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Abstract21

Background Soil microbiomes harbor complex communities and exhibit important ecologi-22

cal roles resulting from biochemical transformations and microbial interactions. Difficulties in23

characterizing the mechanisms and consequences of such interactions together with the multi-24

dimensionality of niches hinder our understanding of these ecosystems. The Atacama Desert is25

an extreme environment that includes unique combinations of stressful abiotic factors affecting26

microbial life. In particular, the Talabre Lejía transect has been proposed as a unique natural27

laboratory for understanding adaptation mechanisms.28

Results We propose a systems biology-based computational framework for the reconstruc-29

tion and simulation of community-wide and genome-resolved metabolic models, in order to30

provide an overview of the metabolic potential as a proxy of how microbial communities are31

prepared to respond to the environment. Through a multifaceted approach that includes tax-32

onomic and functional profiling of microbiomes, simulation of the metabolic potential, and33

multivariate analyses, we were able to identify key species and functions from six contrasting34

soil samples across the Talabre Lejía transect. We highlight the functional redundancy of whole35

metagenomes, which act as a gene reservoir from which site-specific functions emerge at the36

species level. We also link the physicochemistry from the puna and the lagoon samples to37

specific metabolic machineries that could be associated with their adaptation to the unique38

environmental conditions found there. We further provide an abstraction of community com-39

position and structure for each site that allows to describe them as sensitive or resilient to40

environmental shifts through putative cooperation events.41

Conclusion Our results show that the study of community-wide and genome-resolved metabolic42

potential, together with targeted modeling, may help to elucidate the role of producible metabo-43

lites in the adaptation of microbial communities. Our framework was designed to handle44

non-model microorganisms, making it suitable for any (meta)genomic dataset that includes45

nucleotide sequence data and high-quality environmental metadata for different samples.46

Keywords: microbial communities, metagenomics, metabolic potential, metabolic network,47

metabolic model, community-wide, genome-resolved, Atacama Desert.48
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Background49

Soil bacterial communities are particularly heterogeneous and complex (Sokol et al., 2022).50

They demonstrate specific functional responses to their environment, and can modify their51

surroundings by passively releasing or actively secreting metabolites (Pande and Kost, 2017).52

Bacterial communities also exhibit self-organizing properties by sharing labor costs to adapt to53

specific environmental constraints such as nutrient availability, for example through synergistic54

interactions (Anantharaman et al., 2016; Thommes et al., 2019; Mataigne et al., 2021).55

From a ecological perspective, it is generally assumed that beneficial interactions within bac-56

terial communities are based on species engaging in synergistic behavior, including metabolic57

exchange between species (Ziesack et al., 2019; Louis et al., 2014). Several studies suggest58

that metabolic exchanges allow for the re-utilization of metabolites released into the environ-59

ment, benefiting not only the producer but also neighboring microorganisms. These molecules60

have been referred to as "public goods" (Boon et al., 2014) and could explain the evolution of61

functional capabilities in members of these communities. This behavior, often referred to as62

"metabolic handoffs" (Hug and Co, 2018), and the intrinsic metabolic dependencies in cross-63

feeding determine not only microbial community composition, but also its stability, as the64

properties of microorganisms compensating for others’ gene loss affect the ability of the whole65

community to overcome perturbations (Mataigne et al., 2021; Morris et al., 2012; Shade et al.,66

2012). In line with this, the ecological concept of keystone species, a term originally defined67

in the context of food web complexity and community stability (Paine, 1969), corresponds68

to members whose removal can cause a dramatic change in the structure and function of the69

microbiome (Wang et al., 2024).70

Functions harboured by, possibly low-abundant, keystone species are context-dependent and71

predicted to be critical for the ecosystem, as they catalyze load points in community-wide72

metabolic networks (Muller et al., 2018). Thus, metabolism, the first response of the mi-73

crobiome to environmental perturbations, is a critical level of analysis to better understand74

the assembly of the community (Rothman et al., 2023; van der Knaap and Verrijzer, 2016;75

Kochanowski et al., 2017; Wang and Lei, 2018). However, it has been hypothesized that the76

high diversity of microbial communities, especially those of soils, favors functional redundancy77
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where different taxa can perform the same set of metabolic processes and, therefore, can easily78

replace each other (Allison and Martiny, 2008). Although efforts have been made to unravel79

the relationships between nutrient cycling processes and the architecture of soil microbiomes80

at the taxonomic and functional levels (Zhou et al., 2022), providing mechanistic insights into81

the relationship between nutrient availability and microbiome composition remains a puzzling82

challenge. We still do not fully understand how community-level functional properties in the83

microbiome emerge from the assimilation and transformation of environmental nutrients. This84

requires deciphering everything from how the metabolic machinery of the community is ac-85

tivated in response to the nutritional properties of the culture medium, to the metabolites86

secreted by the community, and how this metabolite production is characteristic of the physic-87

ochemical properties of the medium inhabited by the community. (Silverstein et al., 2024).88

Metabolic modeling has been shown to be a successful approach to account for cross-feeding89

and other potential microbial interactions in whole communities when applied to metagenomic90

information, looking at the metabolism of the community as a whole or analyzing its individuals91

through metagenome-assembled genomes (MAGs) (Lambert et al., 2024; Budinich et al., 2017;92

Taş et al., 2021; Xun et al., 2021; Régimbeau et al., 2022). However, the latter is difficult93

to achieve, as the extensive microbial diversity prevents the reconstruction of genomes for94

the majority of low abundance populations, especially in complex ecosystems such as soil95

(Ejaz et al., 2024). Our main hypothesis in this context, is that building metabolic models96

at both the metagenome and MAG scales can provide relevant hypotheses about the system.97

Our main focus is to assess whether the metabolic capacities of different species could be98

linked to different subsets of available niches, and whether the larger metabolic repertoire99

of the multispecies community allows it to occupy a wider range of niches. In this scenery,100

metagenome-scale models can be representative of the consequences of metabolic handoffs,101

as they combine the metabolic capabilities of the entire community (Saleem et al., 2019),102

while MAG-level models are likely to highlight the metabolism of dominant members of the103

microbiome within microenvironments of soil (Fierer, 2017).104

In this article, we aimed to provide answers to the questions raised above by exploring genome-105

scale metabolism modeling of an entire microbiome and inferring the ability of its networks to106

produce metabolites of interest (Belcour et al., 2020). To achieve our goal, we take advantage107
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of metagenomic data and measurements of physicochemical conditions collected at six sites108

along the altitudinal gradient of the Talabre-Lejía transect (TLT), located on the eastern109

margin of the Salar de Atacama to the Lejía lagoon. This transect captures three vegetation110

belts: prepuna (2,400 to 3,300 meters above sea level; masl); puna (3,300 to 4,000 masl); and111

steppe under the influence of a variety of abiotic conditions, and exhibits a level of diversity112

and heterogeneity that is representative of complex soil microbiomes (Mandakovic et al., 2023;113

