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FIRST-ORDER APPROXIMATION OF LARGE EIGENVALUES OF
THE TWO-PHOTON ASYMMETRIC QUANTUM RABI MODEL

ANNE BOUTET DE MONVEL1, MIRNA CHARIF2, AND LECH ZIELINSKI3

Abstract. We investigate the asymptotic distribution of large eigenvalues of the
two-photon quantum Rabi model with a bias. The asymptotic formula for the m-th
eigenvalue is obtained with the remainder estimate O(m−1 lnm) when m tends to
infinity, which corresponds to the first-order approximation of large eigenvalues for
this model.
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1. General presentation

1.1. Introduction. The quantum Rabi model (QRM) describes the simplest interaction
between a two-level atom and a quantized single-mode radiation. We refer to [50],
[51], [37], [15], for the history of the model and to [65] for a survey of theoretical and
experimental results. The basic version of the model was widely used to study real
atoms in quantum optics, e.g. to test experimentally the field energy quantization of
the cavity electrodynamics (see [16]). However, new realizations of engineered quantum
devices with important technological applications lead to various generalizations of
the initial model. In particular, the superconducting circuits in the microwave regime,
cooled to the ground state in cryogenic temperatures, play the role of artificial atoms
and can be described by the asymmetric QRM (see [65], [32], [29], [38], [66], [67]). This
model (see Definition 1.2(c)) contains an additional parameter ε (the bias of the model),
which can be experimentally adjusted by the application of magnetic flux through a
circuit loop.

Another type of the QRM is used in the situation when the change of level is
associated with the absorption/emission of two photons instead of one photon. The
corresponding two-photon QRM (see Definition 1.2(d)) was applied to describe a two-
level atom interacting with squeezed light (see [2], [30]), quantum dots inserted in a
cavity ([19]), trapped ions experiments (see [24]), and superconducting circuits (see
[25], [26]). Both models, the one-photon and the two-photon QRM, have been subject
of intensive research in connection with the quantum thermalization and integrability
questions (see [15], [13], [12], [39], [40], [55], [60]). We note that the integrability of
the considered models depends on the bias and is closely related to the existence of
hidden symmetries and double eigenvalues (see [1], [14], [41], [44], [46], [47], [48], [53],
[54], [64]). Moreover, a number of research works concern the so-called spectral collapse
problem, i.e., the study of the transition from discrete to continuous spectrum of the
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two-photon quantum Rabi model, which occurs when the coupling constant takes the
critical value g = 1/2 in (1.23) (see [12], [17], [43]).

The purpose of this paper is to investigate large eigenvalues of the two-photon QRMl
under the assumption that g ̸= 0 and −1/2 < g < 1/2 (note that the assumption
|g| < 1/2 is essential to ensure the fact that the spectrum is discrete). The main
result of the paper is stated in Theorem 1.5. We note that the asymptotic formulas
of Theorem 1.5 depend on the value of ε/

√
1− 4g2 in a similar manner as in the

integrability problem of the model. In the next section we give an overview of results
related to the behavior of large eigenvalues of the one-photon and two-photon QRM.

1.2. Overview of related results. We refer to [58] and [27], for the earliest investiga-
tions of large eigenvalues for the one-photon QRM in the case ε = 0. It is well known
(see [61], [7]) that the assumption ε = 0 allows one to express the one-photon QRM
as a direct sum of two Jacobi operators (i.e. operators defined by infinite tridiagonal
matrices). Similarly, the two-photon QRM can be expressed as a direct sum of four
Jacobi operators if ε = 0 (see [9]). A mathematical study of large eigenvalues of Jacobi
operators was initiated by J. Janas and S. Naboko in the paper [36], which contains
fundamental ideas of the method of approximate diagonalizations.

The question of the behavior of large eigenvalues of Jacobi operators corresponding
to the one-photon QRM, was first posed by E. A. Tur [61]-[62]. This question was
also mentioned by A. Boutet de Monvel, S. Naboko and L. O. Silva in [5]. Due to the
difficulty of the problem, the paper [5] gives the asymptotic estimates for a simpler class
of operators ("modified Jaynes-Cummings models"). However, using the ideas of [36],
E. A. Tur [63] proved the two-term asymptotic formula for the m-th eigenvalue of the
one-photon QRM with the remainder estimate O(m−1/16) as m→ ∞ (see also [62]).

The three-term asymptotic formula for the one-photon QRM in the case ε = 0
was proved in the papers A. Boutet de Monvel, L. Zielinski [6]-[7]. We note that the
three-term asymptotic formula allows one to recover the values of parameters of the
model from its spectrum (see [8]) and was used by Z. Rudnick [57] to consider a Braak’s
conjecture (see [12]). Moreover, this formula coincides with the approximation proposed
by I. D. Feranchuk, L. I. Komarov, A. P. Ulyanenkov [27] (see the formula (25) in
[27]). The same approximation was described by E. K. Irish [34], [35], and it is well
known under the name of the generalized rotating-wave approximation (GRWA). The
quality of GRWA was investigated by numerous numerical calculations. In particular, a
thorough numerical analysis of 40,000 eigenvalues was performed by L. T. H. Nguyen,
C. Reyes-Bustos, D. Braak and M. Wakayama [49].

The three-term asymptotic formula for large eigenvalues of the two-photon QRM
in the case ε = 0 was proved by A. Boutet de Monvel, L. Zielinski in [9], [11] (see
also [10]) and E. A. Ianovich [33]. The asymptotic behavior of large eigenvalues for
the asymmetric one-photon QRM, was investigated in the papers M. Charif, A. Fino,
L. Zielinski [18] and A. Boutet de Monvel, M. Charif, L. Zielinski [4]. The two-term
asymptotic formula for large eigenvalues of the asymmetric two-photon QRM was proved
in the paper A. Boutet de Monvel, M. Charif, L. Zielinski [3]. The results of [3] are
described in Section 2 and are used in the proof of Theorem 1.5. Other types of results
in the asymptotic analysis of the QRM were considered in [42], [45], [59], [56].

1.3. Definitions and statements.

Notation 1.1. (a) In what follows, Z is the set of integers and N := {n ∈ Z : n ≥ 0}.
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(b) We denote by ℓ2(N) the complex Hilbert space of square-summable sequences
x : N → C equipped with the scalar product

⟨x, y⟩ℓ2(N) =
∞∑

m=0

x(m)y(m) (1.1)

and the norm ||x||ℓ2(N) := ⟨x, x⟩1/2ℓ2(N). For s > 0 we denote

ℓ2,s(N) := {x ∈ ℓ2(N) :
∞∑

m=0

(1 +m2)s |x(m)|2 <∞} (1.2)

(c) The canonical basis of ℓ2(N) is denoted {en}n∈N (i.e. en(m) = δn,m for n, m ∈ N).

(d) The annihilation and creation operators, â and â†, are the linear maps ℓ2,1/2(N) →
ℓ2(N) satisfying

â† en =
√
n+ 1 en+1 for n ∈ N (1.3)

â e0 = 0 and â en =
√
n en−1 for n ∈ N \ {0}. (1.4)

(e) Using (1, 0) ∈ C2 and (0, 1) ∈ C2 as the canonical basis of the Euclidean space C2,
we denote by σx, σz, I2, the linear operators in C2 defined by the matrices

σx :=

(
0 1
1 0

)
, σz :=

(
1 0
0 −1

)
, I2 :=

(
1 0
0 1

)
(1.5)

Definition 1.2. (a) The two-level system (TLS) Hamiltonian is the linear map in C2

defined by the matrix

HTLS =
1

2

(
∆ ε
ε −∆

)
=

∆

2
σz +

ε

2
σx (1.6)

where ∆ and ε are real parameters.

(b) The Hamiltonian of the single-mode radiation is the linear map Hrad : ℓ2,1(N) →
ℓ2(N) defined by the formula

Hraden = â†â en = nen for n ∈ N. (1.7)

(c) Let g ∈ R. Then the one-photon quantum Rabi Hamiltonian is defined as the linear
map H

(1)
Rabi : C2 ⊗ ℓ2,1(N) → C2 ⊗ ℓ2(N) given by

H
(1)
Rabi = I2 ⊗Hrad +HTLS ⊗ Iℓ2(N) + gσx ⊗

(
â+ â†

)
. (1.8)

(d) If −1/2 < g < 1/2, then the two-photon quantum Rabi Hamiltonian is defined as
the linear map H

(2)
Rabi : C2 ⊗ ℓ2,1(N) → C2 ⊗ ℓ2(N) given by

H
(2)
Rabi = I2 ⊗Hrad +HTLS ⊗ Iℓ2(N) + gσx ⊗

(
â2 + (â†)2

)
(1.9)

and we let H
(2)
0,Rabi denote the operator given by (1.9) with ∆ = 0, i.e.

H
(2)
0,Rabi = I2 ⊗Hrad + σx ⊗

(
g
(
â2 + (â†)2

)
+
ε

2

)
. (1.10)

The following result is well-known (see [22], [23]):
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Theorem 1.3 (the case ∆ = 0). Assume that − 1
2 < g < 1

2 and denote

β :=
√
1− 4g2, (1.11)

βν =
1

2
(β − 1 + νε), ν = ±1. (1.12)

If H(2)
0,Rabi is given by (1.10), then there is an orthonormal basis {u0

ν,m}(ν,m)∈{−1,1}×N
such that

H
(2)
0,Rabiu

0
ν,m = (βm+ βν)u

0
ν,m, ν = ±1 (1.13)

The following result was proved in [3]:

Theorem 1.4. Assume that − 1
2 < g < 1

2 and g ̸= 0. If H(2)
Rabi is given by (1.9), then

there is an orthonormal basis {uν,m}(ν,m)∈{−1,1}×N such that

H
(2)
Rabiu±1,m = E±

mu±1,m (1.14)

and the eigenvalue sequences {E−
m}m∈N, {E+

m}m∈N, satisfy the asymptotic estimate

E±
m = βm+ β±1 +O(m−1/2 lnm) as m→ ∞ (1.15)

with β, β±1 given by (1.11)-(1.12).

