C T   

Functional Near Infrared Spectroscopy (fNIRS) is a useful tool for measuring hemoglobin concentration. Linear 
theory of the hemodynamic response function supports low frequency analysis (<0.2 Hz). However, we hy
pothesized that nonlinearities, arising from the complex neurovascular interactions sustaining vasomotor tone, 
may be revealed in higher frequency components of fNIRS signals. To test this hypothesis, we simulated 
nonlinear hemodynamic models to explore how blood flow autoregulation changes may alter evoked neuro
vascular signals in high frequencies. Next, we analyzed experimental fNIRS data to compare neural represen
tations between fast (0.2–0.6 Hz) and slow (<0.2 Hz) waves, demonstrating that only nonlinear representations 
quantified by sample entropy are distinct between these frequency bands. Finally, we performed group-level 
distance correlation analysis to show that the cortical distribution of activity is independent only in the 
nonlinear analysis of fast and slow waves. Our study highlights the importance of analyzing nonlinear higher 
frequency effects seen in fNIRS for a comprehensive analysis of cortical neurovascular activity. Furthermore, it 
motivates further exploration of the nonlinear dynamics driving regional blood flow and hemoglobin 
concentrations   

1. Introduction 

Functional near-infrared spectroscopy (fNIRS) is a non-invasive 
method used to measure brain tissue hemodynamics as a proxy for 
neural activity (Strangman et al., 2002b). Slow hemodynamic response 
signals in fNIRS oscillations ( < 0.2 Hz) are well-suited for linear (i.e., 
spectral) analysis, particularly when the time intervals between stimuli 
are long (Glover, 1999). However, such a conservative cut-off frequency 
is aimed at avoiding overlap with frequency components in vascular 
dynamics that are independent of brain function, such as cardiac pul
satility or respiratory waves (Pinti et al., 2019). High frequency signals 
are often filtered out because they are assumed to correspond to sys
temic physiological or instrumentation noise (Huppert et al., 2009). 
However, disentangling fNIRS artifacts from systemic brain-heart and, 
more in general, brain-body interaction effects may be difficult (Vikner 
et al., 2021; Candia-Rivera et al., 2022a,b). 

Recent studies suggest that high frequency ( > 0.2 Hz) signals in 
fNIRS may provide additional information about neurovascular activity 

(Yücel et al., 2021; Santosa et al., 2018; Ghouse et al., 2020). Indeed, the 
nonlinear nature of the autonomic nervous system (Goldberger et al., 
2002; Marmarelis, 2004; Sunagawa et al., 1998; Barbieri et al., 2017) 
may impact the hemodynamic response in higher frequencies. Recent 
research by (Ghouse et al., 2020) assessed entropy estimates of fNIRS 
signals that contained an upper bound of 0.6 Hz and demonstrated 
complementary areas of activity when compared to neural correlates 
observed using linear analysis of fNIRS. This finding supports recent 
suggestions to use cutoff filters as high as 0.5 Hz (Yücel et al., 2021). 
Some studies even suggest minimal fNIRS preprocessing, avoiding 
filtering and instead opting for robust statistics (Santosa et al., 2018). 
These developments underscore the importance of investigating the 
potential contribution of higher frequency signals in fNIRS analysis to 
improve on our understanding of neural and neurovascular activity. 

More specifically, to investigate the potential contribution of non
linearities in higher frequency of fNIRS signals, this study assesses dif
ferences between neural representations of fNIRS in the traditional slow 
wave ( < 0.2 Hz) and the proposed fast wave (0.2–0.6 Hz) frequencies 
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using nonlinear information-theoretic methods. We hypothesize that to 
fully characterize the cognitive phenomena reflected in fNIRS signals, 
we need to assess its full spectrum with additional nonlinear analysis. 
This study uses sample entropy (SampEn) (Richman and Moorman, 
2000) to assess fNIRS signals irregularity (and so predictability) based 
on embeddings of the fNIRS signals (Sauer et al., 1991). 

