
HAL Id: hal-04855224
https://hal.science/hal-04855224v1

Preprint submitted on 24 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building confidence in data-driven surrogate transport
models for turbulent plasmas

Robin Varennes, Zhisong S Qu, Youngwoo W Cho, Chenguang Wan, Kunpeng
Li, Robin A Heinonen, Virginie Grandgirard

To cite this version:
Robin Varennes, Zhisong S Qu, Youngwoo W Cho, Chenguang Wan, Kunpeng Li, et al.. Building
confidence in data-driven surrogate transport models for turbulent plasmas. 2024. �hal-04855224�

https://hal.science/hal-04855224v1
https://hal.archives-ouvertes.fr


Building confidence in data-driven surrogate

transport models for turbulent plasmas

R. Varennes1, Z. S. Qu1, Y. W. Cho1, C. Wan1, K. Li1,

R. A. Heinonen2, V. Grandgirard3

1School of Physical and Mathematical Sciences, Nanyang Technological University,

Singapore 637371, Singapore
2Department of Physics and INFN, University of Rome, “Tor Vergata”, 1 Via della

Ricerca Scientifica, 00133 Roma, RM, Italy
3CEA, IRFM, F-13108 Saint-Paul-Lez-Durance, France

E-mail: robin.varennes@gmail.com

Abstract. Getting fast and reliable predictions of turbulent transport properties

is an important challenge in magnetic fusion. Previous research [R. A. Heinonen

& P. H. Diamond, Phys. Rev. E 101 061201 (2020)] proposed a data-driven

approach using neural networks to predict the particle flux and Reynolds stress in

a minimal model of drift-wave turbulence. The present work extends this approach

to the interchange instability driven by the magnetic curvature. An assessment of the

limits and caveats associated with a data-driven approach based on machine learning

regression algorithms is performed — an essential step for scalability toward more

complex high-fidelity codes. In particular, a figure of merit is introduced to indicate

regions within the parameter space where the neural network outputs can be trusted.

Some applications of the data-driven surrogate model are presented. Specifically,

predictions are used to gain insight into the vorticity gradient’s contribution to the

turbulent flux and the antiviscous nature of the Reynolds stress.

1. Introduction

One of the challenges to operate commercial nuclear fusion reactors is to confine a

hot magnetized plasma. Indeed, extreme thermodynamical gradients in the reactor

vessel lead to heat and particle transport, carried mainly by turbulence. To this day, a

comprehensive description of turbulence remains elusive.

The present study addresses the complex issue of turbulent transport and its

interaction with flows through data-driven surrogate modeling. Surrogate — or reduced

— models provide approximations of outcomes that are difficult to measure or compute.

They represent an important activity in the fusion community. These models are

typically based on exact equations that are simplified in order to be quickly solved

computationally. Some advanced reduced models offer remarkable predictive capabilities

[1–5]. However, these models have limitations, particularly in scenarios where the
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underlying approximations are not valid. With the increasing computing resources

and development of large databases, a data-driven approach appears as a promising

alternative. Such an approach relies on learning the patterns present in trustworthy

data, typically from first-principle simulations or experimental data. These models are

powerful tools to get a fast approximation of an outcome of interest and can be used to

explore the underlying physics of the system. An impressive example of a data-driven

surrogate model applied to a turbulent system is Graphcast for weather forecasting [6],

which is typically as precise as an advanced numerical simulation for a fraction of the

computational cost.

The goal of the present study is to apply such a data-driven approach to turbulent

transport in tokamak plasmas, first with simple machine learning and low-fidelity

simulation data. This preliminary work is meant to pave the way for more complex

and high-fidelity simulations and to identify the challenges and constraints of such an

approach. In this study, such a model is built using a machine learning optimization

algorithm based on neural networks [7]. It allows linking some features — e.g. density

gradient, vorticity... — to some quantities of interest that one wants to predict, here

the turbulent particle flux and Reynolds stress. Building confidence in such a data-

driven model is a key aspect of the study. Indeed, neural networks are often referred to

as “black boxes” as each neuron applies nonlinear transformations to the input data,

resulting in highly nonlinear and complex relationships between input features and

output. In addition, the outcome of neural network models depends on a certain

number of hyperparameters, i.e. tunable parameters specific to the training process

chosen relatively arbitrarily and adding to the feeling of distrust of such an approach.

Moreover, such models are trained on a limited amount of data ranging in a specific

parameter space. The model’s predictions of an outcome for a set of parameters not

included in the training set range are generally not reliable. For multi-dimensional

problems, it can be challenging for a user to know if a prescribed set of inputs is within

the range of the training set. For a model trained on physical data, if the dataset used

to train the model is representative of the whole range accessible by the physical system,

asking the model for a prediction in a region of the parameter space where the model

has not been trained would not only be unreliable but also not physically meaningful.

For this reason, a measure of the confidence level of the set of features provided to the

model is proposed in this study.

Applying such techniques to data coming from first principle codes is a formidable

task, as it involves a large number of parameters to scan, and necessitates a consequent

computing power and management of large amounts of data. Consequently, as a

preliminary step, the data in this study is generated using the tokam2d code [8, 9]

that describes simplified turbulence in a 2D plane transverse to the magnetic field

in the low field side edge of a tokamak. This framework is chosen for its simplicity

regarding the data generation, the associated storage and post-treating procedure, as

well as the limited number of features for training. Moreover, despite being referred to

as “simplified”, the turbulence in this model is not simple. The non-linear interactions
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governing this model are still not fully understood, making it relevant to the study of

edge turbulence in tokamaks. Thus, this preliminary study is also used to gain insight

into the underlying physics of the system. While the bulk of the physical analysis is

left for future work, some preliminary results are presented. In particular, the vorticity

gradient contribution to the turbulent flux and the anti-viscous behavior of the Reynolds

stress are discussed.

Note that there is a renewed interest in simple plasma turbulence models, as

they appear as a logical primary approach for proof-of-principle studies in machine

learning applied to plasma physics. These applications target a wide range of topics:

surrogate modeling [10–12], acceleration of simulations [13, 14], recovering dynamics

from partial observations [15] or determining the governing equations of a system [16].

More generally, the new applications offered by machine learning in turbulent systems

are developing at a fast pace. While the literature is too vast to cover, some recent

reviews and perspectives on the topic can be found in [17–19].

The remainder of the paper is organized as follows. A brief overview of the

tokam2d code and associated physics is addressed in Section 2. Some specific

challenges associated with such data-driven methods for surrogate modeling of

turbulence are discussed in Section 3. The making of the training datasets is addressed

in Section 4. The machine learning model structure is described in Section 5. Two

methods — previously unreported — to gain confidence in the data-driven model are

presented in Section 6. Some results of the trained model, with an emphasis on the

vorticity gradient contribution to the flux and the anti-viscous behavior of the Reynolds

stress, are presented in Section 7. The Section 8 closes the paper.

2. Description of the solved equations

This paper presents a robust numerical approach to obtain surrogate models based on

simulation describing intricate non-linear physics. Edge tokamak plasmas turbulence

is chosen in this study, and the data is generated by solving a simplified set of fluid

equations that couples two fields, i.e. density fluctuations and the vorticity, while

restricting the phase space to the directions transverse to the magnetic field, typically

r a radial and θ an angle coordinate.