The purpose of this paper is to improve the remainder estimate O(m−1/2 lnm) from
Theorem 1.4. We will prove

Theorem 1.5. Assume that − 1
2 < g < 1

2 and g ̸= 0. Let H(2)
Rabi be given by (1.9)

(a) If ε/β /∈ Z, then there is an orthonormal basis {uν,m}(ν,m)∈{−1,1}×N such that (1.14)
holds and

E±
m = βm+ β±1 +O(m−1 lnm) as m→ ∞ (1.16)

(b) If l := |ε|/β is an odd integer, then there is an orthonormal basis {uν,m}(ν,m)∈{−1,1}×N
such that (1.14) holds and one has

E+
i = βi+ β1 +O(i−1 ln i) as i→ ∞ (1.17)

E−
i+l = E+

i +O(i−1 ln i) as i→ ∞ (1.18)

(c) If l := |ε|/β is an even integer, then there is an orthonormal basis {uν,m}(ν,m)∈{−1,1}×N
such that (1.14) holds and one has

E+
i = βi+ β1 + |ri|+O(i−1 ln i) as i→ ∞ (1.19)

E−
i+l = βi+ β1 − |ri|+O(i−1 ln i)) as i→ ∞ (1.20)

with

ri := i−1/2 ∆

2

√
β

π|g|
cos
(
(2i+ 1 + l)α− i

π

2

)
, (1.21)

where

α := arctan

(√
1− 2|g|
1 + 2|g|

)
. (1.22)

Proof. See Section 8. □



1ST ORDER APPROXIMATION OF LARGE EIGENVALUES OF THE 2PH-AQRM 5

1.4. Outline of the proof of Theorem 1.5. The proof of Theorem 1.5 follows the
same idea as the proof of Theorem 1.4 given in [3]. We first remark that the operator

H
(2)
Rabi = I2 ⊗ â†â+ σx ⊗

(
g
(
â2 + (â†)2

)
+
ε

2

)
+

∆

2
σz ⊗ Iℓ2(N) (1.23)

is unitarily similar to the operator

H := I2 ⊗ â†â− σz ⊗
(
g
(
â2 + (â†)2

)
+
ε

2

)
+

∆

2
σx ⊗ Iℓ2(N), (1.24)

due to the fact that

Uπ/4σxU
−1
π/4 = −σz, Uπ/4σzU

−1
π/4 = σx

hold with Uπ/4 = 1√
2

(
1 −1
1 1

)
. If ∆ = 0, then the operator

H0 := I2 ⊗ â†â− σz ⊗
(
g
(
â2 + (â†)2

)
+
ε

2

)
(1.25)

is similar to H−1 ⊕ H1, the direct sum of two self-adjoint operators in ℓ2(N) whose
eigenvalues are explicitly known (see Lemma 2.1).

We start our approach by moving from ℓ2(N) to ℓ2(Z) and replacing H−1 ⊕ H1

by J−1 ⊕ J1 where J−1 and J1 are two appropriate self-adjoint operators in ℓ2(Z).
These operators were considered by Edward [21] and, one can express explicitly their
eigenvalues and eigenvectors by means of Fourier series (see Proposition 2.4). The
operators J±1 are not semi-bounded, but one can choose two sequences of eigenvalues
{λj(J±1)}j∈Z such that λj(J±1) = λj(H±1) when j ∈ N. Moreover, Proposition 2.10
ensures the fact that large eigenvalues of

H := H0 +
∆

2
σx ⊗ Iℓ2(N) (1.26)

are close to suitable eigenvalues of

J = J0 +
∆

2
σx ⊗ Iℓ2(Z)

(where J0 is similar to J−1 ⊕ J1). Thanks to this result, the asymptotic estimates of
Theorem 1.5 follow from analogical estimates for large eigenvalues of the operator J.

In Section 3 we introduce the operator J acting in ℓ2(Z) and similar to J. In
Theorem 3.2 and 3.4 we state the results corresponding to the first order approximation
of large eigenvalues of J . The proof of Theorem 3.2 and 3.4 is based on similarity
transformations described in Sections 4 and 5. The proof of Theorem 3.4 is completed
in Section 6 and the proof of Theorem 3.2 is completed in Section 7. In Section 8 we
deduce the assertion of Theorem 1.5(a) from Theorem 3.2 and the assertions of Theorem
1.5(b)-(c) from Theorem 3.4.

2. Earlier results

2.1. Preliminaries. In what follows, we identify C2⊗ ℓ2(N) with ℓ2(N)×ℓ2(N), writing

(1, 0)⊗ ej = (ej , 0) ∈ ℓ2(N)×ℓ2(N), (0, 1)⊗ ej = (0, ej) ∈ ℓ2(N)×ℓ2(N)

and we investigate the operator H given by (1.24), which is similar to H
(2)
Rabi. Then H

can be considered as the linear map ℓ2,1(N)×ℓ2,1(N)→ ℓ2(N)×ℓ2(N) of the form

H =

(
H−1

∆
2 Iℓ2(N)

∆
2 Iℓ2(N) H1

)
(2.1)
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where the operators H±1 : ℓ2,1(N) → ℓ2(N) are given by

H±1 := â†â± g
(
â2 + (â†)2

)
± ε

2
. (2.2)

If ∆ = 0, then H
(2)
0,Rabi is similar to

H0 =

(
H−1 0ℓ2(N)
0ℓ2(N) H1

)
= H−1 ⊕H1. (2.3)

The direct computation gives the expression

Hνem =
(
m+ ν

ε

2

)
em + νg b(m)em+2 + νg b(m− 2)em−2 for m ∈ N, (2.4)

with
b(m) :=

√
(m+ 1)(m+ 2) for m ∈ N (2.5)

and by convention b(m− 2)em−2 = 0 when m ∈ {0, 1}. It is well known (see [22], [23],
[3]) that H±1 are lower semi-bounded self-adjoint operators in ℓ2(N), their eigenvalues
are simple and are given by the formula

λn(Hν) = βn+ βν , (2.6)

where β and βν are given by (1.11) and (1.12). Consequently, H0 = H−1 ⊕ H1 is a
lower semi-bounded self-adjoint operator in ℓ2(N)× ℓ2(N) and one has

Lemma 2.1. Assume ε ≥ 0 and denote

l := ⌊ε/β⌋ = max{n ∈ N : n ≤ ε/β}. (2.7)

Let {λn(H0)}n∈N be the non-decreasing sequence of eigenvalues of H0 = H−1 ⊕ H1,
counting the multiplicities. Then

λn(H0) = βn+ β−1 when n < l

λl+2i(H0) = β(l + i) + β−1 for i ∈ N
λl+2i+1(H0) = βi+ β1 for i ∈ N

(2.8)

Proof. We remark that the sequence {λn(H0)}n∈N defined in (2.8) is non-decreasing
and composed of the union of eigenvalues of H−1 and H1 (see Corollary 2.3 in [3]). □

2.2. Auxiliary operators J±1. The purpose of this section, is to approximate the
operators H±1 acting in ℓ2(N) by operators J±1 acting in ℓ2(Z).

Notation 2.2. (a) We denote by ℓ2(Z) the complex Hilbert space of square-summable
sequences x : Z → C equipped with the scalar product

⟨x, y⟩ =
∑
k∈Z

x(k)y(k) (2.9)

and the norm ||x|| := ⟨x, x⟩1/2.
(b) For s > 0 we denote

ℓ2,s(Z) := {x ∈ ℓ2(Z) : ||x||ℓ2,s(Z) <∞}
where

||x||ℓ2,s(Z) :=
( ∑

k∈Z
(1 + k2)s |x(k)|2

)1/2
(2.10)

(c) The canonical basis of ℓ2(Z) is denoted {ẽj}j∈Z (i.e. ẽj(k) = δj,k for j, k ∈ Z).
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(d) If (d̃j)j∈Z is real valued, then D̃ := diag(d̃j)j∈Z is the self-adjoint operator in ℓ2(Z)
satisfying

D̃ ẽj = d̃j ẽj for every j ∈ Z
and we denote

Λ := diag(j)j∈Z. (2.11)

(e) We denote by S the shift defined in ℓ2(Z) by (Sx)(j) = x(j − 1), i.e. Sẽj = ẽj+1.

We observe that the expression of Hνem given in (2.4), contains the term b(m)
satisfying

b(m) =
√
(m+ 1)(m+ 2) = m+ 3

2 +O(m−1) as m→ ∞ (2.12)

We define Jν , replacing (2.4) by a similar formula acting on the canonical basis of ℓ2(Z)
by means of m+ 3

2 instead of b(m) =
√

(m+ 1)(m+ 2).

Notation 2.3. For ν = ±1 we define the linear maps Jν : ℓ2,1(Z) → ℓ2(Z) by

Jν ẽj =
(
j + ν

ε

2

)
ẽj + νg

(
j +

3

2

)
ẽj+2 + νg

(
j − 1

2

)
ẽj−2 for j ∈ Z. (2.13)

Using Notation 2.2 we can express Jν in the form

Jν = Λ+ ν
ε

2
+ νg

(
S2

(
Λ +

3

2

)
+

(
Λ +

3

2

)
S−2

)
(2.14)

= Λ+ ν
ε

2
+ νg

(
S2

(
Λ +

3

2

)
+ h.c.

)
In what follows, T := R/2πZ is identified with (−π, π] and L2(T) denotes the Hilbert
space of Lebesgue square integrable functions (−π, π] → C equipped with the scalar
product

⟨f, g⟩L2(T) :=

∫ π

−π

f(θ) g(θ)
dθ

2π
(2.15)

and the norm ||f ||L2(T) = ⟨f, f⟩1/2L2(T). We let FT denote the isometric isomorphism
L2(T) → ℓ2(Z) given by

(FTf)(j) =

∫ π

−π

f(θ) e−ijθ dθ

2π
(2.16)

and, for µ = ±1 we consider the operator

Lν := F−1
T JνFT = −i

d

dθ
+ ν

ε

2
+ νg

(
e2iθ

(
−i

d

dθ
+

3

2

)
+ h.c.

)
Similarly as in [21] and [3], we observe that the assumption |g| < 1/2 ensures the

fact that Lν is the first order linear elliptic differential operator,

Lν =
1

2

( (
1 + 2νg cos(2θ)

)(
− i

d

dθ

)
+ h.c.

)
+ ν

(
g cos(2θ) +

ϵ

2

)
.