First, we simulated plausible modulations of autoregulatory feed
back on blood flow control with stochastic dynamics in the hemody
namic model (Friston et al., 2000) to motivate fast wave nonlinearity 
analysis. Then, using a mental arithmetic paradigm and a control motor 
imagery paradigm (Berntson et al., 1996), we investigated the addi
tional information that high frequency components may provide in 
experimental data when a subject is under cognitive stress. We per
formed a representational similarity analysis (RSA) (Kriegeskorte et al., 
2008; Carlin et al., 2011) on data obtained from a public database (Shin 
et al., 2017), comparing fast and slow wave fNIRS modalities. Our hy
pothesis was that fast wave activity would add significant complemen
tary regions, particularly in nonlinear analysis, and that the correlations 
between fast and slow wave fNIRS activity would be lower during 
mental arithmetic compared to motor imagery due to regional nonlinear 
interactions. We assessed multivariate correlation at each detector and 
hypothesized that mental arithmetic topoplots of activity would be less 
correlated between fast and slow wave fNIRS. 

2. Methods and materials 

2.1. Simulations 

For initial validation of plausible effects of autoregulation dynamics 
on hemoglobin, we first simulate a mechanistic balloon model of he
modynamic activity (Cui et al., 2010; Friston et al., 2000). First, a flow 
inducing signal (s), i.e. the response of the vascular system to a neural 
metabolic demand, is linearly described for the sustenance of incoming 
blood flow (fin). Particularly: 

ṡ = ϵu(t) −
s
τs
−

fin − 1
τf

ḟ in = s
(1)  

u is the control signal which is the neural signal generating the flow. ϵ is 
the efficacy by which the neural signal can sustain a flow-inducing 
signal, i.e. a response that may dilate vessels to increase blood flow 
into. This is related to the vascular resistance (r), whose dynamics are ṙ 
= − r2s (Friston et al., 2000). τs is the time constant for this flow-inducing 
signal and τf is the time constant describing the effects of autoregulatory 
feedback from blood flow. Considering τf comprises information on 
autoregulatory effects of blood flow (the time constant for returning 
back to baseline), this is the parameter we later model to assess its 
nonlinear effects on hemoglobin concentrations. 

From the sustaining blood flow generating signal, a so-called 
“balloon model” describes the dynamics of the volume of a blood 
vessel (the balloon), and the permeation of hemoglobin inside and 
outside the vessel (Buxton et al., 1998). Explicitly, the rate of decay of 
blood volume is related to blood flowing in and blood flowing out of a 
vessel: 

τov̇ = fin − fout(v)
fout = v1∕α (2)  

α describes the capacity at which a balloon can expel water, having been 
distended by the surge of inflow. τo is the time constant which governs 
the rate of change of the volume, which is similarly intertwined with the 
rate of change of deoxyhemoglobin in the venous compartment (q): 

τoq̇ = fin
E(fin,Eo)

Eo
− fout(v)

q
v

E(fin,Eo) = 1 − (1 − Eo)
1∕fin

(3) 

The function E describes the oxygen extraction coefficient, or effi
cacy of the tissue in extracting oxygen from the incoming blood, while Eo 
is the resting oxygen extraction coefficient. In (Cui et al., 2010), an 
extension was proposed to relate the blood volume and total hemoglobin 
concentration as: 

τoṗ = (fin − fout(v))
p
v

(4) 

Then, oxyhemoglobin is merely o = p − q. 
We reiterate the observation in eq. (1) that the parameter τf is 

particularly related to the autoregulatory feedback. Exactly how its 
value relates to the true autoregulatory changes is little understood, 
though literature states that responses to autoregulatory changes occur 
over a period of 1–2 min (or less than 0.02 Hz) (Lemkuil et al., 2013). To 
maintain this expected periodicity, while allowing random deviations 
due to uncertain dynamics, we designed a 2nd order stochastic 
dynamical model whose power spectral density (PSD) on average has a 
peak at the frequency of hypothesized autoregulatory changes. 

τ̈f = A( − 2(τf − .8) − 10τ̇f )dt + 10dW (5) 

The steady state value of τf is at 0.8 (normalized units), while the 
steady state of its change is 0. A is a parameter that modulates how fast it 
returns to steady state, and the diffusion term is random variations 
outside the potential normal oscillatory behavior of τf. When there is no 
autoregulatory activity, it quickly returns to steady state, with A= 10. 
When there is autoregulatory activity, it is more free to change with A 
= .1. black Eq. (5) was devised to model the realizations of τf through 
simple, non-trivial stochastic differential equations. Such a generative 
model embeds interpretable 2nd order linear dynamics showing emer
gent nonlinar oscillatory properties in the observed variable.black We 
integrate the stochastic differential equations with the Euler-Maruyama 
method (Platen and Bruti-Liberati, 2010). 

