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ABSTRACT
Understanding code changes is of crucial importance in a wide
range of software evolution activities. The traditional approach is
to use textual differencing, as done with success since the 1970s
with the ubiquitous diff tool. However, textual differencing has
the important limitation of not aligning the changes to the syntax of
the source code. To overcome these issues, structural (i.e. syntactic)
differencing has been proposed in the literature, notably GumTree
which was one of the pioneering approaches. The main drawback
of GumTree’s algorithm is the use of an optimal, but expensive
tree-edit distance algorithm that makes it difficult to diff large ASTs.
In this article, we describe a less expensive heuristic that enables
GumTree to scale to large ASTs while yielding results of better
quality than the original GumTree. We validate this new heuristic
against 4 datasets of changes in two different languages, where we
generate edit-scripts with a median size 50% smaller and a total
speedup of the matching time between 50x and 281x.
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1 INTRODUCTION
Understanding the changes between two source code versions is
a daily concern for developers, for instance, when performing a
code review, debugging a regression, or when they simply want
to catch up with an updated code base. Historically, analyzing the
changes between two source code versions has been done using
textual evolution inference. Simply put, this technique represents
the source code as a sequence of text lines and aims at finding the
shortest sequence of insertions or deletions of text lines that would
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transform the original source code into the modified source code.
This technique has the enormous advantage of having very efficient
algorithms [33] that can find an optimal solution to the problem of
finding a minimal sequence of such actions allowing this technique
to scale to huge code bases.

Textual evolution inference, however, also bears some limitations.
Firstly, a source code is not an unstructured text but obeys syntactic
rules. Textual evolution inference does not consider this syntax
and occasionally outputs changes that do not make sense, such
as inserted code lines spanning two different functions. Another
pain point is that beyond inserting or deleting code, developers
also use other edit actions, such as changing the value of tokens
(renaming a variable) or moving code around (extracting a new
function). Since these actions are not taken into account by textual
evolution inference, they are represented by insertions or deletions,
making the sequence of actions harder to understand.

To solve the previously described limitations, syntactic evolution
inference has been proposed. It uses a richer model of source code:
rooted, ordered and labeled trees that can adequately represent
abstract syntactic trees (ASTs). It also usually considers a richer set
of edit actions, such as renaming node labels or moving subtrees.
Using these richer models of code and actions, syntactic evolution
inferencemay produce results easier to understand, especially in the
presence of a small amount of changes [9, 11]. Another advantage of
syntactic evolution inference is that it produces actions that operate
on syntactic elements of the code rather than on text lines, which
are easier to process automatically to perform empirical studies on
software evolution.

Syntactic evolution inference also comes with a great limitation:
with such rich models of code and actions, the problem of finding a
minimal sequence of actions is NP-hard [3]. Therefore, syntactic
evolution inference is performed using heuristics that must reach
a tradeoff between the runtime complexity and the quality of the
results.

GumTree [11] is one of the most popular heuristics to perform
syntactic evolution inference. It relies on a three-phased process
to find mappings between the nodes of two ASTs. One of the main
limitations of GumTree lies in the last phase, called recovery, where
an optimal tree-edit algorithm is used as a “last chance” to un-
cover relevant mappings of AST nodes. This algorithm has a𝑂 (𝑛3)
time complexity, limiting its ability to scale on large ASTs. For
this reason, GumTree’s algorithm introduces a hyperparameter,
called maximum size threshold, that limits the size of the subtrees
where the recovery phase is applied. Setting a low value speeds
up GumTree at the expense of losing many relevant mappings and
setting a high value will drastically increase the running time. In
this article, we describe a new recovery phase where the optimal
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tree-edit algorithm is removed and thus the maximum size thresh-
old. We proceed to an extensive validation of our new heuristic on
four different datasets in two popular programming languages: two
bug-fixes datasets, BugsInPy [39] and Defects4J [22], as GumTree is
widely used in the software repair domain (e.g., [2, 4, 17, 18, 21, 23–
25, 38, 41]) and against two datasets of 1000 commits coming from
10 popular projects in Java and Python, to gauge its effectiveness on
arbitrary changes. We generate edit-scripts with a median size 50%
smaller on all datasets with a drastic total speedup of the matching
time between 50x and 281x.

2 MOTIVATION
GumTree is a heuristic that maps nodes from two ASTs, and from
these mappings, outputs an edit-script i.e., a sequence of actions
that transform the first AST to the second.

In this section, we discuss how GumTree works in order to
understand how its limitations affect the consumers of GumTree
edit-scripts. We identify two main consumers of these edit-scripts:
a) developers via a visualization tool for changes comprehension
(e.g., [16]), or b) analysts: engineers or researchers that carry out
studies in software evolution and maintenance (e.g., [38]) or in
machine learning on source code (e.g. [27]), which require analyzing
changes from a large number of commits, using an algorithm that
consumes GumTree edit-scripts (e.g., [24, 30]).

2.1 How GumTree Works
To illustrate how GumTree works, we use the example shown in
Fig. 1 where there is a single modification in a literal string (line 5).

1 p u b l i c c l a s s Foo {
2 p u b l i c vo id foo ( ) {
3 p r i n t ( " unchanged " ) ;
4 p r i n t ( " unchanged " ) ;

5 p r i n t ( "original" ) ;

6 }
7 }

(a) Original file

1 p u b l i c c l a s s Foo {
2 p u b l i c vo id foo ( ) {
3 p r i n t ( " unchanged " ) ;
4 p r i n t ( " unchanged " ) ;

5 p r i n t ( "modified" ) ;
6 }
7 }

(b) Modified file

Figure 1: A samplemodificationwith its ideal visual syntactic
diff.

GumTree maps nodes from the two ASTs corresponding to the
original and modified files in a three-phased process, as follows:

(1) Top-down phase: greedily searches for the biggest isomor-
phic subtrees among the two ASTs to establish mappings.
Note that subtrees smaller than a given size (controlled by a
min_size threshold) are not considered.

(2) Bottom-up phase: uses the previously established map-
pings to propagate mappings to their parent nodes.

(3) Recovery phase: is performed each time amapping is added
during the bottom-up phase, to ensure that no additional
mappings can be found among the unmapped descendants
of the mapped nodes.