These equations are namely the modified [20] Hasegawa-Wakatani equations [21]

that describe turbulence originating from the drift waves instability and its interactions

with zonal flows. In this study, this set of equations is extended with the addition of

the interchange instability [22, 23] and read

∂tn+ [ϕ, n] + κ∂yϕ+D∇4n = C(ϕ̃− ñ) (1a)

∂tW + [ϕ,W ] + g∂yn+D∇4W − νW = C(ϕ̃− ñ) (1b)

where
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• t is the time coordinate in unit of c0/L with c0 the sound speed of ion at electron

temperature and L a reference length;

• x = (r − a)/ρ0 and y = aθ/ρ0 are the normalized radial and poloidal coordinates

with a the minor radius of the tokamak and ρ0 a reference ion Larmor radius;

• n is the density fluctuation in unit of n0ρ0/L with n0 a reference density;

• ϕ is the electric potential in unit of ρ0Te/Le with Te the electron temperature and

e the electron charge;

• W = ∇2ϕ is the vorticity with ∇2 = ∂2
x + ∂2

y ;

• κ = −(L/ρ0)(∇x lnn0) is the inverse background density gradient length which is

supposed homogeneous in the x direction;

• C is the adiabatic parameter responsible for the drift waves instability in unit of

c0n0e
2ηe/LTek

2
z with η the resistivity and kz the parallel wave number;

• g is the magnetic curvature amplitude responsible for the interchange instability,

proportional to the inverse major radius 1/R0;

• D is the hyperdiffusion coefficient and ν a friction coefficient.

• The Poisson bracket is defined as [f, g] = ∂xf∂yg − ∂yf∂xg.

• The non-zonal part of the density and potential is defined as f̃ ≡ f − ⟨f⟩y where

⟨.⟩y = (1/Ly)
∫ Ly

0
{.} dy is the flux-surface average.

In this set of equations, the drift waves instability stems from the phase shift

between the electric potential and the density fluctuations, for which the amplitude

depends on the adiabatic parameter C. In this model, this phase shift is mainly due to

the effect of collision and two asymptotic regimes can be defined: adiabatic when C → ∞
— i.e. the collisionless case that reduces Eqs(1) to the Hasegawa-Mima equations [24]

describing stable drift waves — and hydrodynamic when C → 0 — i.e. the highly

collisional case describing the resistive drift wave instability that impacts mostly large

radial scale kx ∼ 0 and is always unstable in the presence of a finite density gradient

and the absence of dissipation. The interchange instability stems from the magnetic

curvature which amplitude is set through the parameter of control g. This term is

sometimes referred to as an effective gravity as it bears an analogy with the Rayleigh-

Bénard instability [25] for a neutral fluid with a temperature gradient directed opposite

to gravity. Here, the density gradient has the role of the temperature gradient and the

magnetic curvature the role of the gravity. The main drive of these instabilities is the

background density gradient described by κ. Note that the Kelvin–Helmholtz instability

can also be destabilized in this system for some specific conditions. The reader interested

in the linear stability of such a system can have a look in [26]. Furthermore, only

the non-zonal part is kept in the adiabatic term C(ϕ̃ − ñ). This modification [20] of

the standard Hasegawa-Wakatani equations incorporates the fact that electrons have a

vanishing response to zonal flows. In practice, this leads the system to generate finite

and steady zonal flows.
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Figure 1. Overview of the domain in a typical simulation of the Hasegawa-Wakatani

equations with the code tokam2d and snapshot of density fluctuation n and vorticity

W . The order of magnitude of the duration of a simulation is ∼ 25µs. Details of the

simulations mesh and parameters are given in Section 4.

The equations Eqs(1) are solved using the code tokam2d [8, 9] in a 2D domain

periodic in both directions. The code is based on a pseudo-spectral method with a 2/3

de-aliasing rule and a 4th-order Runge-Kutta time integration. With the Fast Fourier

Transform being the main operation, the GPU acceleration of the code is highly efficient.

An overview of the simulation domain and typical snapshots of the outputs are shown

in Fig.1.

The parameters of control of tokam2d are the adiabatic parameter C, the

curvature term g, the hyperdiffusion coefficient D, the friction ν, the background density

gradient κ, the size of the domain L, the initial density fluctuation n(x, y, t = 0) and

vorticity W(x, y, t = 0), and the resolution of the simulation.

3. Beyond the physics: the challenges of turbulence modeling from data

The machine learning algorithm and associated models used in this study make use

of conventional neural networks for regression. Yet, multiple challenges specific to the

turbulence modeling from data have to be addressed. To illustrate these challenges,

Fig.2 displays typical profiles of the turbulent particle flux and Reynolds stress — i.e.

the quantities to predict — obtained with a tokam2d simulation.

The first remark is that these profiles are heavily fluctuating. A complete model

would ideally provide a probability distribution of these quantities. The present work

targets a minimal statistical approach to predict a single mean-field value of flux or

Reynolds stress which is in line with the mean-field theory of turbulence [27, 28]. On

the numerical side, this makes the evaluation of the model performance challenging.

Indeed, the metrics used to assess the model are usually functions of the difference
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Figure 2. Typical profiles of the turbulent particle flux and Reynolds stress obtained

by numerically solving the modified Hasegawa-Wakatani equations Eqs(1) with the

tokam2d code, here initialized with a radial perturbation of the vorticity. Color maps

on the left show the spatiotemporal evolution of these quantities in a typical simulation.

The profiles on the right show their radial profile at a given time (top) and their time

evolution at a given radial position (bottom).

between the predicted value — here intended to represent the mean — and the true

value that includes fluctuations — obtained through direct numerical simulations. This

difference then carries a combination of aleatoric uncertainty, which arises from the

inherent chaotic variability associated with turbulence that leads to fluctuations, and

epistemic uncertainty, which stems from the limitations of the model in accurately

predicting the mean behavior. In other words, compared to typical machine learning

regression problems where one’s goal is to make this difference as small as possible,

here this difference should tend toward a measure of the fluctuations’ level. As the

average level of fluctuation is not known a priori, this makes the evaluation of the
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model performance more difficult, especially for the Reynolds stress which has a very

low signal-to-noise ratio — generally below 10%.

The different nature of these two outputs also raises the question of the model’s

structure. Indeed, as developed in Section 5, a neural network is composed of layers of

neurons that shuffle the information of some inputs to predict the outputs. It is then

tempting to use a single neural network to predict both outputs, with the idea that the

network will capture some general patterns from the physics and be able to predict both

outputs simultaneously. However, it could happen — and it is the case in this study

— that the outputs are so different that one can dominate the other in the learning

process. This particular issue is addressed in Appendix A.

The other challenges are the generation of the training datasets, the choice of the

inputs — called features — and evaluating the reliability of the model’s predictions.

These challenges are addressed in the following sections.