We numerically simulated 100 τf time courses to illustrate expected 
spectral properties of the stochastic dynamics. This was achieved by 
obtaining an estimate of the power spectral density (PSD) using the 
Welch method (Welch, 1967). The units of the PSD for τf is in arbitrary 
units, considering its the time constant of a normalized blood flow signal 
seen in eq. (1). We simulated a block design experiment using these 
generated τf time courses, where each block is 40 s long with a minute 
long rest, and 5 stimulus blocks would either induce τf modulations (i.e. 
where A = 0.1) or 5 stimulus blocks would not induce the modulations. 
The final simulated hemoglobin concentration time courses are cor
rupted with a signal-to-noise (SNR) ratio of 0 dB. 

2.2. Experiment data 

A publicly available dataset was used to obtain fNIRS signals with the 
desired experimental protocol for this study, as reported in (Shin et al., 
2017). In summary, the experiment recruited twenty-nine healthy sub
jects (aged 28.5 ± 3.7), fifteen of which were female and fourteen male. 
Of these twenty-nine healthy subjects, all were right-handed expect for 
one. As according to Shin et al. (2017), all participants were free from 
neurological, psychiatric, or any brain-related disorders. They were fully 
informed about the experimental process, and written consent was ob
tained from each volunteer. After the experiment, they received finan
cial compensation. The study adhered to the guidelines of the 
declaration of Helsinki and received approval from the Ethics Commit
tee of the Institute of Psychology and Ergonomics, Technical University 
of Berlin (approval number: SH_01_20150330). Three trials were per
formed with ten repetitions of mental arithmetic and baseline events, 
and three trials were performed with ten repetitions of right-hand and 
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left-hand motor imagery for each subject. We note that the motor im
agery tasks and mental arithmetic tasks were done independently, not 
concurrently. Thirty-six fNIRS series were acquired for each subject with 
10 Hz sampling rate. 

The experiment design had sixty seconds of resting state to start data 
acquisition from a subject, after which an instruction was shown on the 
screen indicating which task was to be performed–either an arithmetic 
problem, a “ − ” for a baseline, or a left or right arrow for motor imagery. 
The subject performed the indicated task for ten seconds, with a sub
sequent fifteen second resting phase before the next instruction. After 
twenty repetitions of these instructions and tasks (ten repetitions for 
each task in an experiment run), a sixty second rest was performed. A 
total of three trials were performed, for a total of thirty repetitions per 
event. 

2.3. fNIRS signals 

Thirty six channels of optical densities (OD) were resolved from 
source detector pairs comprising 760 nm and 850 nm wavelengths at 
distances of 3 cm covering the frontal, lateral parietal and posterior 
cortical regions as seen in Fig. 1a. The modified Beer Lambert law was 
used to convert the ODs to deoxyhemoglobin (Hb) and oxyhemoglobin 
(HbO) (Strangman et al., 2002a). 

Fig. 2 illustrates the preprocessing pipeline. After applying the 
modified Beer-Lambert law to resolve the 36 channels seen in Fig. 2b 
from the source-detector pairings in Fig. 2a, band-pass frequency filters 
were applied to extract traditional hemodynamic bands ( < 0.2 Hz) 
(Strangman et al., 2002a; Pinti et al., 2019) or the proposed increased 
hemodynamic band (0.2–0.6 Hz). A wavelet filtering approach using a 
Daubechies 5 wavelet, nine level decomposition was used to further 
reduce instrumentation noise such as movement in the oxy- and deox
yhemoglobin signals (Molavi and Dumont, 2012). Detrending and pre
whitening with an AR(1) model was then performed to remove 
temporally structured noise in the signal (Huppert, 2016). The signals 
were separated into epochs of 30 s (comprising the 15 s task phase, and 
the 15 s rest phase), with each channel at each activity block being 
referenced to the mean of the previous 5 s. We exclude the 2 second 
instruction phase before the task-phase from the analysis to reduce 

potential confabulation of task-evoked responses from processing the 
instructions. Total hemoglobin was computed as the addition of both Hb 
and HbO. The total hemoglobin is important considering the integration 
of the concentrations may present unique temporal dynamics revealing 
distinct nonlinear temporal effects. For all three signals, entropies and 
mean estimates were extracted then passed into the 1st and 2nd level 
analysis. Before second level analysis, the results were spatially 
smoothed to increase the sensitivity of random effects from detector 
locations (Tak et al., 2016). A Gaussian smoothing kernel with a 
full-width-half-max of 1.5 cm (half the source-detector separation dis
tance) was used as seen in Fig. 1b. 

