
HAL Id: hal-04854994
https://hal.science/hal-04854994v1

Submitted on 24 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

MELTDOWN, SPECTRE, side channels, etc
David Monniaux

To cite this version:

David Monniaux. MELTDOWN, SPECTRE, side channels, etc. 2018. �hal-04854994�

https://hal.science/hal-04854994v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

MELTDOWN, SPECTRE, side channels, etc.

David Monniaux

CNRS / VERIMAG

January 16, 2018

David Monniaux (CNRS / VERIMAG) MELTDOWN, SPECTRE, side channels, etc. January 16, 2018 1 / 31

Myself

http://www-verimag.imag.fr/~monniaux/

VERIMAG http://www-verimag.imag.fr/
Co-head of PACSS (Proofs and Code analysis for Safety and Security)

Does mostly program analysis (abstract interpretation…) and algorithmics
of verification (satisfiability modulo theory, convex polyhedra…)

Not a security expert

David Monniaux (CNRS / VERIMAG) MELTDOWN, SPECTRE, side channels, etc. January 16, 2018 2 / 31

http://www-verimag.imag.fr/~monniaux/
http://www-verimag.imag.fr/

Cache attacks

Contents

Cache attacks

KASLR

Meltdown

Spectre

Conclusion

David Monniaux (CNRS / VERIMAG) MELTDOWN, SPECTRE, side channels, etc. January 16, 2018 3 / 31

Cache attacks

Caches

Main memory is slow compared to the CPU
Solution: cache memories
Cache memory stores “recently accessed” code and data

e.g. on my laptop 50 reads on non-consecutive addresses
▶ cost 32 cycles if in cache (note: superscalar execution)
▶ cost 270 cycles if not

Multiple levels of caches with non-trivial replacement policies

David Monniaux (CNRS / VERIMAG) MELTDOWN, SPECTRE, side channels, etc. January 16, 2018 4 / 31

Cache attacks

6-core AMD Opteron

David Monniaux (CNRS / VERIMAG) MELTDOWN, SPECTRE, side channels, etc. January 16, 2018 5 / 31

Cache attacks

Simple cache timing attack

#define OFFSET0 2000
#define OFFSET1 4000

timestamp t0e, t0s, t1e, t1s;
volatile char buf[6502];
clflush(buf + OFFSET0); clflush(buf + OFFSET1); rdtsc();

volatile _Bool secret = 1;
buf[secret ? OFFSET1 : OFFSET0];

t0s = rdtsc(); buf[OFFSET0]; t0e = rdtsc();
t1s = rdtsc(); buf[OFFSET1]; t1e = rdtsc();

$./demo_cache_timing_attack
t0: 198
t1: 31

David Monniaux (CNRS / VERIMAG) MELTDOWN, SPECTRE, side channels, etc. January 16, 2018 6 / 31

Cache attacks

Cache timing attack on other programs

Different memory blocks compete for the same location in cache

Possible to know whether another program reads/writes one of its variable
because it evicts one of our variables

e.g. crypto program

stuff = table[f(secret_key, i)];

Intruder:

1. measure time → which of his own variables was evicted by the access
to table

2. know f(secret_key, i)
3. gain information on secret_key

David Monniaux (CNRS / VERIMAG) MELTDOWN, SPECTRE, side channels, etc. January 16, 2018 7 / 31

Cache attacks

Branch target predictor

void process(action* f) {
timestamp start = rdtsc();
f(10);
timestamp end = rdtsc();
printf(”%” PRIu64 ”\n”, end-start);

}

Contains an indirect call to the address pointed by register rsi:

call *%rsi

For efficiency the CPU caches the target address and speculatively
executes at the target address.
If incorrect speculation, actions are retracted.

David Monniaux (CNRS / VERIMAG) MELTDOWN, SPECTRE, side channels, etc. January 16, 2018 8 / 31

Cache attacks

Timing attack
process(f0); 758
process(f1); 1077
process(f0); 742
process(f1); 476
process(f0); 444
process(f0); 298
process(f0); 335
process(f0); 391
process(f0); 359
process(f1); 484
process(f1); 303
process(f1); 359
process(f1); 327
process(f1); 327
process(f0); 497
process(f0); 303
process(f0); 346
process(f0); 335
process(f0); 351

David Monniaux (CNRS / VERIMAG) MELTDOWN, SPECTRE, side channels, etc. January 16, 2018 9 / 31

Cache attacks

Branch predictor timing attack

A cache memorizes which way (taken / not taken) branches go

void __attribute__ ((noinline)) process(_Bool flag) {
timestamp start = rdtsc();
if (flag) f0(10); else f1(10);
timestamp end = rdtsc();
printf(”%” PRIu64 ”\n”, end-start);

}

David Monniaux (CNRS / VERIMAG) MELTDOWN, SPECTRE, side channels, etc. January 16, 2018 10 / 31

Cache attacks

Branch predictor timing attack
process(0); 67
process(1); 67
process(0); 36
process(1); 54
process(0); 36
process(0); 38
process(0); 36
process(0); 38
process(0); 37
process(1); 57
process(1); 52
process(1); 51
process(1); 49
process(1); 46
process(0); 69
process(0); 71
process(0); 44
process(0); 46
process(0); 46

David Monniaux (CNRS / VERIMAG) MELTDOWN, SPECTRE, side channels, etc. January 16, 2018 11 / 31

Cache attacks

Branch predictors reach across boundaries

It seems the CPU stores a single cached value (or a small history) at cache
index F(a) where a is the branch address.