Eshel et al., 2021). Microorganisms in this environment have to withstand extreme conditions114

of UV radiation, salinity, high diurnal temperature variation and extremely low availability115

of nutrients and water (Díaz et al., 2016; Mandakovic et al., 2018; Andreani-Gerard et al.,116

2024). We build on the knowledge gained about this specific ecosystem and analyze it through117

the lens of systems biology. We develop and apply a metabolic modeling strategy to MAGs118

and metagenomes assembled from the TLT, in order to unravel the theoretical capacity of119

its microbes to synthesize metabolites under different environmental conditions. Our results120

suggest that the relationships between nutrients, metabolic potential and taxa in the transect121

are site-dependent, despite a common reservoir of functions at the metagenome level. We122

demonstrate the utility of a strategy that combines community-wide and genome-resolved123

metabolic models to suggest important pathways and key players in complex microbiomes.124

Methods125

Geographical locations, sample collection and metagenomic sequenc-126

ing127

Soil sampling and extraction analytical protocols, DNA extraction and sequencing from six128

sites along the Talabre-Lejía Transect (TLT; 23.4°S, 67.8°W) have recently been described129

(Andreani-Gerard et al., 2024)). Briefly, bulk soil samples (100 g) were collected in triplicate130

at a depth of 10 cm from the ground spanning an altitudinal gradient with different vege-131

tation cover: pre-puna (S1, 2,400 to 3,300 m.a.s.l.), puna (S2, 3,200 to 4,000 m.a.s.l.), and132

steppe (S3 to S6, 4,000 to 4,500 m.a.s.l.); and stored on dry ice until arrival at the laboratory133

for metagenomic sequencing. DNA extraction was performed using the NucleoSpin Food kit134
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(Macherey-Nagel). DNA from triplicates was pooled to obtain one representative DNA sample135

per site. Sequencing was performed by MR DNA (www.mrdnalab.com, Shallowater, TX, USA)136

on a Miseq platform (Illumina, San Diego, CA) with an overlapping 2×150 bp configuration.137

Soil physicochemical measurements are presented in Table S1.138

Nearly 453 million paired-end reads of 150 nucleotides in length were generated across the six139

sampled sites. In total, 325,603,002 of the nearly 430 million high quality reads were mapped140

to the assembled metagenomic contigs (76%), averaging more than 50 million reads per sample141

(Table S2).142

Metagenome and MAG assembly143

Metagenomic reads from the six sequenced samples were trimmed using the BBTools protocols144

(Bushnell et al., 2017) to remove Illumina adapters and low quality bases. High quality reads145

(>90%) were then used to build the metagenomic assemblies for each sample using MEGAHIT146

v1.2.9 (Li et al., 2015) with the kmer preset “meta-large” recommended for soils. Statistics of147

the assemblies are available in Table S2. A multi-process pipeline was prepared to extract site-148

specific metagenome-assembled genomes (MAGs). A triple binning and consensus approach149

was used, with Maxbin2 v2.2.7 (Wu et al., 2015), Metabat2 v2.2.15 (Kang et al., 2019) and150

Concoct v1.1.0 (Alneberg et al., 2014). All binners were set to a minimum contig size of 2000151

bp and the coverage mapping recommended by Metabat2. To combine and refine all outputs,152

the Metawrap pipeline (Uritskiy et al., 2018) was used as the consensus method with parameter153

set to their default recommended values. Resulting bins were quality-assessed using CheckM154

v1.2.2 (Parks et al., 2015) and filtered to 136 high quality MAGs (completeness >70% and155

contamination <10%). Taxonomic classification was performed using the GTDB release 214156

with its toolkit v2.3.0 (Chaumeil et al., 2019). Dereplication of MAGs classified to the same157

species was performed following the dRep scoring metric (Olm et al., 2017) with default values158

for parameters related to completeness, contamination, strain heterogeneity, N50 and size, and159

with F set to 0. The genomic dataset was reduced to 120 high-quality, unique MAGs. Relative160

abundance of MAGs was calculated individually using the metagenomic reads belonging to161

their site of origin, using the CoverM v0.7.0 protocol (https://github.com/wwood/CoverM).162
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Taxonomic and functional profiling163

Taxonomic classification of the reads mapped to the metagenomic contigs was performed using164

the mOTUs microbial profiler v3.1 with default settings (Ruscheweyh et al., 2022).165

Structural gene annotation in the assembled metagenomes and MAGs was performed using166

Prodigal v2.6.3 (Hyatt et al., 2010). Functional annotation of these genes was performed using167

eggNOG-mapper v2.1.6 (Huerta-Cepas et al., 2019) based on eggNOG orthology data release168

5.0 (Huerta-Cepas et al., 2018), with sequence searches performed using DIAMOND v2.1.8169

(Buchfink et al., 2014). Functional categories from COG (Galperin et al., 2021), PFAM (Finn170

et al., 2006), CAZYme (Drula et al., 2022) and KEGG (Kanehisa et al., 2024) were assigned171

for analysis. Genbank files containing annotations and sequences were generated using in-172

house scripts based on the SeqIO Biopython library release 1.83 (Cock et al., 2009) for use in173

downstream metabolic reconstruction.174

Metabolic network reconstruction and modeling175

The input to the metabolic network reconstruction was the collection of genbank files described176

above. Reconstruction was performed using the GeMeNet pipeline (https://gitlab.inria.177

fr/slimmest/gemenet) based on Pathway-tools v.25.5 (Karp et al., 2022), mpwt v0.7 (Belcour178

et al., 2020) and Padmet v5.0.1 (Aite et al., 2018).179

Simulations of producible metabolites, i.e., the metabolic modeling, were performed with Mene-180

tools v3.3.0 (Aite et al., 2018) for metagenomes and Metage2Metabo v1.5.2 (Belcour et al.,181

2020) for MAGs, using the subcommands scope and metacom respectively. Both tools require a182

list of available nutrient compounds, referred to as seeds, which initialize the inference of other183

reachable, i.e., producible, metabolites in the network. This step is referred to as network184

expansion and, in the genome-resolved approach, it takes into account the metabolic comple-185

mentarity of MAGs, therefore suggesting the producibility of new metabolites resulting from186

putative cross-feeding interactions. We describe as MetaG-GEM a metabolic model obtained187

from a metagenome-scale metabolic network, and as MAG-GEM, a metabolic model result-188

ing from a collection of MAG-scale metabolic networks. Thus, 12 systems were developed: 6189