4. Making of the dataset

While the Hasegawa Wakatani equations Eqs(1) describe the time evolution of 2D fields,

the goal of this study is to obtain a surrogate model predicting flux-surface averaged

quantities at equilibrium. The quantities of interest to predict are the flux-averaged

radial turbulent particle flux Γ = ⟨nvEx⟩y, and Reynolds stress Π = ⟨vExvEy⟩y with vEx

and vEy the radial and poloidal component of the electric drift respectively. The latter

can be understood as the radial flux of poloidal momentum.

The features, i.e. the quantities chosen to predict the outputs, are here chosen in

regard to the physical problem at hand. Here, one wants to gain insight into the flux and

the Reynolds stress. Based on previous studies on reduced modeling [29–31], the chosen

features are the flux-surface averaged total density gradient N ′ = −κ+∂x⟨n⟩y, vorticity
W = ⟨W⟩y, its gradient W ′ = ∂xW , and potential enstrophy ε = ⟨(ñ − ∇2ϕ̃)2⟩y. The

latter can be understood as a proxy for the turbulent intensity.

Choosing such features limits the scope of the model to theoretical studies as

the vorticity and potential enstrophy are not controllable nor directly measurable in

experiments. For the long-term applicative goal of such work, i.e. building a model on

high-fidelity simulation data and/or experimental data, the nature of features should be

constrained by engineering parameters and/or experimentally accessible quantities.

The choice of these quantities is justified as there is still ongoing research on linear

and quasilinear [32] models of turbulence to understand their role in the resulting flux

(of particle or momentum, i.e. the Reynolds stress). In particular, the choice of the

potential vorticity — which is, in essence, a turbulent intensity — as an output and not

an input is justified by the fact that the physics that governs its evolution is not fully

understood. Multiple works [30, 31, 33, 34] indicate that the flux of potential vorticity,

which can be related to the very active topic of turbulence spreading, is not purely

diffusive and more modeling is needed to understand its behavior. This study only

scratches the surface of this physics in Section 7 and the bulk of the physical analysis
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is left for future work, the focus being on the framework of the data-driven approach.

In addition to the physical relevance of the chosen features, the choice of these

quantities is also pragmatic as they evolve in time such a substantial amount of data

can be obtained from a single simulation.

With the features chosen, one now has to deal with the exploration of the parameter

space. Indeed, one is interested in equilibrium states that cover a parameter space

whose bounds are a priori unknown and can only be explored through the control

parameters of the simulation. One must then choose reasonable intervals of these control

parameters and choose a sampling technique to ensure good coverage of the parameter

space. Typical sampling methods include grid search, random search, Latin Hypercube

Sampling [35] or Bayesian optimization [36]. In the present study, one wants to cover the

widest range of possible density, electric potential and their associated spatial derivatives

since all quantities of interest can be expressed as combinations of these parameters.

Three control parameters are then considered: the background density gradient κ, the

magnitude of the initial electric potential ϕ0 and its radial harmonic kx0 such that

ϕ(t = 0, x, y) = ϕ0 cos(2πkx0x). A random search of 50 simulations is performed in

the interval −4 < κ < 4, 50 < ϕ0 < 50 and kx0 = [1, 2, 3] with a bias toward sets

of parameters which yield a positive linear growth rate Γlin. Some simulations with a

negative linear growth rate are also included in order to have data to train the model

to recover sets of features that should return vanishing flux and Reynolds stress. The

resulting scan is displayed in Fig.3.

4 2 0 2 4

40

20

0

20

40

0

kx0
1 2 3

lin
< 0 > 0

Figure 3. Scan of the control parameters — the background density gradient κ, the

magnitude of the initial electric potential ϕ0 and it’s radial harmonic kx0 — for the

making of the database. The circles/crosses indicate a positive/negative linear growth

rate γlin.

Other control parameters are set to fixed values for each simulation. The adiabatic
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Different Fixed Simulation

Parameters parameters mesh

Interchange Viscosity Hyper- Adiabatic Space Space Sim. Data save RK4

parameter diffusion parameter domain mesh time step step

g ν D C Lx|Ly Nx|Ny Tsim ∆tdiag ∆t

[ρ0/R0]
[
Lρ0
c0

] [
Lρ40
c0

] [
c0n0e2ηe
LTek2z

]
[ρ0] [−] [γ−1

lin ] [L/c0] [L/c0]

DW
0

0.01 1.5× 10−4 2.0 51.5 256 50 Tsim

2000

∆tdiag
512

only

DW+
1

Interchange

Table 1. Fixed simulation control parameter used for the generation of both

dataset: one with only the drift-waves instability and another with both drift-waves

and interchange instabilities. Scanned parameters are displayed in Fig.3. Note that

γlin is an estimation of the linear growth rate.

parameter is set to C = 2, the hyperdiffusion coefficient to D = 10−4, the friction to

ν = 10−2, the size of the domain to L = Lx = Ly = 51.5ρ0 and the space resolution to

256 × 256. The duration Tsim of each simulation is set to 50 inverse linear growth rate

Γ−1
lin and the data is saved every ∆tdiag = Tsim/2000 while the time step of the 4th order

Runge–Kutta scheme is h = ∆tdiag/512. Two training datasets are made, one without

interchange, i.e. g = 0 and directly comparable to [10], and one with interchange g = 1.

A summary of the simulation control parameters for both datasets is given in Table 1.

The resulting distribution of each feature and output for each dataset is displayed in

Fig.4. It gives an idea of the range of values of the features and outputs, and shows that

the distributions are quite different for both datasets. In addition, one can also observe

that no particular effort has been made to ensure fairly distributed features, as will

probably be higher-fidelity datasets in the future. For example, the distribution of the

density gradient N ′ for the dataset with drift waves only would have been symmetric

around 0 if the same number of simulations with positive and negative κ had been

performed, which is not the case with the random search performed here.
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Figure 4. Distribution of each feature/output for each dataset. Blue: with drift

waves only g = 0, red: with both drift waves and interchange g = 1. m and σ indicate

the mean and standard deviation of the distributions. Note that the y-axis of the three

last figures is in log scale.

In the next section, these datasets are used to train neural networks to predict the

turbulent particle flux and Reynolds stress.
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5. Description of the model

With the generated datasets, a neural network is trained to predict the (Γ,Π) values

from the inputs (N ′,W,W ′, ε). A brief description of regression neural networks is given

here, complemented by a sketch in Fig.5.

A neural network is a machine learning model inspired by the human brain,

composed of layers of neurons that process information. The typical structure involves

an input layer, one or more hidden layers, and an output layer. The input layer is

composed of one neuron per input variable — in our case (N ′,W,W ′, ε) — that returns

identity. These inputs’ values are then multiplied by a tunable weight and passed to

each neuron of the next layer, i.e. the first hidden layer. In hidden layers, each neuron

is a mathematical function that performs two operations: a linear combination of the

neuron’s input to which a bias is added, and the application of a non-linear activation

function. This shuffles the data in a non-linear way, allowing the network to learn

complex patterns. The number of hidden layers and neurons per layer is chosen by the

user and depends on the complexity of the problem.

