
HAL Id: hal-04855142
https://hal.science/hal-04855142v1

Submitted on 24 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Modeling and Verifying an Arrival Manager using the
formal Event-B Method
Amel Mammar, Michael Leuschel

To cite this version:
Amel Mammar, Michael Leuschel. Modeling and Verifying an Arrival Manager using the formal Event-
B Method. International Journal on Software Tools for Technology Transfer, 2024. �hal-04855142�

https://hal.science/hal-04855142v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Modeling and Verifying an Arrival Manager
using Event-B ⋆

Amel Mammar1, Michael Leuschel2

1SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, France
2Institut für Informatik, Universität Düsseldorf

Received: date / Revised version: date

Abstract. The present paper describes an Event-B
model of the Arrival MANager system (called AMAN),
the case study provided by the ABZ’23 conference. The
goal of this safety critical interactive system is to sched-
ule the arrival times of aircraft at airports. This sys-
tem includes two parts: an autonomous part which pre-
dicts the arrival time of an aircraft from external sources
(flight plan information, radar and weather information,
etc.) and an interface part that permits the Air Traf-
fic Controller (ATCo) to submit requests to AMAN
like changes regarding the arrival times of aircraft. To
formally model and verify this critical system, we use
a correct-by-construction approach with the Event-B
formal method and its refinement process. We mainly
consider functional features of the case study; all proof
obligations have been discharged using the provers of the
Rodin platform under which we carried out our develop-
ment. To help users understand how AMAN works and
its main functionalities, a visualisation of the Event-B
models was achieved using the VisB component of ProB.
Our models have been validated using ProB by check-
ing scenarios related to different functional aspects of
the system.

Key words: System modeling, Event-B method, Re-
finement, Verification

1 Introduction

In this paper, we introduce a formal model of the Arrival
MANager system (called AMAN). This system has been

Send offprint requests to: Amel Mammar, E-mail:
amel.mammar@telecom-SudParis.eu

⋆ This work was supported in part by the ANR projet DIS-
CONT.

provided as a case study in the context of the ABZ’23
conference. The main objective of the AMAN system is
to help the Air Traffic Controller (ATCo) manage the
arrival of aircraft approaching the considered airport by
providing it with an arrival sequence. To predict the ar-
rival times of aircraft, AMAN uses external sources like
flight plan data, radar data, weather information, etc.
The process of calculating concrete arrival times itself is
out of the scope of this paper, only its output is consid-
ered.

The AMAN system works in collaboration with the
ATCo who can suggest some modifications on the ar-
rival sequence to the AMAN. The ATCo can also block
periods of time (for runway cleaning for instance) noti-
fying the AMAN that these time slots are no longer
available; any predicted arrival corresponding to these
slots must be thus moved. The ATCo also has the pos-
sibility to put an already predicted aircraft on hold, in-
forming the AMAN that this latter must be removed
from the arrival sequence. Finally, the interface permits
the ATCo to focus on specific aircraft that are predicted
to land within the next minutes (between 15 and 45) by
selecting a zoom level. In that case, only these related
aircraft are displayed within the interface.

In [22], a first formal model of the AMAN system
using the Event-B formal method has been presented.
The current paper describes a new Event-B model of
the same system with fewer variables and more natural
expression of the requirements. The use of the Event-B
formal method with its refinement technique permits to
master the complexity of a system by gradually intro-
ducing its different elements and characteristics. Build-
ing a formal model of such a system permits to ver-
ify the expected properties including the safety ones.
Our approach to model this system follows the four-
variable model of Parnas and Madey [26] that distin-
guishes two classes of variables, environment and con-
troller variables (see Section 2). The first class denotes

2 1 INTRODUCTION

the elements that are outside the controller and whose
states are read by the sensors. The state of the envi-
ronment variables are updated when the system sends
commands to them through the actuators. The second
class includes the inputs and the outputs of the system.
To master the complexity of this system, we deal with
one environment/controller variable at each refinement
step.

The Event-B models have been built by the first au-
thor. Her past industrial experience in the formal speci-
fication and verification of railway interlocking systems,
in collaboration with Thales and RATP, helped her in
this task. The knowledge acquired during this experi-
ence has been put in practice and reinforced through
the different modelling of the previous ABZ case studies
[24,20,21,19]. The development of the Event-B mod-
els took two months and has been done using the Rodin
platform [12] that provides editors, provers and several
other plugins for various tasks like animation and model
checking with ProB [17]. Our Event-B model consid-
ers most of the requirements except those related to the
interface appearance (See Table 1). In this paper, we
used ProB in order to animate the built models with
three purposes: discovering the potential scenarios (a se-
quence of events) that violate the invariant before going
in a hard/long proof phase, validating the specification
by simulating the provided scenarios in order to be sure
that we have specified the right system, and constructing
a visualisation of the Event-B models using the VisB
component of ProB.

1.1 Event-B method

Event-B [3] is the successor of the B method [2] for
developing correct discrete systems using mathematical
notations. This method is well-suitable for complex sys-
tems thanks to its refinement concept that permits incre-
mentally introducing details by starting with an abstract
view of model that it is then enriched until obtaining a
model that includes all the elements of the system.

An Event-B model includes two elements: context
and machine. A context describes the static part of an
Event-B specification; it consists of constants C and
sets S (user-defined types) together with axioms A that
specify their properties. The dynamic part of a system
is included in a machine that defines variables V and a
set of events E. The possible values that the variables
hold are restricted using an invariant, denoted Inv, writ-
ten using a first-order predicate on the state variables.
Each event, of the form (ANY X WHEN G THEN
Act END), is enabled when all the conditions G, named
guards, prior to its triggering hold. When several events
are enabled, only one is triggered. In this case, substi-
tutions Act, called actions, are applied over variables.
In this paper, we restrict ourselves to the becomes equal
substitution, denoted by (x := e).

Refinement is a process of enriching or modifying a
model in order to augment the functionality being mod-
eled, or/and explain how some purposes are achieved.
Both Event-B elements context and machine can be
refined. A context can be extended by defining new sets
Sr and/or constants Cr together with new axioms Ar. A
machine is refined by introducing new variables and/or
replacing existing variables with new ones Vr that are
typed with an additional invariant Invr. New events can
also be introduced to implicitly refine a skip event. In
this paper, the refined events have the same form ANY
Xr WHEN Gr THEN Actr END. The semantics of
the Event-B notations used in this paper is provided
in Appendix B.

To ensure the correctness of the specification, proof
obligations are generated for the first abstract model and
for each refinement level. These proof obligations aim at
proving invariant preservation by each event, but also to
ensure that the guard of each refined event is stronger
than that of the abstract event. These guard strength-
ening refinement proof obligations ensure that event pa-
rameters are properly refined. More information on proof
obligations can be found in [3]. Basically:

1. For each event, we have to establish that its trigger-
ing maintains the invariant, that is :

∀ S, C, X. (A ∧ G ∧ Inv ∧ BAAct ⇒ Inv ′)

where BAAct is the before-after predicate of the ac-
tions of an event and Inv ′ is the invariant applied to
the after values.

2. To prove that a refinement is correct, we have to
establish the following two proof obligations:
– guard strengthening: the guard of the refined event

should be stronger than the guard of the abstract
one:
∀(S,C, Sr, Cr, V, Vr, X,Xr).

(A ∧Ar ∧ Inv ∧ Invr ⇒ (Gr ⇒ G))

– Simulation: the effect of the refined action should
be stronger than the effect of the abstract one:
∀ (S, C, Sr, Cr, V , Vr, X, Xr).

(A ∧ Ar ∧ Inv ∧ Invr ∧ Gr ∧ BAActr ⇒
BAAct ∧ Invr

′)
– Convergence: convergence of new events is op-

tional and has not been used in this case study
because it was not necessary, new events being
allowed to loop forever, according to the require-
ments.

To discharge the proof obligations, we used the au-
tomatic provers integrated to the Rodin platform1 and
also the external SMT [14] and Atelier B [11] provers
that we have imported as plugins to Rodin. The Rodin
platform also offers a theory component that allows us to
extend the mathematical concepts of Event-B by defin-
ing user-types and their associated operators [7]. The use

1 http://www.event-b.org/install.html

1.2 The ProB model checker 3

of the theory component also permits to cope with the
complexity of a system by importing and reusing exist-
ing theories.

1.2 The ProB model checker

In this paper, we used the animator and model checker
ProB [18] for validating our models in order to ensure
that they are error-free and their behaviors correspond
to the expected ones.

ProB2 has been developed over twenty years and
contains a model checker for verifying LTL (Linear Tem-
poral Logic) [27] and CTL (Computational Tree Logic)
[10] properties. The core of ProB is written in Prolog;
its purpose is to be a comprehensive tool in the area of
formal verification methods. Its main functionalities can
be summarized as follows.