In what follows, we assume that β =
√
1− 4g2 is as in (1.11), and for ν = ±1 we define

Φν(θ) :=

∫ θ

0

β dθ′

1 + 2νg cos(2θ′)
. (2.17)
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Then the direct computation by means of the standard change of variable t = tan(θ)
gives

Φν(θ) = arctan

(√
1− 2νg

1 + 2νg
tan(θ)

)
if − π

2
< θ <

π

2
, (2.18)

hence Φν(π/2) = π/2. Since the function θ′ → β/(1 + 2νg cos(2θ′)) is π-periodic, one
has ∫ θ

π/2

β dθ′

1 + 2νg cos(2θ′)
=

∫ θ−π

−π/2

β dθ′

1 + 2νg cos(2θ′)

and the above equality gives

Φν(θ)− Φν(π/2) = Φν(θ − π)− Φν(−π/2). (2.19)

Moreover, Φν is odd (i.e. Φν(−θ) = −Φν(θ)) and Φν(π/2) = π/2, hence (2.19) gives

Φν(θ) = 2Φν(π/2) + Φν(θ − π) = π − Φν(π − θ). (2.20)

Therefore Φν(±π) = ±π and we can use Φν to define a diffeomorphism T → T and the
unitary operator acting in L2(T) by means of the change of variable η = Φν(θ), given
by the formula

(Uνf)(θ) = Φ′
ν(θ)

1/2f(Φν(θ)). (2.21)

Proposition 2.4. (a) Let us introduce

qν(θ) = νβ−1
(
g cos(2Φ−1

ν (θ)) +
ε

2

)
(2.22)

and

q̃ν(η) :=

∫ η

0

qν(η
′) dη′. (2.23)

Then

q̃ν(Φν(θ)) =
1

2

(
θ +

νε− 1

β
Φν(θ)

)
(2.24)

(b) Let (fqν ,m)m∈Z, be the orthonormal basis in L2(T) given by

fqν ,m(η) = eimη ei(⟨qν⟩η−q̃ν(η)) (2.25)

where q̃ν is given by (2.23) and

⟨qν⟩ :=
∫ π

−π

qν(θ)
dθ

2π
=
q̃ν(π)− q̃ν(−π)

2π
. (2.26)

If Uν is given by (2.21), then (Uνfqν ,m)m∈Z is an orthonormal basis of eigenvectors of
Lν and

LνUνfqν ,m = (βm+ βν)Uνfqν ,m, (2.27)
where βν is given by (1.11).

Proof. (a) We can express d
dθ (q̃ν(Φν(θ))) in the form

qν(Φν(θ))Φ
′
ν(θ) =

νg cos(2θ)

β

β

1 + 2νg cos(2θ)
+
νε

2β
Φ′

ν(θ) (2.28)

and the right-hand side of (2.28) gives the derivative of the right-hand side of (2.24),

1

2

(
1− 1

1 + 2gν cos(2θ)
+
νε

β
Φ′

ν(θ)

)
=

1

2

d

dθ

(
θ − 1

β
Φν(θ) +

νε

β
Φν(θ)

)
.

This complete the proof of (2.24) due to Φν(0) = 0 = q̃ν(0).
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(b) If ⟨qν⟩ is given by (2.26), then η → ⟨qν⟩η − q̃ν(η) is a smooth 2π-periodic function
and (see [21] or Section 3.3 in [3]) for every m ∈ Z, we get

β

(
−i

d

dη
+ qν

)
fqν ,m = β(m+ ⟨qν⟩)fqν ,m. (2.29)

Moreover, using Φν(±π) = ±π and (2.24), we find

⟨qν⟩ =
q̃ν(Φν(π))− q̃ν(Φν(π))

2π
=

1

2
+
νε− 1

2β
, (2.30)

hence

β(m+ ⟨qν⟩) = βm+
1

2
(β − 1 + νε) = βm+ βν ,

where βν is given by (1.11). To complete the proof, it remains to use the identity

U−1
ν Lν Uν = β

(
−i

d

dη
+ qν(η)

)
, (2.31)

which follows by a direct computation (see Lemma 3.2 in [3]). □

Combining (2.29) with (2.31), we obtain

Corollary 2.5. For m ∈ Z we define vν,m := FTUνfqν ,m. Then {vν,m}m∈Z is an
orthonormal basis of eigenvectors of Jν and

Jνvν,m = (βm+ βν)vν,m. (2.32)

2.3. Operators J0 and J.

Notation 2.6. We define J as the linear map ℓ2,1(Z)× ℓ2,1(Z) → ℓ2(Z)× ℓ2(Z) given
by

J :=

(
J−1

∆
2 Iℓ2(Z)

∆
2 Iℓ2(Z) J1

)
(2.33)

(b) We denote J0 := J−1 ⊕ J1 and observe that we can express

J = J0 +V with V :=
∆

2

(
0ℓ2(Z) Iℓ2(Z)
Iℓ2(Z) 0ℓ2(Z)

)
, (2.34)

where 0ℓ2(Z) is the null map on ℓ2(Z).

Due to Corollary 2.5, J0 = J−1 ⊕ J1 is a self-adjoint operator in ℓ2(Z)× ℓ2(Z) and
its spectrum is composed of the union of eigenvalues of J−1 and J1. More precisely, one
has

Lemma 2.7. Let {v0
m}m∈Z be the orthonormal basis of ℓ2(Z)× ℓ2(Z) defined by

v0
2j = (v−1,j , 0), v0

2j+1 = (0, v1,j−l) for j ∈ Z, (2.35)

where l := ⌊ϵ/β⌋ is as in (2.7) and {vν,m}m∈Z as in Corollary 2.5. Then one has

J0v
0
m = djv

0
m for m ∈ Z, (2.36)

where the sequence {dm}m∈Z is given by the formula

d2j := βj + β−1, d2j+1 = β(j − l) + β1 for j ∈ Z. (2.37)

Moreover, dm ≤ dm+1 holds for every m ∈ Z.
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Proof. It is clear that the sequence {dm}m∈Z defined in (2.37) is composed of the union
of eigenvalues of J−1 and J1. Moreover{

J0v
0
2j = (J−1v−1,j , 0) = d2jv

0
2j ,

J0v
0
2j+1 = (0, J1v1,j−l) = d2j+1v

0
2j+1

(2.38)

and dm ≤ dm+1 follows from the definition of l. □

Remark 2.8. The sequence {dm}m∈Z defined by (2.37) satisfies

dn+l = λn(H0) for n > l (2.39)

The following auxiliary result is the crucial ingredient of our approach:

Proposition 2.9. Assume that V is as in (2.34) and {v0
m}m∈Z is the orthogonal basis

introduced in Lemma 2.7. Then there exist constants Ĉ and ĉ > 0 such that one has

sup
{k∈Z: |k−j|≤ĉj}

|⟨v0
k,Vv0

j ⟩ℓ2(Z)×ℓ2(Z)| ≤ Ĉ(1 + |j|)−1/2 for j ∈ Z. (2.40)

Proof. See Lemma 3.4 in [3]. □

2.4. Relation between eigenvalues of H and J.

Proposition 2.10. (a) We can find {λj(J)}j∈Z, a non-decreasing eigenvalue sequence
of J, counting the multiplicities, such that

λj(J) = dj +O(|j|−1/2) as |j| → ∞ (2.41)

(b) If {λj(J)}j∈Z is as in (a) and {λn(H)}n∈N is the non-decreasing eigenvalue sequence
of H, counting the multiplicities, then

λn(H)− λn+l(J) = O(n−1) as n→ ∞ (2.42)

Proof. (a) See Proposition 4.1 in [3].
(b) Since λn(H) = λn(H0) + O(n−1/2) as n → ∞ holds due to Theorem 1.3 and 1.4,
we get

λn(H) = dn+l +O(n−1/2) as n→ ∞ (2.43)
due to (2.39). Moreover, due to Lemma 5.1 in [3], there exists κ ∈ Z such that

λn(H) = λn+κ(J) +O(n−1) as n→ ∞ (2.44)

and, using (2.41) in (2.44), we find

λn(H) = dn+κ +O(n−1/2) as n→ ∞ (2.45)

Combining (2.43) with (2.45), we get dn+l−dn+κ = O(n−1/2), which implies κ = l. □

3. First-order approximation of large eigenvalues of J

3.1. Preliminaries. Instead of the operator J : ℓ2,1(Z)× ℓ2,1(Z) → ℓ2(Z)× ℓ2(Z), we
will investigate the operator J : ℓ2,1(Z) → ℓ2(Z) given by the formula

J := Ũ−1J Ũ , (3.1)

where Ũ is the isometric bijection ℓ2(N) → ℓ2(Z) × ℓ2(Z) defined by the relation
Ũ ẽm = v0

m for every m ∈ Z and {v0
m}m∈Z is the basis of eigenvectors of J0 introduced

in Lemma 2.7. Then we obtain the expression

J = D + V, (3.2)
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where
D = diag(dm)m∈Z (3.3)

with {dm}m∈Z given by (2.37) and

V = Ũ−1V Ũ . (3.4)

Notation 3.1. (a) If V is a Banach space, then B(V) denotes the Banach algebra of
bounded linear operators on V, equipped with the operator norm || · ||B(V) and || · ||
denotes the norm of B(ℓ2(Z)).
(b) We let ℓ2fin(Z) denote the subspace of ℓ2(Z) composed of finite linear combinations
of vectors from the canonical basis {ẽk}k∈N.
(c) If T is a linear map Dom(T ) → ℓ2(Z) such that ℓ2fin(Z) ⊂ Dom(T ), then we write

T (j, k) := (T ẽk)(j) = ⟨ẽj , T ẽk⟩. (3.5)

If V is given by (3.4), then

V (j, k) = ⟨ẽj , V ẽk⟩ = ⟨v0
j ,Vv0

k⟩ℓ2(Z)×ℓ2(Z) (3.6)

and the estimate (2.40) takes the form

sup
{k∈Z: |k−j|≤ĉ|j|}

|V (k, j)| ≤ Ĉ(1 + |j|)−1/2 for j ∈ Z. (3.7)

Moreover, for i, j ∈ Z we have

V (2i, 2j) = ⟨(v−1,i, 0),V(v−1,j , 0)⟩ℓ2(Z)×ℓ2(Z)

V (2i+ 1, 2j + 1) = ⟨(0, v1,i+l),V(0, v1,j+l)⟩ℓ2(Z)×ℓ2(Z)

V (2i, 2j + 1) = ⟨(v−1,i, 0),V(0, v1,j+l)⟩ℓ2(Z)×ℓ2(Z)

and, using the definition of V, we find that

V (2i, 2j) =
∆

2
⟨(v−1,i, 0), (0, v−1,j)⟩ℓ2(Z)×ℓ2(Z) = 0 (3.8)