F is a simple function

One can learn about a branch a in a privileged context by testing on b inside
the intruder F(a) = F(b).

David Monniaux (CNRS / VERIMAG) MELTDOWN, SPECTRE, side channels, etc. January 16, 2018 12 / 31

KASLR

Contents

Cache attacks

KASLR

Meltdown

Spectre

Conclusion

David Monniaux (CNRS / VERIMAG) MELTDOWN, SPECTRE, side channels, etc. January 16, 2018 13 / 31

KASLR

Virtual memory

Under Linux (similar for MacOS X, Windows a bit more complicated):

“Logical address” a
↓
▶ Physically mapped memory ϕ(a)
▶ Physically mapped privileged memory ϕ(a) (SIGSEGV)
▶ Nothing (SIGSEGV)
▶ Virtual memory to be fetched from disk

David Monniaux (CNRS / VERIMAG) MELTDOWN, SPECTRE, side channels, etc. January 16, 2018 14 / 31

KASLR

KASLR

To make various attacks more complicated:

Privileged kernel memory is at partially randomized addresses (Kernel
Address Space Layout Randomization).

Unless system parameter kernel.kptr_restrict=0, the kernel hides its
inside addresses:

$ cat /proc/kallsyms
0000000000000000 A irq_stack_union
0000000000000000 A __per_cpu_start
0000000000000000 A cpu_debug_store
0000000000000000 A gdt_page
0000000000000000 A exception_stacks

David Monniaux (CNRS / VERIMAG) MELTDOWN, SPECTRE, side channels, etc. January 16, 2018 15 / 31

KASLR

Transactions

Recent Intel CPUs:

All instructions between xbegin and end act as an atomic transaction.
Nice for implementing concurrent programs.
▶ x86-specific intrinsics _xbegin(), _xend(), _xabort()
▶ gcc specials __transaction_atomic ...

Instead of a SIGSEGV, an access to privileged memory aborts the
transaction.

David Monniaux (CNRS / VERIMAG) MELTDOWN, SPECTRE, side channels, etc. January 16, 2018 16 / 31

KASLR

Breaking KASLR

Timings for attempting to read from possible kernel addresses inside a
transaction:
ffffffff80000000 210
ffffffff81000000 210
ffffffff82000000 215
ffffffff83000000 211
ffffffff84000000 214
ffffffff85000000 215
ffffffff86000000 187
ffffffff87000000 214
ffffffff88000000 215
ffffffff89000000 214
ffffffff8a000000 215
ffffffff8b000000 214
ffffffff8c000000 215

Examination of /proc/kallsyms under kernel.kptr_restrict=0
shows that ffffffff86000000 indeed found the kernel.

David Monniaux (CNRS / VERIMAG) MELTDOWN, SPECTRE, side channels, etc. January 16, 2018 17 / 31

Meltdown

Contents

Cache attacks

KASLR

Meltdown

Spectre

Conclusion

David Monniaux (CNRS / VERIMAG) MELTDOWN, SPECTRE, side channels, etc. January 16, 2018 18 / 31

Meltdown

Speculative execution

Speculative execution proceeds quickly.

If incorrect, architectural effects (e.g. values stored) are retracted.

Microarchitectural effects including timing and caches are typically not
retracted.

David Monniaux (CNRS / VERIMAG) MELTDOWN, SPECTRE, side channels, etc. January 16, 2018 19 / 31

Meltdown

Meltdown

xbegin .ABORT
.RETRY:

mov (%r15), %al # Read a byte of KERNEL MEMORY
shl $12, %rax
and $4096, %eax # extract bit number 12-12=0
mov (%r11, %rax, 1), %rbx # read from buffer at offset 4096*bit
xend

.ABORT:

This code attempts reading secret data x then accesses an array at offset
4096× x.
The array access loads a cache block at an address depending on x.
Then the permissions are checked and the transaction is cancelled.
The cache block stays loaded and may be observed.
Meltdown.

David Monniaux (CNRS / VERIMAG) MELTDOWN, SPECTRE, side channels, etc. January 16, 2018 20 / 31

Meltdown

Working implementations

My own implementation works on my laptop (Intel Core i7-6600U) but not
on my work desktop machine.