In the first top-down matching phase, GumTree searches for the
biggest isomorphic subtrees, resulting in the mappings depicted
with a green background in fig. 2. These mappings correspond to

ClassDef

public Foo Body

MethDef

public void Foo Body

MethodCall

print unchanged

MethodCall

print unchanged

MethodCall

print modified

class

Figure 2: AST generated from the modified file of fig. 1. The
leaf node with labels are in italics and their types are omit-
ted for the sake of readability. The only modified node is
in bold. The nodes found in the top-down matching phase
have a green background. The ones found in the bottom-up
matching phase have a blue background. Finally, the nodes
found during the recovery phases have a yellow background.

UPDATE " o r i g i n a l " [ 5 , 8 ] BY " mod i f i e d "

Figure 3: Edit-script with a recovery phase.

the two first invocations of the print() method in fig. 1. At the
end of this phase, there are no other mappings. GumTree leverages
these initial mappings during the second bottom-upmatching phase
where the initial mappings are propagated to the parent nodes. For
instance, in this phase, GumTree will match first the bottom-right
Body node (depicted with a blue background) since there are two
already mapped MethodCall subtrees in the descendants. This is
at this precise moment when the recovery phase comes into action.
Note that just after having established the mapping for the Body
node, this node has still three unmapped descendants, correspond-
ing to the modified print() invocation of fig. 1. These descendants
have not been mapped during the top-down matching phase since
their size is smaller or equal to the min_size threshold (by default
set to 1). Note that it would be very hazardous to decrease the
min_size threshold to zero to match such nodes since at this point,
it is very likely to make a mistake (for instance there are usually a
lot of possible mappings for an unmatched public visibility). It is
exactly for this reason that this threshold exists in the first place.
However, these unmapped descendants should be mapped together
to have an accurate diff, since the developer, in this case, expects a
single update action from the string literal original to modified, as
shown in fig. 1. This is the objective of the recovery phase that is ex-
pected tomap the three descendants with a yellow background fig. 2.
This process will go on among the remaining MethDef, Body, and
ClassDef containers (depicted with a blue background), each time
yielding a recovery phase finding additional mappings depicted
with a yellow background. Finally, the mappings shown in fig. 2
yield the edit-script shown in fig. 3 from which the visualization
of fig. 1 (highlighting the update action in orange) is derived.

2.2 Achilles Heel of GumTree: Recovery Phase
With this example in mind, we note the crucial importance of the
recovery phase which accounts for 9 out of the total 19 mappings.
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1 public class Foo {

2 public void foo () {

3 p r i n t ( " unchanged " ) ;
4 p r i n t ( " unchanged " ) ;

5 print("original") ;

6 }
7 }

(a) Original file

1 public class Foo {

2 public void foo () {

3 p r i n t ( " unchanged " ) ;
4 p r i n t ( " unchanged " ) ;

5 print("original") ;

6 }
7 }

(b) Modified file

DELETE Mod i f i e r : p u b l i c [ 1 , 0 ]
DELETE Typ eQua l i f i e r : c l a s s [ 1 , 7 ]
DELETE I d e n t i f i e r : Foo [ 1 , 7 ]
DELETE . . .
INSERT Mod i f i e r : p u b l i c [ 1 , 0 ] AT Cla s sDe f . . .
INSERT Typ eQua l i f i e r : c l a s s [ 1 , 7 ] AT Cla s sDe f . . .
INSERT I d e n t i f i e r : Foo [ 1 , 11 ] AT Cla s sDe f . . .
INSERT . . .

(c) Extract of the edit-script without a recovery phase

Figure 4: Visual syntactic diff without a recovery phase. Code
with delete (resp. insert) actions is highlighted in red (resp.
green).

Without the mappings established in the recovery phases, the re-
sulting syntactic diff has, as fig. 4 shows, insert and delete actions
for all nodes depicted with a yellow background in fig. 2 instead
of update actions. Unfortunately, the recovery phase of GumTree
makes use of an expensive optimal algorithm to compute the map-
pings between the two subtrees rooted at the container nodes [34].
This algorithm has a 𝑂 (𝑛3) complexity that induces long running
times for big subtrees. For this reason, the authors of GumTree
introduced a max_size threshold that controls the application of
this algorithm: it is not applied as soon as the biggest of the two
subtrees compared in the recovery phase has more nodes than
max_size. Even if the default value for this threshold, 1000, could
seem high enough, it is often not enough in practice. In our example,
the container nodes close to the root (such as ClassDef) often have
a large number of descendants. This phenomenon is even worse
with languages where code files contain a lot of source code.

Therefore the users of GumTree are left with a tough dilemma:
either setting a high value of max_size and suffering high running
time in exchange for good accuracy or setting a low value and
obtaining edit-scripts with a lot fewer update actions.

Impact of Recovery on Developers. When developers compare two
large pieces of code, the visualization of the edit-scripts could show
insert and delete actions for elements that are not modified (we
call them spurious and discuss them in section 6.2), similar to those
presented in fig. 4. Both situations occur due to the abortion of the
recovery phase and affect the usability of GumTree.

Impact of Recovery on Analysts. The dilemma of max_size at the
recovery phase also affects analysts, which analyze large amounts
of file-pairs. In addition to introducing irrelevant actions in the
output, it also inflates the running time. To illustrate the impact it
has on them, we executed GumTree on Defects4J (D4J), a dataset
with 832 bug fixes. We chose D4J because previous work (e.g.,
[26, 28, 41]) has already applied GumTree on it. For each bug fix,

Table 1: Execution of GumTree on Defects4J [22] using dif-
ferent max_size thresholds. recovery applied (resp. aborted)
is the number of times the recovery phase is executed (resp.
aborted). median size is the median size of edit-scripts while
time os the total time required to process the dataset.

recovery
max_size applied aborted median size time (ms)

100 3062 3430 33 6897
500 4758 1728 28 58803
1000 (default) 5228 1258 26 187699
1500 5453 1032 25 391652

we run GumTree to compare the buggy version of a file with the
corresponding fixed version. We tried four max_size thresholds:
a) 100, b) 500, c) 1000 (default value on GumTree), d) 1500. In table 1,
we observe that decreasing max_size from 1000 (default value) to
100 or 500 impacts both the output (GumTree produces larger edit-
scripts) and the execution time (GumTree runs faster, as it executes
fewer times the expensive recovery phase, on smaller subtrees).
In contrast, increasing max_size from 1000 to 1500 leads to an
increase in execution time (the recovery phase is invoked more
times with bigger subtrees) and produces shorter edit-scripts (the
new executions of the recovery phase manage to find additional
mappings, which avoid the generation of spurious actions caused
by the abortion of the recovery phase). Even using a big value such
as 1500, there are still 1032 subtrees where recovery was aborted
while the running time is doubled compared to the default value
of 1000, and the impact on the reduction of the edit-script size is
minimal (from 26 to 25).