2.4. Entropy analysis 

To analyze nonlinearity and regularity of the fNIRS signals, we 
exploited sample entropy (SampEn) (Richman and Moorman, 2000). 
SampEn is a method to calculate the entropy of a dynamical system in its 
phase space. In other words, it assesses how much information it takes to 
characterize the dynamics of a system. It shares similarities with 
methods like approximate entropy (ApEn) (Pincus, 1991), except the 
SampEn algorithm alleviates biases that are introduced in ApEn by not 
considering self-matches in its calculation of the correlation integral 
used in the definition of entropy in dynamical systems (Delgado-Bonal 
and Marshak, 2019b; Sinai, 1959). There are a whole slew of other en
tropy estimation methods that could have been used instead, however 
we have previously performed a study comparing a whole battery of 
entropy estimation methods for assessing fNIRS signals, with the 
conclusion that SampEn provides similar results as the other entropy 
estimation methods (Ghouse et al., 2020). 

A delay-time τ and embedding dimension m are needed to recon
struct manifolds using delay-coordinates. τ was selected as the first zero 
of the autocorrelation, while m was found using the false nearest 
neighbors approach (Abarbanel et al., 1993). 

For calculating SampEn, radius R = 0.2 × σx was used as the 
threshold to determine whether states were neighbors, where σx is the 
standard deviation of the fNIRS time series (Delgado-Bonal and 
Marshak, 2019a). The particular equation describing how to calculate 
SampEn is: 

Fig. 1. Illustration of spatial analysis of fNIRS signals. (a) shows the position of the optodes used to derive the 36 fNIRS channels seen in (b). (b) shows an example of 
the full-width-half-max of the smoothing Gaussian kernel prior to second level group analysis (Tak et al., 2016) in the color green. 
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SampEn = − log

⎛

⎜
⎝

∑N− m
i=1,i∕=j

1
N− m− 1 number of ∣Xm+1

i − Xm+1
j ∣

〈
R

∑N− m
i=1,i∕=j

1
N− m− 1 number of ∣Xm

i − Xm
j ∣
〈

R

⎞

⎟
⎠ (6) 

X in this equation is a state space reconstructed using a time series. 
The superscript denotes the embedding dimension while the subscript 
denotes the state index, for which there exists N states. 

2.5. Representational similarity analysis 

Representational similarity analysis is a method used to compare 
multivariate data such as different brain data types (Kriegeskorte et al., 
2008). This paper calculates similarities between tasks using the dis
tance correlation in order to construct the representational similarity 
matrices for fast or slow wave (Székely et al., 2007; Geerligs et al., 
2016). 

In brief, given random vector X and random vector Y with di
mensions Rp and Rq respectively, distance correlation evaluates inde
pendence by integrating the distance between the random vectors in 

conjunction with a weighting function w(t, s) = (cpcq

⃒
⃒
⃒t|1+p

p

⃒
⃒
⃒s|1+q

q )
− 1

, 

where cd = π(1+d
2 )

Γ(1+d
2 )

corresponds to half the surface area of a unit sphere in 

the given dimensionality d. This leads to the following statistic: 

V
2
(X,Y) =

∫

R p+q

⃒
⃒
⃒
⃒ϕX,Y (t, s) − ϕx(t)ϕy(s)|

2w(t, s)dtds

R
2(X,Y) =

V
2
(X,Y)

V
2(X,X)V 2(Y, Y)

(7) 

As the dimensions of the random vectors, p and q, approach infinity, 
the statistic converges to a Student’s t-distribution and can be approxi
mated as such for hypothesis testing (Székely and Rizzo, 2013). Given aij 
= ∣xi − xj∣ and bij = ∣yi − yj∣, where i and j represent the ith and jth ob
servations of x or y, the sample covariance can be estimated as: 

Aij = aij −
1
N

∑N

n=1
ain −

1
N

∑N

k=1
akj +

1
N2

∑N

n=1

∑N

k=1
akn

Bij = bij −
1
N

∑N

n=1
bin −

1
N

∑N

k=1
bkj +

1
N2

∑N

n=1

∑N

k=1
bkn

V
2
(x, y) =

1
N2

∑N

i=1

∑N

j=1
AijBij

(8) 