The output layer is composed of one neuron per output variable. In a regression

problem, these neurons return only a linear combination — i.e. without the activation

function — of the last hidden layer output to predict the output variables. The

predictions of the neural network are then compared to the true values present in

the training dataset through a loss function. Using this error measure, the weights

and biases can be updated through the backpropagation algorithm that propagates the

error gradient from the output layer to the input layer in order to minimize the loss

function. This process, also called gradient descent, estimates the direction in which

the weights and biases should be updated to reduce the error, and their value updated

using a step called the learning rate η, i.e. a scalar characterizing the step size to reach

a minimum of the loss function. Too small learning rates can lead to slow convergence,

while too large learning rates can actually prevent convergence. The process is repeated

through each iteration — called epochs — up to a satisfactory level of precision for the

output that is characterizable through different metrics.
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Figure 5. Sketch of a basic regression neural network. The input layer is composed of

one neuron per input variable, i.e. (N ′,W,W ′, ε). The hidden layers are composed of a

number of neurons chosen by the user that apply a linear combination of the previous

layer output — with tunable weights and biases — followed by a non-linear activation

function. On the last layer, the neurons return just a linear combination of the last

hidden layer output to predict the output variables, i.e. (Γ,Π). The predictions are

compared to the true values through a loss function, and the weights and biases are

updated using backpropagation through each epoch up to a satisfactory level.

In this study, two outputs are to be predicted, the turbulent particle flux Γ and the

Reynolds stress Π. This raises the question of the model’s structure, which is discussed

in Appendix A. Ultimately, the choice is to train one neural network per output.

The activation function in the hidden layers is the exponential linear unit (ELU)

function [37], reading

σ(x) =

{
ex − 1 if x ≤ 0 ,

x if x ≥ 0 .

The chosen loss function is the logcosh function with a L2 regularization, reading

L = ln(cosh(yt − yp)) + λ||W ||2 (2)

where yt is the true values of (Γ,Π) and yp the predicted ones. The regularization

term λ||W ||2, with W the weights matrix and ||.|| the Frobenius norm and λ = 10−5, is

added to the loss function to prevent overfitting, i.e. learn the noise in the data.

The learning rate η is adaptively set by the Adam optimizer, a variant of the

stochastic gradient descent algorithm [38]. In addition, a batch normalization [39]
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is applied after each hidden layer. Batch normalization is a technique used to make

learning more stable and faster by normalizing the inputs to each layer, ensuring they

have a consistent scale and distribution.

The dataset is split into a training, validation and test sets, with respectively 70%,

15% and 15% of the data. The training set is used to train the model and adjust

its weights and biases, the validation set is used to tune the hyperparameters of the

model and assess the model performance during the training, and the test set is used to

evaluate the final model’s performance without any bias.

The hyperparameters that are kept tunable are:

• the number of epochs;

• the batch size, i.e. the number of samples used to estimate the error gradient at

each iteration;

• the number of hidden layers and neurons per layer, related to the maximum level

non-linearity of the model;

• the random seed, that is involved in multiple parts of the training process, such as

the initialization of the weights and biases, the sampling of the data in different

subsets and the shuffling of the dataset.

Given the relatively low dimensionality of the dataset and the simplicity of the

model, it is possible to test a large set of hyperparameters. As detailed in the next

section, it turns out that the choice of hyperparameters does not significantly impact

the model’s performance. The surrogate model is then relatively independent on the

training parameters, which is reassuring regarding the actual presence of patterns in the

data as well as the model’s robustness.

In the next section, the metrics used to evaluate the models’ performance and their

range of validity are presented.

6. Gaining confidence in the trained model

One important task when using machine learning for surrogate modeling is to assess the

model’s confidence in its predictions. There are multiple elements to discuss.

First, the choice of the features is an essential step. Indeed, when selecting a set of

features, one exposes itself to the risk of model misspecification and/or multicollinearity.

The former indicates that the base formed by the features is not rich enough to explain

the outputs, while the latter indicates that some features are highly correlated and do

not add enough independent information to the model results. Here the misspecification

assessment is tricky for reasons discussed below and is mostly approached through an

a posteriori analysis of the model predictions in Section 7. The multicollinearity is

assessed in Appendix B. In addition, it is good practice to perform a sensitivity analysis

of the features to assess their weight in the model predictions. Indeed, it could happen

that some features have a very low contribution to the outputs, and could be removed
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from the model without affecting the predictions. This is estimated thanks to a feature

importance algorithm, as detailed in Appendix C.

Two particular concerns specifically related to this work are further discussed below.

First, as the evaluation of the model performance is challenging due to the fluctuating

nature of the outputs, the sensitivity of the model to the hyperparameters is assessed.

Second, a measure of the range of validity of the model is introduced to assess the

reliability of the model predictions.

6.1. Invariance of the model to hyperparameters

It is usual to use scalar values, called metrics, as a figure of merit of a neural network

model performance. These metrics are usually functions of the residuals, i.e. the

difference between the predicted and true values.

The most common metrics for regression problems are

• Loss function: as defined in the previous section, the loss function quantifies the

error between the predicted and actual values.

• Mean Squared Error (MSE): the average of the squared differences between the

predicted and actual values.

• Mean Absolute Error (MAE): the average of the absolute differences between the

predicted and actual values.

These values can be calculated for each output of the model, i.e. (Γ,Π), and for

each subdataset, i.e. training, validation, and test sets.

The most unbiased metrics are the ones evaluated on the test set, i.e. a particular

subset of the dataset which is not involved in any part of the training process,

thus ensuring that the model generalizes well to new data. As discussed in the

previous section, multiple hyperparameters are involved in the training process. As

the trained datasets are relatively small and easy to handle numerically, multiple sets

of hyperparameters have been tested. This has been done not so much to find the most

optimal set of hyperparameters, but rather to ensure that the choice of hyperparameters

does not significantly affect the model predictions. Indeed, our claim is that, if the

data can indeed be explained by relatively simple surrogate models, then the choice of

hyperparameters should not significantly affect the model predictions. This invariance

to the hyperparameters is, in our opinion, a good indicator of the model performance and

robustness. Fig.6 shows the MAE (in tokam2d unit) of multiple models obtained on

the test subdataset for a wide range of hyperparameters, for each output and dataset.

For each output and dataset, the variance in the test MAE is small and there is no

clear trend with any hyperparameters. Note that the actual value of this MAE is

not indicative of the model performance. Instead, they should be understood as some

measure of the output fluctuations. For both outputs, it appears that the test MAE is

significantly larger for the dataset with both drift waves and interchange than for the
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dataset with drift waves only. This is expected, as the interchange is superimposed on

the drift waves, meaning that, on average, the fluctuations in this dataset are larger.
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Figure 6. Mean average error evaluated for the test dataset for models trained with

a wide range of hyperparameters for the flux Γ and the Reynolds stress Π and for

both datasets: with drift waves only and with both drift waves and interchange. The

random seed is also scanned here (with values 2, 4, and 6) but not shown in the legend.

This compact view of the model performance hides multiple information, as a single

scalar value does not give any insight into the distribution of the residuals along the

whole range of values for each output. In other words, the model could be very accurate

for some values of the output and very inaccurate for others.