7

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2024. ; https://doi.org/10.1101/2024.12.23.630026doi: bioRxiv preprint 

https://gitlab.inria.fr/slimmest/gemenet
https://gitlab.inria.fr/slimmest/gemenet
https://gitlab.inria.fr/slimmest/gemenet
https://doi.org/10.1101/2024.12.23.630026
http://creativecommons.org/licenses/by/4.0/


basal
medium

simple
sugars

complex
sugars

non-sulf.
amino acids

all
amino acids

bioavailable nutrients

organic carbon 0 glucose, maltose,
galactose, +[4]

rhamnose, xylitol,
spermidine, +[18]

ser, pro, val, thr, ile, leu, gln,
lys, his, phe, arg, tyr, gly, ala,

asp, asn, glt, trporganic nitrogen 0 0 0
organic sulfur 0 0 0 0 cys, met

subtotal 0 7 21 18 20

basal medium

inorganic carbon HCO3, CO2

inorganic nitrogen N2, ammonium, nitrate, nitrite
inorganic sulfur HS, SO3, S2O3, sulfate
other inorg. chem. H2O, O2, H2, H+, H2O2, Pi, Cl-, +[2]
metal ions Mg, Fe, Ni, Co, Cu, MoO4

coenzymes NAD, FAD, CoA, thiamine, +[14]

subtotal 43 43 43 43 43

total 43 50 64 61 63

Table 1: Summary of the five conditions constructed for simulations in terms of compounds available for initializing the network
expansion. Conditions are detailed further in Table S8.

MetaG-GEMs and 6 MAG-GEMs, one of each per site.190

Five conditions were designed to simulate the systems, each described as a list of nutrient com-191

pounds. The first condition is basal medium, comprising inorganic carbon sources (CO2 and192

HCO3), water, oxygen, inorganic phosphorus, nitrate, nitrite, ammonium, sulfate, sulfite, hy-193

drogen peroxide, arsenate, molybdate, metal ions (Fe2+, Mg2+, Ni2+, Co2+ and Cu2+) and other194

coenzymes and cofactors. This basal medium is included in all four additional conditions. The195

simple sugars condition contains carbohydrates that enter glycolysis before 2-phosphoglycerate,196

as defined in "Group A" by Wang et al. (Wang et al., 2019) (e.g., glucose, maltose, galactose,197

arabinose, sorbitol and glycerol). The complex sugars condition includes soil organic matter198

such as the molecules obtained in an untargeted metabolomics effort by Swenson et al. (2015)199

(e.g., trehalose, sucrose, rhamnose, mannitol, xylitol, linoleic acid, spermidine, coumarate and200

chorismate). The all amino acids condition includes the twenty genomically-encoded amino201

acids. Finally, the non-sulfured amino acids condition is the latter set excluding the sulfur-202

containing amino acids (cysteine and methionine). The conditions are summarized in Table 1203

and their detailed composition is available in Table S8.204

In total, 60 simulations were performed, each of the 12 systems with the 5 conditions, generating205

predictions of producible metabolites for each. Each simulation therefore resulted in a binary206
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vector describing the producibility (1) or non-producibility (0) of each metabolite in each207

system and condition. In particular, metabolites predicted in MAG-GEMs simulations that208

were never predicted in MetaG-GEMS simulations were removed to eliminate the effect of209

likely gap-filled reactions during network reconstruction step (n=82). The Metage2Metabo210

and Menetool log files containing the output lists of producible compounds were converted211

with an in-house script into binary matrices indicating the presence or absence of metabolites212

in each simulation. Identical presence/absence vectors of metabolites were collapsed into unique213

occurrence groups of metabolites across simulations (Table S6).214

Statistical analyses215

For taxonomic profiling, relative abundances obtained from mOTUs (see Taxonomic and func-216

tional profiling) were used. OTU data were rarefied to the least sequenced sample using the217

rarefy_even_depth function from the phyloseq package v1.46.0 (McMurdie and Holmes, 2013)218

for calculating diversity within microbiomes only. Alpha diversity indices were calculated using219

the diversity and fisher.alpha functions from the vegan package v2.6 (Oksanen et al., 2020)220

in R. For functional profiling, the number of annotated genes from annotation reports (see Tax-221

onomic and functional profiling) was normalized by the total number of COG, PFAM, KEGG222

pathway and CAZyme entries detected per sample (Table S5). To determine the taxonomic223

ranks and functional categories that contributed most to the differences in abundance between224

the six soil microbiomes, a similarity percentage analysis (SIMPER) was performed using the225

Bray-Curtis dissimilarity matrix calculated on the Hellinger-transformed data in PAST v4.03226

(Øyvind Hammer et al., 2001).227

For multivariate analyses, principal Coordinate Analyses (PCoA) were performed with stats::cmdscale228

using the Bray-Curtis dissimilarity matrix calculated on the Hellinger-transformed taxonomic229

and functional abundances and using the Jaccard index on the binary matrices obtained in pre-230

vious section. Unsupervised clustering was drawn with stats_ellipse (type = "t", level =231

0.95) using the metabolite matrix. Hierarchical clustering of the simplified metabolic data (i.e.,232

metabolite groups, see Metabolic network reconstruction and modeling) was performed using233

the Jaccard index and the ward.D2 linking method, and visualized using the ComplexHeatmap234
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v2.18.0 package (Gu, 2022) in R. For environmental metadata, a principal component analysis235

(PCA) of soil physicochemical measurements (pH, electrical conductivity (EC), percent organic236

matter (OM), and fourteen others in mg/kg: N, NH4, NO3, P, K, Mg, Ca, Cu, Fe, Zn, Mn, B,237

S and Na) was performed with stats::prcomp and plotted with fviz_pca_biplot from the238

factoextra package v1.0.7 in R (Team, 2019).239

Lastly, using the matrix of unique occurrence groups of metabolites obtained across simulations,240

an elastic net regressions were applied with an alpha value of 0.85 using the glmnet package241

v4.18 (Tay et al., 2023) in R. To elucidate which metabolic traits better predict environmental242

metadata, the physicochemical measurements obtained in situ were individually targeted as243

explained variables (see Figure 2D for illustration). Unique occurrence groups of metabolites244

with nonzero coefficients and, thus, fitted as relevant for the regression model, were defined as245