In our application, random vectors X and Y have equivalent dimen
sionality R3 as we are looking at multivariate correlations between oxy, 
deoxy and total hemoglobin. Furthermore, due to there being 4 exper
imental conditions (baseline, mental arithmetic, left- and right-hand 
imagery), the resulting representational dissimilarity matrix (RDM) is 
a 4 × 4 matrix. Representational dissimilarity outputs were obtained for 
each detector location for each measure (entropies or mean value). 
Extracting the upper triangle, we have two 29 matrices for slow and fast 
wave fNIRS respectively to perform statistical analysis upon. 

2.6. Fast vs. slow wave spatial analysis 

For each subject, the data obtained from each detector had a shape of 
N repetitions × N concentrations. By calculating the median over the N 
repetitions for either fast or slow wave fNIRS, we obtain a vector of size 
N Concentrations x N detectors for each subject. This analysis enables us 
to determine whether the spatial fNIRS arrays for fast and slow waves 
are dependent, or whether the null hypothesis that they are independent 
can be rejected. We expect that the slow and fast wave analysis will 
become more independent when there is a task inducing changes in 
autoregulatory activity. We also perform a Wilcoxon paired analysis at 
the detector level to compare which medians are significantly different 
in the group of subjects for each concentration. 

2.7. Statistical analysis 

In order to perform statistical analysis of the data, we exploited the 
Scipy statistics package in Python (Virtanen et al., 2020). 

Fig. 2. Overview of the analysis pipeline used for each fNIRS signal in the dataset, which includes computation of hemoglobin concentrations, band pass filtering, 
motion artifact correction, removal of linear trends and serial correlations, total hemoglobin calculation, state space reconstructions using delay-coordinate em
beddings, estimation of sample entropy or mean value for each trial, first level analysis using median value over trials, and spatial smoothing to improve sensitivity in 
group analysis results (Tak et al., 2016). 
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To compare RDMs between fast and slow wave fNIRS, a group 
analysis was conducted using a Friedman test, with a Bonferroni 
correction to account for multiple comparisons. A family-wise p-value of 
less than 0.05 was considered significant. Nonparametric Friedman 
statistical tests were used to avoid assumptions of normality in the 
dataset when performing intergroup analysis (Friedman, 1937). Then, 
the Bonferroni correction was applied to be as conservative as possible 
when correcting for family-wise error rates such that any inferences are 
robust to Type I errors (Tukey, 1953; Dunn, 1961). 

For median analysis, rainclouds were generated from standardized Z 
transformations to compare the shapes of distributions between fast and 
slow wave analysis. A Kolmogorov-Smirnov test was applied to compare 
concentrations analyzed from fast and slow wave analysis, correcting for 
multiple comparisons. A paired sample Wilcoxon signed rank test was 
performed on the difference of median value for each concentration 
between mental arithmetic vs baseline or right-hand vs left-hand motor 
imagery. Detectors were retained for further analysis if any of the 3 
concentrations returned significant with a false alarm rate of 
α = 0.05∕6 = 0.008. For remaining detectors, distance correlation was 
performed between fast and slow wave fNIRS. 

3. Results 

The first set of results are from simulations of neurovascular signals 
generated by a hemodynamic model, evoked from events that either 
induce or do not induce autoregulatory changes. The second set of re
sults are from group statistics of representational similarity analysis 
between fast wave and slow wave cortical distribution of activity, and 
median analysis of cortical activity. Standard fNIRS analysis refers to 
time averaged value of fNIRS activity during a task, while nonlinear 
fNIRS analysis refers to SampEn during the time duration of the task. 

3.1. Simulations 

Fig. 3 illustrates the results of realizations of the hypothesized 
autoregulatory feedback changes as according to eq. (5). The median 
peak frequency was at 0.02 Hz, corresponding to periodicity of 50 s, 
with periodicity ranges from 12 ss to 100 s. Fig. 4 illustrates the effects 
that these autoregulatory changes may have on the hemodynamics, 
where HbO is the oxyhemoglobin and HbR is the deoxyhemoglobin. 
Over the 100 realizations of the block design experiment, the mean 
entropy of the hemodynamic response in the high frequency 
(0.2–0.6 Hz) regime without autoregulation modulations was at 0.212 

(±0.015) bits compared to 0.163 (±0.011) bits when the modulations 
occur; through a paired Wilcoxon signed rank test, the SampEns were 
found to be significantly different (p ⋘ 0.001). On the other hand, the 
power of this high frequency band without autoregulation modulation 
was found to be 0.0368 (±0.00441) as compared to 0.0372 (±0.00385) 
during autoregulation modulation; the power bands were not signifi
cantly different according to the Wilcoxon signed rank test (p = 0.46). 