In addition, Fig.6 does not clearly inform on the overfitting (even if strong

overfitting would lead to larger MAE values). By analyzing the performance of a

randomly chosen handful of models more closely, it seems that very few epochs are

needed to reach a satisfactory level of precision for the outputs (typically 5 or 10), and

overfitting can start to occur below 100 epochs but does not significantly affect the

model predictions for the values tested here.

In the following, the model chosen for all the predictions has a batch size of 256, 3

hidden layers with 8 neurons each, and is trained for 10 epochs.

6.2. Range of validity of the model

A last step, specific to the making of surrogate models on turbulent systems, is to get

some evaluation of the model range of validity. Indeed, the trained model predictions

result from the operation done in the neural network, which is in essence a function

that concatenates linear and non-linear operations. As such, the model does not have

any constraint on the user inputs provided to it to get predictions. Consequently, the

model gives a prediction for any inputs, even if they are very far from the inputs of the

training data. As the dataset comes from a turbulent system, knowing if a user input

(N ′,W,W ′, ε) is accessible by the system is challenging without looking in detail at the

training data. One solution to get an idea of the validity of the user inputs is to look
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at a measure of distance from the user input to the nearest neighbor in the training

dataset. Such a measure is useful to tell if the user input fed to the model is far from

the training data, in which case the model prediction should be taken with caution

as it is either extrapolating or interpolating between faraway points in a region of the

parameter space which may not be accessible by the system at all.

The Euclidean distance ∆min from a user input to the nearest neighbor in the

training data is calculated as:

∆min = 4×min

√ ∑
x=(N ′,W,W ′,ε)

(x̂train − x̂user)2

 (3)

where the subscripts “train” indicates the training data and “user” the user input.

The hat symbol indicates normalized data. The prefactor 4 is arbitrary and chosen to

have a value of ∆min = 1 for a user input that is σ/4 away from the training data with

σ the standard deviation a given feature. A value of ∆min = 0 means that the user

input coincides with a point in the training data. A sketch explaining the concept of

this measure is shown in Fig.7 in a 2D space for the sake of simplicity. It exhibits the

training data inputs as blue points and a scan of the user inputs with one fixed input as

pink points. A user input crossing the bulk of the training data is considered “reliable”

— in the sense that the model has been trained on similar data — while a user input

far from the training data is likely to give unreliable predictions.
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min > 1

min 0

Training data

User input

Figure 7. Visual representation of the nearest neighbor from user input to the

training data as a measure of confidence of the model prediction.

To smooth the potential effect of rare outliers, the measure is taken as the average

of k-nearest neighbors. The value of k = 30 is chosen, as it is the conventional number

for a representative sample size as stated by the central limit theorem.

For the training datasets in this study — which typically have a number of

individual data points N ≈ 107 and a number of features M = 4 — it takes around
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∼ 1s to get the k-nearest neighbors for a single user input on a nvidia a100 GPU (i.e.

fairly high-end at the time of writing). The number of operations — using the efficient

numpy library — scales as O(N × M), which is probably not prohibitive for future

studies with larger datasets. However, this overhead — combined with the requirement

of a GPU to achieve fast computations — may be a limitation for some users.

In the next section, this measure is used to interpret the model predictions for the

turbulent particle flux and Reynolds stress.

7. Results

In this section, some applications of the trained neural network are presented.

First, a safety check is performed to ensure that the neural network is able to predict

the density gradient impact on the turbulent particle flux where the results are already

known. Then, the focus is set on the vorticity gradient contribution to the turbulent

particle flux and the anti-viscous behavior of the Reynolds stress.

The reason to suspect these two effects is based on the general concept in

thermodynamics stating that fluxes are linked to forces [40, 41] such that

Γx = f(∇xF ) (4)

where Γx = (Γ,Π) is a radial flux vector — Π being a poloidal momentum flux

— and F is a collection of field, e.g. density, electric potential, temperature, etc

. . . The function f is generally modeled as a polynomial or linear combination for

reduced modeling. In the context of the Hasegawa-Wakatani framework, the fluxes

are Γx = (Γ,Π) as Π is a poloidal momentum flux and the forces are ∇xF =

(N ′, N ′′, . . . ,W,W ′, . . . ) as W is a gradient of poloidal velocity. Numerically, all orders

of derivative cannot be kept and, in this study, the choice has been made to focus on the

effect of the vorticity and its derivatives (note that the vorticity curvature was initially

kept but its impact on flux has been assessed as negligible, see Appendix C).

In particular, the vorticity gradient contribution to the turbulent particle flux is

generally neglected. In fact, to the author’s knowledge, very few studies [10, 42] report

such an effect, although some hints can be found in [43–46] reporting relationships

between density and vorticity, and between flux and vorticity.

In addition, the antiviscous behavior of turbulence can also be studied. Indeed, the

mean poloidal velocity Vy conservation reads

∂Vy

∂t
= −Π′ (5)

with Π′ the flux-averaged Reynolds stress divergence. Knowing that W = ∂xVy and

assuming a diffusive form of the right-hand side, i.e. ∂tVy ∝ W ′, the Reynolds stress

acts as an anti-diffusion if Π = CW with a constant C > 0. This would indicate that

turbulence generates a mean poloidal flow, i.e. zonal flows. Note that most linear and
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quasilinear models predict a vanishing C, indicating that the zonal flow generation is a

non-linear effect.

The following examples are then a way to test the neural network capability to

capture such effects and observe the relative impact of the interchange and drift waves

instability. The interpretation of these results, along with a more comprehensive in-

depth study of the physics accessible by this data-driven surrogate model is left for

future work.

7.1. Density gradient contribution to the turbulent particle flux

This first example is meant to ensure that the neural network is able to predict a well-

known relationship between the density gradient and the turbulent particle flux. It

is expected that the turbulent particle flux Γ increases with the density gradient N ′

and the turbulent intensity, here represented by the proxy of the potential enstrophy

ε. The conventional Hasegawa-Wakatani equations, i.e. without interchange, present a

reflection symmetry ensuring that the turbulent particle flux is anti-symmetric about

N ′ = 0. With the presence of interchange, this symmetry is broken and one expects

a positive density gradient to be stabilizing, i.e. to reduce the turbulent particle flux.

These properties are clearly visible in the raw data of each dataset, as shown in Fig.8

where each point is represented in the (N ′,Γ, ε) space.
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Figure 8. Visualisation of whole dataset distribution in the (N ′,Γ, ε) space. Left

plot: dataset with only drift waves. Right plot: dataset with both drift waves and

interchange.

The neural network is able to capture these properties as shown in Fig.9a where

the predicted turbulent particle flux Γ is plotted against the density gradient N ′ for

different values of the potential enstrophy ε and for fixed values of the vorticity and its

derivatives W = W ′ = 0. The inner color of the curves indicates the minimum distance
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between the input asked to the neural network and the training dataset, as defined in

Section 6. Green indicates that the user input is close to the training dataset, while

red indicates that the user input is probably inaccessible by the system and thus is not

physically relevant.
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Figure 9. Predicted flux Γ from the neural network model vs. density gradient N ′

for different values of the potential enstrophy ε at W = W ′ = 0. Left plot: dataset

with only drift waves. Right plot: dataset with both drift waves and interchange.