V (2i+ 1, 2j + 1) =
∆

2
⟨(0, v1,i+l), (v1,j+l, 0)⟩ℓ2(Z)×ℓ2(Z) = 0 (3.9)

V (2i, 2j + 1) =
∆

2
⟨(v−1,i, 0), (v1,j+l, 0)⟩ℓ2(Z)×ℓ2(Z) =

∆

2
⟨v−1,i, v1,j+l⟩, (3.10)

V (2i+ 1, 2j) = V (2j, 2i+ 1). (3.11)

3.2. The case ε/β /∈ Z. The assumption ε/β /∈ Z ensures that all eigenvalues of J are
simple and there exist constants C0 and c0 such that one has

0 < c0 ≤ dm+1 − dm ≤ C0 for m ∈ Z. (3.12)

Similarly as in [27], [34], the assumption (3.12) allows us to hope that large eigenvalues
of J can be approximated by the diagonal entries J(m,m) = dm + V (m,m). Indeed,
we will prove
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Theorem 3.2. Let {dm}m∈Z be a real sequence satisfying (3.12) and let J be the map
ℓ2,1(Z) → ℓ2(Z) given by

J = D + V, (3.13)
where D = diag(dm)m∈Z and V is a bounded self-adjoint operator in ℓ2(Z), satisfying
the estimate (3.7). Assume that {λn(J)}n∈Z is a non-decreasing sequence of eigenvalues
of J , counting the multiplicities, such that

λn(J) = dn + o(1) as n→ ∞. (3.14)

Then one has
λn(J) = dn + V (n, n) +O(n−1 lnn) as n→ ∞. (3.15)

Proof. See Section 7. □

Remark 3.3. If J is given by (3.1), then (3.8)-(3.9) imply

V (m,m) = 0 for every m ∈ Z. (3.16)

3.3. The case ε/β ∈ N. The assumption ε/β = l ∈ N implies that all eigenvalues of J
are double and are expressed by the formula

d2j = d2j+1 = βj + β−1 = β(j − l) + β1, j ∈ Z. (3.17)

Let us denote
Ĥ2j := span{ẽ2j , ẽ2j+1} (3.18)

and let Π̂n ∈ B(ℓ2(N)) denote the orthogonal projection on Ĥn. We consider an
approximation of J by the operator Jappr defined as the linear map ℓ2,1(Z) → ℓ2(Z) of
the form

Jappr :=
⊕
j∈Z

Ĵ2j , (3.19)

where
Ĵ2j := Π̂2jV |Ĥ2j

∈ B(Ĥ2j). (3.20)

We note that the matrix of Ĵ2j in the basis {ẽ2j , ẽ2j+1} is(
d2j V (2j, 2j + 1)

V (2j + 1, 2j) d2j

)
.

The spectrum of Ĵ2j consists of two eigenvalues d2j ± |V (2j, 2j + 1)| and the spectrum
of Jappr has the form

{d2j + ν|V (2j, 2j + 1)| : j ∈ Z, ν = ±1}.
Our proof of Theorem 1.4 is based on the following :

Theorem 3.4. Assume that D = diag(dm)m∈Z with {dm}m∈Z given by (3.17) and
assume that V is a bounded self-adjoint operator in ℓ2(Z), satisfying (3.7) and (3.16).
Assume that {λn(J)}n∈Z is a non-decreasing sequence of eigenvalues of J , counting the
multiplicities, such that

λn(J) = dn + o(1) as n→ ∞. (3.21)
Then one has

λ2j(J) = d2j − |V (2j, 2j + 1)|+O(j−1 ln j) as j → ∞, (3.22)

λ2j+1(H) = d2j + |V (2j, 2j + 1)|+O(j−1 ln j) as j → ∞. (3.23)

Proof. See Section 6. □
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3.4. Taylor’s expansion formula. In this section we describe the Taylors’s expansion
formula, which is the principal tool of our approach. Assume that B and Q ∈ B(ℓ2(Z))
and denote

FtQ(B) := e−itQB eitQ for t ∈ R, (3.24)

ad0iQ(B) := B,

ad1iQ(B) := [B, iQ] = i(BQ−QB)

and
adm+1

iQ (B) := [admiQ(B), iQ] for m ∈ N \ {0}.
Then

dm

dtm
FtQ(B) = e−itQ admiQ(B) eitQ = FtQ(ad

m
iQ(B)) (3.25)

and the Taylor’s expansion formula gives

FtQ(B) =

N−1∑
m=0

tm

m!
admiQ(B) +Rt,N

Q (B) (3.26)

with

Rt,N
Q (B) :=

tN

(N − 1)!

∫ 1

0

FstQ(ad
N
iQ(B)) (1− s)N−1 ds. (3.27)

We can also consider the case when B is an unbounded symmetric operator in ℓ2(Z),
defined on a dense domain D(B). Suppose that D(B) is an invariant subspace for Q
and eitQ for every t ∈ R. If t → BeitQx is of class C1(R, ℓ2(N)) for every x ∈ D(B),
then

d

dt
⟨eitQx,BeitQy⟩ = ⟨iQeitQx,BeitQy⟩+ ⟨BeitQx, iQeitQy⟩

holds for every x, y ∈ D(B). If the form (x, y) → ⟨iQx,By⟩ + ⟨Bx, iQy⟩ can be
extended from D(B)×D(B) to a bounded form on ℓ2(Z)× ℓ2(Z), then we can introduce
[B, iQ] ∈ B(ℓ2(Z)) defined by this form and we can write

d

dt
FtQ(B) = e−itQ [B, iQ] eitQ = FtQ([B, iQ]),

hence (3.26)-(3.27) still hold for every N ∈ N \ {0}.

4. Beginning of the proof of Theorem 3.4

4.1. Outline of the proof. In what follows, J = D + V satisfies the assumptions of
Theorem 3.4. Moreover, we assume that n is large enough and n ∈ 2Z, which implies

dn−1 + β = dn = dn+1 = dn+2 − β. (4.1)

We let Π̃n := I − Π̂n denote the orthogonal projection on H̃n := Ĥ⊥
n and decompose

V = Π̂nV Π̂n + Π̃nV Π̃n + Π̃nV Π̂n + Π̂nV Π̃n. (4.2)

In what follows, we denote
V +
n := Π̂nV Π̃n, (4.3)

V −
n := (V +

n )∗ = Π̃nV Π̂n. (4.4)
We remark that the rows n and n + 1 are the only non-zero rows of the matrix
(V +

n (j, k))(j,k)∈Z2 . Similarly, the columns n and n+ 1 are the only non-zero columns of
the matrix (V −

n (j, k))(j,k)∈Z2 . The first step of our approach is based on the possibility
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of finding a self-adjoint bounded operator Qn such that Π̂ne
−iQnJeiQnΠ̃n (and its

adjoint) has the norm O(n−1/2). More precisely, we use the orthogonal decomposition

ℓ2(Z) = Ĥn ⊕ H̃n (4.5)

and write (4.2) in the form of 2× 2 block matrix

V =

(
V̂n V +

n |H̃n

V −
n |Ĥn

Ṽn

)
= V̂n ⊕ Ṽn + V −

n + V +
n , (4.6)

where
V̂n := Π̂nV |Ĥn

∈ B(Ĥn), (4.7)

Ṽn := Π̃nV |H̃n
∈ B(H̃n). (4.8)

In Section 4.3 we introduce the operators Q±
n ∈ B(ℓ2(Z)) satisfying

[D, iQ±
n ] = −V ±

n with D = diag(dm)m∈Z, (4.9)

where {dm}m∈Z is given by (3.17) and (4.9) is understood as the equality

i(DQ±
n −Q±

nD)x = −V ±
n x for x ∈ ℓ2,1(Z), (4.10)

well defined because ℓ2,1(Z) is an invariant subspace ofQ±
n (see Lemma 4.1(a)). Moreover,

we will prove the estimate
||Q±

n || = O(n−1/2) (4.11)

and the fact that
e−iQnJeiQn = D + V̂n ⊕ Ṽn +R′

n

holds with ||R′
n|| = O(n−1/2) and

Qn = Q+
n +Q−

n . (4.12)

However, the error O(n−1/2) is too rough to deduce the asymptotic formula of Theorem
3.4 and we will have to consider a second similarity transformation in Sections 5–6.
Besides the operator Qn, we introduce auxiliary cut-offs Q̌±

n , which satisfy

||Q±
n − Q̌±

n || = O(n−1) (4.13)

and are used to prove some estimates in Section 5.

4.2. Operators Q̌−
n and Q̌+

n . Let Z−
n , Z+

n ⊂ Z2 be defined as follows

Z−
n = (Z \ {n, n+ 1})× {n, n+ 1} (4.14)

Z+
n = {n, n+ 1} × (Z \ {n, n+ 1}). (4.15)

We observe that
(j, k) ∈ Z−

n ⇒ dj ̸= dn = dn+1 = dk, (4.16)

(j, k) ∈ Z+
n ⇒ dk ̸= dn = dn+1 = dj (4.17)

and there exists c0 > 0 such that

(j, k) ∈ Z−
n ∪ Z+

n ⇒ |dj − dk| ≥ c0|j − k|. (4.18)
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In what follows, c0 > 0 is fixed so that (4.18) holds, Ĉ, ĉ > 0, are fixed so that the
estimate (3.7) holds and c is fixed so that 0 < c ≤ min{ 1

2 ĉ,
1
2}. We introduce the

matrices (Q̌−
n (j, k))(j,k)∈Z2 , (Q̌+

n (j, k))(j,k)∈Z2 by

Q̌±
n (j, k) :=

 i
V (j, k)

dj − dk
if (j, k) ∈ Z±

n and |j − k| < cn

0 otherwise
(4.19)

We observe that Q̌−
n (j, k) ̸= 0 implies j ̸= k, k ∈ {n, n+ 1} and |j − k| < cn ≤ ck < ĉk,

hence

|Q̌−
n (j, k)| ≤

Ĉk−1/2

|dj − dk|
≤ Ĉk−1/2

c0|j − k|
≤ Ĉn−1/2

c0|j − k|
(4.20)

follows from (3.7), (4.18) and k ≥ n. Since (j, k) ∈ Z+
n ⇔ (k, j) ∈ Z−

n and V (k, j) =

V (j, k), it is clear that
Q̌+

n (j, k) = Q̌−
n (k, j) (4.21)

and

|Q̌+
n (j, k)| ≤

Ĉn−1/2

c0|j − k|
. (4.22)

Then the relation (Q̌±
n ẽk)(j) = Q̌±

n (j, k) for j, k ∈ Z defines the operators Q̌±
n ∈ B(ℓ2(Z))

satisfying the norm estimate
||Q̌±

n || = O(n−1/2). (4.23)

Indeed, by definition Q̌−
n x = 0 if x ∈ H̃n and for k ∈ {n, n+ 1} we can estimate

||Q̌−
n ẽk||2 =

∑
j∈N

|Q̌−
n (j, k)|2 ≤

∑
{j∈Z: 0<|j−k|<cn}

(
Ĉn−1/2

c0|j − k|

)2

≤ Ĉ2c−2
0 n−1

∑
j∈Z\{k}

|j − k|−2 ≤ Cn−1,

i.e. ||Q̌−
n || = O(n−1/2) and (4.21) ensures Q̌+

n = (Q̌−
n )

∗, hence ||Q̌+
n || = ||Q̌−

n ||.