3.2. Experimental fNIRS data 

3.2.1. Representational similarity analysis 
Results from the Friedman analysis comparing the upper triangle of 

the RDMs constructed using either fast wave or slow wave fNIRS signals 
according to the methods described in section 2.5 can be seen in Fig. 5, 
for mean and SampEn respectively. For the mean value, no detector has 
significantly different representations between slow and fast wave 
fNIRS, whereas each quadrant of the sensor space on the cortex con
tained significantly different detectors for SampEn. Generally, SampEn 
contained higher Friedman test scores than the mean analysis. 

3.2.2. Fast vs slow wave spatial analysis 
Using the methods described in 2.6, we obtained group level median 

analysis results for fast and slow wave fNIRS. To reiterate, this entailed 
calculating the median value of the mean or SampEn signal over the 
repetition of the task performed by the participant, and then performing 
a contrast analysis between the effects of mental arithmetic (MA) and 
baselines (BL), or left-hand motor imagery (LH0 and right-hand motor 
imagery (RH). A distillation of the spatial results can be seen in the 
raincloud Fig. 6 to visualize distributions of contrasts between the task 
comparisons across subjects; Kolmogorov-Smirnov tests were performed 
to ascertain whether the distributions were significantly different. 
Supplementary fig. S1 shows the spatial cortical map of contrasts be
tween mental arithmetic (MA) and baseline (BL), or right- (RH) or left- 
hand (LH) motor imagery tasks. 

From the raincloud plots in Fig. 6, distributions for mean results 
consistently appear to be overlapped when comparing slow and fast 
wave different in medians, whereas SampEn demonstrates a flatter 
distribution for slow wave analysis as compared to fast wave analysis. 
Motor imagery also presents a flatter distribution in SampEn when using 
slow wave analysis compared to fast wave analysis, however this greater 
variance is similarly observed in mean value analysis. Performing a 
Kolmogorov-Smirnov two sample test, we found that the distribution of 
fast and slow wave analysis was significantly different between SampEn 

Fig. 3. Spectral analysis of realizations of τf simulated from the stochastic differential equation in eq. (5). a) Represents the average power spectral density (PSD) of τf 
as estimated by the Welch method over 100 realizations. The units of the PSD are arbitrary as τf is the time constant of fin seen in eq. (1). b) on the other hand is a 
histogram of the peak frequency of the PSD of τf over the 100 realizations. 
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in oxy and deoxyhemoglobin, while in no mean analysis were they 
significantly different. 

For mental arithmetic and baseline Wilcoxon paired analysis, mean 
estimates show significant detectors only in slow wave fNIRS, with a 
cluster in the right lateral cortical areas and detectors bilaterally in the 
frontal cortex. SampEn mainly determined significant detectors in the 
frontal right cortex and left parietal cortex in the slow wave analysis, 
while fast wave analysis complemented information in the right parietal 
cortical areas. 

Left- and right-hand motor imagery Wilcoxon paired analysis 
demonstrated activity bilaterally in the parietal cortical areas with both 
SampEn and mean estimates. Both mean and SampEn demonstrated 
slow activity predominantly in the right parietal cortex, while fast 

activity was found in the left lateral parietal cortex. Mean also contained 
significant detectors in the medial left parietal cortex in slow wave 
analysis and in the occipital regions for fast wave analysis. 

As a sanity check, we also compared the neural representations be
tween slow frequency bands (0 Hz, 0.2 Hz) and cardiac frequency bands 
(0.8 Hz, 3 Hz). The distance correlation of topolots of fast wave vs slow 
wave was not significant, indicating that the fast wave fNIRS analysis in 
freqs (0.2 Hz, 0.6 Hz) was not a result of systemic physiological con
founders (see also supplementary fig. S2). 