I have another working implementation without transactions, by recovering
from SIGSEGV.

https://github.com/paboldin/meltdown-exploit.git works on
both, and recovers one byte, not one bit, per attack.

Both implementations need to force the kernel to load the secret data into
the L1 processor cache before the attack.
Need for L1 cache also reflected by Google and Intel’s documents.

Rumors on Twitter state that it is possible to exploit race conditions to load
other data.

David Monniaux (CNRS / VERIMAG) MELTDOWN, SPECTRE, side channels, etc. January 16, 2018 21 / 31

https://github.com/paboldin/meltdown-exploit.git

Meltdown

Mitigation: KPTI

a.k.a KAISER patch, originally meant to prevent the timing attacks on
KASLR

Remove almost all kernel pages from process virtual memory.

Each system call then induces a full context switch (for virtual memory).

System calls cost more, on some workloads -30% speed?

David Monniaux (CNRS / VERIMAG) MELTDOWN, SPECTRE, side channels, etc. January 16, 2018 22 / 31

Spectre

Contents

Cache attacks

KASLR

Meltdown

Spectre

Conclusion

David Monniaux (CNRS / VERIMAG) MELTDOWN, SPECTRE, side channels, etc. January 16, 2018 23 / 31

Spectre

Breaking out of a “safe language”

/* Privileged code */
if (index < 0 || index >= array.size) {
raise_array_out_of_bounds();

} else {
y = array.data[index];

}
/* Untrusted code */
buffer[y*4096] = 1;

1. Train the predictor into thinking the “else” branch is more likely.

2. Flush all buffer[y*4096] out of the cache.

3. Execute with out-of-bound access.

4. Recover from the exception.

5. Test which buffer[y*4096] was accessed, by timing attack.

David Monniaux (CNRS / VERIMAG) MELTDOWN, SPECTRE, side channels, etc. January 16, 2018 24 / 31

Spectre

Main ideas in Spectre

1. Information may leak by the data cache (or other side channel) not
only from legal, but also from speculative and aborted executions.

2. It is possible to voluntarily induce speculative executions

3. …including in privileged code (kernel code, or Web browser wrt
Javascript code)

David Monniaux (CNRS / VERIMAG) MELTDOWN, SPECTRE, side channels, etc. January 16, 2018 25 / 31

Spectre

More fun ideas

Poison branch target predictors (and observe the kernel)
Use branch predictors as side channel
Use branch target predictors as side channel

(As far as I know) predictors and L2/L3 caches are shared across all code,
many possibilities!

David Monniaux (CNRS / VERIMAG) MELTDOWN, SPECTRE, side channels, etc. January 16, 2018 26 / 31

Spectre

Spectre mitigation

Break the power of branch prediction and branch target prediction

e.g. avoid using branch instructions suitable for branch target prediction
use “return trampolines” (-mretpoline in some patches on LLVM)

Again, break optimization mechanisms, trade off speed for security.

Longer term: allow applications and OS to flush more microarchitectural
state?

David Monniaux (CNRS / VERIMAG) MELTDOWN, SPECTRE, side channels, etc. January 16, 2018 27 / 31

Conclusion

Contents

Cache attacks

KASLR

Meltdown

Spectre

Conclusion

David Monniaux (CNRS / VERIMAG) MELTDOWN, SPECTRE, side channels, etc. January 16, 2018 28 / 31

Conclusion

Things are too complicated

2017: bug in Skylake processor microcode when hyperthreading

Breaks OCaml garbage collector if compiled with gcc -O2

Sometimes parallel runs of OCaml code (e.g. Coq compilation) crashes

Fixed in microcode

David Monniaux (CNRS / VERIMAG) MELTDOWN, SPECTRE, side channels, etc. January 16, 2018 29 / 31

Conclusion

Executive summary

Not new
Cache observation attacks are not new

Branch predictor observation attacks are not new

New
Attacks on side channels during speculative execution are new

Inducing specific speculative executions to observe them is new

Unknown
Is it possible to use Meltdown on data not in L1 cache, due to subtle race
conditions?

Is it possible to force loads into cache?

Are there race conditions allowing out-of-cache loads?

Is there something we don’t know that justifies the quick patching against
Meltdown?

David Monniaux (CNRS / VERIMAG) MELTDOWN, SPECTRE, side channels, etc. January 16, 2018 30 / 31

Conclusion

Questions?
(Contact me for internships, PhD theses etc.
In program analysis, verification, and security.)

http://www-verimag.imag.fr/~monniaux
David.Monniaux@univ-grenoble-alpes.fr

David Monniaux (CNRS / VERIMAG) MELTDOWN, SPECTRE, side channels, etc. January 16, 2018 31 / 31

http://www-verimag.imag.fr/~monniaux
David.Monniaux@univ-grenoble-alpes.fr

	Cache attacks
	KASLR
	Meltdown
	Spectre
	Conclusion