4.3. Operators Q−
n and Q+

n . We define the matrices (Q−
n (j, k))(j,k)∈Z2 , (Q+

n (j, k))(j,k)∈Z2

by

Q±
n (j, k) :=

 i
V (j, k)

dj − dk
if (j, k) ∈ Z±

n

0 otherwise
(4.24)

where Z±
n are given by (4.14)-(4.15). We claim that the relation (Q±

n ẽk)(j) = Q±
n (j, k)

(for all j, k ∈ Z) defines Q±
n ∈ B(ℓ2(Z)) satisfying (4.13), i.e. ||Q±

n − Q̌±
n || = O(n−1).

Then, combining (4.23) with (4.13), we get ||Q±
n || = O(n−1/2).

In order to prove (4.13), we remark that (Q−
n − Q̌−

n )x = 0 if x ∈ H̃n and for
k ∈ {n, n+ 1} we can estimate

||(Q−
n − Q̌−

n )ẽk||2 =
∑

{j∈Z: |j−k|≥cn}

|Q−
n (j, k)|2

≤
∑

{j∈Z: |j−k|≥cn}

|V (j, k)|2

c20|j − k|2
≤
∑
j∈Z

|V (j, k)|2

c20c
2n2

=
||V ẽk||2

c20c
2n2

≤ ||V ||2

c20c
2n2

,
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i.e. Q−
n − Q̌−

n = (Q−
n − Q̌−

n )Π̂n ∈ B(ℓ2(Z)) and

||Q−
n − Q̌−

n || = O(n−1).

Moreover, Q+
n − Q̌+

n = (Q−
n − Q̌−

n )
∗ ensures

||Q+
n − Q̌+

n || = ||Q−
n − Q̌−

n || = O(n−1).

In what follows, Q±
n , Q̌±

n are as before and we denote

Qn := Q−
n +Q+

n , Q̌n := Q̌−
n + Q̌+

n . (4.25)

Lemma 4.1. (a) ℓ2,1(Z) is an invariant subspace of Q±
n and one has

[D, iQ±
n ]x = i(DQ±

n −Q±
nD)x = −V ±

n x for x ∈ ℓ2,1(Z), (4.26)

where D = diag(dj)j∈N and V ±
n is given by (4.4)-(4.3).

(b) ℓ2,1(Z) is an invariant subspace of eitQn and t→ eitQnx is of class C∞(R; ℓ2,1(N))
if x ∈ ℓ2,1(N).

Proof. Similar to the proof of Lemma 4.4 in [11]. □

4.4. The first similarity transformation. If Ln, L′
n are linear maps defined on a

dense subspace of ℓ2(Z) such that Ln − L′
n can be extended to a bounded operator on

ℓ2(Z), then we still use the notation ||Ln−L′
n|| to denote the norm of this extension and

the notation Ln = L′
n + O(ηn) means that choosing n0 ∈ N and C > 0 large enough,

we ensure ||Ln − L′
n|| ≤ Cηn for all n ≥ n0. We will prove the following

Lemma 4.2. We assume that J = D + V is as in Theorem 3.4, n ∈ 2Z and V̂n, Ṽn
are given by (4.7), (4.8). If Qn = Q−

n +Q+
n , then the estimate

e−iQnJeiQn = D + V̂n ⊕ Ṽn +Rn +O(n−1) as n→ ∞ (4.27)

holds with
Rn :=

1

2
[V, iQn] +

1

2
[V̂n ⊕ Ṽn, iQn]. (4.28)

Proof. Using (3.26)-(3.27) with N = 2, t = 1, we obtain

e−iQnV eiQn = V + [V, iQn] +R1,2
Qn

(V ), (4.29)

||R1,2
Qn

(V )|| ≤ ||ad2iQn
(V )|| ≤ C||Qn||2 (4.30)

and using (3.26)-(3.27) with N = 3, t = 1, we obtain

e−iQnDeiQn = D + [D, iQn] +
1

2
[[D, iQn], iQn] +R1,3

Qn
(D). (4.31)

Since [D, iQn] = −V −
n − V +

n (see Lemma 4.1(a)) in (4.31), we obtain

e−iQnDeiQn = D − V −
n − V +

n − 1

2
[V −

n + V +
n , iQn] +R1,3

Qn
(D), (4.32)

||R1,3
Qn

(D)|| ≤ ||ad3iQn
(D)|| = ||ad2iQn

(V −
n + V +

n )|| ≤ C||Qn||2 (4.33)
and summing up (4.32), (4.29), we obtain

e−iQnJeiQn = D + V − V −
n − V +

n + [V, iQn]−
1

2
[V −

n + V +
n , iQn] +O(||Qn||2). (4.34)

Since Qn = Q−
n +Q+

n , (4.11) ensures

||Qn|| = O(n−1/2) (4.35)
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and ||Qn||2 = O(n−1), we complete the proof, using V −
n + V +

n = V − V̂n ⊕ Ṽn to write

[V, iQn]−
1

2
[V −

n + V +
n , iQn] = [V, iQn] +

1

2
[V̂n ⊕ Ṽn − V, iQn] = Rn,

with Rn given by (4.28). □

5. The second similarity transformation

5.1. The idea of the second similarity transformation. Due to Lemma 4.2, the
operator J = D + V is similar to

e−iQnJeiQn = D + V̂n ⊕ Ṽn +Rn +O(n−1) (5.1)

with Rn given by (4.28). Similarly as before, we can decompose

Rn =

(
R̂n R+

n |H̃n

R−
n |Ĥn

R̃n

)
= R̂n ⊕ R̃n +R−

n +R+
n , (5.2)

where
R̂n := Π̂nRn|Ĥn

∈ B(Ĥn), (5.3)

R̃n := Π̃nRn|H̃n
∈ B(H̃n), (5.4)

R−
n := Π̃nRnΠ̂n, (5.5)

R+
n := Π̂nRnΠ̃n. (5.6)

In Section 5.2 we introduce the operators Q′
n ∈ B(ℓ2(Z)) satisfying

||Q′
n|| = O(n−1 lnn) (5.7)

and
[D, iQ′

n] = −R−
n −R+

n +O(n−1) (5.8)

where [D, iQ′
n]x = i(DQ′

n −Q′
nD)x is well defined for x ∈ ℓ2,1(Z) due to the fact that

ℓ2,1(Z) is an invariant subspace of Q′
n (see Lemma 5.1(b)). Moreover, ℓ2,1(Z) is an

invariant subspace of eiQ
′
n (see Lemma 5.1(c)) and in Section 6.1 we will show that

e−iQ′
ne−iQnJeiQneiQ

′
n = D + V̂n ⊕ Ṽn + R̂n ⊕ R̃n +O(n−1 lnn)

= D + (V̂n + R̂n)⊕ (Ṽn + R̃n) +O(n−1 lnn)

5.2. Operators Q′
n. In what follows

Q′
n := Q̌′

n + (Q̌′
n)

∗ (5.9)

with Q̌′
n ∈ B(ℓ2(Z)) defined by the relation (Q̌′

nẽk)(j) = Q̌′
n(j, k), where

Q̌′
n(j, k) :=


(WnQ̌n)(j, k)

dk − dj
if (j, k) ∈ Z−

n ∪ Z+
n

0 otherwise
(5.10)

with

Wn :=
1

2
V +

1

2
(V̂n ⊕ Ṽn) (5.11)

and Q̌n as in Section 4.
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Lemma 5.1. (a) If (Q′
n(j, k))(j,k)∈Z2 is given by (5.10), then the relation (Q̌′

nẽk)(j) =

Q̌′
n(j, k) for j, k ∈ Z defines the operators Q̌′

n ∈ B(ℓ2(Z)) satisfying the norm estimate

||Q̌′
n|| = O(n−1 lnn). (5.12)

(b) ℓ2,1(Z) is an invariant subspace of Q′
n := Q̌′

n + (Q̌′
n)

∗ and

[D, iQ′
n]x = i(DQ′

n −Q′
nD)x = −(Ř−

n + Ř+
n )x for x ∈ ℓ2,1(Z) (5.13)

holds with D = diag(dm)m∈N and

Ř−
n := Π̃n[Wn, iQ̌n]Π̂n, (5.14)

Ř+
n := Π̂n[Wn, iQ̌n]Π̃n. (5.15)

(c) ℓ2,1(Z) is an invariant subspace of eitQ
′
n and t→ eitQ

′
nx is of class C∞(R; ℓ2,1(Z))

if x ∈ ℓ2,1(Z).

Proof. See Sections 5.3-5.5. □

5.3. Step 1 of the proof of Lemma 5.1. Since Q̌n = Q̌−
n + Q̌+

n , we can decompose

Q̌′
n(j, k) = Q̌′+

n (j, k) + Q̌′−
n (j, k)

with

Q̌′±
n (j, k) :=


(WnQ̌

±
n )(j, k)

dk − dj
if (j, k) ∈ Z−

n ∪ Z+
n

0 otherwise
(5.16)

We first observe that Q̌′±
n (j, k) ̸= 0 ⇒ (j, k) ∈ Z−

n ∪ Z+
n ⇒ j ̸= k and

|Q̌′±
n (j, k)| ≤ |(WnQ̌

±
n )(j, k)|

c0|j − k|
. (5.17)

It is clear that (3.7) implies Wn(j, k) ̸= 0 ⇒ j ̸= k and

|j − k| < ĉk ⇒ |Wn(j, k)| ≤ Ĉk−1/2. (5.18)

In the remaining part of this section, we are going to check that there is Q̌′−
n ∈ B(ℓ2(Z))

satisfying (Q̌′−
n ẽk)(j) = Q̌′−

n (j, k) for all j, k ∈ Z and

||Q̌′−
n || = O(n−1 lnn). (5.19)

Since Q̌′−
n (j, k) = 0 if k ∈ Z \ {n, n+ 1}, one has ||Q̌′−

n || ≤ ||Q̌′−
n ẽn||+ ||Q̌′−

n ẽn+1||. We
assume now k ∈ {n, n+ 1} and write

||Q̌′−
n ẽk||2 =

∑
j∈Z

|Q̌′−
n (j, k)|2 ≤ Mn(k) +M′

n(k)

with

Mn(k) :=
∑

{j∈Z: |j−k|≥cn}

|(WnQ̌
−
n )(j, k)|2

c20|j − k|2

M′
n(k) :=

∑
{j∈Z: 0<|j−k|<cn}

|(WnQ̌
−
n )(j, k)|2

c20|j − k|2
.