1. ProB permits to exhibit scenarios (a sequence of
events) that, starting from a valid initial state of the
system, reach a state that violates its invariant.

2. ProB allows the animation of the B/Event-B mod-
els, that is, the user can simulate different scenarios
from a given starting state that satisfies the invari-
ant. Via its graphical user interface, the animator
provides the user with: (i) the current state, (ii) the
history of the event triggering that has led to the cur-
rent state and (iii) a list of all the enabled events,
along with proper parameters instantiations. In this
way, the user does not have to guess the right values
for the event parameters.

3. ProB allows to detect absolute/relative deadlocks,
4. ProB provides many features to visualise an indi-

vidual state or the entire state space.

1.3 Contributions

The contributions of this paper with respect to [22] are
as follows:

– a more detailed description of the modeling strategy
used (see Section 2);

– A new Event-B model which defines fewer variables
and more natural expression of the different invari-
ants. In this model, we timestamp each variable with
the current time (see Section 3);

– additional examples and explanations about the ver-
ification phase using model-checking and scenarios
(see Section 4.3);

– more details about the development of the visualisa-
tion (see Section 4.4);

– a comparison with similar solutions using different
approaches/formal languages (see Section 5).

2 https://prob.hhu.de/

1.4 The structure of the paper

The rest of this paper is structured as follows. Section
2 presents our modelling strategy. Then, Section 3 de-
scribes our model in more details. The validation and
verification of our model are discussed in Section 4 along
with a visualisation of the model using the VisB compo-
nent of ProB. Section 5 compares our specification with
similar specifications that use different languages/approaches.
Finally, Section 6 concludes the paper.

2 Requirements and modeling strategy

This section presents the principles of control systems
and an overview of the Event-B architecture corre-
sponding to the modeling of the AMAN system.

2.1 Control abstraction

In this paper, we use the concepts described by Parnas
and Madey in [26]. The AMAN system can be consid-
ered as a control system that reads information from the
environment elements (e.g., the desired arrival time of an
aircraft, radar information) using sensors and uses a set
of actuators to transmit the adequate orders to these el-
ements (see Figure 1). A sensor measures the value of
an environment element m, called a monitored variable
(e.g., the desired arrival time of an aircraft, radar in-
formation), and provides this measure (e.g., the desired
hour/minute) to the software controller as an input vari-
able i.

The objective of the commands, called output vari-
able o and sent to the actuators, is to modify the value
of some characteristics of the environment, called a con-
trolled variable c. Variables m and c are called environ-
ment variables. Variables i and o are called controller
variables. Finally, a controller has its own internal state
variables to perform computations. In this case study,
we use Event-B state variables to represent both en-
vironment and controller variables. We model neither
sensor/actuator failures nor their delays.

A well-known architecture of a control system is a
control loop that reads all input variables at once, at a
given moment, and then computes all output variables in
the same iteration. But, it can be also viewed as a contin-
uous system that can be interrupted by any change in the
environment represented by a new value sent by a sen-
sor. In this paper, we adopt a hybrid view: every 10 sec-
onds, the AMAN reads various sensor inputs and makes
a new prediction to display. Moreover, the AMAN in-
stantaneously reacts to some ATCo’s requests by up-
dating the display. The use of the four-variable model
permits to cope with the complexity of such systems
and define a generic methodology for modeling them us-
ing Event-B. This methodology consists in defining a

4 3 DESCRIPTION OF THE EVENT-B MODELS

separate event for each input received by the system or
output sent towards the environment. Therefore, mod-
elling the AMAN with Event-B consists in defining
one event for each input corresponding to the ATCo’s
interaction with its environment and an additional event
display representing the output of the system, that is, cal-
culating and displaying a new prediction performed by
the AMAN.

2.2 Modeling structure

The Event-B specification presented in this paper is
incrementally built using refinement. It is composed of
seven levels (seven machines and two contexts) and de-
fines and uses a theory to deal with, among others, se-
quences, the absolute value, etc. (see Figure 2).

– Context C1 mainly defines the following constants:
Labels to represent the aircraft, Hours, Minutes and
Seconds to denote the possible values of these time
units, zoomLevels representing the possible values for
the zoom level.

– Machine M1 sees the context C1 and defines, among
others, an event for determining and displaying the
arrival times of aircraft and an event for selecting the
zoom level.

– Machine M2 models the holding of an aircraft. This
machine sees the context C1.

– Machines M3 and M4 respectively introduce the mov-
ing of a scheduled aircraft to change its arrival time
and the blocking of time slots by the ATCo. Both
machines M3 and M4 see the context C1.

– Machine M5 represents the request of an aircraft for
landing. It sees the context C1. In each of the ma-
chines (M1-M5), we model the historical functions
that permit the AMAN to provide the ATCo with
the previous predictions.

– Machine M6 models the interaction between the ATCo
and the AMAN using the mouse. This machine sees
the context C2 that defines some constants to de-
scribe a mouse in terms of its possible states (clicked,
released) and also the different elements on which a
mouse may click.

– Machine M7 specifies the AMAN breakdown for fail-
ure for instance. It sees the context C2.

Roughly speaking, the structure of the Event-B spec-
ification is constructed as follows: the outputs (AMAN’s
functionalities, that are, the prediction and display of the
arrival times) are modeled first in the machine M1, then
the ATCo’s interactions are modelled in a second step
(Machines M2-M6). Finally, the last level M7 models the
failure of the AMAN.

2.3 Formalisation of the requirements and tasks

Table 1 shows where and how the requirements, listed
in [25] and summarized in Appendix A, are specified in

our Event-B models. As one can remark, depending
on the kind of the requirement, this later is specified as
an invariant, a guard, an elementary variable (like the
variable mouseState), an event with specific guards, etc.
Requirements Req22 and Req23 for instance cannot
be easily expressed as an invariant since it would re-
quire to introduce at least three additional variables: (i)
a variable mouseStateP to store the previous state of the
mouse, (ii) a variable mousePositionP to store the pre-
vious position of the mouse and (iii) a variable isEnabled
to know whether the hold button is enabled or not. In
that case, the invariant would be expressed as follows:

mouseStateP=clicked ∧ mousePositionP=hold
mouseState=released ∧ mousePosition=hold
⇒
isEnabled = TRUE

We did not choose this option because these additional
variables make the specification more complex; we have
to manage their updates by each event. Finally, let us
note that some requirements (Requirements Req17-18
and Req20) are not covered because they are related
to the interface appearance and not to the system func-
tionalities. Indeed, the Event-B method is dedicated to
specifying the state of a system and its evolution and not
to describing the visual appearance of its components. In
addition to the requirements listed in Table 1, we have
specified some additional properties that we consider of
good sense. For instance, we have specified that the re-
quests are dealt with according to the FIFO strategy
(First In First Out) to ensure fairness. More details are
given in the next section.

Table 2 shows the correspondence between the ATCo’s
actions/AMAN tasks and the events of the built speci-
fication.

3 Description of the Event-B Models

In this section, we give a brief description of some key re-
finement levels of the Event-B modeling of the AMAN.
The complete archive of the Event-B project is avail-
able in [23]. Our modeling makes the assumption that
the AMAN predictions are done for a single day, that
is, no aircraft is planned for the next day.

3.1 Machine M1

Machine M1 models the prediction of the arrival times
of aircraft (called labels in the rest of the paper) and its
display on the screen. This machine sees the context C1
that defines: the set of all possible objects of the system
(Elements), the set of possible labels (Labels), the units
of time (Seconds, Minutes and Hours), the zoom levels
(zoomLevels), the time progression step (step) and the
security distance between two distinct labels (sep):

3.1 Machine M1 5

Fig. 1. Four-variable model

Fig. 2. Event-B structure of the project

Requirements Components Event-B element
Req1 Machine M5 Invariant inv1
Req2 Machine M2 Invariant inv1
Req3 Machine M3 Invariant inv6
Req4 Machine M2 Event removeholdLabel
Req5 Machines M1 and M3 Invariants inv10(M1) and inv5(M3)
Req6 Machine M4 Invariants inv1 and inv2
Req7 Machine M3 Invariant inv6
Req8 Machine M7 At any moment, the Boolean Variable isStopped can be updated

by the event stopStart. All other events are guarded by (isStopped=
FALSE)

Req9
to Machines M1-M6 HTimed variables V _T
Req13
Req14 Not covered
Req15 Machine M6 Event holdLabel is enabled only if a label is selected (guard grd2)
Req16 Context C1 Axiom axm6
Req17 Not covered
Req18
Req19 Machine M1 Invariant inv12
Req20 Not covered
Req21 Machine M6 Variable mouseState
Req22 Machine M6 Guard grd4 of the event holdLabel
Req23