In this article, we present a brand new recovery phase that is
much faster than the original recovery phase enabling us to remove
the max_size threshold. Consumers get the best of both worlds:
drastically reduced running times and good accuracy of the edit-
scripts.

3 BACKGROUND
In this section, we first introduce the definitions of the tree structure
we use as well as the edit actions we consider. Secondly, we describe
the original GumTree heuristic that operates in four phases.

3.1 Definitions
Similarly to how it is done in GumTree [11], we define an abstract
syntactic tree (AST) 𝑡 as a rooted, ordered, and labeled tree. Each
node 𝑛 ∈ N ∪ ⊥𝑡 of an AST have:

• A parent: parent(𝑛) ∈ N ∪ {⊥𝑛} \ {𝑛}. The root is the only
node that has parent ⊥𝑛 (which in reality represents the fact
that the root has no parent)
• A possibly empty ordered sequence of children: children(𝑛)
where each child 𝑐 ∈ N \ {𝑛}.
• A type: type(𝑛) ∈ T .
• A label: label(𝑛) ∈ L ∪ {⊥𝑙 }. Nodes with no label have
label(𝑛) = ⊥𝑙 . Only leaves can have a label 𝑙 ≠ ⊥𝑙 .
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Diffing two ASTs 𝑇1 and 𝑇2 aims at finding a sequence 𝐸 of
actions that when applied to 𝑇1 yields 𝑇2. This sequence is called
the edit-script, and the possible actions are:
• insert_node(𝑛, 𝑝, 𝑖): insert a new node 𝑛 as a child of node 𝑝
at position 𝑖 .
• insert_tree(𝑠, 𝑝, 𝑖): insert a new subtree 𝑠 as a child of node
𝑝 at position 𝑖 .
• delete_node(𝑛): delete leaf node 𝑛.
• delete_tree(𝑠) delete subtree 𝑠 .
• move_tree(𝑠, 𝑝, 𝑖): move subtree 𝑠 into node 𝑝 at position 𝑖 .
• update_node(𝑛, 𝑙): change the label of node 𝑛 to 𝑙 .

In addition to the actions defined in GumTree, we introduce
two new actions insert_tree and delete_tree which conveniently
decrease the size of the edit-script when whole subtrees of code get
inserted and deleted at once, which is frequent in code evolution
(for instance when a complete statement is inserted or deleted).
These actions facilitate the understanding of the edit-script.

3.2 Overview of GumTree
GumTree maps nodes from two AST 𝑇1 and 𝑇2, in three phases.
First, the top-down phase applies a greedy search of isomorphic
subtrees between 𝑇1 and 𝑇2 and adds them to a set of mappings
M. Secondly, the bottom-up phase, takesM and propagates the
mappings to their parent nodes, as soon as two parent nodes have
a significant number of matched descendants. Third, the recovery
phase takes each new mapping from the previous phase and looks
for recovery mappings, that are searched among the still unmatched
descendants of the mapping’s nodes. Since we present a brand new
recovery phase in this article, we now discuss the original recovery
phase from GumTree. More details about the other two phases
(which we use without applying any change) can be found in [11].

3.3 Recovery Phase
To search for additional mappings between the descendants of a pair
of matched nodes during the bottom-up phase, GumTree applies a
last recovery phase. In the original version of GumTree, an optimal
(without move actions) tree-edit distance algorithm [34] is applied
and every mapping it finds is added toM as long as they involve
previously unmatched nodes. Since this algorithm is expensive
(𝑂 (𝑛3) time complexity), as it was shown in the motivation example
from section 2, it is only applied to pairs of nodes that have a
bounded number of descendants, configured by a threshold called
max_size. This algorithm is shown in algorithm 1.

3.4 Generation of the Edit-script
After the computation of mappings, the edit-script is generated us-
ing the algorithm of [5]. The original version of GumTree produces
four actions: insert_node, delete_node, update_node (all these three
applied to a single node) and move_tree, applied to a complete sub-
tree. In addition, to detect the insert_tree and delete_tree actions
that are not considered in GumTree, we post-process the edit-script,
looking for a sequence of insert_node (resp. delete_node) actions
that target a complete subtree, as described in section 3. Whenever
we find such a sequence of actions, we replace it with an insert_tree
(resp. a delete_tree) action at the same position in the script. Note
that these actions were not part of the original GumTree output.

4 APPROACH
Our experience with GumTree led us to reconsider the optimal
recovery phase defined in the previous section as we explained
in section 2. In this section, we describe our new recovery heuristic,
called simple, that has been designed to be much faster than the
optimal recovery while achieving good results. It allowed us to
completely remove the max_size threshold, freeing the users of a
difficult choice to make. Based on this new recovery heuristic, we
also define a hybrid recovery that combines optimal and simple.