It is clear that

Mn(k) ≤
∑
j∈Z

|(WnQ̌
−
n )(j, k)|2

c20c
2n2

=
||WnQ̌

−
n ẽk||2

c20c
2n2

≤ C1n
−2. (5.20)
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Our next claim is the estimate

sup
{j∈Z: 0<|j−k|<cn}

|(WnQ̌
−
n )(j, k)| ≤ Cn−1 lnn. (5.21)

Indeed, writing
(WnQ̌

−
n )(j, k) =

∑
m∈Z

Wn(j,m)Q̌−
n (m, k)

and using Q̌−
n (m, k) ̸= 0 ⇒ 0 < |m− k| < cn with (4.20), we get

|(WnQ̌
−
n )(j, k)| ≤

∑
{m∈Z: 0<|m−k|<cn}

|Wn(j,m)| Ĉn−1/2

c0|m− k|
. (5.22)

However, |j − k| < cn and |m− k| < cn imply

|j −m| ≤ |j − k|+ |k −m| < 2cn⇒ |Wn(j,m)| ≤ Ĉj−1/2 ≤ 2Ĉn−1/2, (5.23)

due to (5.18) and j ≥ k−|k− j| > k− cn ≥ n− 1
2n = 1

2n (where we used k ∈ {n, n+1}
and c ≤ 1

2 ). Using (5.21) and (5.22), we can estimate

sup
{j∈Z: 0<|j−k|<cn}

|(WnQ̌
−
n )(j, k)| ≤

∑
{m∈Z: 0<|m−k|<cn}

2Ĉ2n−1

c0|m− k|

≤ 2Ĉ2c−1
0 n−1

∑
1≤i≤cn

2

i
≤ Cn−1 lnn,

which completes the proof of (5.21).
Using (5.21), we can estimate

M′
n(k) ≤ sup

{j∈N: 0<|j−k|<cn}
|(WnQ̌

−
n )(j, k)|2

∑
j∈Z\{k}

1

c20|j − k|2
≤ C2n

−2(lnn)2.

We conclude that ||Q̌′−
n ẽk||2 ≤ Mn(k) +M′

n(k) ≤ C1n
−2 + C2n

−2(lnn)2, completing
the proof of (5.19).

5.4. Step 2 of the proof of Lemma 5.1. In this section, we are going to check that
the relation (Q̌′+

n ẽk)(j) = Q̌′+
n (j, k) for all j, k ∈ Z defines Q̌′+

n ∈ B(ℓ2(Z)) satisfying
the norm estimate

||Q̌′+
n || = O(n−1 lnn). (5.24)

Due to the Schur boundedness test, it suffices to show that there is C > 0 such that
one has

Qn(k) :=
∑
j∈Z

|Q̌′+
n (j, k)| ≤ Cn−1 lnn for every k ∈ Z, (5.25)

Q∗
n(k) :=

∑
j∈Z

|Q̌′+
n (k, j)| ≤ Cn−1 lnn for every k ∈ Z. (5.26)

We recall that Q̌′+
n (j, k) ̸= 0 ⇒ j ̸= k and we decompose Qn = Q′

n +Q′′
n with

Q′
n(k) :=

∑
{j∈Z: |j−k|≥cn}

|Q̌′+
n (j, k)|, (5.27)

Q′′
n(k) :=

∑
{j∈Z: 0<|j−k|<cn}

|Q̌′+
n (j, k)|. (5.28)
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Using (4.18) and the Cauchy-Schwarz inequality, we can estimate

Q′
n(k) ≤

∑
{j∈Z: |j−k|≥cn}

|(WnQ̌
+
n )(j, k)|

c0|j − k|
≤ c−1

0 Mn(k)
1/2M′

n(k)
1/2 (5.29)

with
Mn(k) :=

∑
{j∈Z: |j−k|≥cn}

|j − k|−2,

M′
n(k) :=

∑
j∈Z

|(WnQ̌
+
n )(j, k)|2.

However,

Mn(k) ≤ 2
∑
i≥cn

1

i2
≤ 2

∫ ∞

cn−1

ds

s2
=

2

cn− 1
≤ C1n

−1 (5.30)

and
M′

n(k) = ||WnQ̌
+
n ẽk||2 ≤ ||Wn||2 ||Q̌+

n ||2 ≤ C2n
−1, (5.31)

where the last estimate is due to (4.23). Combining (5.29) with (5.30)-(5.31), we get

Q′
n(k) ≤ C ′n−1. (5.32)

In order to estimate Q′′
n(k), we assume 0 < |j − k| < cn and observe that

(WnQ̌
+
n )(j, k) =

∑
n≤m≤n+1

Wn(j,m)Q̌+
n (m, k) (5.33)

due to Q̌+
n = Π̂nQ̌

+
n . Using |j − k| < cn, m ∈ {n, n+ 1} and |Q̌+

n (m, k)| ≤ Ĉc−1
0 n−1/2

(due to (4.22) and Q̌+
n (k, k) = 0), we obtain

Q̌+
n (m, k) ̸= 0 ⇒ |k −m| < cn⇒ |j −m|≤ |j − k|+ |k −m| < 2cn ≤ ĉn

⇒ |Wn(j,m)| ≤ Ĉm−1/2 ≤ Ĉn−1/2 ⇒ |Wn(j,m)Q̌+
n (m, k)| ≤ Ĉ2c−1

0 n−1,

hence |j − k| < cn⇒ |(WnQ̌
+
n )(j, k)| ≤ 2Ĉ2c−1

0 n−1 and

Q′′
n(k) ≤

∑
{j∈Z: 0<|j−k|<cn}

|(WnQ̌
+
n )(j, k)|

c0|j − k|

≤ 2Ĉ2c−2
0 n−1

∑
{j∈Z: 0<|j−k|<cn}

1

|j − k|
≤ C ′′n−1 lnn,

due to
∑

1≤i≤cn

1

i
= O(lnn). This completes the proof of (5.25).

In order to prove (5.26), we can use a similar decomposition Q∗
n = Q′∗

n + Q′′∗
n and

estimate

Q′∗
n (k) ≤

∑
{j∈Z: |j−k|≥cn}

|(WnQ̌
+
n )(k, j)|

c0|j − k|
, (5.34)

Q′′∗
n (k) :=

∑
{j∈Z: 0<|j−k|<cn}

|(WnQ̌
+
n )(k, j)|

c0|j − k|
. (5.35)
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However, the right hand side of (5.34) can be estimated by Mn(k)
1/2M′∗

n (k)
1/2 with

Mn(k) as before and

M′∗
n (k) =

∑
j∈Z

|(WnQ̌
+
n )(k, j)|2 = ||(WnQ̌

+
n )

∗ẽk||2 ≤ ||Wn||2||Q̌+
n ||2 ≤ C ′n−1.

Finally, exchanging j and k in the previous reasoning, we get |j − k| < cn ⇒
|(WnQ̌

+
n )(k, j)| ≤ 2Ĉ2c−1

0 n−1 and we can estimate the right hand side of (5.35) by
C ′′n−1 lnn similarly as before. This completes the proof of (5.26).

5.5. End of the proof of Lemma 5.1. By the definition of Q̌′
n given in (5.10), we get

i(dj − dk)Q̌
′
n(j, k) = ⟨ẽj , (−i)(Π̃nWnQ̌nΠ̂n + Π̂nWnQ̌nΠ̃n)ẽk⟩ (5.36)

Since (WnQ̌n)
∗ = Q̌nWn and (Q̌′

n)
∗(j, k) = Q̌′

n(k, j), we can write the adjoint matrix
in both sides of (5.36) as follows

i(dj − dk)(Q̌
′
n)

∗(j, k) = ⟨ẽj , i(Π̃nQ̌nWnΠ̂n + Π̂nQ̌nWnΠ̃n)ẽk⟩. (5.37)

Summing up (5.36) and (5.37), we obtain

i(dj − dk)Q
′
n(j, k) = −⟨ẽj , (Ř−

n + Ř+
n )ẽk⟩ = −(Ř−

n + Ř+
n )(j, k) (5.38)

by the definition of Ř±
n given in (5.14)-(5.15). It is easy to see that one can deduce the

assertions of Lemma 5.1(b) and (c) from (5.38), similarly as in Lemma 4.1.

6. Proof of Theorem 3.4

6.1. Step 1 of the proof of Theorem 3.4. Let Q′
n as in Section 5. We claim that

e−iQ′
ne−iQnJeiQneiQ

′
n = D + (V̂n + R̂n)⊕ (Ṽn + R̃n) +O(n−1 lnn) (6.1)

To begin the proof of (6.1), we observe that (3.26)-(3.27) with N = 2, t = 1, gives

e−iQ′
nDeiQ

′
n = D + [D, iQ′

n] +O(||ad2iQ′
n
(D)||). (6.2)

Since Lemma 5.1 ensures [D, iQ′
n] = −Ř−

n − Ř+
n , we get

ad2iQ′
n
(D) = [−Ř−

n − Ř+
n , iQ

′
n] = O(||Q′

n||)
and

e−iQ′
nDeiQ

′
n = D − Ř−

n − Ř+
n +O(||Q′

n||). (6.3)
Using (3.26)-(3.27) with N = 1, t = 1, we get

e−iQ′
n(V̂n ⊕ Ṽn +Rn)e

iQ′
n = V̂n ⊕ Ṽn +Rn +O(||Q′

n||). (6.4)

Due to ||Q′
n|| = O(n−1 lnn), summing up (6.3) and (6.4), we get

e−iQ′
ne−iQnJeiQneiQ

′
n = D + V̂n ⊕ Ṽn +Rn − Ř−

n − Ř+
n +O(n−1 lnn). (6.5)

Since
R−

n = Π̃n[Wn, iQn]Π̂n,

R+
n = Π̂n[Wn, iQn)]Π̃n,

we obtain
R−

n − Ř−
n = Π̃n[Wn, i(Qn − Q̌n)]Π̂n = O(||Qn − Q̌n||),

R+
n − Ř+

n = Π̂n[Wn, i(Qn − Q̌n)]Π̃n = O(||Qn − Q̌n||)
and (4.13) ensures Qn − Q̌n = O(n−1), hence

R±
n − Ř±

n = O(n−1). (6.6)
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Combining (6.6) and (6.5), we get

e−iQ′
ne−iQnJeiQneiQ

′
n = D + V̂n ⊕ Ṽn +Rn −R−

n −R+
n +O(n−1 lnn) (6.7)

and (6.1) follows due to Rn −R−
n −R+

n = R̂n ⊕ R̃n.