Table 1. Cross-reference between the components of our model and the requirements of [25]

6 3 DESCRIPTION OF THE EVENT-B MODELS

Tasks Components Event-B element
Compute/Display LS M1 Event Display
Change zoom M1 Event selectZoom
Put Aircraft on hold M2 Events holdLabel and removeholdLabel
Change LS M3 Event moveLabel
Block time slot M4 Events addBlockedZone and deleteBlockedZone
Stop Manage LS M7 Event stopStart

Table 2. Cross-reference between the components of our model and the ATCo’s actions/AMAN tasks of [25]

SETS Elements
CONSTANTS Labels, Seconds, Minutes, Hours, zoomLevels,

step, sep
AXIOMS

axm1: finite(Elements) ∧ Labels ⊆ Elements
axm2: Seconds = 0..59 ∧ Minutes = 0..59 ∧ Hours = 0..23
axm3: zoomLevels ⊆ N1 ∧ zoomLevels ̸= ∅
axm4: step ∈ N1 ∧ sep ∈ N1

The machine M1 defines the following invariants to char-
acterise the possible arrival times of a set of labels where
curTimeMin (resp. curTimeSec) gives the time in terms
of minutes (resp. seconds):

inv1 labels_T ∈
(
⋃

k. k ∈ N ∧ step × k ≤ curTimeSec(curTimeS, curTimeM,
curTimeH) | step× k) → P(Labels)

inv2 arrivalM_T ∈
(
⋃

k. k ∈ N ∧ step × k ≤ curTimeSec(curTimeS, curTimeM,
curTimeH) | step× k) → (Labels 7→ Minutes)

inv3 arrivalH_T ∈ dom(arrivalM_T) → (Labels 7→ Hours)
inv4 ∀ t· t ∈ dom(arrivalM_T)

⇒
dom(arrivalM_T (t)) ⊆ labels_T (t)

inv5: ∀ t, l. t ∈ dom(arrivalM_T) ∧ l ∈ dom(arrivalM_T (t))
⇒

curTimeMin((arrivalM_T (t))(l), (arrivalH_T (t))(l)) ≥ t ÷ 60
inv6: ∀ t, l1, l2· t ∈ dom(arrivalH_T) ∧ l1 ∈ dom(arrivalM_T (t)) ∧

l2 ∈ dom(arrivalM_T (t)) ∧ l1 ̸= l2
⇒
abs(curTimeMin((arrivalM_T (t))(l1), (arrivalH_T (t))(l1)),
curTimeMin((arrivalM_T (t))(l2), (arrivalH_T (t))(l2))) ≥ sep

inv7: zoomLevel ∈ zoomLevels ∧
displayedLabels ⊆ dom(arrivalM_T (t))

inv8: displayedLabels =(
⋃

l. l ∈ dom(arrivalM_T (t)) ∧
curTimeMin((arrivalM_T (t))(l), (arrivalH_T (t))(l))

≤ curTimeMin(curTimeM, curTimeH) + zoomLevel | {l})

Invariant inv1 defines the set of existing labels at each
moment. Invariants inv2, inv3 and inv4 describe the ar-
rival times of a set of labels. Invariant inv5 states that
the arrival time of an aircraft is later than the current
time while inv6 ensures the security of passengers by
separating the labels by at least sep minutes. Finally,
the invariants inv7 and inv8 specify the set of labels
displayed on the screen according to their arrival times
and the selected zoom zoomLevel. Variable zoomLevel
is an integer (between 15 and 45) that defines the dis-
play window of the labels: a label is displayed if its ar-
rival time falls into this window (inv8). We have chosen
to model the zoom functionality and the calculation of
the label arrival times at the same level because both
modify the variable displayedLabels. As stated in Sec-
tion 1.1, all events modifying a variable must be specified

in the same machine where the variable is defined. An-
other option would be to define the variables displayed-
Labels and zoomLevel in an other refinement level. We
did not choose this option because it adds a refinement
level while including them in M1 does not add any com-
plexity.
Machine M1 defines the event display as follows:

Event display =̂
any

t, landingLabs, labsToDisp, labsSch, arr, ns, nm,
nh

where
grd1: t=curTimeSec(curTimeS, curTimeM,

curTimeH) +step
grd2: landingLabs=(

⋃
l. l ∈ dom(arrivalM_T(t-

step)) ∧ curTimeMin(nm, nh)>
curTimeMin((arrivalM_T(t-step))(l), (arrivalM_T(t-

step))(l)) | {l})
grd3: labsSch ⊆ labels_T(t-step) \ landingLabs
grd4: arr ∈ labsSch →

curTime(nm, nh)..curTime(nm, nh)+180
grd5: ∀ l1, l2· l1 ∈ dom(arr) ∧ l2 ∈ dom(arr) ∧

l1 ̸= l2 ⇒ abs(arr(l1), arr(l2)) ≥ sep
grd6: toDisp=(

⋃
l· l ∈ dom(arr) ∧ arr(l) ≤

curTimeMin(nm, nh) + zoomLevel | {l})
grd7: . . .

then
act1: displayedLabels:=toDisp
act2: arrivalM_T (t) := (λ l. l ∈ dom(arr) |

arr(l) mod 60)
act3: arrivalH_T (t) := (λ l. l ∈ dom(arr) |

arr(l) ÷ 60)
act4: curTimeS := ns
act5: curTimeM := nm
act6: curTimeH := nh
act7: labels_T (t) := labels_T (t -step)

end

where ns (resp. nm, mh) denotes the second (resp. minute,
hour) unit of the current time plus 10 seconds. Roughly
speaking, this event starts by calculating the set of labels
that have already landed (Guard grd2), then it makes a
prediction for a subset labsSch of other existing labels
(Guards grd3 and grd4) by ensuring that the labels are
separated by at least sep minutes (Guard grd5). Finally,
it calculates the set of the labels to display according to
their arrival times and the selected zoom level (Guard
grd6). Actions update different variables by stamping
them with the current time t.

Let us remark that the guard grd4 specifies that the
predictions are made for the next 3 hours. We put this
hypothesis in order to improve the ProB performance
and make the animation of the models possible. Accord-

3.2 Machine M2 7

ing to the case study authors, such an assumption is very
reasonable and is not a limitation of the model.

3.2 Machine M2

Machine M2 models labels put on hold. For that pur-
pose, the following invariants are defined. Invariant inv1
types the introduced variable holdLabels_T. Invariant
inv2 states that a label made on hold must be removed
from the arrival sequence of the next cycle (x+step).
inv1: holdLabels_T ∈

(
⋃

k. k ∈ N ∧ step × k ≤ curTimeSec(curTimeS, curTimeM,
curTimeH) | step× k) → P(Labels)

inv2 ∀ x· x ∈ dom(holdLabels_T) ∧
x + step ∈ dom(arrivalM_T)

⇒
holdLabels_T (x) ∩ dom(arrivalM_T (x + step)) = ∅

Machine M2 defines an event holdLabel that permits
to put on hold a displayed label l by adding it to hold-
Labels.
Event holdLabel =̂

any
t l

where
grd1: t= curTimeSec(curTimeS,curTimeM,curTimeH)

grd2: l ∈ dom(arrivalM_T (t)) \ holdLabels_T (t)
then

act1: holdLabels_T (t) := holdLabels_T (t) ∪ {l}
end

The event display is refined by adding the guard (lab-
sSch ∩ holdLabels_T (t− step)=∅) in order to maintain
the invariant inv2 by removing the held labels from the
arrival sequence.