4.1 Simple Recovery
Our new recovery phase is called simple and is shown in algorithm 2.
It operates in three main steps. In the first step (line 1), it searches
first for isomorphic subtrees inside the unmapped children of both
nodes using a longest common subsequence algorithm. Whenever
such isomorphic subtrees belong to the longest common subse-
quence and contain only unmapped descendants, they are added
with all their descendants inside the recovery mappings. This part
is very similar to what is done during the top-down phase (and also
uses the hash function of [6] to check the isomorphism), but can still
be useful for cases where the subtrees were not considered during
the top-down matching phase due to a size under the min_size
threshold. The second step (line 2) is similar to the first one but
searches for isomorphic subtrees when labels are removed from the
leaf nodes (structure isomorphism). We also use the hash function
of [6] but adapted to discard the label of the nodes to compute the
hash. Therefore subtrees where the only change is an identifier will

Algorithm 1: The optimal recovery algorithm.
Data: Two nodes 𝑡1 and 𝑡2, a setM of mappings (under

construction inside the bottom-up phase), a threshold
max_size

1 if max( |𝑠 (𝑡1) |, |𝑠 (𝑡2) |) < max_size then
2 C ← opt(𝑡1, 𝑡2);
3 foreach (𝑡𝑎, 𝑡𝑏 ) ∈ C do
4 if 𝑡𝑎, 𝑡𝑏 not already mapped ∧ type(𝑡𝑎) = type(𝑡𝑏 )

then
5 M ←M ∪ (𝑡𝑎, 𝑡𝑏 );

Algorithm 2: The simple recovery algorithm.
Data: Two nodes 𝑡1 and 𝑡2, a setM of mappings (under

construction inside the bottom-up phase)
1 add toM all pair of descendants of pairs of nodes from

lcs𝑒 (children(𝑡1) | (𝑡1, 𝑡𝑥 ) ∉M, children(𝑡2) | (𝑡𝑦, 𝑡2) ∉
M);

2 add toM all pair of descendants of pairs of nodes from
lcs𝑠 (children(𝑡1) | (𝑡1, 𝑡𝑥 ) ∉M, children(𝑡2) | (𝑡𝑦, 𝑡2) ∉
M);

3 foreach (𝑡𝑎, 𝑡𝑏 ) ∈ uniqueType(children(𝑡1) | (𝑡1, 𝑡𝑥 ) ∉
M, children(𝑡2) | (𝑡𝑦, 𝑡2) ∉M) do

4 M ←M ∪ (𝑡𝑎, 𝑡𝑏 );
5 simple_recovery(𝑡𝑎, 𝑡𝑏 ,M);
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Algorithm 3: The hybrid recovery algorithm.
Data: Two nodes 𝑡1 and 𝑡2, a setM of mappings (under

construction inside the bottom-up phase), a threshold
max_size

1 if max( |𝑠 (𝑡1) |, |𝑠 (𝑡2) |) < max_size then
2 optimal_recovery(𝑡1, 𝑡2,M);
3 else
4 simple_recovery(𝑡1, 𝑡2,M);

be isomorphic. This step is thus particularly useful to detect update
actions. For the last step, we seek pairs of nodes whose types appear
only once in both children’s lists (line 3). This step is inspired by
the XYDiff algorithm [7]. The intuition behind this step is that a
given node has only one child of a given type (for instance one
visibility), the odds are very high that it should be mapped to its
counterpart. In contrast with the two previous lines, here we only
map the two nodes and not their descendants (line 4), since we do
not have the guarantee that the subtrees are isomorphic. To look
for additional mappings among their descendants we recursively
apply this simple recovery algorithm to each such mapped node
(line 5).

As an example, let us consider how the simple recovery would
work on the sample tree of fig. 2. The first recovery phase would be
launched on the bottom-right Body node. The first step searching
for isomorphic subtrees would not find anything different since
the two unchanged MethodCall have already been found during
the top-down phase. The second step searching for isomorphic
subtrees discarding labels would find three mappings for the three
nodes contained in the modified MethodCall subtree since when
discarding the labels, these subtrees are isomorphic. The second
recovery phase would be launched on the MethDef node. The first
step that searches for isomorphic subtrees would find mappings
for the public, Foo and Void nodes as they are isomorphic and
in the same order as their counterparts in the modified AST. Note
that this is typically a case where the mappings were not found in
the top-down phase because of a size below the min_size thresh-
old. The other step would find nothing more as all descendants of
the MethDef nodes are mapped at this point. The recovery phase
would not be launched for the top-right Body node since there are
no unmapped descendants for this node. Finally the last recovery
phase, launched for the ClassDef node would find mappings for
the public and Foo nodes, similarly to how it behaved for the
MethDef node. All the nodes mapped during the recovery phases
are depicted in yellow in fig. 2.

4.2 Hybrid Recovery
In the previous sections, we presented two recovery algorithms:
1) an expensive one that is supposed to recover a lot of new map-
pings but cannot be applied on too big subtrees and 2) a fast one
that is expected to recover fewer mappings. As a last strategy, we
introduce a hybrid strategy that aims at combining the strengths
of the aforementioned ones by applying the expensive recovery
on small subtrees and the fast recovery on big subtrees, as shown
in algorithm 3. In this strategy, we still use the max_size threshold
to decide if we launch the optimal or the simple recovery (line 1).

5 EVALUATION
Our evaluation aims at answering the two following research ques-
tions: RQ1: how well do our heuristics scale on edit-scripts? and RQ2:
what is the quality of the output of our heuristics? First, we describe
the datasets we used in our experiments, and then we describe our
experimental protocol. All the code and data used in the experi-
ments are available in our replication package [12].

5.1 Datasets
To validate our heuristics we use four datasets. The first two are
Defects4J [22] (D4J) and BugsInPy [39] (BIP). These two datasets
contain collections of file pairs, where each pair corresponds to a
bug fix (within the pair, we say the left part contains the buggy
version of a file, the right one the fixed version of that file). These
datasets have been curated so that they contain only changes re-
lated to the bug fix, while irrelevant changes have been discarded.
We chose these two datasets for several reasons. First, they have
been independently created by other research teams, therefore re-
ducing bias. Second, they use two languages that are well supported
by GumTree and sufficiently different from each other (one has
static typing, the other dynamic typing) to make it interesting to
investigate both to strengthen the external validity. Third, these
two datasets contain bug-fixes, and automated software repair [32]
is one of the domains where syntactic differencing has been used
the most (for instance in [2, 24, 25] among many others), therefore
the ability to perform well on these benchmarks is important.

To also evaluate our heuristics on arbitrary diffs, we create two
additional datasets namely GhPython (GHP) and GhJava (GHJ). To
select the projects, we used the GitHub explore feature by browsing
projects with the Java and Python topics ordered by stars. We then
browsed the list to select 10 projects for each language by taking
care that the projects corresponded to software projects (as opposed
to courses, books, or student assignments). We also took care to
select projects developed by different communities (as opposed to
selecting only Apache projects). Using PyDriller [36], we selected
100 file pairs for each project according to the procedure shown
in algorithm 4. We went through the non-merge commits of the
project from the oldest to the newest, and for each commit, we
gathered the edited files written in the targeted language (Java or
Python) until we reached 100 file pairs for the project. By traversing
the commits from older to newer, we postulate that we bias our
datasets towards changes usually applied in an initial development
period, where feature additions and refactorings are arguably more
frequent than single bug-fixes. We therefore hypothesize that these
two datasets will contain more complex changes than the bug-fixes
datasets, making them complementary.