4. Discussion and conclusion 

In this study, we compared neural activity representations between 

Fig. 4. (a) demonstrates a single realization of a band passed oxyhemoglobin power spectrum density when either autoregulatory activity is occurring with a task, or 
when there is no autoregulatory activity with a task. (b) displays a representative simulation of the signals in the model and the events that influence them (whether a 
task induces autoregulatory behavior or not). 

Fig. 5. Results of a group level Friedman test comparison between the upper triangle of the RDM for fast (0.2–0.6 Hz) and slow wave ( < 0.2 Hz) fNIRS on the group 
level, where significance indicates at least one element in the upper triangle had a significantly different median between fast and slow wave fNIRS. Channels that are 
significant are marked by a thick outline on the marker. 
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fast wave (0.2–0.6 Hz) fNIRS and the standard slow wave ( < 0.2 Hz) 
fNIRS signal using both linear measures of mean value and nonlinear 
measures derived from sample entropy. The fNIRS signals were obtained 
from a publicly available dataset of 29 subjects performing mental 
arithmetic and left-/right-hand motor imagery tasks (Shin et al., 2017). 
Our hypothesis was that mental arithmetic tasks, which induce cognitive 
stress, would provide more variation in areas of cortical activation than 
motor imagery when comparing slow and fast wave fNIRS using 
nonlinear analysis. This hypothesis was motivated by literature sug
gesting the nonlinear modulation of fNIRS dynamics sustained by 
various factors, including those induced by autonomic nervous system 
activity (Friston et al., 2000; Gianaros et al., 2012; Sheng and Zhu, 2018; 
Candia-Rivera et al., 2023). Hemodynamic models are also known to be 
nonlinear in nature (Friston et al., 2000; Buxton et al., 1998; Friston, 
2001). 

To investigate the potential effects of vasomotor property dynamics 
on autoregulation modulations, we first conducted a simulation study 
using equations (1) and (5). Our theoretical model for modulations of 
vasomotor tone closely matched the expected spectral profile of real- 
world vasomotor tone variations at frequencies below 0.2 Hz, as 
shown in Fig. 3. Additionally, we found that autoregulation variations in 
flow signals that propagate hemoglobin concentration dynamics (as 
depicted in Fig. 4) reduce entropy in the observed signal even with an 

SNR of 0 dB. This suggests that with proper statistical power, these 
autoregulatory dynamics could potentially be observed in real-world 
data using nonlinear analysis methods. It is important to note that our 
empirical data analysis should not be interpreted as evidence that high 
frequency signal entropy is a measure of autoregulation. Rather, we 
hypothesize that the nonlinear activity observed in high frequency 
fNIRS provides complementary information that is crucial for a 
comprehensive characterization of cognitive states, such as those asso
ciated with stress processing during mental arithmetic tasks. 

To explore potential distinctions in neural signal representations 
between fast and slow waves in fNIRS data, we conducted a Friedman 
test to compare results on the tasks of baseline, mental arithmetic, and 
motor imagery, as shown in Fig. 5. The mean value analysis did not 
reveal any significant differences in task combinations, as expected since 
the mean corresponds to the DC value of the signal and high pass 
filtering only affects attenuation of the DC value. In contrast, nonlinar 
SampEn analysis demonstrated significant differences between fast and 
slow wave fNIRS detectors in all four quadrants of the sensor space 
covering cortex, with a higher Friedman score across the cortex than the 
mean analysis. While it is unclear how filtering affects state space reg
ularity, high pass filtering may result in lower mean entropy and higher 
variance than low-pass filtering (Borges et al., 2020). This effect may 
correspond to the significantly different SampEn representational 

Fig. 6. Rainclouds illustrating the standardized Z transformed group level distributions of the absolute value of the difference between medians for mental arithmetic 
(a) and motor imagery (b) for either fast wave (0.2–0.6 Hz) or slow wave (0–0.2 Hz) fNIRS signals. The “*” represents significant difference between the fast and slow 
wave distribution for the given measure. 
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similarity seen across subjects. 
Upon examining motor imagery results we observed changes in lat