‘key’ if absolute values of coefficients were greater than 0.3. Hierarchical clustering of this pro-246

cessed data was performed with the Bray-Curtis dissimilarity distance and the ward.D2 linking247

method, and plotted with the ComplexHeatmap package in R. For a visual summary of our248

bioinformatic pipeline, refer to Fig. 2. Lists of metabolites of interest were extracted and used249

for visualization using Ontosunburst v1.0.0 (https://github.com/AuReMe/Ontosunburst).250

All statistical analyses were performed using R v4.3.2. Plots were generated using ggplot v3.5.0251

(Wickham, 2016) unless otherwise indicated.252

Selection of minimal communities for the synthesis of targeted metabo-253

lites254

Metage2Metabo (Belcour et al., 2020) permits selecting minimal communities, i.e., a set of255

metabolic networks of minimal cardinality that sustain the reachability from nutrients of a set256

of targeted compounds. We used this approach to identify MAGs that could be involved in257

the production of environmentally-driven groups of metabolites detected with the elastic net258

regression model (see Statistical analyses). Metage2Metabo’s mincom command was executed259

for each of the six sites providing a single list of all such metabolites as targets. Runs were260

performed with basal medium because selected metabolic groups were unambiguous across261

seeds, i.e., they displayed the same producibility profiles across simulations regardless of the262
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seed used.263

Metage2Metabo provides by default a unique minimal community, together with informa-264

tion relative to the key species, essential and alternative symbionts. The former contains all265

metabolic networks appearing in at least one of the minimal-size communities. Essential sym-266

bionts appear in every minimal community, highlighting possible producibility bottlenecks in267

the microbiome, whereas alternative symbionts appear in one but not all minimal communities,268

suggesting functional redundancy for the targeted functions within the original microbial com-269

position. Enumeration of all minimal-size communities ensuring the reachability of metabolic270

targets was additionally performed, in order to retrieve information related to the co-presence271

of taxa in the predicted minimal communities. This association of symbionts was visualized272

with power graph compression as provided in Metage2Metabo. Power graphs were drawn in273

SVG format with the command m2m_analysis::workflow, and styled with Inkscape v1.3.2 to274

reflect the taxonomic classification and abundance of MAGs.275

Results276

Environmentally unique sampling sites at the Talabre-Lejía transect277

reflect distinct taxonomic and functional profiles of metagenomes278

The Talabre-Lejía transect (TLT, ∼23.5°S) is an altitudinal gradient located from the eastern279

margin of the Atacama Salar up to the Lejía lagoon that has been extensively studied for280

capturing different ecosystems and uncover key processes associated with adaptation to the281

Atacama Desert, the most arid nonpolar environment on Earth (Arroyo et al., 1988; Latorre282

et al., 2002; Eshel et al., 2021; Mandakovic et al., 2023). The aridity of the TLT is maximal in283

its lowest altitudes, whereas the highest ones may receive rain in the first three months of the284

year. Soil samples of our study span the prepuna, puna, and steppe (Fig. 1A).285

To understand how prokaryotic communities are taxonomically and functionally configured as286

physicochemical conditions change along the TLT, 17 nutrients were measured in situ. The287

geography and nutrient measurements of the six studied sites have been previously described288
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Andreani-Gerard et al. (2024) (Fig. 1A). Metagenomic sequencing was performed at the sam-289

pled six sites, enabling us to generate taxonomic profiles and functional descriptions of the290

annotated genes for each metagenome, and to reconstruct collections of metagenome-assembled291

genomes (MAGs) at each site (see Methods). Physicochemical characterization evidenced the292

overall soil dissimilarity across the six sites (Fig. 1A and Table S1). The first discriminative293

principal component is driven by both macro (P, S, K, Mg, and Ca) and micro (Mn, Na, Fe, and294

B) nutrients, which separates S6 from the rest of sites. The second principal component orders295

the other five ecosystems according to environmental nitrogen (N), organic matter (OM), and296

two heavy metals (Cu and Zn). A clear separation of the sites was observed when omitting the297

sample from the Lejía lagoon; where the puna ecosystem (S2) exhibits a positive discrimination298

given by OM, Fe, Cu and Zn (Fig. S1 and Suppl. Text S1).299

Alpha-diversity analyses included 146 million reads with assigned taxa (45% of the total),300

which were classified in 335 described prokaryotic OTUs (330 bacterial and 5 archaeal defined301

at 96.5% marker genes identity, Table S3). Increased richness was observed in sites S1 and302

S2, with 120 and 152 OTUs, Shannon’s indexes of 4.6 and 4.8, and Fisher’s log-series of 7.9303

and 10.1, respectively, compared to the rest of sites (S3 to S6, avg: 40±10.6, 3.5±0.27, and304

2.4±0.69). These results point to the prepuna and puna soil microbes as markedly more305

diverse than the sampled steppe communities, an observation that was previously reported for306

the prepuna (Mandakovic et al., 2023) and could relate to the semiarid vegetation belt that307

characterizes the puna (Frugone-Álvarez et al., 2023).308

While the six sites were overall dominated by Actinobacteriota and Proteobacteria in line with309

previous surveys of desertic soil (Vásquez-Dean et al., 2020; Feng et al., 2020; Naidoo et al.,310

2022), taxonomic profiling revealed different microbial composition across sites even at the311

phylum, class and family ranks (Suppl. Text S2 and Fig. S2). Examination down to the rank312

of orders revealed little overlap of taxa between the surveyed ecosystems (Fig. 1B, Table S4),313

as confirmed by beta-diversity analyses separating the prepuna and puna from remaining sites314

along the PCoA’s second coordinate while the first coordinate strongly separates the Lejía315

lagoon’s community (S6) at all taxonomic ranks (Fig. 1B and Fig. S2).316

To assess the impact of the observed taxonomic divergence on biological functions, we analyzed317
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Figure 1: Environmental heterogeneity across the Talabre-Lejía transect (TLT). A. Geographic illustration of the TLT
adapted from Mandakovic et al. (2023) showing altitude (m.a.s.l.), mean annual precipitations (MAP), mean annual temperature
(MAT), and distance between sampled sites (left). Principal component analysis (PCA) conducted upon the scaled environmental
metadata across sites (right). OM: organic matter, EC: electric conductivity. B. Relative abundance of taxonomic orders (left).
Taxa with abundance < 3% in all sites were merged into ‘other unabundant orders’. C. Relative abundance of most dissimilar
functional categories between sites following the KEGG pathway annotations (left). Ranked functions contributing up to 10%
of the cumulative overall dissimilarity according to a Similarity percentage analysis (SIMPER) are shown. Importance decreases
from left to right. B-C (right). Principal coordinates analysis (PCoA) conducted upon the Hellinger-transformed abundances
for taxonomic orders (n=72) and KEGG functional categories (n=491).
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gene annotations from the PFAM, COG, KEGG pathways, and CAZyme databases (Fig. 1C318

and Fig. S3). A total of 8605, 4491, 429, and 125 entries were identified across the six samples,319

respectively. In average, 6876 (80%), 4070 (91%), 413 (96%), and 101 (81%) different functional320

categories from the respective nomenclatures were detected per sample (Table S5). Dissimi-321

lar functional categories were ranked using pairwise comparisons of Hellinger-transformed gene322

abundances through SIMPER analysis (see Methods). Functional profiles are detailed in Suppl.323