3.3 Machine M3

Machine M3 models the request of the ATCo that would
like to change the arrival time of a label by defining the
following invariants. Invariants inv1 and inv2 define the
new arrival times of a given label. Invariant inv3 states
that only scheduled labels, which are not put on hold,
can be moved and new arrival times are suggested by the
ATCo. Invariant inv4 models the requirement Req5 to
avoid overlapping labels.
inv1: newArrivalM_T ∈

(
⋃

k. k ∈ N ∧ step × k ≤ curTimeSec(curTimeS, curTimeM,
curTimeH) | step× k) → (Labels 7→ Minutes)

inv2: newArrivalM_T ∈ dom(newArrivalM_T) →
(Labels 7→ Hours)

inv3: ∀ x· x ∈ dom(newArrivalM_T)
⇒

dom(newArrivalM_T (x)) ⊆
sdom(arrivalM_T (x)) \ holdLabels_T (x)

inv4 ∀ t, x, y· t ∈ dom(newArrivalM_T) ∧
x ∈ dom(newArrivalM_T (t)) ∧
y ∈ dom(newArrivalM_T (t)) ∧
x ̸= y

⇒
(newArrivalM_T (t) ⊗ newArrivalH_T (t))(x)

̸=
(newArrivalM_T (t) ⊗ newArrivalH_T (t))(y)

As stated in the requirement document, a moving re-
quest might be rejected by the AMAN if it would re-
quire a speed-up of the aircraft beyond the capacity of
the aircraft. To model such a requirement, we added the
following guards to the event display that specify that the
labels that cannot be moved must keep their original ar-
rival times (guard grd2), whereas others are moved to the
new ones (guard grd3). Guard grd4 permits to cover the
requirement Req7 by stating that the labels that ask
for delaying its arrival time should be satisfied. Func-
tion canBeMoved permits to abstract from the details
and calculations made by the AMAN to decide whether
a label can be moved or not. Such details can be intro-
duced later by refining this function. As the requirement
document does not give enough information about this
point, we kept the function canBeMoved in its abstract
form.
grd1: canBeMoved ∈

dom(newArrivalM_T (t - step)) \ landingLabs → BOOL
grd2: canBeMoved−1[{TRUE}] ◁ arr=

(λ x. x ∈ canBeMoved−1[{TRUE}] |
curTimeMin ((newArrivalM_T (t -step)) (x),

(newArrivalH_T (t -step))(x)))
grd3: canBeMoved−1[{FALSE}] ◁ arr=

(λ x. x ∈ canBeMoved−1[{FALSE}] |
curTimeMin ((newArrivalM_T (t -step))(x),

(newArrivalH_T (t -step))(x)))
grd4: (

⋃
x· x ∈ dom((newArrivalM_T (t -step))) \ landingLabs

∧
curTimeMin((newArrivalM_T (t -step))(x),

((newArrivalH_T (t -step))(x))
>

curTimeMin((newArrivalM_T (t -step))(x),
(newArrivalH_T (t -step))(x)))|{x})

⊆
canBeMoved−1[{TRUE}]

Machine M3 is refined by the machine M4 to model the
blocked slots. As its Event-B modeling is very similar
to that of held labels, this paper does not give more
details about the machine M4.

3.4 Machine M5

The machine M5 models the flights approaching an air-
port as an injective sequence of requests submitted to
the AMAN (Invariants inv1 and inv2). For that pur-
pose, we have specified a theory to define the sequence
data structure along with its associated operations like
inserting/deleting elements.
inv1: requests_T ∈

(
⋃

k. k ∈ N ∧ step × k ≤ curTimeSec(curTimeS,
curTimeM, curTimeH) | step× k) → seq(Labels)

inv2: ∀ t, x, y. t ∈ dom(requests_T) ∧ x ∈ dom(requests_T (t)) ∧
y ∈ dom(requests_T (t)) ∧ x ̸= y

⇒
(requests_T (t))(x) ̸= (requests_T (t))(y)

Moreover, to ensure that the requests are fairly pro-
cessed, that is, the label that made a request in first will
get an arrival time earlier than others (FIFO strategy),
we have defined the following invariant:

8 4 VALIDATION AND VERIFICATION

inv3: ∀ t, l1, l2· t ∈ dom(requests_T) ∧
t + step∈ dom(arrivalM_T) ∧ l1 ∈ ran(requests_T (t)) ∧

l2 ∈ ran(requests_T (t)) ∧
(requests_T (t))−1(l1)<(requests_T (t))−1(l2)

⇒
curTimeMin((arrivalM_T (t+step))(l1),

(arrivalH_T (t + step))(l1))
<

curTimeMin((arrivalM_T (t+step))(l2),
(arrivalH_T (t + step))(l2))

Machine M5 also defines an event to add/delete requests.
Moreover, we have added the following guards to the
event display: the guard grd1 states that the AMAN
should predict arrival times for the labels having made
requests and the already scheduled labels that are not
made on hold or landed. The guard grd2 specifies the
FIFO strategy for request processing.

grd1: labsSch= (ran(requests_T (t - step)) ∪
dom(arrivalM_T (t - step))) \

(landingLabs ∪ holdLabels_T (t - step))
grd2: ∀ x, y· x ∈ dom(requests_T (t - step)) ∧

y ∈ dom(requests_T (t - step)) ∧ x > y
⇒

arr((requests_T (t - step))(x)) >
arr((requests_T (t - step))(y))

3.5 Machine M6

This machine models the interactions of the ATCo with
the AMAN using the mouse. Context C1 is extended
by the context C2 that defines the set Elements as a
partition of Labels, the button hold, the slide-bar zoom
for changing the zoom and nothing to model the mouse
that clicks on any other zone of the interface. A set rep-
resenting the possible states of the mouse is also defined:

ax1: partition(mouseStates, {released}, {clicked})
ax2: partition(Elements, Labels, {nothing}, {hold}, {zoom})

In the machine M6, we introduced two additional vari-
ables clickedElement and selectedElement to respectively
denote the element the mouse clicks on or selects. Both
variables belong to ((displayedLabels∪ {nothing, hold,
zoom}) \ holdLabels). We also describe a set of events
to model the behavior of the mouse like clicking on or
selecting an element. Event holdLabel is refined by:

Event holdLabel =̂
refines holdLabel

where
grd1: selectedElement ∈ dom(arrivalM_T (t))

\ holdLabels_T (t))
grd2: selectedElement /∈ dom(newArrivalM_T (t))
grd3: mousePosition=hold ∧ mouseState=clicked

with
l: l =selectedElement

then
act1: holdLabels_T (t) := holdLabels_T (t) ∪

{selectedElement}
act2: selectedElement := nothing
act3: clickedElement := nothing
act4: mouseState := released

end

The refinement of the event holdLabel states that the
label l to hold denotes the label selected by the mouse
(the with clause). To put the selected label on hold, the
guard grd3 specifies that the mouse must be in the state
clicked and positioned on the hold button.

4 Validation and Verification

To verify the correctness of our models and ensure that
we built the right system, we have performed the four
steps detailed hereafter.

4.1 Model checking of the specification

As one can remark, some refinement levels contain in-
variants that depend on several variables. In that case,
it becomes quite difficult to find the right specification
(guards/actions) the first time. The ProB model checker
has proven very useful in finding actions/guards to add
to some events in order to establish these invariants. Ba-
sically, before performing the proof that may be tedious,
we used the ProB model checker to exhibit some pos-
sible scenarios that violate the invariant. A scenario is
a sequence of events that, starting from a valid initial
state of the machine, leads to a state that violates the
related invariant. Analysing such scenarios helps us cor-
rect the specification by adding guards/actions to some
events but also sometimes to revise the invariants. For
this particular case study, the use of ProB helped us
particularly to find the following elements:

– the definition of the term (
⋃

k. k ∈ N ∧ step ×
k ≤ curTimeSec(curTimeS, curTimeM,curTimeH) |
step× k) used to type the historical variables: inv1
of the machine M1 for instance,

– the action act7 on the variable labelsT (t) in order to
maintain the history of the existing labels;

– the guards grd2-grd4 added to the event disply in the
machine M3.

4.2 Proof of the specification

Even if ProB does not find any scenario that violates
the invariant, this does not mean that the models are
correct. Indeed, by default ProB limits the number of
explored parameter values per event. Some of the events
like addRequest have a very large number of possible
valuations of the parameters, which prevents the model
checker from exploring the full state space and explor-
ing certain scenarios. It is, however, possible in the an-
imator interface of ProB to provide explicit values for
the event parameters and thus check given scenarios by
trace replay. Still, proof is indispensable for exhaustive
verification. Proof in Event-B aims at verifying that each
event does preserve the invariant and that the guard of
each refined event is stronger than that of the abstract

4.3 Validation with scenarios 9

Tot.: Total ; Aut.: Automatic; Man.: Manual; Rev.:
Reviewed; Und.: Undischarged.

Fig. 3. Rodin proof statistics of the case study

one. The corresponding proof obligations are automati-
cally generated by Rodin. Figure 3 provides the proof
statistics of the case study: 329 proof obligations have
been generated, of which 54% (178) were automatically
proved by the various provers3. The interactive proof
of the remaining proof obligations (manual ones) took
about one week since they are more complex (in particu-
lar those that depend on the historical variables) and re-
quire several inference steps and need the use of external
provers (like the Mono Lemma prover, Dis-prove with
ProB and STM provers). During an interactive proof,
users ask the internal prover to follow specific steps to
discharge a proof obligation. A step proof consists in ap-
plying a deductive rule, adding a new hypothesis that is
in turn proved or calling external provers. The external
Mono Lemma prover has been very useful for arithmetic
formulas, even if we had to add the following theorem
on the modular operator:

∀ x, y. x ∈ N ∧ y ∈ N1 ⇒ x = x mod y + x ÷ y × y

It is worth noting that performing interactive proofs
does not decrease the confidence of the models since the
proofs are discharged under the Rodin platform by en-
riching the prover only by theorems that are proved as
well.