erality in SampEn analysis depending on the frequency band of focus, 
with fast wave analysis being more sensitive to left hemisphere activity 
and slow wave analysis being more sensitive to right hemisphere activity 
(see Supplementary fig. S1). A similar phenomenon was seen in the 
mean analysis, although an additional medial left hemispheric detector 
was observed for slow waves. We expect this activity to correspond to 
the somatosensory cortex, located in the central cortical regions, where 
the hands of the cortical homunculus are located between the lateral and 
medial portions of the cortex (Grodd et al., 2001). By considering both 
frequency bands using SampEn analysis, we may have discovered its 
bilateral effects. This bilateral difference between left- and right-hand 
motor imagery was only found using slow wave analysis with just the 
mean analysis. It is important to mention that the handedness of a 
participant plays a critical role in the effect seen in motor imagery. 
Right-handed individuals appear to have a stronger lateralization effect 
specific to the side of the hand imagined; left-handed individuals on the 
other hand have bilateral responses (Crotti et al., 2022). Considering the 
set of participants used in this study were primarily right-handed, the 
results presented in this study may be specific to this group. Nonetheless, 
considering we do paired analysis of the same participants performing 
left- and right-hand motor imagery, the resulting differences of cortical 
signal effects observed when comparing fast and slow wave analyses 
appear to indeed be a neurovascular result. This suggests that to fully 
describe the complementary areas of activity that entropy provides, we 
must consider the full frequency profile of potential hemodynamic 
activity. 

We also conducted a distance correlation analysis of the difference of 
median maps and found that all mean maps were significantly corre
lated, as expected. The cortical representations reflected in median 
difference maps between tasks should be similar if we scale the signal by 
merely a DC value, as previously discussed. However, our hypothesis 
was that mental arithmetic should not be significantly correlated in 
entropy analysis while motor imagery should be significant. Instead, we 
found that neither was significant, although mental arithmetic vs. 
baseline had a lower correlation than the motor imagery distinction. 
This may imply that the nonlinear irregular effects induced by vaso
motor mechanical dynamics are always occurring, although the degree 
to which they affect the resulting neural signal varies depending on the 
task. It’s known that a significant portion of cerebral vascular resistance 
comes from vasomotor control in arterioles (Mandeville et al., 1999). 
The nonlinear transform of the constant dynamics of vasomotor control 
to hemoglobin concentrations may always be present, yet their scale is 
modulated by a stress task such as mental arithmetic, making their high 
frequency contributions to hemoglobin concentrations more irregular in 
the case of mental arithmetic. We finally remark that the proposed fast 
wave analysis within (0.2 Hz, 0.6 Hz) is not affected by non-cognitive 
phenomena associated with oscillations in the (0.8 Hz, 3 Hz) band 
(Hoshi, 2016). 

We recognize that this study may have its limitations. First, we did 
not perform simultaneous fNIRS and autonomic signals analysis. 
Respiration and heart rate, typically occurring within the fast-wave 
band, could be confounding factors in our data analysis since a multi
tude of regulatory processes may change during cognitive tasks. How
ever, the heterogeneity in the response across the cortex suggests that 
such oscillations may not systematically affect fNIRS series all over the 
scalp. Literature suggests possible differential respiratory effects on the 
scalp, indicating the need for future studies to take actual respiratory 
and heart rate signals into account (Candia-Rivera et al., 2022c; Dubois 
et al., 2016). Additionally, signals corresponding to blood pressure in 
Mayer waves contaminate fNIRS signals within the low frequency bands 
(Pinti et al., 2015; Kirilina et al., 2013), and nonlinearity evoked in 
blood pressure variations could similarly reflect in high frequency 
fNIRS. Hence, future studies should also monitor end-tidal CO2 as par
tial pressure of CO2 has been shown to affect vascular dynamics (Mas 

et al., 2000). Despite these limitations may introduce some uncertainty 
regarding the origin of nonlinear fNIRS dynamics in the fast wave band, 
our study’s outcomes remain robust and reliable. This is further sub
stantiated by the corroborative evidence provided through our 
comprehensive simulation-based analysis. 

In conclusion, our study shows that nonlinear analysis can detect 
distinct neural representations in fast (0.2–0.6 Hz) waves compared to 
conventional slow (<0.2 Hz) wave frequencies in fNIRS data. Tradi
tional methods like mean estimates could not reveal such distinct rep
resentations. While the origin of neural hemodynamic activity from a 
behavioral stimulus may be associated with oscillations at frequencies 
<0.2 Hz, nonlinear neurovascular interactions may generate fNIRS os
cillations at higher frequencies. Thus, when assessing effects on fNIRS, 
comprehensive characterizations should also consider the nonlinear 
properties of high-frequency band oscillations. 
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