For the model trained on the dataset with only the drift waves instability, one

then observes that regions of both high turbulent intensity ε and low-density gradient

N ′ are not accessible by the system. This is expected as N ′ is a drive of turbulence,

thus high-density gradients are associated with high turbulent intensity. The vanishing

value of the flux at zero turbulent intensity is well recovered as the linear phase of the

simulation — initialized with a wide range of density gradient N ′ — is included in the

training dataset.

For the model trained on the dataset with both drift waves and interchange, where

predictions are shown in Fig.9b, one can now observe an asymmetric turbulent particle

flux about N ′ = 0. Compared with the model trained on the dataset with only drift

waves, for a given potential enstrophy ε, the flux at a positive density gradient is lower

than the flux at a negative density gradient. This is reminiscent of the stabilizing effect

of positive density gradient with the interchange instability.

At low positive density gradient and high potential enstrophy, the surrogate model

is not reliable as the user input is far from the training dataset and thus the predictions

of positive flux are not physical. Also, regions of both high turbulent intensity and high

positive density gradient are not accessible as the magnetic curvature is stabilizing.

Finally, for both datasets, the flux appears to bear a linear dependence on the

potential enstrophy ε, i.e. with the turbulent intensity, which is in line with quasilinear
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theory [32].

This example is a good omen for the capability of the neural network to capture

physically relevant patterns of the system. The next examples focus on less-known

physics and where such a data-driven approach can bring new insights.

7.2. Vorticity gradient contribution to the turbulent particle flux

One can now address the vorticity gradient contribution to the turbulent particle flux.

Once again, the whole data associated with each dataset is shown in Fig.10 where each

point is represented, here in the (N ′,Γ,W ′) space. One can still appreciate the density

gradient impact on the flux in each dataset as in the previous example, but now a

pattern of the vorticity gradient impact on the flux is also clearly visible.

The flux prediction of the data-driven model for the dataset with only drift waves

turbulence is shown in Fig.10a for different values of the vorticity gradient W ′ at a fixed

potential enstrophy ε = 40 and vorticity W = 0. As reported in [10], one can observe a

shift of the turbulent particle flux proportional to the vorticity gradient regardless of the

density gradient. When comparing this trend with the dataset with both drift waves and

interchange, displayed in Fig.10b, the same pattern is observed and superimposed with

the stabilization at positive density gradient. Consequently, the interchange instability

does not seem to affect the linear vorticity gradient contribution to the flux.

Of course, the striking pattern in the data in Fig.10 is by itself a solid argument

for the presence of a non-negligible effect of the vorticity gradient contribution to the

turbulent particle flux. However, it is worth mentioning that this pattern is only

apparent thanks to careful data visualization (with some fine-tuning of the symmetric

logarithmic scale of the color bar). Counter-intuitively, it is actually the neural network

prediction that first revealed the presence of such a pattern, and the data visualization

was obtained afterward.
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Figure 10. Visualization of whole dataset distribution in the (N ′,Γ,W ′) space. Left

plot: dataset with only drift waves. Right plot: dataset with both drift waves and

interchange.
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Figure 11. Predicted flux Γ from the neural network model vs. density gradient N ′

for different values of the vorticity gradientW ′ atW = 0 and ε = 40. Left plot: dataset

with only drift waves. Right plot: dataset with both drift waves and interchange.

7.3. Anti-viscous behavior of the Reynolds stress

The final example is about the anti-viscous behavior of the Reynolds stress. Anti,

or negative, viscosity plays a crucial role in the generation of zonal flows which are

themselves critical for turbulence regulation. Negative viscosity is believed to arise from

a modulational instability of a drift waves spectrum or from an inverse energy cascade,

where energy is transferred from small-scale fluctuations to large-scale flows, driving

these zonal flows [27, 47]. Zonal flows can suppress transport through their radial shear

while pumping energy from the turbulence [27]. In the collisionless limit, zonal flows

growth is limited by nonlinear damping mechanisms [27] — that can stem inter-alia from

a tertiary instability, wave-packet scattering [47] or trapping [48, 49] — that eventually

saturate their amplitude, forming a self-regulating feedback loop [50].

Following the logic of Eq(5), one expects an antiviscous behavior of turbulence if

Π ∝ W .

The whole data associated with each dataset is shown in Fig.12 where each point

is represented, here in the (W, ε,Π) space. While noisier than the previous example, a

clear pattern can be observed in both datasets with an anti-symmetric behavior of the

Reynolds stress with respect to the vorticity W at a given potential enstrophy ε. This

is expected from the structure of the Hasegawa-Wakatani equations Eqs(1), even with

the presence of interchange. Indeed, these equations present three reflection symmetries

when there is no interchange — i.e. g = 0 — and only one remains when accounting

for the magnetic curvature such that they are invariant under the transformation

(x, n, ϕ) → (−x,−n,−ϕ). This symmetry imposes that (W,Π) → (−W,−Π) in the

data, which is what is observed in Fig.12. Note that interchange can still impact the
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values of the Reynolds stress and vorticity, as long as the symmetry is preserved. As

also somewhat noticeable in Fig.8 and Fig.10, the superimposition of the interchange

instability to the drift waves turbulence significantly increases the ranges of potential

enstrophy ε and vorticities W accessible by the system.

The Reynolds stress prediction from the data-driven model for the dataset with

only drift waves turbulence is shown in Fig.13a as a function of vorticity for different

values of the potential enstrophy ε at a fixed density gradient N ′ = −2 and vorticity

gradient W ′ = 0. Note that the y-axis does not match the data in Fig.12 as in previous

examples. It is observed that the Reynolds stress linearly increases with the vorticity in

the vicinity of W = 0, which is compatible with an anti-viscous behavior. At a certain

threshold in |W |, the Reynolds stress saturates and then decreases. This is consistent

with a hyperviscous saturation stemming from non-linear damping mechanisms [27].

Comparing this trend with the dataset with both drift waves and interchange, displayed

in Fig.13b, the same pattern is observed. However, for given values of the potential

enstrophy ε, the Reynolds stress is lower in the presence of interchange. This leads to

a moderate decrease in the anti-viscous behavior of the Reynolds stress. One can also

notice that, for both datasets, almost all predictions obtained with the neural network

are fairly close to the training data. However, at large vorticities, the neural network is

probably extrapolating and the predictions are less reliable. This is especially striking

for the prediction at ε = 0 where the Reynolds stress should vanish regardless of the

vorticity.
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Figure 12. Visualisation of whole dataset distribution in the (W, ε,Π) space. Left

plot: dataset with only drift waves. Right plot: dataset with both drift waves and

interchange.
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Figure 13. Predicted Reynolds stress Π from the neural network model vs. vorticity

W for different values of the potential enstrophy ε at N ′ = −2 and W ′ = 0. Left

plot: dataset with only drift waves. Right plot: dataset with both drift waves and

interchange.