We eliminated in the four datasets the files that could not be
parsed with the JDT parser for Java and tree-sitter parser for Python
(2 for BIP, 3 for D4J, 1 for GHJ and 9 for GHP). Finally, the number
of remaining file pairs is 643 for BIP, 1046 for D4J, 991 (from 530
commits) for GHP, and 999 (from 186 commits) for GHJ.

To investigate our hypothesis about the increased size of changes
between the bug-fixes datasets and the arbitrary changes datasets,
we compute the textual diff size of all file pairs using the diff -u
and diffstat commands. We define the diff size as the sum of
added, deleted, and modified lines of code as detected by diff. The
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Algorithm 4: The procedure to select the file pairs for each
project from GHJ and GHP.
Data: A project 𝑃
Data: A targeted language 𝐿
Result: The set of changed files F initially empty

1 foreach 𝑐 ∈ commits(𝑃) (browse non-merge commits on the
main branch in chronological order) do

2 foreach (𝑓1, 𝑓2) ∈ changedFiles(c) do
3 if extension(𝑓1) == 𝐿 ∧ extension(𝑓2) == 𝐿 then
4 F ← F ∪ (𝑓1, 𝑓2);
5 if size(F ) >= 100 then
6 return F ;

distribution of the diff sizes is shown in fig. 5. The distribution
of the diff sizes is fairly similar in both bug-fixes datasets (first
two violin plots), with a median diff size of around 5 lines and a
third quartile of around 10 lines. It indicates that bug fixes have
a similar size across Python and Java projects. However, we can
note the presence of a few very large diffs in the BIP dataset, with
more than one thousand changed lines. A manual inspection of
the underlying data indicates that these outliers come from the
pandas project where some files are changed drastically for several
bug instances. The distribution of the diff sizes of the two arbitrary
changes datasets (last two violin plots) is once again similar, the
Python diffs being slightly smaller The median diff size is around 10
for both datasets and the third quartile is between 20 and 30. Once
again we can notice the presence of outliers in the dataset in Python
(GHP). Finally, we can notice that arbitrary diffs (the two violin plots
on the right) have a doubled median length compared to bug fixes
(the two violin plots on the left), supporting our hypothesis that
they contain more complex changes than the bug-fixes datasets.

5.2 Experimental Protocol
To answer our questions, we will resort to a quantitative and a qual-
itative experiment. W.r.t. to the quantitative experiment we will
apply four heuristics to our four datasets. As baselines, wewill apply
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Figure 5: Distributions of the datasets’ text diff sizes.

the opt-1000 (optimal recovery with a max_size threshold of 1000)
heuristic which is current GumTree’s default. We choose GumTree
as a baseline for three reasons. First, we designed our approach to
follow the footsteps of GumTree by not requiring language-specific
information in the diff algorithm, ruling out language-specific base-
lines such as [9, 15]. Second, a study [13] indicates that GumTree
is a relevant baseline, achieving the smallest ratio of revisions with
inaccurate mappings among the studied approaches. Finally, our
heuristics are tangled with GumTree since they reuse two of the
three phases, making it the most obvious baseline. We will also
apply opt-100 (optimal recovery with a max_size threshold of
100) to have a baseline efficiency since it will apply the optimal
recovery only on small subtrees. We will finally apply our two can-
didate heuristics: simple and hybrid-100 (hybrid recovery with
a max_size threshold of 100). For each file pair and heuristic, we
will perform five runs and gather the time spent in the matching
step (the parsing and script generation steps being the same for all
heuristics). We also collect the produced edit-scripts and use them
to compute the following metrics for each file pair of each dataset:
• median-time: the median runtime among five measures on
an Intel Xeon W-2125 4GHz CPU
• size: the total number of actions,
• nunm: the number of move and update actions.

We will assess the runtime performance using themedian-time
metric, while the size and nunm metrics will be used as a proxy
to evaluate the quality of the edit-script. Indeed, the size of an edit-
script is a widely used proxy to measure its quality, based on the
hypothesis that a short edit-script is easier to understand than a
long one [7, 11]. We also measure the number of move and edit
actions since these actions are particular to syntactic differencing
and since they can improve the understandability of an edit-script.

To complement this quantitative experiment, we also proceed to
a manual analysis. Since this analysis requires experts and is very
time-consuming, we will limit ourselves to manually analyzing 100
cases, using the best-performing heuristic in the first experiment
and comparing it to opt-1000, GumTree’s default. We adopt a
pessimistic stance where we consider that this heuristic can only
perform better than the baseline when its edit-script is shorter. Our
goal is to investigate if this hypothesis is true. To that extent, we
draw at random 25 file pairs from each dataset where the edit-script
is smaller for the candidate heuristic than for opt-1000. Then the
two authors, that are experts in code differencing, will look at the
two edit-scripts produced by the two heuristics, using a graphical
user interface showing a side-by-side diff, similarly towhat is shown
in fig. 10, and will rate the edit-script produced by the candidate
heuristic into one of these three categories:
• better: all relevant actions contained in the edit-script of
opt-1000 are in the one of simple and not conversely
• worse: all relevant actions contained in the edit-script of
simple are in the one of opt-1000 and not conversely
• mixed: any other case

The relevance of actions is of course subjective especially for the
move and update actions because it is sometimes hard to judge if
the mapped nodes are conceptually equivalent in the old and new
versions. Also, insert and delete actions can sometimes be irrelevant
when they target nodes that are in fact present in both versions. To
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counteract this subjectivity, the two authors will rate independently
the file pairs and finalize the rating during a discussion session
where each divergent rating is discussed and resolved to a common
rating or discarded from the experiment.