Text S3. Prepuna (S1) and puna (S2) were found to be enriched in genes associated to degra-324

dation of aromatic compounds like benzoate, whilst Lejía lagoon (S6) was characterized by325

motility associated functions. Sites S3, S4, and S5 showed no enrichment of the top KEGG326

functions contributing up to 10% of cumulative dissimilarity (Fig. 1C). PFAM analyses of the327

steppe microbiomes displayed an enrichment of several categories related to mobile genetic ele-328

ments (e.g., transposases and phage integrases) and DNA repair (Fig. S3A). We observed that329

the most dissimilar COG annotation was an extracytoplasmatic receptor characterizing S2 and330

related to the uptake of tricarboxylates (TctC, Fig. S3B). Carbon metabolism was surveyed331

through the annotation of carbohydrate-active enzymes (CAZymes) which highlighted enrich-332

ment of glycosyl hydrolases (GH29, GH95, and GH3) in S6 and a broad glycosyl transferase333

(GT4) in S1 to S5 (Fig. S3C).334

Overall, functional annotations, taxonomic profiles, and physicochemical characteristics, all335

confirm the heterogeneity of the TLT microbiomes, separating the puna and prepuna from336

the steppe samples and the lagoon (see Suppl. Text S4). These observations motivate a337

deeper exploration of the metabolism through dedicated models in order to suggest mechanistic338

hypotheses on the transect’s diversity.339

A systems biology strategy to simulate the metabolic potential accord-340

ing to nutrient environmental availability341

Given the strong relationship revealed in the taxonomic and functional analyses of the metage-342

nomic samples from the TLT, as well as the evidence of relationships with their physicochemical343

environment, we simulated the metabolic potential of the communities as a proxy of how they344

are prepared to respond to environmental nutritional shifts. We built a systems biology-based345
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strategy that relies on metabolic modeling as the basis of a dynamical system for simula-346

tion. For this, a gene catalog was reconstructed for each metagenome while 120 high-quality347

MAGs, ranging from 5 to 44 per site and accounting in average for 15.1%±4.7% of relative348

abundance when mapped against metagenomic reads, were obtained across the six sites (Table349

S6). The originality of the approach lies in the construction of distinct and complementary350

models for each site, using their whole metagenome and their set of reconstructed MAGs.351

Metagenome-scale models (MetaG-GEMs) provide a global description of the metabolism of352

the entire community, independent of the taxa performing the functions. Building models based353

on MAGs (MAG-GEM ) per site enables the study of putative populations that, although rep-354

resenting only a fraction of all prokaryotic species inhabiting the TLT, are abundant enough355

to be captured by genomic assemblies. Thus, the MAG-scale approach can be understood as a356

compromise that provides taxonomic identity to a subset of functions that are likely to be im-357

portant in the corresponding communities, at the cost of possibly losing reactions from contigs358

that could not be binned. Overall, the objective of our strategy based on explainable models359

is to identify metabolic drivers associated with each site, and to determine taxa associated to360

their synthesis.361

The first part of the method consisted in constructing two dynamical systems for each site using362

MAG-GEMs and MetaG-GEMs (Fig. 2A). The formalism used in the dynamical system is the363

one of metabolic modeling associated to a Boolean semantic. For the two systems associated364

to a site, we relied on a metabolic network reconstructed from its gene catalog (MetaG-GEM)365

and a collection of metabolic networks reconstructed for its MAGs (MAG-GEM). The choice366

of the Boolean semantics is motivated by our objective of providing a global description of367

the functions carried out by soil microorganisms. Metabolic networks yielded, in average,368

5828±234.3 and 3774±583.5 unique reactions per sample from the assembled metagenomes369

and MAGs, respectively, of which more than 80% were gene-related (Table S7).370

The second step of the method consisted in defining simulation conditions for the dynami-371

cal systems. Considering that the Atacama Desert exhibits oligotrophic conditions and, thus,372

organic carbon and nitrogen supplies are expected to be scarce, we provided five scenarios sim-373

ulating different nutritional sources to our concentration-independent Boolean approach (Fig.374

2B). A basal medium is defined to contain inorganic compounds, a limited set of cofactors,375
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Figure 2: Overview of the metabolic modeling framework. A. Reconstruction of metabolic networks from sequence data
for metagenomic (gene catalogs by site, left) and genomic (MAGs, right) datasets. Nodes are metabolites and arrows are reactions.
Each sample’s metabolism can be abstracted as a MetaG-GEM built from the community-wide metabolic network, or a MAG-GEM
obtained from the collection of metabolic networks resulting from each site’s MAGs. B. Definition of conditions to be simulated
(user-provided seeds, Table 1 and Table S8). Numbers indicate the number of seed metabolites for each condition. C. Toy example
of network expansion using a Meta-GEM (left) or a MAG-GEM (right). Pink and purple circles denotes two different conditions,
represented as different available compounds. Black (resp. white) arrows and circles denote the reached metabolites by condition
in the MetaG-GEM and MAG-GEM, respectively. D. Summary of the bioinformatics pipeline used in this work. Sixty predictions
of reachable metabolites (scope) are performed with either MAG- or MetaG-GEMs and five conditions for all six sites. Producible
metabolites across conditions are summarized into a binary matrix. Matrix columns are dereplicated into groups of metabolites
with identical producibility profiles across conditions. The latter are used as explanatory variables in the elastic net regression
that aims at explaining the soil physicochemical metadata. Metabolite groups significantly associated (coefficient > 0.3) with
environmental data are set as targets for the selection of MAG-GEMs minimal communities: key species (colored organisms) are
involved in the biosynthesis throughout individual genomic capabilities (left, a single organism can produce the key compounds)
and/or putative cross-feeding interactions (right, several interacting organisms are necessary).