8. Discussion and conclusion

Data-driven surrogate models for turbulent systems appear to be a promising approach

to get fast approximations of physical quantities that are expensive to compute. They

can be used to discover patterns in the data that can lead to new insight into the physics

of the system. With these models, it is fairly easy and fast to explore a multi-dimensional

parameter space and to identify regions of interest, e.g. to motivate further high-fidelity

simulations.

In this work, machine learning regression algorithms — based on neural networks

— have been used to predict the flux-surface averaged particle flux and the Reynolds

stress in a simplified 2D edge tokamak turbulence described by the Hasegawa-Wakatani

equations. Two datasets have been generated, one for drift waves driven turbulence

only, and one with the addition of the interchange instability stemming from the

magnetic curvature. This additional instability further reduces the symmetries of the

governing equations, making the problem more complex and closer to realistic edge

plasma turbulence. These datasets consist of data from 50 simulations each where the

background density gradient and initial electric potential profiles have been varied. The

features chosen to explain the output of interest are the vorticity and its gradient, the

density gradient and the potential enstrophy — a proxy for the turbulent intensity —

all averaged over the flux surface. The choice of such features restrains the study to

fundamental physics, compared to an applicative approach that would constrain the

features to engineering parameters and/or experimentally accessible quantities. The

reason for this choice is 1) these quantities evolve in time so a single simulation can
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provide a lot of data, whereas linking the output to engineering parameters typically

requires changing the parameter of control of the simulation, and 2) interesting physics

can be assessed on a well-known set of equations.

While the dimensionality of the datasets is relatively low — 4 features and 2 outputs

— the machine learning aspect of this study is not trivial due to the specificities of the

problem at hand.

First, the data from simulated turbulence is highly fluctuating — especially for the

Reynolds stress — and one wants the model to capture the mean behavior, i.e. excluding

the fluctuations. This makes the assessment of the model performance challenging, as

the error between the surrogate model predictions and the true data (that includes

fluctuations) is then not only a measure of the model’s performance but also of the

fluctuations’ level. To tackle this issue, a large amount of different models have been

trained with different hyperparameters and architectures. The results showed that each

model performed similarly, which is a good indicator that the patterns in the data

are quite clear and that the model’s training is robust as it does not depend on the

parameters specific to the training process.

Second, when using the data-driven surrogate model, one must be cautious when

providing a set of values for the features. Indeed, if a specific set of features is far from

the values spanned in the training set, the model is either extrapolating or interpolating

between faraway regions of the parameter space. In any regression problem, this would

raise the question of the reliability of the predictions. In the context of a physical system

such as turbulence, this is even more constraining, as asking for features outside of the

dataset means that these values are not even accessible by the system in the first place

(according that the dataset is representative of the whole range of accessible values).

For multi-dimensional problems, even as low as 4 dimensions as in this study, choosing a

valid set of values for the features is not trivial. For this reason, a figure of merit based

on the distance between the input features and the training set has been devised to

assess the reliability of the model predictions. This quantity allows to quickly identify

if a set of features make sense or not from a physical point of view.

In addition, when selecting one model, some examples of predictions have been

presented to illustrate the capability of such an approach to capture known physics and

provide insight into less known physics. Note that a more comprehensive application of

the data-surrogate model for a physics study is left for future work.

The first example illustrates the impact of the density gradient and on the particle

flux for a given turbulent intensity. For the dataset with only drift waves driven

turbulence, the particle flux Γ is found positive for negative density gradient N ′ and

the expected reflection symmetry (N ′,Γ) → (−N ′,−Γ) is retrieved even though it was

not enforced in the data nor in the neural network. The figure of merit indicates that

the regions of simultaneous high turbulent intensity and low-density gradient are not

accessible by the system, which makes sense as N ′ is the only drive for turbulence in that

case. For the dataset also including the interchange instability, the reflection symmetry

is broken and the particle flux amplitude is reduced for positive density gradient, which
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is also expected as the interchange is stabilizing in this case. These observations have

been used as a validation of the model to capture patterns in the data.

The second example allows to assess the vorticity gradient contribution to the

particle flux, which is a less-known effect. For both datasets, a linear contribution

of the vorticity gradient is found to the particle flux, which can be quite significant.

Interestingly, the interchange instability does not appear to change the magnitude of

this contribution, although it does significantly change the range of values accessible for

the vorticity gradient.

Finally, the third example illustrates the antiviscous nature of the Reynolds stress

at the origin of zonal flow generation. The surrogate model captures a positive linear

trend of the Reynolds stress with the vorticityW at the vicinity ofW ∼ 0, corresponding

to an antiviscous behavior, and also the saturation at high vorticity. This result is quite

remarkable when considering the non-linear nature of zonal flow generation and that the

Reynolds stress is a highly fluctuating quantity. The presence of interchange instability

does not change the general trend, which is not surprising as the (W,Π) → (−W,−Π)

reflection symmetry is preserved even with this additional instability. However, it

appears that the antiviscosity is slightly reduced in the presence of magnetic curvature.

This observation remains unexplained and is left for future studies.

Careful considerations must nonetheless be taken in both the training process and

the usage of the model to get physically relevant results. It should be mentioned that

the scalability of this approach to more complex high-fidelity codes is challenging. To

add to the typical issues of data generation cost, storage limits and training time,

this study recommends the training of multiple models to ensure an invariance to the

hyperparameters and the architecture of the final results. In addition, the figure of

merit introduced in this work is based on a k-nearest neighbors approach. While it

scales relatively well with the size of the dataset and number of dimensions, it does

require GPUs for fast computation which adds a layer of complexity regarding the user-

friendliness of the model.
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Appendix A. Model structure

For a regression problem using neural networks with multiple outputs, there are multiple

ways to choose the structure of the neural network. Some of the different structure

options are shown in Fig.A1. The simplest one, labeled “Option A”, is a single fully

connected neural network with multiple neurons in the output layer, each corresponding

to one output. However, in this case, the weights of all neurons of hidden layers are

https://www.nscc.sg
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trained to minimize the loss of both outputs simultaneously. When using such a model,

the “choice” of the output is made when the information is passed from the last hidden

layer to the output layer. Mathematically, the output layer receives a linear combination

of the last hidden layer’s neurons. In other words, the prediction of one output differs

from another only by the weights of the output layer. The issue is that, if the nature of

the output is very different, one output can dominate the other in the learning process.

In other words, one can have the illusion that the model is able to predict both outputs,

while in reality it is only predicting one of them. In that case, relying only on the

weights of the output layer, which yields a simple linear combination of the information

shuffled to capture the pattern of a single output, can lead to a poor prediction of the

other output. In this study, this effect was clearly observed. While it is possible to

adjust the loss of each output to balance the learning process, this makes the model

quite specific to the problem at hand and such a tuning can be challenging, especially

for future more multi-dimensional problems.

For these reasons, other model structures have been considered. In Fig.A1, two

other options are shown. The “Option B” is straightforward: separate neural networks

are trained to predict each output. This structure is robust as the information is not

shared between outputs. However, it is computationally more expensive as it requires

to train one neural network per output. This also prevents the network to learn some

general patterns from the physics that could be shared between the outputs.