4.3 Validation with scenarios

Defining and simulating scenarios enables us to validate
whether we have built models that behave as expected.
Unfortunately, the requirement document does not pro-
vide scenarios that would help us in such a task. There-
fore, we have defined our own scenarios based on our
understanding of the system. Basically, we have defined

3 The theory gives 24 additional proof obligations, of which 23
have been interactively proved. Unfortunately, Rodin does not
include the proof obligations related to theories in the statistics of
the project.

a validation scenario for each AMAN functionality and
ATCo interaction. From a practical point of view, for
each invariant modeling a property, we define a scenario
to check whether the built models fulfill the related prop-
erty. Using the animation capability of ProB, we have
checked, among others, the following behaviours:

– moving a label l1 to a slot that does not respect the
3 minutes separation with an other label l2: in that
case, the AMAN also moves l2 and its neighbours to
maintain this security requirement (Invariant inv6 of
the machine M1).

– putting a label on hold results in removing it from the
landing sequence: such an effect is not instantaneous;
it is performed by the AMAN in the next processing
cycle (Invariant inv2 of the machine M2).

– blocking a slot time results in moving all the labels
scheduled in this slot into other available slots.

– the landing requests received by the AMAN are dealt
with according to the FIFO strategy. Moreover, the
corresponding labels are scheduled after the already
scheduled ones (Invariant inv3 of the machine M5).

– selecting a zoom level does display only the labels
that are scheduled in the corresponding slot (next
(current time + zoom) minutes). Contrary to the
previous scenarios, the effect of this ATCo action
is instantaneous (Invariant inv8 of the machine M1).

4.4 Validation with Visualisation

We used visualisation to better debug counter examples
and scenarios, but also during interactive animation. Our
visualisation of the model was achieved using the VisB
[30] component of ProB. The visualisation uses a SVG
graphics file and a JSON glue file. The latter contains
a mapping between the B model and the graphics file,
and can add, show, hide, move and alter elements from
the SVG file.

To develop our visualisation we built on the VisB
files developed for another Event-B model [15] of the
AMAN case study. Even though this Event-B model
was developed independently and has a quite different
structure (cf. Section 5 below), we managed to reuse the
SVG file and adapt the JSON glue file. This was possi-
ble thanks to several extensions to the VisB JSON glue
file format, not available in the first version [30]: e.g.,
allowing to add objects to the SVG file or allowing to
provide local definitions visible within VisB expressions
(in addition to variables and constants coming from the
model). Here we describe the core contents of our VisB
JSON glue file:

– a pointer to the SVG file. In our case this is the
SVG file developed for [15]. This SVG file contains
many objects visible in Fig 4, such as the rectangle
bt_hold or the text field tx_hold:

<rect id="bt_hold" fill="black"

10 5 DISCUSSION AND COMPARISON

visibility="visible" width="120"
height="30" x="650" y="500"/>

<text id="tx_hold" stroke="red"
fill="red" visibility="true"
x="688" y="520">HOLD</text>

– a list of additional SVG objects added to the ones
in the SVG file. In our case, we added a text field to
display the status of the mouse.

– a list of local definitions. For example, the defini-
tions header contains this entry, mimicking the set of
known and visible planes as well as a boolean variable
from [15]:

"definitions": [
{ "name":"known_planes",

"value" : "labels"
},
{ "name":"visible_planes",

"value" : "diplayedLabels"
},
{ "name": "no_airplane_is_selected",

"value": "bool(selectedElement=nothing)"
},

Other defined the Airplanes constant in [15], deriv-
ing it from Elements:

{ "name": "Airplanes",
"value": "Elements - {nothing,hold,zoom}",
"comment": "Remove special elements"

},

These three definitions computes explicitly the cur-
rent landing sequence:

{ "name": "arrivalH",
"value": "arrivalH_T(curTimeSec(curTimeS,

curTimeM,curTimeH))"
},
{ "name": "arrivalM",

"value": "arrivalM_T(curTimeSec(curTimeS,
curTimeM,curTimeH))"

},
{ "name": "landing_sequence",

"value": "%plane.(plane:dom(arrivalH) |
arrivalH(plane)*60+arrivalM(plane) -
currentTime+1)"

},

– a list of updates, called items.
The following VisB item uses the above definition to
set the visibility attribute of the hold button (visible
in Figure 4).

{
"id": "bt_hold",
"attr": "visibility",
"value":"IF no_airplane_is_selected=TRUE

THEN \"hidden\"
ELSE \"visible\"
END"

},

Fig. 4. Visualising the state of the model (M8) using ProB and
VisB

Observe that the value is a classical B expression,
which has access to ProB’s IF-THEN-ELSE for ex-
pressions and data types such as strings and reals, as
well as ProB’s external B functions to manipulate
them.

– a list of events.
The VisB file also associates the event holdLabel
with the hold button; i.e., it is executed when the
button is clicked. A hover is also specified, that up-
dates the image when the mouse hovers above the
button.

{
"id": "bt_hold",
"event": "holdLabel",
"hovers" : [{"id":"bt_hold","attr":"fill",
"enter":"gray", "leave":"black"}]

},

Observe, that Fig 4 also shows a mouse pointer over
the hold button: this is also part of the visualisation and
is based on the mousePosition variable of the model.
Another interesting aspect is that validation traces can
be exported to standalone HTML files using ProB (see
[29]). These traces can be reused to step through the
traces and inspect the visualisation and the variable val-
ues, without access to either ProB, Rodin or the Event-
B model. We used those HTML trace files as a means
of (email) exchange between ourselves, e.g., to point out
and discuss tricky aspects of the models. (Some of these
traces are available at https://stups.hhu-hosting.
de/models/AMAN/ and [23] for reference.).

5 Discussion and Comparison

In a companion paper [15] an Event-B model was de-
veloped independently.4 The models have very different

4 The model of this paper was developed by the first author; the
second author only intervened in the validation and verification,
not in the writing of this model.

11

M8

M7

M6

M5

M4

M3

M2

M1

addBlockedZone
(unchanged)

addLabel
(unchanged)

addRequest
(unchanged)

clickMouse
(unchanged)

deleteBlockedZone
(unchanged)

deleteRequest
(unchanged)

display
(unchanged)

holdLabel
(unchanged)

moveLabel
(unchanged)

movingMouse
(unchanged)

realseMouse
(unchanged)

removeLabel
(unchanged)

removeholdLabel
(unchanged)

selectZoom
(unchanged)

stopStart
(unchanged)

addBlockedZone
(same act, extends grd)

addLabel
(same act, extends grd)

addRequest
(unchanged)

clickMouse
(same act, extends grd)

deleteBlockedZone
(same act, extends grd)

deleteRequest
(unchanged)

display
(same act, extends grd)

holdLabel
(same act, extends grd)

moveLabel
(same act, extends grd)

movingMouse
(same act, extends grd)

releaseMouse
(same act, extends grd)

removeLabel
(same act, extends grd)

removeholdLabel
(same act, extends grd)

selectZoom
(same act, extends grd)

stopStart

addBlockedZone
(unchanged)

addLabel
(unchanged)

addRequest
(unchanged)

clickMouse

deleteBlockedZone
(unchanged)

deleteRequest
(unchanged)

display
(same grd, extends act)

holdLabel
(extends act)

moveLabel
(extends act)

movingMouse

releaseMouse

removeLabel
(unchanged)

removeholdLabel
(unchanged)

selectZoom
(extends)

addBlockedZone
(unchanged)

addLabel
(unchanged)

addRequest

deleteBlockedZone
(unchanged)

deleteRequest

display
(extends)

holdLabel
(unchanged)

moveLabel
(unchanged)

removeLabel
(same grd, extends act)

removeholdLabel
(unchanged)

selectZoom
(unchanged)

addBlockedZone

addLabel
(unchanged)

deleteBlockedZone

display
(extends)

holdLabel
(unchanged)

moveLabel
(same act, extends grd)

removeLabel
(unchanged)

removeholdLabel
(unchanged)

selectZoom
(unchanged)

addLabel
(unchanged)

display
(extends)

holdLabel
(same act, extends grd)

moveLabel

removeLabel
(unchanged)

removeholdLabel
(same grd, extends act)

selectZoom
(unchanged)

addLabel
(unchanged)

display
(extends)

holdLabel

removeLabel
(same act, extends grd)

removeholdLabel

selectZoom
(unchanged)

addLabel

display

removeLabel

selectZoom

M3_Block_Timeslots

M1_Landing_Sequence

M8_Interaction_Events
M7_Interaction_Pauses_UpdatesM6_Select_AirplaneM5_AMAN_Timeout

M4_Zoom

M2_Hold_Button

M0_AMAN_Update

AMAN_Timeout
(same act)