16

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2024. ; https://doi.org/10.1101/2024.12.23.630026doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.23.630026
http://creativecommons.org/licenses/by/4.0/


coenzymes, and metal ions, with CO2 and HCO3 as inorganic carbon sources. The next two376

nutritional conditions were constructed to explore the effect of adding organic carbon, specif-377

ically, carbohydrates that enter glycolysis directly (simple sugars, Wang et al. (2019)), and378

compounds commonly found in soils with higher molecular weights, or that comprise alterna-379

tive carbon sources (complex sugars, Swenson et al. (2015)). Finally, to assess the effect of380

supplying organic nitrogen, we provided a condition with all genomically-encoded amino acids381

(all amino acids) and another one excluding cysteine and methionine (non-sulfured amino382

acids) (see Methods, Table 1 and Table S8).383

The third step consisted in running the simulations and computing the metabolic potential, the384

response of the dynamical system to the simulated conditions, described as sets of metabolites385

predicted to be producible. We illustrate in Figure 2C the impact of two initial conditions on386

the production of metabolites in a toy MetaG-GEM and its corresponding toy MAG-GEM. We387

observe that functions present in the metagenome but absent from MAGs may alter the set388

of producible metabolites, and that therefore the metabolic potential can vary with simulated389

conditions (Fig. 2C). In total, using the data from the TLT, 60 simulations were conducted,390

accounting for the five conditions and the two systems for each of the six sites (Fig. 2D).391

The fourth step of the approach involved statistical analyses and additional simulations that392

aim at identifying relevant metabolites associated with each site, together with the taxa respon-393

sible for their production. The global framework of simulations and analyses is illustrated in394

Fig. 2D. Briefly, results of dynamical systems simulations were dereplicated in order to identify395

metabolite groups with similar producibility behaviors across simulations. Associations between396

these groups and physicochemical measurements of sites are identified using regression mod-397

els. Metabolite groups with the strongest associations to measurements are referred to as key398

compounds and used in further simulations to predict MAGs associated to their production in399

each site. We detail in the following sections the outcomes of this systems biology framework.400
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Metabolic modeling of soil prokaryotes outlines the potential of com-401

munities to adapt in demanding environments402

Results of the simulations are presented in Fig. 3 and Fig. S4. Across sites, 1,517 unique403

metabolites were predicted to be producible in MetaG-GEMs, of which 1,166 (76.9%) were404

captured in MAG-GEMs. Producible metabolites ranged on average from 1,136.3±47.9 with405

the basal medium condition to 1,306.2±64.9 with all amino acids in MetaG-GEMs, and from406

684.8±88.9 to 773.3±100.3 in MAG-GEMs, respectively (Fig. 3A). As expected, the MAG-407

GEMs - that encompass a reduced portion of the microbiome - exhibit smaller scopes than408

those obtained through the MetaG-GEMs, regardless of the simulated conditions (Fig. 3B,C).409

The number of producible metabolites depends on the simulated condition. The highest num-410

ber of producible metabolites in MAG-GEMs is exhibited by complex sugars and all amino411

acids conditions, and the latter presents the largest metabolic potential in MetaG-GEMs. This412

increased metabolic potential in all amino acids condition for both MAG- and MetaG-GEMs413

suggests that the addition of organic sulfur, i.e., cysteine and methionine, has a strong effect414

compared to solely organic nitrogen simulated in the non-sulfured amino acids condition. Ad-415

ditionally, puna (S2) reached the largest metabolic potential regardless of the conditions in the416

MetaG-GEMs, while the prepuna (S1) and one of the steppes (S4) consistently exhibited the417

lowest number of predicted metabolites in MAG- and MetaG-GEMs, respectively (Fig. 3B,C).418

Metabolites found to be producible in all 30 possible combinations of sites and conditions419

(core metabolites) prevail in both datasets, comprising 61.2% and 40.5% of all compounds in420

MetaG-GEMS (n=928) and MAG-GEMs (n=472), respectively (Table S9).421

An ordination analysis was performed to compare producible metabolites across sites and422

conditions (Fig. 3D and 3E). Results show that MetaG- and MAG-GEMs exhibit different423

metabolic profiles. On one hand, the high proportion of core metabolites predicted from the424

MetaG-GEMs determines the overlap of all sites but S4 (see Suppl. Text S3) when carbon425

is provided with basal medium, simple sugars, and complex sugars. While profiles of reach-426

able metabolites are more dissimilar in the all and non-sulfured amino acids conditions, the427

same five sites still cluster together. This underlines the strong impact of organic sulfur when428

compared to organic nitrogen and organic carbon, already implied by Fig. 3B. The effect of429
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Figure 3: Quantitative description and ordination analysis of producible metabolites. A. Distribution of the number
of producible metabolites across all 30 simulations (6 sites, 5 conditions) in MAG-GEMs and MetaG-GEMs. B,C. Number of
producible metabolites according to the simulated conditions in MetaG-GEMs (B) and MAG-GEMs (C). D,E. PCoA obtained
from the presence/absence matrix of producible compounds for MetaG-GEMs (D) and MAG-GEMs (E).
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conditions on the simulated metabolic profiles, rather than the effect of sites themselves, sug-430

gests high functional redundancy across sites (Fig. 3D). On the other hand, most metabolic431

profiles of MAG-GEMs cluster by site (Fig. 3E) indicating that the subset of MAGs from each432

site harbor different metabolic pathways, specifically fitted to the physicochemical properties433

and nutrient contents along the TLT. These results suggest that microbial communities as a434

whole could act as a reservoir of functions with little variability across sites (Fig. 3D), whereas435

the most abundant players in each community, retrieved as MAGs, exhibit higher differences436

in their metabolic responses across sites (Fig. 3E).437

Selection of key metabolites driven by the environment438

The binary matrix of metabolites (n = 1,517 unique metabolites) predicted to be produced439

across simulated conditions (Fig. 2D) was dereplicated by grouping metabolites with identical440

producibility patterns across all 60 simulations, raising 269 metabolite groups. Among those,441

45% (n=121) harbored a unique metabolite, the median and average size of a metabolite group442

being 2 and 5.6, respectively; and the largest group, the one gathering core metabolites across443

datasets, contained 469 metabolites. Hierarchical clustering of metabolite group’s producibility444

vectors across sites and conditions (Fig. S5) highlights two main clusters: 211 metabolite445

groups that exhibited varying producibility status across sites but were rather insensitive to446

the simulated conditions (Fig. S5A), and 58 groups whose producibility was mostly driven by447

the amino acid-containing conditions while being overall insensitive to sites (Fig. S5B). In the448

latter cluster 16 metabolite groups associated with non-sulfured amino acids and 42 to the449

inclusion of cysteine and methionine. We refer to interactive files in Supplementary material450

for a detailed description of biochemical families that distinguish sites across simulations in451