The two authors involved in this qualitative experiment are
aware of which heuristic generated the edit-scripts, possibly in-
ducing a confirmation bias. Additionally, they could interpret edit-
scripts differently than arbitrary developers. To complement the
opinion of the authors, we seek the opinion of external participants
on the results. Seven participants were recruited in the laboratories
of the authors. They have a computer science background, with a
Bachelor’s (1), a Master’s (5), or a PhD’s degree (1) and between 3
to 10 years of programming experience. They are presented with
the same 100 cases, but with pseudonymized heuristics, and an
alternated order of presentation of the results to avoid a serial-
position effect. The participants are provided a guide explaining the
graphical user interface displaying the edit-scripts. Then for each
file pair, we ask the following question: in a development situation
where you need to understand how a code file changed, which one
of the following diffs would you prefer? The rating is sigma (resp.
omega) when the preferred output comes from the candidate (resp.
baseline) heuristic, or none when it is impossible to decide between
both outputs. To resolve the divergence between the participant’s
ratings, we compute a majority rating by assigning for each case
sigma (resp. omega) if it has the absolute majority of opinions on
the case, and none if not.

6 RESULTS
6.1 Quantitative Analysis
How well do our heuristics scale on edit-scripts? Figure 6 show the
running times of the heuristics in our four datasets. These distribu-
tions exhibit a similar trend in all our datasets. Firstly, we can notice
that the least performant heuristic is opt-1000 (GumTree’s default)
as expected since it launches the expensive optimal recovery on
the biggest subtrees. The median runtime is around 0.1 seconds
in all datasets, but we can note some spikes that can reach up to
10 seconds, which is a considerable time to compute a single diff.
Decreasing the max_size threshold to 100 has the effect of improv-
ing the median runtime above 0.01 seconds. This runtime is on
par with the runtime of the hybrid heuristic, indicating that the
running time of the simple recovery is negligible. This is confirmed
by the distributions of the runtimes of the simple heuristic that are
by far the best runtimes, with a median of around 0.001 seconds.
Therefore, the results indicate that the best-performing heuristic is
the simple one, with an improvement of around 99% compared to
the opt-1000 heuristic which is the current GumTree default.

To zoom into the results of the simple and hybrid-100 heuris-
tics compared to the default opt-1000 heuristic, we show in table 2
the ratio of file pairs where the edit-script resulting from simple is
computed faster (resp. slower) that the one resulting from opt-1000,
for the four datasets. For hybrid-100, the results on all datasets
are very similar, with a ratio of below 80% of faster runtimes for
simple and above 20% of slower runtimes. For simple, the results
on all datasets are very similar and the results are even better than
for hybrid-100, with a ratio of about 90% of faster runtimes for
simple and 10% of slower runtimes.
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Figure 6: Distributions of the datasets’ runtimes.

Table 2: Ratio of file pairs were the runtime of simple (resp.
hybrid-100) is faster (resp. slower) than opt-1000.

simple hybrid-100
faster slower faster slower

D4J 0.94 0.06 0.78 0.22
BIP 0.90 0.10 0.78 0.22
GHJ 0.93 0.07 0.79 0.21
GHP 0.89 0.11 0.74 0.26

Finally, table 3 shows the total runtimes of opt-1000, opt-100,
simple and hybrid-100 defined as the sum of median runtime
for each file pair. It also shows the speedup, defined as the total
runtime of opt-1000 divided by the total runtime of opt-100 (resp.
simple and hybrid-100) on all datasets. We note that there is a
considerable speedup in all cases. First, increasing the max_size
threshold from 100 to 1000 (opt-100 vs opt-1000) is very expen-
sive, with a total runtime multiplied from 33 to 52. The runtimes
and speedups of opt-100 and hybrid-100 are very similar. Finally,
the best speedup is achieved by simple: between 50x to 281x.

Table 3: Comparison of the total runtimes (in seconds) for
all heuristics and speedup compared to opt-1000.

D4J BIP GHJ GHP

Ru
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e
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ds
) opt-1000 367.26 205.65 253.55 338.69

opt-100 7.09 6.21 5.55 4.92
simple 2.01 4.07 0.90 1.69

hybrid-100 7.31 7.83 5.50 5.86
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00
0 opt-100 51.82 33.10 45.65 68.87

simple 183.17 50.50 281.34 200.92
hybrid-100 50.21 26.25 46.09 57.80
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Figure 7: Distributions of the datasets’ edit-scripts sizes.

What is the quality of the output of our heuristics? Figure 7 shows
the distributions of the edit-script sizes of the four datasets. These
distributions are very similar. Firstly, we can notice that the longest
edit-scripts are produced by the opt-100 heuristic as expected since
it only launches the optimal recovery phases only on small subtrees,
and therefore lose many opportunities to find additional mappings.
The median size is around 20 actions in all datasets. Increasing the
max_size threshold to 1000 (opt-1000, GumTree’s default) has the
effect to decrease the median edit-script size to around 10 actions.
Interestingly, the simple heuristic produces notably smaller edit-
scripts than both optimal recoveries with a median of around 5
actions. Moreover, even the hybrid-100 heuristic does not manage
to produce smaller edit-scripts than the simple one. Therefore,
the results indicate that the smallest edit-scripts are produced by
the simple and hybrid-100, with an improvement of around 50%
compared to the opt-1000 heuristic (GumTree’s default).

To ensure that these good results are not at the expense of the
move and update actions which are important to reduce the com-
plexity of edit-scripts, we show in fig. 8 the distributions of the
move and update actions in the four datasets. The distributions
are very similar for the four heuristics, indicating that most move
and update actions uncovered by the optimal recoveries are also
uncovered by the simple and hybrid recoveries.

To zoom into the results of the simple and hybrid-100 heuris-
tics compared to the default opt-1000 heuristic, we show in table 4
the ratio of file pairs where the edit-script of simple is shorter (resp.
equal and bigger) than the one of opt-1000, for the four datasets.
The results on the bug-fixes datasets (D4J and BIP) are very similar,
with a ratio slightly below 75% of shorter edit-scripts for simple
and around 65% for hybrid-100. About 20% of the edit-scripts have
the same size for both our candidate heuristics while only 5% of
the edit-scripts are bigger for simple and 10% for hybrid-100. We
note a difference with the results on the arbitrary change datasets
(GHJ and GHP). The ratio of smaller edit-scripts is smaller (about
40% for simple and 30% for hybrid-100) while the ratio of edit-
scripts with the same size is bigger (about 50% for both heuristics).
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Figure 8: Distribution of the datasets’ number of move and
update actions.