AMAN_Update
(same act)

Block_Time
(same act, extends grd)

Deblock_Time
(same act, extends grd)

Hold_Button
(same act)

Move_Aircraft
(refines)

changeZoom
(extends act)

deselectAirplane
(same act)

drag_airplane

drag_zoom_slider

resume_dragging_airplane
(refines)

selectAirplane
(refines)

start_dragging_zoom_slider

stop_dragging_airplane
(refines)

stop_dragging_zoom_slider

AMAN_Timeout
(same act, extends grd)

AMAN_Update
(same act, extends grd)

Block_Time
(unchanged)

Deblock_Time
(unchanged)

Hold_Button
(same act, extends grd)

Move_Aircraft
(extends)

changeZoom
(same act, extends grd)

deselectAirplane
(same act, extends grd)

resume_dragging_airplane

selectAirplane
(extends)

stop_dragging_airplane

AMAN_Timeout
(same grd, extends act)

AMAN_Update
(same grd, extends act)

Block_Time
(unchanged)

Deblock_Time
(unchanged)

Hold_Button
(extends)

Move_Aircraft
(same act, extends grd)

changeZoom
(same grd, extends act)

deselectAirplane

selectAirplane

AMAN_Timeout

AMAN_Update
(same grd, extends act)

Block_Time
(unchanged)

Deblock_Time
(unchanged)

Hold_Button
(unchanged)

Move_Aircraft
(unchanged)

changeZoom
(unchanged)

AMAN_Update
(unchanged)

Block_Time
(same act, extends grd)

Deblock_Time
(same act, extends grd)

Hold_Button
(same act, extends grd)

Move_Aircraft
(same act, extends grd)

changeZoom

AMAN_Update
(extends)

Block_Time

Deblock_Time

Hold_Button
(unchanged)

Move_Aircraft
(same act, extends grd)

AMAN_Update
(same grd, extends act)

Hold_Button

Move_Aircraft
(unchanged)

AMAN_Update
(refines)

Move_Aircraft

AMAN_Update

Fig. 5. The event refinement hierarchies of our model (top) and
of the companion model [15] bottom (generated by ProB)

refinement strategies, as can be guessed from looking at
Figure 5. The figure shows the event refinement hierar-
chy: on the left you can see all events of the most abstract
model, while the most concrete model is depicted on the
right. Newly introduced events (refining skip) are shown
with a red border, while unchanged events are shown
in light gray and are not connected with an arrow (just
a straight line). Extended events are shown in brown.
Our most abstract model (on the top left in Fig. 5) al-
ready has four events and twelve variables modeling the
concepts of labels and zooming, while the most abstract
model of [15] has just one event and variable and zoom-
ing is only added in machine M4.

Note that [15] has two more refinement levels not
shown in Fig. 5: M9 introducing mouse movements and
M10 adding precise pixel locations (something which we
did not model in this article). The models also have
a quite different set of variables: M8 of our model at
ABZ’2023 had 32 variables, the current version has merged
some of them and now has 18 variables (see Fig. 6), the
comparable M9 of [15] has 17 variables). Still, as seen
above, we were able to reuse its VisB visualisation for
our model.

Our development models the current time (as three
variables for hours, minutes and seconds), which increases
during execution (of the autonomous AMAN event dis-

M8
#vars=18 (+0,-0)

M7
#vars=18 (+1,-0)

M6
#vars=17 (+4,-0)

M5
#vars=13 (+1,-0)

M4
#vars=12 (+1,-0)

M3
#vars=11 (+2,-0)

M2
#vars=9 (+1,-0)

M1
#vars=8 (+8,-0)

mousePosition

requests_T

newArrivalH_T

holdLabels_T

zoomLevel

labels_T

arrivalM_T

diplayedLabels

curTimeH

curTimeS

newArrivalM_T

isStopped

curTimeM

selectedElement

mouseState

blockedZones_T

arrivalH_T

clickedElement

mousePosition

requests_T

newArrivalH_T

holdLabels_T

zoomLevel

labels_T

arrivalM_T

diplayedLabels

curTimeH

curTimeS

newArrivalM_T

isStopped

curTimeM

selectedElement

mouseState

blockedZones_T

arrivalH_T

clickedElement

mousePosition

requests_T

newArrivalH_T

holdLabels_T

zoomLevel

labels_T

arrivalM_T

diplayedLabels

curTimeH

curTimeS

newArrivalM_T

curTimeM

selectedElement

mouseState

blockedZones_T

arrivalH_T

clickedElement

requests_T

newArrivalH_T

holdLabels_T

zoomLevel

labels_T

arrivalM_T

diplayedLabels

curTimeH

curTimeS

newArrivalM_T

curTimeM

blockedZones_T

arrivalH_T

newArrivalH_T

holdLabels_T

zoomLevel

labels_T

arrivalM_T

diplayedLabels

curTimeH

curTimeS

newArrivalM_T

curTimeM

blockedZones_T

arrivalH_T

newArrivalH_T

holdLabels_T

zoomLevel

labels_T

arrivalM_T

diplayedLabels

curTimeH

curTimeS

newArrivalM_T

curTimeM

arrivalH_T

holdLabels_T

zoomLevel

labels_T

arrivalM_T

diplayedLabels

curTimeH

curTimeS

curTimeM

arrivalH_T

zoomLevel

labels_T

arrivalM_T

diplayedLabels

curTimeH

curTimeS

curTimeM

arrivalH_T

Fig. 6. The variable refinement hierarchies of our model (gener-
ated by ProB)

play). This is better for simulation, but more tricky for
model checking as the full state space is automatically
infinite (unless we restrict model checking to a particular
time interval). In the companion model, the authors nor-
malize the current time to 0; in other words, all times are
relative to the current time (cf. [28] or [16]). In addition,
the other model only models time as relative minutes,
abstracting away both hours and seconds. The use of rel-
ative time makes state space finite, but for deeper levels
it is too large without other restrictions as well (there
are 245 values already just for blocking time slots).

In this article, we have used the theory plugin [8] to
deal with sequences and with time. For sequences we use
the standard Rodin theory, providing direct definitions
for sequence operators (like seqAppend to concatenate
two sequences). The Time theory provides operators to
manipulate times and time differences expressed in min-
utes, hours and seconds. The theory also contains an
absolute value function, which is encoded in a context in
[15] (which is possible, as the function is not polymor-
phic). The sequence operations were encoded “by hand”
in [15] using relational operators.

In this model, we have also three special elements
hold, nothing and zoom, while the other model only
has airplane elements and encodes the special values
via sets. E.g., selectedElement=nothing corresponds
to selectedAirplane = ∅ in [15]. The set encoding re-
quires an additional invariant card(selectedAirplane)
≤ 1 in [15]. On the one hand, this makes it easier to
adapt the model to allow selecting multiple airplanes
later, but, on the other hand induces a few more well-
definedness POs (due to the use of card), which were

12 6 CONCLUSION

surprisingly tedious to discharge. We did not notice any
fundamental differences otherwise. It is thus worth not-
ing that the models represent two alternative Event-B
specifications of the same system.

In [5], the model-view-controller (MVC) pattern [1]
has been extended to integrate ASM formal specifica-
tions for the development of user interfaces (UI). Mainly,
the approach is composed of three steps: (1) an MVC
pattern is specified to model the interface of the system
and users; (2) the behavior of the considered system is
then formally specified using ASM notations [6]; in the
last step (3) the MVC elements which represent the user
interaction with the system are linked to ASM elements
using Java annotations. This is very similar to the use
of VisB with Event-B models for the purpose of ani-
mation. As for Event-B, properties are specified as in-
variants and guaranteed by attaching guards to ASM
actions that make them enabled only if these guards
are fulfilled. For the purpose of verification, some safety
properties are modelled as LTL formulas and then veri-
fied using the NuSMV model checker [9]. We think that
some of them can be simply modelled as invariants since
they depend on variables whose values are taken in the
same state. The main drawback of this approach is that
all the properties are specified at the first refinement
level; this makes it cumbersome.

In [13], the Alloy formal language is used to model
and verify the AMAN system. The authors propose first
a generic specification of the HAMSTERS task model
(structural and semantics aspects)[4] in Alloy, then
this latter is instantiated on the AMAN system in or-
der to verify properties on the user interactions with the
system. This approach also considers the robustness of
the AMAN system against ATCo errors represented as
unexpected ATCo actions. Properties to verify are spec-
ified as Alloy assertions that are then checked using
the bounded model checking engine of Alloy 6. The ver-
ification phase emphasises on the user interaction rather
than the internal functionalities of the AMAN system.
Consequently, this approach does not consider all the
requirements reported in [25].