6.2. Step 2 of the proof of Theorem 3.4. We claim that

||Π̂nRnΠ̂n|| = O(n−1 lnn). (6.8)

Since Rn = [Wn, iQn] = [Wn, iQ
−
n ] + [Wn, iQ

+
n ], it is clear that it suffices to prove

||Π̂nWnQ
±
n Π̂n|| = O(n−1 lnn) (6.9)

and due to (4.13), it remains to prove the estimate

||Π̂nWnQ̌
±
n Π̂n|| = O(n−1 lnn). (6.10)

We observe that
||Π̂nWnQ̌

±
n Π̂n|| ≤

∑
n≤j,k≤n+1

|(WnQ̌
±
n )(j, k)|

with
(WnQ̌

±
n )(j, k) =

∑
{m∈Z: 0<|m−k|<cn}

Wn(j,m)Q̌±
n (m, k).

Assume that j, k ∈ {n, n+ 1}. Then

|m− k| < cn⇒ |j −m| ≤ |j − k|+ |k −m| < 1 + cn < ĉn

⇒ |Wn(j,m)| ≤ Ĉj−1/2 ≤ Ĉn−1/2 ⇒ |Wn(j,m)Q̌±
n (m, k)| ≤

Ĉ2n−1

c0|m− k|
and consequently

|(WnQ̌
±
n )(j, k)| ≤

∑
{m∈Z: 0<|m−k|<cn}

Ĉ2n−1

c0|m− k|
= O(n−1 lnn), (6.11)

where the last estimate is due to
∑

1≤i≤cn

1

i
= O(lnn).

6.3. End of the proof of Theorem 3.4. To begin we observe that (4.1) and (3.21)
ensure the fact that there is n1 ∈ N such that

λn−1(J) < dn− 3β
4 < dn− β

4 < λn(J) ≤ λn+1(J) < dn+
β
4 < dn+

3β
4 < λn+2(J) (6.12)

holds for n ≥ n1. Then (6.1) ensures

e−iQ′
ne−iQnJeiQneiQ

′
n = D + (V̂n + R̂n)⊕ (Ṽn + R̃n) +O(n−1 lnn). (6.13)

Since (6.8) ensures ||R̂n||B(Ĥn)
= O(n−1 lnn), we can write (6.13) in the form

e−iQ′
ne−iQnJeiQneiQ

′
n = D + V̂n ⊕ Ṽ ′

n +O(n−1 lnn) with Ṽ ′
n := Ṽn + R̃n. (6.14)

Let us introduce
Jn := eiQneiQ

′
n(D + V̂n ⊕ Ṽ ′

n)e
−iQ′

ne−iQn . (6.15)
Then one can find C > 0 and n2 ≥ n1 such that

||J − Jn|| ≤ Cn−1 lnn (6.16)

holds for n ≥ n2. Denote Jn,t := J + t(Jn − J) for 0 ≤ t ≤ 1. Then

dist(spec(Jn,t), spec(J)) ≤ Cn−1 lnn (6.17)
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holds for n ≥ n2. Let n3 ≥ n2 be such that Cn−1
3 lnn3 < β/8. Then

spec(Jn,t) ∩ [dn − β/2, dn + β/2] ⊂ [dn − 3β/8, dn + 3β/8] (6.18)

and the spectral projector of Jn,t on [dn − β/2, dn + β/2] can be written in the form

Pn,t := 1[dn−β/2,dn+β/2](Jn,t) =
i

2π

∮
|z−dn|=β/2

(Jn,t − z)−1dz. (6.19)

Due to (6.19), t→ Pn,t is continuous [0, 1] → B(ℓ2(Z)) and the trace of Pn,t is constant,
hence

tr 1[dn−β/2,dn+β/2](Jn) = tr 1[dn−β/2,dn+β/2](J) = 2. (6.20)

Due to (6.17) and (6.20), it is clear that for n ≥ n3 we can label the non-decreasing
sequence of eigenvalues of Jn, counting multiplicities, {λk(Jn)}k∈Z, so that

λn−1(Jn) < dn − β
2 < λn(Jn) ≤ λn+1(Jn) < dn + β

2 < λn+2(Jn) (6.21)

and
max{|λn(Jn)− λn(J)|, |λn+1(Jn)− λn+1(J)|} ≤ Cn−1 lnn. (6.22)

Denote D̂n := D|Ĥn
and D̃n := D|H̃n

. Then

D̂n + V̂n =

(
dn V (n, n+ 1)

V (n+ 1, n) dn

)

and spec (D̂n + V̂n) = {λ̂n, λ̂n+1} holds with

λ̂n := dn − |V (n, n+ 1)| and λ̂n+1 := dn + |V (n, n+ 1)|. (6.23)

Since V (n, n+ 1) = O(n−1/2), there is n4 ≥ n3 such that for n ≥ n4 one has

dn − β
2 < λ̂n ≤ λ̂n+1 < dn + β

2 . (6.24)

However,

spec(Jn) = spec((D̂n + V̂n)⊕ (D̃n + Ṽ ′
n)) = spec(D̂n + V̂n) ∪ spec(D̃n + Ṽ ′

n)

implies

{λ̂n, λ̂n+1} ⊂ spec(Jn). (6.25)

Combining (6.25) with (6.21), (6.24), we get λ̂n = λn(Jn), λ̂n+1 = λn+1(Jn) and using
these equalities in (6.22), we deduce that

max{|λ̂n − λn(J)|, |λ̂n+1 − λn+1(J)|} ≤ Cn−1 lnn (6.26)

holds for n ≥ n4, completing the proof of Theorem 3.4.

7. Proof of Theorem 3.2

7.1. Beginning of the proof. Reasoning similarly as in the proof of Theorem 3.4, we
consider the decomposition ℓ2(Z) = Ĥn ⊕ H̃n with Ĥn = Cẽn and introduce

J ′
n := e−iQnJeiQn , (7.1)



24 A. BOUTET DE MONVEL, M. CHARIF, AND L. ZIELINSKI

whereQn are self-adjoint bounded operators defined by the relation (Qnẽk)(j) = Qn(j, k)
with

Qn(j, k) =


i
V (j, n)

dj − dn
when j ̸= n and k = n

i
V (n, k)

dn − dk
when j = n and k ̸= n

0 otherwise

(7.2)

Similarly as before, we find

||Qn|| = O(n−1/2) as n→ ∞, (7.3)

ℓ2,1(Z) is an invariant subspace of Qn and of eitQn . As before, Π̂n denotes the orthogonal
projection on Ĥn, Π̃n = I − Π̂n denotes the orthogonal projection on H̃n and

[D, iQn]x = i(DQn −QnD)x = −Vnx for x ∈ ℓ2,1(Z) (7.4)

holds with Vn = Π̃nV Π̂n + Π̂nV Π̃n. Moreover, t→ eitQnx is of class C∞(R; ℓ2,1(Z)) if
x ∈ ℓ2,1(Z) and we obtain (5.1) in the form

J ′
n = Dn + Π̃nV Π̃n +Rn +O(n−1) (7.5)

with Rn = [Wn, Qn] and

Dn = diag(dm + V (n, n)δn,m)m∈Z. (7.6)

Therefore
||Rn|| ≤ 2||Wn|| ||Qn|| ≤ C||Qn|| = O(n−1/2) as n→ ∞ (7.7)

and the estimate (6.8) still holds, ensuring

Rn(n, n) = ⟨ẽn, Rnẽn⟩ = O(n−1 lnn) as n→ ∞ (7.8)

In Section 7.2 we will complete the proof of Theorem 3.2, using the following result

Theorem 7.1. (Kato-Temple) Assume that the operator L is self-adjoint in the
Hilbert space H and has exactly one eigenvalue λ in the interval [d′, d′′]. If x is an
element of the domain of L such that ||x||H = 1 and η := ⟨x, Lx⟩H belongs to ]d′, d′′[,
then

η − ∥(L− η)x∥2H
η − d′

≤ λ ≤ η +
∥(L− η)x∥2H

d′′ − η
. (7.9)

Proof. See [31]. □

7.2. End of the proof. Let c0 be as in (3.12) and fix 0 < δ < 1
4c0, i.e. one has

dn−1 + 2δ < dn − 2δ for every n ∈ Z. Due to (3.21) there is n0 ∈ N such that one has

dm + δ < λm(J) < dm − δ for m ≥ n0 − 1

and consequently,

spec(J ′
n) ∩ [dn−1 + δ, dn+1 − δ] = spec(J) ∩ [dn−1 + δ, dn+1 − δ] = {λn(J)} (7.10)

holds for n ≥ n0. In what follows, we assume n ≥ n0 and use Theorem 7.1 with L = J ′
n,

x = ẽn, d′ = dn−1 + δ, d′′ = dn+1 − δ. We introduce

ηn := ⟨ẽn, J ′
nẽn⟩ (7.11)

and observe that (7.5)-(7.6) give

ηn = dn + V (n, n) +Rn(n, n) +O(n−1), (7.12)
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hence
ηn = dn + V (n, n) +O(n−1 lnn) (7.13)

due to (7.8). Therefore there is n1 such that

dn−1 + 2δ < ηn < dn+1 − 2δ for n ≥ n1 (7.14)

and
||(J ′

n − ηn)ẽn|| ≤ ||Rn||+ |Rn(n, n)|+ C0n
−1 (7.15)

implies
||(J ′

n − ηn)ẽn|| ≤ Cn−1/2. (7.16)
and (7.9) with (7.14) ensure

|λn(J)− ηn| ≤ δ−1||(J ′
n − ηn)ẽn||2 for n ≥ max{n0, n1} (7.17)

We complete the proof of (3.22), combining (7.17), (7.16) with (7.13).