Finally, the “Option C” is, on paper, a compromise between the two previous

options. It consists of training a single neural network with shared layers - that are

trained on both outputs simultaneously - and specific layers - that are trained on each

output separately. The idea, to be demonstrated, is that the shared layers will capture

some general patterns, while the specific layers will capture the specific patterns of each

output. However, preliminary tests on the problem addressed in this paper suggest that

shared layers may not be helpful. Such ideas could nonetheless be explored in future

works as “Option B” may not be scalable to more complex problems.

In this study, “Option B” was chosen for its robustness and numerical simplicity.
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Figure A1. Different available options for the structure of the neural network with

multiple outputs (here two only).

Appendix B. Multicollinearity

A straightforward way of assessing multicollinearity is to compute the correlation matrix

of the features and outputs of the dataset. The correlation matrix associated with a

dataset is a square matrix with dimensions equal to the number of variables (features

and/or outputs) in the dataset. Its entries are the Pearson correlation coefficients

ρ(X, Y ) between each pair of variables (X, Y ) such that

ρ(X, Y ) =
cov(X, Y )

σXσY

(B.1)

where cov(X, Y ) is the covariance between X and Y , and σX and σY are the

standard deviations of X and Y respectively. The correlation matrices for the variables

(N ′,W,W ′, ε,Γ,Π) are shown in Fig.B1 for both training datasets: with drift waves

only and with both drift waves and interchange.
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Figure B1. Correlation matrices of the features and outputs for both training

datasets: with drift waves only g = 0 (left) and with both drift waves and interchange

g = 1 (right).

For the dataset with drift waves only, the correlation matrix shows that the features

are not highly correlated with each other, with the highest correlation being between

the density gradient N ′ and the potential enstrophy ε at 15%. However, for the dataset

with both drift waves and interchange, there is an important anti-correlation of 64%

between N ′ and ε. From the physics point of view, this correlation is not too surprising

as the density gradient drives the interchange instability. From the numerical point of

view, this correlation could be a sign of multicollinearity which can ultimately lead to

the contribution of the density gradient and the potential enstrophy to be mixed up in

the model’s prediction of the outputs. However, given the model predictions detailed in

Section 7, it is a posteriori estimated that this is unlikely by comparing the prediction

given by this dataset with the one obtained with the dataset with drift waves only,

sharing similarities which are well explained by the physics of the system.

Interestingly, the outputs also appear to be highly correlated with some features.

For both datasets, the flux Γ and density gradient N ′ are strongly correlated as expected

from the Fick’s law, and the Reynolds stress Π and vorticity W are also slightly

correlated which is already a clue of the antiviscous nature of the Reynolds stress. For

the dataset with both drift waves and interchange, a substantial correlation of Γ with

ε of more than 90% is observed. This, as well as the correlation of N ′ and ε, suggests

that the potential enstrophy could be an output of the model rather than a feature. For

the sake of comparison of the two datasets, the potential enstrophy is kept as a feature

in this model.

Appendix C. Relative importance of the features

The relative impact of the features on the outputs is an important point to consider.

Indeed, even if a machine learning model is correctly specified and the metrics are

satisfactory, it can still happen that one or several features have a negligible contribution
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to the outputs. There are at least two ways to evaluate the relative importance

of the features: the permutation feature importance [51] and the SHapley Additive

exPlanations (SHAP) values [52]. Both are a posteriori analysis and differ significantly

in approach and computational complexity.

On the one hand, permutation importance evaluates the impact of shuffling a

feature’s values on the model’s outputs. In the permutation importance approach,

the values of a feature in the training dataset are shuffled randomly, thus making

the dataset wrong. These new features’ values are then fed to the model, which

will output predictions based on this wrong dataset. If the feature is important to

explain the output, shuffling it will significantly decrease the model’s performance, while

unimportant features will have little to no effect. A measure of importance based on

the residuals between the model’s output and the true values is then calculated, giving

a global measure of a feature’s importance across the entire dataset.

On the other hand, SHAP values offer a more detailed insight by attributing a

specific contribution of each feature to every individual prediction by considering all

possible feature combinations. While more insightful - as it includes information on

local contributions importance of each feature - SHAP values are also substantially

more computationally intensive than permutation importance. Indeed, SHAP values

require multiple model evaluations for each data point - depending on the number of

features and the complexity of the model - while permutation importance requires just

one model evaluation per feature per permutation (or a few if multiple permutations

are used for robustness).

For this reason, the permutation importance is here chosen for this sensitivity

analysis. This algorithm first calculate a metric for the “baseline” dataset - i.e. the

dataset with the correct features’ values - and then shuffles the values of each feature

in the dataset and calculate the metric again. The difference between the two metrics

is then a measure of the feature’s importance: a low value means the model perform

similarly with faulty features - i.e. the feature is not relevant to the model’s prediction

- while a high value means the model’s performance is significantly impacted by the

feature - i.e. the feature is important to the model’s prediction. Here, the chosen metric

is the coefficient of determination R2 calculated as:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(C.1)

where the yi are the true value, ŷi the model’s predictions, ȳ ≡
∑n

i=1 yi is the mean

of the true values and n is the number of points in the dataset. Note that, despite

the name, the coefficient of determination can be negative if, on average, the model

predictions are worse than ȳ to explain the variance of the true values.

The permutation importance of features for the predictions of flux Γ and the

Reynolds stress Π are shown in Fig.C1 for both datasets: with drift-waves only and

with both drift-waves and interchange.
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Figure C1. Permutation importance measure through the difference of the R2

value calculated on the baseline dataset and datasets with shuffled features

for the predictions of flux Γ and the Reynolds stress Π for both datasets:

with drift-waves only (left) and with both drift-waves and interchange (right).

High/low values mean that the feature is important/unnecessary in explaining

the prediction. Note that this difference can be larger than 1 as the R2 value

can be negative when predictions are poor, typically for a permuted dataset.

It appears that, for both datasets, the turbulent flux Γ is mostly explained by the

density gradient N ′ and the potential enstrophy ε. Interestingly, the vorticity W seems

important to explain Γ even though no pattern has been found in the data, the model’s

prediction or the correlation matrix in Fig.B1. Furthermore, the contribution of the

vorticity gradient W ′ is the lowest even though a clear pattern has been found in the

data and the model’s prediction as depicted in Section 7. For the Reynolds stress Π,

the vorticity W and potential enstrophy ε are the most important features for both

datasets. For this output, the density gradient N ′ and vorticity gradient W ′ appear to

have a subdominant impact.

While the actual threshold to determine if a feature should be kept in the model or

not is hard to determine, it should be noted that this work was initiated with another

feature: the vorticity’s curvature W ′′. The permutation importance analysis - typically

returning R2
baseline −R2

permuted < 10−3 for both outputs and datasets - with the addition

of a handful of tests varying W ′′ with random values, showed that the feature had a

negligible impact on the model’s prediction.

An important closing remark for this appendix is the numerical cost of such

procedures. Indeed, even if this method is numerically cheaper than computing the

SHAP values, the number of calls to the model can be substantial, especially for datasets

with a large number of features and outputs. Thus, applying such a method to larger

datasets might be challenging, especially on low-end hardware.
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