Finally, the ratio of bigger edit-scripts is slightly increased (about
10% for simple and 20% for hybrid-100). These results confirm
the trend observed in the size distributions: the simple heuristic
usually produces shorter or similar edit-scripts than opt-1000, and
very rarely longer edit-scripts. The hybrid-100 heuristic shows a
similar tendency but is less marked.

Conclusion. The simple heuristic usually produces the shortest
edit-scripts with the best runtime. It achieves a median size 50%
smaller on all datasets, and a total speedup between 50x and 281x
compared to the default opt-1000. On the bug fixes (resp. arbitrary
changes) datasets, simple finds a shorter edit-script with a faster
runtime in about 65% (resp. 30%) of the cases.

6.2 Qualitative Analysis
In this section, we focus on simple which is the best-performing
heuristic in the quantitative experiment, both for the runtimes and
for the edit-script sizes. Table 5 shows the results of the manual
analysis of the 100 file pairs by the authors and external participants.
Overall, there were 20 disagreements between the authors out of
100, confirming the need for an independent review. However, for
these twenty cases, the authors were able to reach an agreement on
the final value. This table confirms the validity of the size metric

Table 4: Ratio of file pairswhere the edit-script sizes of simple
(resp. hybrid-100) is smaller, same or bigger than opt-1000.

simple hybrid-100
smaller same bigger smaller same bigger

D4J 0.73 0.22 0.05 0.65 0.23 0.12
BIP 0.74 0.21 0.05 0.67 0.25 0.09
GHJ 0.37 0.50 0.14 0.28 0.51 0.21
GHP 0.41 0.51 0.07 0.33 0.51 0.16
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as 83% of the edit-scripts produced by simple were classified as
better by the authors than their longer counterparts produced by
opt-1000. The opinion of the external participants corroborates
the opinion of the authors. Interestingly, the number of cases where
simple is preferred to opt-1000 is even greater (91%). This phe-
nomenon mostly comes from the fact that many cases rated mixed
by the authors were rated better by the participants. In these cases,
the number of unique relevant actions in opt-1000 was lower than
the ones of simple.

We note an interesting difference between the bug-fixes and
arbitrary changes datasets since the shorter edit-scripts in these
datasets are almost always better while this phenomenon is less
marked for arbitrary changes datasets. We postulate that this is
because bug fixes are usually smaller than arbitrary changes, reduc-
ing the odds of irrelevant mappings. These results indicate that the
simple heuristic is particularly relevant for automated software re-
pair approaches. In the remainder of the section, we describe three
(non-exclusive) representative situations that have been uncovered
during the manual analysis of the 100 cases by the authors where
the opt-1000 and simple heuristics behave differently.

Spurious insert-deletes (86 cases). This situation was very fre-
quently encountered and was one of the design goals of the simple
recovery. A prototypical example of this situation is shown in fig. 9
that shows the relevant part of a bug-fix from D4J applied in the
JFreeChart project and obtained using the opt-1000 recovery. In
this situation, the optimal recovery is not launched due to a subtree
size exceeding the max_size threshold. It happens mostly to parent
nodes close to the root, here on a ClassDef node. In this case, the
ClassDef was mapped to its counterpart during the bottom-up
phase, but since the recovery phase was not applied, the children
of the class definition (modifiers, class keyword, identifier of the
class, ...), which are usually leaves that are not mapped during
the top-down phase because they are not considered by default.
It leads to some spurious add/remove actions that are confusing
since the elements are present in both versions. These spurious
actions are not produced by the simple recovery, resulting in much
easier-to-understand edit-scripts.

Aggressive recovery (15 cases). A more occasional situation that
leads the opt-1000 recovery to produce erroneous edit-scripts is
called aggressive recovery. It comes from the fact that this recovery
is sometimes too aggressive, especially in case of major changes
inside a method code, because it reuses as many nodes as possible
to produce shorter edit-scripts, due to its optimal nature. It can

Table 5: Manual comparison of the edit-script quality be-
tween opt-1000 and simple.

authors participants
better mixed worse better mixed worse

BIP 23 1 1 24 1 0
D4J 22 3 0 23 1 1
GHJ 20 2 3 22 1 2
GHP 18 4 3 22 0 3
total 83 10 7 91 3 6

Figure 9: A spurious insert-deletes in JFreeChart (D4J,
opt-1000). Inserted (resp. removed) nodes are in green (resp.
red). The top (resp. bottom) corresponds to the original (resp.
modified) version.

Figure 10: An aggressive recovery in JabRef (GHJ, opt-1000).
Inserted (resp deleted, updated andmoved) nodes are in green
(resp. red, orange, and violet). The top (resp. bottom) corre-
sponds to the original (resp. modified) version.

therefore produce some update actions (displayed in yellow or
orange in the figures) that are confusing to understand, as we can
see in fig. 10. Here, the opt-1000 mapped Util to names, which
is not a renaming that a developer would expect. In this situation,
simple often produces more readable edit-scripts since it is less
prone to reuse nodes abusively. In the same example, simple only
produces an update action between the get and getStringArray
nodes, which is the only sensible one.

Missing moves (15 cases). A third and last occasional situation
we encountered where this time the opt-1000 usually yields better
results than simple is the missing moves one. This situation hap-
pens when a leaf node or very small subtree has a different nesting
and has not been mapped during the top-down phase. In this situa-
tion, simple recovery is not able to discover the mapping since it
does not consider changes of nesting, yielding spurious inserts and
deletes instead of a move action. Such a situation is shown in fig. 11
where the opt variables are not seen as moved. In the same example
opt-1000 correctly mapped the opt variables to their counterparts
in the opt.getOpt() expressions, yielding relevant move actions.
We tried the hybrid-100 heuristic on the few file pairs falling in
this category and it managed to find these move actions. Therefore,
the hybrid-100 could perform better than simple in this situation.



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Jean-Rémy Falleri and Matias Martinez

6.3 Threats to Validity
Construct validity. The edit-script size is used as a proxy for

the quality of an edit-script. However, a short edit-script may be
more difficult to understand than a longer one, or contain actions
that would be considered irrelevant by a software developer. To
complement the use of this metric, we also proceeded to a man-
ual experiment where we assessed the quality of diffs where our
candidate heuristic yields a shorter edit-script than the baseline.