The approaches presented in [5,13] both use bounded
model-checkers for verification. To avoid the well-known
problem of state space explosion related to such tools,
the properties verification is only performed for a bounded
number of objects (labels, slots, etc.).

6 Conclusion

In this paper, we presented an Event-B formal model of
the Arrival MANager system (called AMAN), the case
study provided in the ABZ2023 conference. Our specifi-
cation takes most requirements into account and defines
additional ones that can be considered common sense,
like a fair processing of landing requests. Compared to
previous case studies proposed in the ABZ conferences,

this present case study contains fewer invariants (65 in-
variants) but most of them are dynamic and require thus
the introduction of several auxiliary variables to store
the previous system state. This implies the definition
of additional invariants to relate the before and current
values of each variable. These additional invariants pro-
duce a great number of proof obligations since we have
to establish that each event maintains these invariants.

For this particular case study, the expression of in-
variants that depend on the previous state proved to be
difficult since variables are interrelated: at the instant t,
the arrival times of aircraft depend on the moved labels,
requests and aircraft put on hold during the last 10 sec-
onds (at the instant (t-step)). The use of ProB helped
us in defining the correct expression of these invariants
by model checking invariants and simulating some sce-
narios to validate/fix them. The user-friendly graphical
visualisation makes the validation phase easier.

Compared to the previous ABZ case studies [21,24],
the present case study is time-dependent. Indeed, its
main objective is to assign arrival times to aircraft; this
is why we introduced timed aspect from the first specifi-
cation level along with the event display that makes the
time evolve.

In future work, we plan to study and model how
AMAN can decide whether a label can be moved or not.
For this purpose, we can assume that an arrival time in-
terval is associated with each label. In that case, AMAN
would allow the moving of a label iff it remains within its
associated interval. Unfortunately, we fell short of time
to deeply investigate this solution. Future improvements
also include exploring the use of decomposition plugins
available in Rodin for structuring the built models into
smaller and thus more manageable units. We can see the
system as a set of independent parts (each of them corre-
sponding to a single ATCo interaction) and the AMAN
as a root part that uses their information to calculate a
new prediction.

Acknowledgements We would like to thank Fabian Vu
for developing the VisB visualisation of the companion
model. We thank David Geleßus and Sebastian Stock for
fruitful discussions about the case study. We also thank
anonymous referees for their useful feedback.

References

1. Model-View-Controller Pattern, pp. 353–402. Apress,
Berkeley, CA (2009), https://doi.org/10.1007/
978-1-4302-2370-2_20

2. Abrial, J.R.: The B-Book - Assigning Programs to Mean-
ings. Cambridge University Press (1996)

3. Abrial, J.: Modeling in Event-B. Cambridge University
Press (2010)

4. Amor, M.B.: Hamsters: A New Task Model for Interac-
tive Systems (2009)

13

5. Bombarda, A., Bonfanti, S., Gargantini, A.: Formal
MVC: A Pattern for the Integration of ASM Specifi-
cations in UI Development. In: Glässer, U., Campos,
J.C., Méry, D., Palanque, P.A. (eds.) Rigorous State-
Based Methods - 9th International Conference, ABZ
2023, Nancy, France, May 30 - June 2, 2023, Proceed-
ings. Lecture Notes in Computer Science, vol. 14010, pp.
340–357. Springer (2023)

6. Börger, E., Stärk, R.F.: Abstract State Machines. A
Method for High-Level System Design and Analysis.
Springer (2003)

7. Butler, M., Maamria, I.: Mathematical Extension in
Event-B through the Rodin Theory Component (2010)

8. Butler, M.J., Maamria, I.: Practical Theory Extension
in Event-B. In: Theories of Programming and Formal
Methods - Essays Dedicated to Jifeng He on the Occasion
of His 70th Birthday. pp. 67–81 (2013)

9. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.:
NUSMV: A New Symbolic Model Checker. Int. J. Softw.
Tools Technol. Transf. 2(4), 410–425 (2000), https://
doi.org/10.1007/s100090050046

10. Clarke, E.M., Emerson, E.A.: Design and Synthesis of
Synchronization Skeletons Using Branching Time Tem-
poral Logic. In: Grumberg, O., Veith, H. (eds.) 25 Years
of Model Checking - History, Achievements, Perspectives.
Lecture Notes in Computer Science, vol. 5000, pp. 196–
215. Springer (2008)

11. Clearsy: https://www.atelierb.eu/
en/presentation-of-the-b-method/
formal-proof-presentation/

12. Consortium, E.B.: http://www.event-b.org/
13. Cunha, A., Macedo, N., Kang, E.: Task Model De-

sign and Analysis with Alloy. In: Glässer, U., Campos,
J.C., Méry, D., Palanque, P.A. (eds.) Rigorous State-
Based Methods - 9th International Conference, ABZ
2023, Nancy, France, May 30 - June 2, 2023, Proceed-
ings. Lecture Notes in Computer Science, vol. 14010, pp.
303–320. Springer (2023)

14. Event-B Consortium: SMT Solvers Plug-in. https://
wiki.event-b.org/index.php/SMT_Solvers_Plug-in

15. Geleßus, D., Stock, S., Vu, F., Leuschel, M., Mashkoor,
A.: Modeling and Analysis of a Safety-Critical Interac-
tive System Through Validation Obligations. In: Glässer,
U., Campos, J.C., Méry, D., Palanque, P.A. (eds.) Rigor-
ous State-Based Methods - 9th International Conference,
ABZ 2023, Nancy, France, May 30 - June 2, 2023, Pro-
ceedings. Lecture Notes in Computer Science, vol. 14010,
pp. 284–302. Springer (2023)

16. Lamport, L.: Real-Time Model Checking Is Really Sim-
ple. In: Proceedings CHARME 2005. pp. 162–175 (2005)

17. Leuschel, M., Bendisposto, J., Dobrikov, I., Krings, S.,
Plagge, D.: From Animation to Data Validation: The
ProB Constraint Solver 10 Years On. In: Boulanger, J.L.
(ed.) Formal Methods Applied to Complex Systems: Im-
plementation of the B Method, chap. 14, pp. 427–446.
Wiley ISTE, Hoboken, NJ (2014)

18. Leuschel, M., Butler, M.J.: ProB: An Automated Anal-
ysis Toolset for the B Method. International Journal on
Software Tools for Technology Transfer 10(2), 185–203
(2008)

19. Mammar, A., Frappier, M.: Modeling of a Speed Con-
trol System using Event-B. In: Raschke, A., Méry, D.,

Houdek, F. (eds.) Rigorous State-Based Methods - 7th
International Conference, ABZ 2020, Ulm, Germany,
May 27-29, 2020, Proceedings. Lecture Notes in Com-
puter Science, vol. 12071, pp. 367–381. Springer (2020)

20. Mammar, A., Frappier, M., Fotso, S.J.T., Laleau, R.:
A Formal Refinement-Based Analysis of the Hybrid
ERTMS/ETCS Level 3 Standard. Int. J. Softw. Tools
Technol. Transf. 22(3), 333–347 (2020)

21. Mammar, A., Frappier, M., Laleau, R.: An Event-B
Model of an Automotive Adaptive Exterior Light Sys-
tem. In: Raschke, A., Méry, D., Houdek, F. (eds.) Rigor-
ous State-Based Methods - 7th International Conference,
ABZ 2020, Ulm, Germany, May 27-29, 2020, Proceed-
ings. Lecture Notes in Computer Science, vol. 12071, pp.
351–366. Springer (2020)

22. Mammar, A., Leuschel, M.: Modeling and Verifying an
Arrival Manager using Event-B. In: Glässer, U., Campos,
J.C., Méry, D., Palanque, P.A. (eds.) Rigorous State-
Based Methods - 9th International Conference, ABZ
2023, Nancy, France, May 30 - June 2, 2023, Proceed-
ings. Lecture Notes in Computer Science, vol. 14010, pp.
321–339. Springer (2023)

23. Mammar, A., Leuschel, M.: Modeling and Verifying an
Arrival Manager using Event-B. Available at https://
github.com/AmelMammar/AMAN (January 2024)

24. Mammar, A., Laleau, R.: Modeling a Landing Gear Sys-
tem in Event-B. Int. J. Softw. Tools Technol. Transf.
19(2), 167–186 (2017)

25. Palanque, P.A., Campos, J.C.: AMAN Case Study. In:
Glässer, U., Campos, J.C., Méry, D., Palanque, P.A.
(eds.) Rigorous State-Based Methods - 9th International
Conference, ABZ 2023, Nancy, France, May 30 - June 2,
2023, Proceedings. Lecture Notes in Computer Science,
vol. 14010, pp. 265–283. Springer (2023)

26. Parnas, D.L., Madey, J.: Functional Documents for Com-
puter Systems. Science of Computer Programming 25(1),
41–61 (1995)