MAG-GEMs and MetaG-GEMs. Results highlight missing functions related to biosynthesis of452

polysaccharides, glycoconjugates, terpenoids, and of various lipids in the MetaG-GEM from453

S4 with respect to remaining sites. In MAG-GEMs, those functions were only present for the454

puna (S2).455

We used a regression model to associate the in situ physicochemical measurements (n = 17,456

Fig. 1A) with metabolite groups extracted from simulations (Fig. 2D). Our results show that457
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82 out of the 269 unique metabolite groups (30.1%) had nonzero coefficients in the model;458

meaning that 292 out of the 1,517 unique metabolites (19.3%) were fitted as relevant for at459

least one environmental variable (Table S10). Since coefficient values accounts for the strength460

and direction of the corresponding relationship, we focused on metabolite groups with absolute461

values greater than 0.3 (n=39), obtaining 171 metabolites which we refer to as key metabolites.462

A hierarchical clustering of the selected metabolite groups revealed three main clusters of463

environmental variables (EV1, EV2, and EV3, Fig. 4A). Namely, EV1 is defined by K, Na, Fe,464

P, Mn, Mg, S, B, Ca, and electric conductivity; EV2 by organic matter (OM), Zn, and N; and465

EV3 by pH, Cu, NO3 and NH4. Then, looking at the distribution of the in situ measurements466

across sites (Fig. 4B), we observed that EV1 and EV2 mainly cluster variables for which the467

Lejía lagoon (S6) and the puna (S2) microbiomes are outliers respectively, implying that they468

likely constitute major abiotic stressors for microorganisms inhabiting these rare ecosystems,469

whereas EV3 has no evident relation to geography.470

We further surveyed the link between sites and obtained metabolite groups associated with471

the first two clusters of environmental variables. Firstly, EV1 was positively associated to472

five metabolite groups representing 23 metabolites linked to nitrogenated pathways (e.g., L-473

leucine, L-valine, L-arginine, N-acetylneuraminate, and N-acetylmannosamine degradation, L-474

isoleucine biosynthesis) and osmotic stress (see Suppl. Text S5). Secondly, EV2 was positively475

associated to 2 metabolite groups representing 23 metabolites mostly linked to carbon cycling476

(e.g., staurosporine, violacein, and flavonoid biosynthesis, and aromatic degradation). This477

observation is consistent with, and further expands results of the functional profiling above,478

showing enrichment in some functions related to carbon catabolism and transport in the puna479

(Fig. 1C and Suppl. Text S6). For a description of structural ontology of key compounds480

from the puna (EV2) and the lagoon (EV1), we encourage the interested reader to navigate481

the interactive html files provided in the Supplementary material.482

Identification of MAGs involved in the production of key metabolites483

To identify the genomes having the potential to produce the 171 key metabolites associated484

with the sites’ physicochemical measurements, we set up a new simulation using the MAG-485
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Figure 4: Key metabolite groups proposed to be driven by the environmental pressures of the TLT. A. Heatmap
of metabolite groups selected with an elastic net regression model as best predictors for explaining environmental metadata. The
first term of IDs indicates the number of metabolites in each group. Data is shown if the absolute value of the fitted coefficient
was ≥0.3 (see Table S10). A total of 171 key metabolites emerged from these 39 metabolite groups (rows). Hierarchical clustering
of columns enabled three groups of environmental variables (EVs) to arise. B. Boxplot show the scaled values of in situ soil
physicochemical measurements comprising the environmental metadata. Outliers are displayed inside black circles. OM: organic
matter, EC: electric conductivity.
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GEM of each site with the basal medium condition as inputs to Metage2Metabo, which predicts486

minimal-size communities (Figs. 2D and 5A, see Methods). This reverse engineering approach487

aims at capturing a refined signal associating key metabolites to key species able to produce488

them. A first observation was that 90 key compounds were produced only in MetaG-GEMs489

simulations (Fig. 5B). Although precise information on the taxa responsible for their produc-490

tion cannot be inferred, these 90 metabolites constitute the environmentally-driven signal for491

whole communities. Hence, despite the MetaG-GEMs demonstrate a high functional overlap,492

as pointed out in Section Metabolic network reconstruction and modeling, this method can493

pinpoint metabolic functions that are specifically related to geography and could not be cap-494

tured from the first set of simulations (Fig. 3D). We therefore assessed the producibility of the495

remaining 81 key metabolites (27 metabolite groups) in the six sites (Fig. 5C).496

Our findings show that, out of the 120 MAGs, 62 were involved in the biosynthesis of at least497

one key metabolite. From these, 41 MAGs were essential symbionts (Fig. 5C), meaning that498

they occurred in all predicted minimal communities and, thus, may constitute load points499

for the producibility of the key metabolites (Tables S6 and S11). This suggests that one500

third of the reconstructed MAGs carry unique metabolic machinery related to at least one key501

metabolite. In average, MAGs were predicted to produce 46.8±8.9 key metabolites by site,502

of which 26.3±6.1 were predicted to be producible only through cooperative mechanisms with503

other MAGs from the site (Table S11).504

We dived further into the structure of communities per site by enumerating all possible mini-505

mal communities associated with key metabolite biosynthesis and analyzing the co-occurrence506

patterns regarding included MAGs and their combinations (see Methods). MAGs occurring in507

at least one minimal community at a specific site are referred to as key species (Belcour et al.,508

2020), denoting the functional redundancy of the microbiome with respect to the production509

of targeted metabolites when the number of key species is larger than the size of the minimal510

community. In other words, some solutions may predict one key species over another with-511

out altering the ability for the minimal community to produce the targets. In our case, the512

predicted minimal communities exhibited different microbial structures regarding the number,513

abundance, and taxonomy of MAGs involved in the production of key metabolites (Fig. 5D).514

Some sites (S1, S3) led to rigid communities: an unique community was predicted as able to515
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Figure 5: Minimal communities potentially able to produce key metabolites. A. Illustration of the reverse engineering
simulation protocol for identification of MAGs involved in the biosynthesis of key compounds with Metage2Metabo (Belcour et al.,
2020), see also Fig. 2D. B. Panel showing the producibility of metabolite groups (n=39) containing key compounds (n=171)
by site (see Table S11). Orange squares depict metabolite groups (n=27) containing key compounds (n=81) that are producible
in MAG-GEMs. Gray squares depict metabolite groups (n=12) containing key compounds (n=90) that were only producible in
MetaG-GEMs and, thus, had no effect in the computation of minimal communities, which is only possible for the genome-resolved
approach. The first term of IDs indicate the number of key compounds in each metabolite group. C. Power graphs summarizing
the structure of all predicted minimal communities per site. Blue and black circles should be interpreted as ”AND” and ”OR”,
respectively, meaning that all MAGs inside blue circles are required for the production of the key compounds provided as targets
(essential symbionts) whereas only one MAG is needed inside each black circle (alternative symbionts). Lines represent the sequence
of decision-making for the combinatorics of possible solutions and should be interpreted as ”AND”. Relative abundance represent the
percentage of metagenomic reads mapping to each MAG, i.e., populations in panel (A). KS: key species, MC: minimal community.