8. Proof of Theorem 1.5

8.1. Proof of Theorem 1.5(a). We first claim that the assumptions ε ≥ 0 and
ε/β /∈ Z imply

λn(H)− λn(H0) = O(n−1 lnn) as n→ ∞ (8.1)
Indeed, Proposition 2.10 gives

λn(H)− λn(H0) = λn+l(J)− λn+l(J0) +O(n−1) as n→ ∞ (8.2)

and Theorem 3.2 with (2.39) give

λn+l(J)− λn+l(J0) = λn+l(J)− dn+l = O(n−1 lnn). (8.3)

We observe that (8.1) implies (1.16) due to

{λn(H0)}n∈N = {βn+ β−1}n∈N ∪ {βn+ β1}n∈N.

It remains to consider the case ε < 0. However,

H
(2)
Rabi(∆, ε, g) = I2 ⊗ â†â+ σx ⊗

(
g
(
â2 + (â†)2

)
+
ε

2

)
+

∆

2
σz ⊗ Iℓ2(N) (8.4)

is unitarily similar to

H
(2)
Rabi(∆,−ε,−g) = I2 ⊗ â†â− σx ⊗

(
g
(
â2 + (â†)2

)
+
ε

2

)
+

∆

2
σz ⊗ Iℓ2(N) (8.5)

due to σ−1
z σxσz = −σx. Thus the statement when ε < 0 follows from the statement for

−ε > 0 and −g instead of g.

8.2. Beginning of the proof of Theorem 1.5(b) and (c). Let us assume

l = ε/β ∈ N. (8.6)

The sequence {λn(H)}n∈N can be expressed as the union of sequences {E−
m}m∈N and

{E+
m}m∈N, defined as follows

E−
n = λn(H) when n < l

E−
i+l = λ2i+l(H) for i ∈ N

E+
i = λ2i+l+1(H) for i ∈ N

(8.7)

Then Proposition 2.10 implies

E−
i+l = λ2(i+l)(J) +O(i−1), (8.8)
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E+
i = λ2(i+l)+1(J) +O(i−1) (8.9)

and using Theorem 3.4 in (8.8)-(8.9), we get

E−
i+l = d2(i+l) − |V (2(i+ l), 2(i+ l) + 1)|+O(i−1 ln i), (8.10)

E+
i = d2(i+l) + |V (2(i+ l), 2(i+ l) + 1)|+O(i−1 ln i), (8.11)

where V (j, k) is given by (3.6). The proof of Theorem 1.5 (b) for ε ≥ 0 will be completed
in Section 8.4, by proving the estimate

|V (2(i+ l), 2(i+ l) + 1)| = O(i−1) if l is odd (8.12)

and the proof of Theorem 1.5 (c) for ε ≥ 0 will be completed in Section 8.5, by proving
that the estimate

|V (2(i+ l), 2(i+ l) + 1)| = |ri|+O(i−1) if l is even (8.13)

holds with ri given by (1.21). If ε < 0 then we deduce the result from the statement
with −ε and −g instead of g similarly as at the end of Section 8.1.

8.3. Expression of V (2j, 2j + 1) by means of oscillatory integrals. Due to (3.8)-
(3.11),

V (2j, 2j + 1) =
∆

2
⟨v−1,j , v1,j−l⟩ =

∆

2
⟨f−1,j , f1,j−l⟩L2(T), (8.14)

where we have denoted
fν,j := F−1

T vν,j . (8.15)
However, due to Corollary 2.5, fν,j = Uνfqν ,j , where Uν is defined by (2.21) and fqν ,j
by (2.25). The quantity (8.15) has the form

fν,j = eijΦν eiϕν
√
Φ′

ν , (8.16)

where Φν is given by (2.17) and

ϕν(θ) := ⟨qν⟩Φν(θ)− q̃ν(Φν(θ)) (8.17)

with q̃ν given by (2.22)-(2.23) and ⟨qν⟩ given by (2.30). Using (8.16) we can express

⟨f−1,j , f1,j−l⟩L2(T) =

∫ π

−π

eij(Φ1−Φ−1)(θ)h(θ)
dθ

2π
(8.18)

with
h := e−ilΦ1ei(ϕ1−ϕ−1)

(
Φ′

1Φ
′
−1

)1/2
. (8.19)

We claim that the phase function

Ψ := Φ1 − Φ−1 (8.20)

has four non degenerated critical points:

{θ ∈ (−π, π] : Ψ′(θ) = 0} = {π/4,−π/4, 3π/4,−3π/4}. (8.21)

Indeed, the direct computation gives

Ψ′(θ) =
β

1 + 2g cos(2θ)
− β

1− 2g cos(2θ)
= 0 ⇔ cos(2θ) = 0 (8.22)

and

Ψ′′(θ) =

(
4gβ

(1 + 2g cos(2θ))2
+

4gβ

(1− 2g cos(2θ))2

)
sin(2θ), (8.23)
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hence {
Ψ′′(π/4) = Ψ′′(−3π/4) = 8gβ

Ψ′′(−π/4) = Ψ′′(3π/4) = −8gβ
(8.24)

The stationary phase method gives

⟨f−1,j , f1,j−l⟩L2(T) = G1(j) +G−1(j) +O(j−1) as j → ∞ (8.25)

with
G±1(j) =

∑
θ∈{π/4,−3π/4}

1

4
√
πj|g|β

h(±θ)eijΨ(±θ)e±i sgn(g)π/4 (8.26)

where sgn(g) = g/|g|. Moreover,

G−1(j) = G1(j) (8.27)

follows from that fact the functions Φν , Ψ, qν and ψν are odd.

8.4. End of the proof of Theorem 1.5(b). Due to (8.14) and (8.25)-(8.27), it suffices
to prove that G1(j) = 0 when l is odd. In what follows, we use the notation

αg := arctan

(√
1− 2g

1 + 2g

)
(8.28)

and we remark that

α−g := arctan

(√
1 + 2g

1− 2g

)
=
π

2
− αg. (8.29)

Due to (2.18) and (8.29), we can express

Φ1(π/4) = αg, (8.30)

Φ−1(π/4) = α−g = π/2− αg. (8.31)
Due to (2.20) and (8.30)-(8.31), we find

Φ1(3π/4) = π − Φ1(π/4) = π − αg, (8.32)

Φ−1(3π/4) = π − Φ−1(π/4) = π/2 + αg. (8.33)
Using (8.30)-(8.33) and Ψ = Φ1 − Φ−1, we get

Ψ(π/4) = αg − (π/2− αg) = 2αg − π/2, (8.34)

Ψ(3π/4) = π − αg − (π/2 + αg) = π/2− 2αg. (8.35)
Since Ψ is odd, we find

Ψ(−3π/4) = Ψ(π/4), (8.36)
Ψ(−π/4) = Ψ(3π/4). (8.37)

Using Ψ(−3π/4) = Ψ(π/4) = 2αg − π/2, we obtain

G1(j) =
h(π/4) + h(−3π/4)

4
√
πj|g|β

eij(2αg−π/2)ei sgn(g)
π
4 (8.38)

and the assertion of Theorem 3.4(b) will be proved if we show that h(π/4)+h(−3π/4) = 0
when l is odd.

In order to evaluate h, we first remark that (2.24) and (2.30) allow us to express

ϕν(θ) = ⟨qν⟩Φν(θ)− q̃ν(Φν(θ)) =

=

(
1

2
+
νε− 1

2β

)
Φν(θ)−

θ

2
− νϵ− 1

2β
− Φν(θ) =

Φν(θ)− θ

2
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and the equality ϕν(θ) = 1
2 (Φν(θ)− θ) implies

ϕ1 − ϕ−1 =
1

2
(Φ1 − Φ−1) =

1

2
Ψ. (8.39)

Due to (8.39) we can rewrite (8.19) in the form

h = e−ilΦ1eiΨ/2
(
Φ′

1Φ
′
−1

)1/2
. (8.40)

Using (
Φ′

1Φ
′
−1(±π/4)

)1/2
=
(
Φ′

1Φ
′
−1(±3π/4)

)1/2
= β (8.41)

and Ψ(π/4) = Ψ(−3π/4) in (8.40), we find

h(−3π/4) = eil(Φ1(π/4)−Φ1(−3π/4))h(π/4) = (−1)lh(π/4), (8.42)

where the last equality follows from

Φ1(π/4)− Φ1(−3π/4) = Φ1(π/4) + Φ1(3π/4) = π.

If l is odd, then (8.42) implies h(3π/4) = −h(π/4) and completes the proof of G1(j) = 0.

8.5. End of the proof of Theorem 1.5(c). Assume that l is even. Using (8.40)-(8.41),
we get

h(−3π/4) = h(π/4) = e−ilαgei(2αg−π/2)/2β, (8.43)

and

G1(j) =
2β

4
√
πj|g|β

e−ilαg+i(j+1/2)(2αg−π/2)ei sgn(g)π/4. (8.44)

Due to (8.27),

G1(j) +G−1(j) =

√
β

πj|g|
cos
(
(2j + 1− l)αg − j

π

2
+ (sgn(g)− 1)

π

4

)
If g > 0 then we obtain

V (2j + 1, 2j) =
∆

2

√
β

πj|g|
cos
(
(2(j − l) + 1 + l)αg − j

π

2

)
+O(j−1) (8.45)

and l ∈ 2N ⇒ lπ/2 ∈ πZ, hence (8.45) gives

|V (2j + 1, 2j)| = |rj−l|+O(j−1) (8.46)

and (8.13) holds if g > 0. If g < 0, then αg = π/2− α|g| and∣∣∣cos((2j + 1− l)αg − j
π

2
− π

2

)∣∣∣ = ∣∣∣cos((2j + 1− l)
(π
2
− α|g|

)
− j

π

2
− π

2

)∣∣∣ .
Since l ∈ 2N ⇒ lπ/2 ∈ πZ, the above quantity can be also written in the form∣∣∣cos(−(2j + 1− l)α|g| + j

π

2

)∣∣∣ = ∣∣∣cos((2j + 1− l)α|g| − j
π

2

)∣∣∣ .
Thus (8.45) implies (8.46) in the case g < 0 as well.
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