Internal validity. Measuring a running time is a complex en-
deavor because it is a very volatile measure that depends on many
uncontrollable factors, such as the system load. Our efforts to have a
realistic measure include using a dedicated machine with a minimal
system performing no other tasks, and the use of five measurements.
The authors are involved in the qualitative experiment. Therefore
they could be subject to a confirmation bias. To reduce this threat,
they used an objective rating scale based on edit-scripts inclusion.
We also confirmed the results obtained by the authors by running
a second experiment with external participants. Another threat
with this manual experiment is the subjectivity of rating the edit-
scripts, which could affect both authors and external participants.
To mitigate this threat, we resorted to two independent ratings
for the two authors with a final harmonization session. For the
external participants, we used seven independent ratings that were
aggregated using the absolute majority. Another threat w.r.t. to this
experiment is that the edit-scripts are visualized using a side-by-
side diff through a graphical user interface. Complex diffs could
be difficult to analyze using our interface, which could result in
participants making arbitrary choices. To reduce this threat, we
provided the participants with a none rating preventing them from
making a choice when they have trouble analyzing the diff. A final
threat w.r.t. this experiment is that there is a tiny bug in the Python
parser, resulting in an off-by-one visual highlighting of the edit-
script. However, the participants were warned about this problem.
Finally, to allow scrutiny of our results, we make all edit-scripts
used in the experiment available in HTML.

External validity. Our datasets contain bug fixes as well as arbi-
trary changes in Java and Python. However, we cannot claim that
these changes are representative of all Java and Python bug-fixes or
arbitrary changes respectively. We have therefore no guarantee that
our results would generalize to all bug-fixes and arbitrary changes
in Java and Python. Additionally, there is no guarantee that the
results would generalize to other languages, although the trends in
the results do not differ much between the two languages.

Figure 11: Amissing moves in Apache Commons CLI (GHJ,
simple). Inserted (resp. removed) nodes are in green (resp.
red). The top (resp. bottom) corresponds to the original (resp.
modified) version.

7 RELATEDWORK
Source code differencing has first been investigated using a textual
approach, with the ubiquitous diff tool [33] that detects inserted
and deleted lines of code. Several approaches have tried to extend
textual differencing to take into account the possibility of moving
lines around, such as [1, 35]. However, the biggest issue of textual
differencing algorithms is the impossibility to align the changes
to the syntax of the program, which is a significant problem both
for change comprehension and for the ability to process changes
automatically. Syntactic differencing overcomes this issue and has
been developed in foundational articles such as [14, 19] by lever-
aging approaches designed to tackle tree structures or tree-based
documents such as XML [5, 42]. However, the problem of finding an
optimal edit-script on a tree structure including move and update
actions is NP-hard [3], therefore a lot of work has been dedicated
to finding smart heuristics to solve this problem. One foundational
heuristic, inspired by XyDiff [7], is GumTree [11], which is the first
heuristic, implemented in an open-source tool and able to work
on full-fledged abstract syntax trees. Several other heuristics have
been proposed over the years by trying to improve on some aspects
of GumTree. Dotzler et al. [10] introduced MTDIFF that refines
the heuristics of GumTree to find more move actions. Decker et
al. [9] and Frick et al. [15] use language-specific information to
improve the edit-scripts in respectively IJM and srcDiff. Yang and
Whitehead [40] and Matsumoto et al. [31] introduced hybrid ap-
proaches that combine textual and syntactic differencing to reduce
the size of trees to be matched, thus improving the edit-script size
and the time required to compute it. Recently, Fan et al. [13] used a
differential testing approach to evaluate the accuracy of GumTree,
MTDIFF, and IJMwhere they show that the GumTree (resp. MTDIFF
and IJM) generates inaccurate mappings in 20%-29% (resp. 25%-36%
and 21%-30%) of the file revisions, indicating that there is room to
improve the existing heuristics. De la Torre et al. [8] defined four
categories of accuracy problems found in edit-scripts generated by
GumTree on C# programs. Huang et al. [20] and Tsantalis et al. [37]
introduced approaches that produce high-level edit-scripts (cluster
of actions or refactorings) to improve the understandability of the
edit-scripts. Martinez et al. [29] proposed DAT, a hyperparameter
optimization approach of AST differencing algorithms. DAT in-
cludes types of hyper-optimizations: a) Global which aim at finding
the optimal hyperparameter values for a particular programming
language or language parser, b) Local: hyper-optimizes an diff al-
gorithm on just a single case. The evaluation of DAT conducted
on GumTree shows that optimizing its hyper-parameters allows
GumTree to produce shorter edit-scripts.

In our work, we build on GumTree because we wanted to con-
serve a language-independent approach that does not need to be
adapted to each programming language and because it has been
shown by Fan et al. [13] to be a relevant baseline. We introduce
a new recovery heuristic that drastically improves the runtime
performances, allowing the removal of a tough-to-set threshold
and the reduction of the median size of edit-scripts. In contrast
to [31, 40], we do not use a hybrid textual and syntactic approach
but rather optimize directly the algorithm, although the hybrid
approach could be leveraged to improve the speed even further.
Finally, hyperparameter optimization as defined in DAT could be
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applied to gumtree-simple as it has two hyperparameters that
could be optimized to, for instance, find shorter edit-scripts. More-
over, DAT could also be used to decide which matcher (between
simple, opt, and hybrid) to use in a particular case.

8 CONCLUSION
In this article, we presented an improvement of the GumTree heuris-
tic, called gumtree-simple that has two main advantages. It not
only produces smaller and easier-to-understand edit-scripts than
the original GumTree, but it is also dramatically faster. We vali-
dated our new heuristic on two bug-fixes datasets and two arbitrary
changes datasets. Our heuristic achieved a consistent 50% decrease
in the median edit-script sizes on all datasets, with 40% to 75% of
file-pairs having a decreased edit size. Our qualitative experiment
confirmed that when our new heuristic manages to reduce the edit-
script size, its output is preferred in 91% of the cases by external
participants. Our heuristic also consistently outperformed the orig-
inal GumTree with speed-ups of the matching time ranging from
50x to 281x.
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