27. Pnueli, A.: The Temporal Logic of Programs. In: 18th
Annual Symposium on Foundations of Computer Sci-
ence, Providence. pp. 46–57. IEEE Computer Society
(1977)

28. Rehm, J., Cansell, D.: Proved Development of the Real-
Time Properties of the IEEE 1394 Root Contention Pro-
tocol with the Event B Method. In: ISoLA. pp. 179–190
(2007)

29. Vu, F., Happe, C., Leuschel, M.: Generating in-
teractive documents for domain-specific validation
of formal models. Int. J. Softw. Tools Technol.
Transf. 26(2), 147–168 (2024), https://doi.org/10.
1007/s10009-024-00739-0

30. Werth, M., Leuschel, M.: VisB: A Lightweight Tool to Vi-
sualize Formal Models with SVG Graphics. In: Raschke,
A., Méry, D., Houdek, F. (eds.) Proceedings ABZ 2020.
pp. 260–265. LNCS 12071 (2020)

14 B B SYMBOLS

A An excerpt of the requirements

Requirement label description
Req1 Planes can added to the flight sequence e.g. planes arriving in a closerange of the

airport.
Req2 Planes can be removed from the flight sequence e.g. planes changing their landing

airport for some reason.
Req3 Planes moved earlier or later on the timeline by the PLAN ATCo thus requiring from

AMAN the processing of a new prediction.
Req4 Planes put on hold by the PLAN ATCo. Planes removed from HOLD will appear as

normal aircrafts handled by AMAN.
Req5 Aircraft labels should not overlap.
Req6 An aircraft label cannot be moved into a blocked time period.
Req7 Moving an aircraft label might not be accepted by AMAN if it would require a speed

up of the aircraft beyond the capacity of the aircraft.
Req8 If AMAN is not functioning (e.g. no update after 10 seconds) the ATCo must be

informed about the failure and landing sequence preparation will be done manually
(without AMAN).

Req9 Displays should provide recognisable feedback on entries made by the ATCo into the
system so that the ATCo can detect and correct errors.

Req10 Displays should provide recognisable feedback on present state of the automated sys-
tem or mode of operation. (What is it doing?).

Req11 Displays should provide recognisable feedback on actions taken by the system to
achieve or maintain a desired state. (What is it trying to do?).

Req12 Displays should provide recognisable feedback on future states scheduled by the au-
tomation. (What is it going to do next?).

Req13 Displays should provide recognisable feedback on transitions between system states.
Req14 The set of tasks identified must be feasible on the interactive systems;this may be

ensured by checking behavioural equivalence of the task model with respect to a
model of the interactive application.

Req15 The HOLD button must be available only when one aircraft label is selected.
Req16 The zoom value cannot be bigger than 45 and smaller than 15.
Req17 Aircraft labels must always be positioned in front of a small bar of the timeline.
Req18 Lift of the zoom slider should always be located on the slider bar.
Req19 The value displayed next to the zoom slider must belong to the list of seven acceptable

values for the zoom.
Req20 Each movement of the mouse on the ATCo table must be reflected by a movement

of the cursor on the screen
Req21 There must be one and only one mouse cursor on the screen
Req22 Hold(aircraft) function can only be triggered after a mouse press and a mouse released

have been performed on the HOLD button.
Req23 Hold(aircraft) function must not be triggered if there is not a mouse press and a

mouse released performed on the HOLD button.
Table 3: An excerpt of the requirements from [25]

B B symbols

Table 4 gives the semantics of the different mathematical symbols used in the paper where:

– A and B denote any sets of elements,
– If a and b are elements of A and B respectively, a 7→ b denotes the tuple (a, b),

15

– A1 and B1 denote any subsets of A and B respectively,
– P denotes a predicate,
– S denotes any set expression.

16 B B SYMBOLS

C
on

ce
pt

N
ot

at
io

n
Se

m
an

ti
cs

A
1
,.

..
,A

n
is

a
pa

rt
it

io
n

of
A

p
ar

ti
ti

on
A

i
⊆

A
∧
⋃ i

A
i
=

A
(A

,A
1
,.

..
,A

n
)

∀i
,j
.i
̸=

j
⇒

A
i
∩
A

j
=

∅
Se

t
of

pa
rt

ie
s

of
A

P(
A
)

P(
A
)
=

{A
1
·A

1
⊆

A
}

Se
t

of
no

n
em

pt
y

pa
rt

ie
s

of
A

P1
(A

)
P1

(A
)
=

{A
1
·A

1
⊆

A
∧
A

1
̸=

∅
}

Q
ua

nt
ifi

ed
un

io
n

⋃ z
.P

|S
if
∀z

.(
P

⇒
S
⊆

T
,t

he
n
⋃ z

.P
|S

=
{
y
|y

∈
T

∧
∃
z
.(

z
∈

T
∧

P
∧

y
∈

S
)}

L
am

bd
a

ex
pr

es
si

on
λ
x
.(
x
∈

T
∧

P
|E

)
If

∀
x
.(
x
∈

T
⇒

E
∈

U
),

λ
x
.(
x
∈

T
∧

P
|E

)=
{
x
,y

|x
,y

∈
T

×
U

∧
P

∧
y

=
E

}
R

is
a

re
la

ti
on

fr
om

A
to

B
R

∈
A

↔
B

R
⊆

{a
7→

b·
a
∈
A
∧
b
∈
B
}

R
−
1

is
th

e
in

ve
rs

e
of

R
R

−
1

R
−
1
=

{b
7→

a
·a

7→
b
∈
R
}

D
iff

er
en

ce
R

1
\R

2
if
R

1
∈
A

↔
B

an
d
R

2
∈
A

↔
B

th
en

,
R

1
\R

2
=

{a
7→

b·
a
7→

b
∈
R

1
∧
a
7→

b
/∈
R

2
}

O
ve

rr
id

e
of

R
1

by
R

2
R

1
◁−

R
2

if
R

1
∈
A

↔
B

an
d
R

2
∈
A

↔
B

th
en

,
R

1
◁−

R
2
=

{a
7→

b·
a
7→

b
∈
R

2
∨
(a

7→
b
∈
R

1
∧
a
/∈
d
om

(R
2
))
}

D
ir

ec
t

pr
od

uc
t

of
R

1
an

d
R

2
R

1
⊗

R
2

if
R

1
∈
A

↔
B

an
d
R

2
∈
A

↔
C

th
en

,
R

1
⊗

R
2
=

{a
7→

(b
7→

c)
·a

7→
b
∈
R

1
∧
a
7→

c
∈
R

2
}

Im
ag

e
of

A
1

by
R

R
[A

1
]

R
[A

1
]
=

{b
1
·(
b 1

∈
B

∧
∃a

1
·(
a
1
∈
A

1
∧
a
1
7→

b 1
∈
R
))
}

D
om

ai
n

of
R

d
om

(R
)

d
om

(R
)
=

{a
1
·(
a
1
∈
A
∧
∃b

1
·(
b 1

∈
B

∧
a
1
7→

b 1
∈
R
))
}

R
an

ge
of

R
ra

n
(R

)
ra

n
(R

)
=

{b
1
·(
b 1

∈
B

∧
∃a

1
·(
a
1
∈
A
∧
a
1
7→

b 1
∈
R
))
}

D
om

ai
n

re
st

ri
ct

io
n

of
R

A
1
◁

R
A

1
◁

R
=

{a
7→

b·
(a

7→
b
∈
R

∧
a
∈
A

1
)}

P
ar

ti
al

fu
nc

ti
on

f
f
∈
A

7→
B

f
∈
A

↔
B

∧
∀a

·(
a
∈
A

⇒
ca
rd

(f
[{
a
}]
)
≤

1
)

T
ot

al
fu

nc
ti

on
f

f
∈
A
→

B
f
∈
A

7→
B

∧
d
om

(f
)
=

A

sk
ip

su
bs

ti
tu

ti
on

sk
ip

D
o

no
th

in
g:

al
lt

he
va

ri
ab

le
s

ar
e

no
t

m
od

ifi
ed

.
A

N
Y

su
bs

ti
tu

ti
on

A
N

Y
X

W
H

E
R

E
G

T
H

E
N

S
E
N

D
E

xe
cu

te
th

e
su

bs
ti

tu
ti

on
S

fo
r

an
y

va
lu

es
of

pa
ra

m
et

er
s
X

th
at

sa
ti

sf
y
G

G
ua

rd
of

an
ev

en
t
E

g
rd

(E
)

If
E

=
A

N
Y

X
W

H
E
R

E
G

T
H

E
N

S
th

en
,g

rd
(E

)
=

G

T
ab

le
4:

So
m

e
E
v
en

t
-B

sy
m

bo
ls

an
d

th
ei

r
se

m
an

ti
cs