24

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2024. ; https://doi.org/10.1101/2024.12.23.630026doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.23.630026
http://creativecommons.org/licenses/by/4.0/


sustain the producibility of key metabolites, meaning that no MAG could be removed or re-516

placed while preserving the community’s biosynthesis potential (MC:KS=100%, MC: minimal517

community, KS: key species). These theoretical abstractions indicate more fragile communities,518

where any environmental perturbation could potentially compromise the ability of the commu-519

nity to sustain the biosynthesis of such metabolites (Xun et al., 2021). On the opposite side, we520

found a range of more complex structures providing many alternative community compositions521

for a single function, such as for S4 (MC:KS=58.3%), to a couple of replacements for a few522

functions like in S2, S5, and S6 (MC:KS>70%). These alternative symbionts increase the com-523

binatorics of possible community assemblies a soil microbiome can resort to in order to reach524

the targeted metabolic products. In these cases, metabolic redundancy suggests robustness525

to changes in community composition upon environmental circumstances (Shade et al., 2012).526

Such reserve of functions offers plasticity and, ultimately, resilience to the whole communities527

where these MAGs were recovered from (Allison and Martiny, 2008).528

We finally surveyed the abundance of the MAGs proposed as key species in the metagenomic529

datasets. On average, key species accounted for 8.8% of total relative abundance per site.530

S6 behaved as an outlier since selected MAGs accounted for 3.5% only of the total metage-531

nomic abundance, which suggests that microbes sampled from the Lejía lagoon probably have532

a complex underlying structure that our approach overlooked because of assembly limitations.533

Nevertheless, this result also implies that unabundant prokaryotes are likely to catalyze criti-534

cal metabolic steps in ecosystem functioning, as argued by Wang et al. (2021). On the other535

hand, we observed that MAGs from S1, all defined as essential symbionts, encompassed the536

highest cumulative abundance of key species (13.1%) across the TLT ranging from 1.6% to537

4.7% per MAG, compared to an average of 0.8% for essential symbionts in the rest of sites.538

This observation suggests that the metabolic response of microbial communities may fall on a539

few abundant members, likely due to the successful strategies they employ in the demanding540

environmental conditions of the TLT that severely limit other microbes to thrive (Stone et al.,541

2021). Regarding taxonomy, we observed that symbionts of Actinomycetota and Acidobac-542

terota constituted key species in every site, suggesting that these phyla harbour important543

functions in the microbiomes, and especially the former that is predicted in every enumerated544

community (Fig. 5D). For a complete taxonomic description of minimal communities, we refer545
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the interested reader to Suppl. Text S7. Overall, this approach of community selection can546

pinpoint MAGs and taxa exhibiting important roles in the community regarding functions of547

interest. Combining this information to taxonomy and abundance data can raise hypotheses548

on the global organization of the microbiome.549

Discussion550

A functional description of the TLT using metabolic modeling551

In this work, we characterize the metabolic potential of six contrasting microbiomes from an552

altitudinal gradient in the Atacama Desert, and explore their relationship with soil physic-553

ochemical metadata by using a systems biology strategy. In general, our results show that554

the addition of organic carbon in the forms of simple and complex sugars do not signify a555

major change in the predicted scopes of the TLT microbiome when compared to simulations556

performed only with inorganic carbon sources. Although carbon fixing members are known to557

be scarce in soils (Garritano et al., 2022), our abundance-independent approach underscores558

the ability of those few members to contribute to carbon uptake for the whole community559

to which they belong and the underlying interactions of cooperation. We also observed an560

increased sensitivity towards the input of organic sulfur, in contrast to organic nitrogen, that561

highlights the relevance of methionine and cysteine as precursors in metabolite biosynthesis.562

Methionine and cysteine are the only sulfur-containing amino acids incorporated into proteins.563

The former, in the form of N-formylmethionine, initiates the synthesis of nearly all prokaryotic564

proteins, while S-adenosylmethionine, a highly versatile cofactor, is involved in methyl groups565

and 5’-deoxyadenosyl group transfers, polyamine synthesis, and numerous other processes. In566

contrast, cysteine forms disulfide bonds that determine protein structure and participate in567

protein-folding pathways (Brosnan and Brosnan, 2006).568

Given that key metabolites comprised a small fraction of the simulated scopes, we were able569

to sharpen the differences between sites retrieved via metabolic modeling and further link570

them with seventeen environmental drivers. On one side, the capabilities for pigment and571

antioxidant biosynthesis and for aromatic degradation of the puna microbiome were related to572
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the high contents of organic matter, nitrogen, and zinc in that area. A study assessing the573

functional potential of soil microbes associated to transitional hygrophilous plants from the574

Atacama Salar showed an enrichment of certain metabolic pathways for the degradation of575

organic matter and aromatic compounds and the biosynthesis of amino groups (Ramos-Tapia576

et al., 2022). We propose that the distinctive vegetation belt that characterizes the puna577

ecosystem (Dussarrat and et al, 2025) is a critical source of nitrogen throughout the exudation578

of organic compounds into the soil that also chelate zinc, immobilizing it for slow release.579

This would significantly improve carbon and nitrogen availability in an ecosystem adapted to580

extreme nutrient limitations (Vikram et al., 2016).581

On the other side, several alternative pathways for amino acid biosynthesis and degradation582

detected at the Lejía lagoon’s shore were driven by abiotic factors related to salinity, electric583

conductivity, and sulfur, among others. The chemical structures of some of these nitrogenated584

compounds classified them as short chain fatty acids and glycans, suggesting that they could585

contribute to the metabolic response to temporal shifts in water availability by improving water586

retention and serving as energy reservoir (Lennon and Jones, 2011; Dinnbier et al., 1988). These587

results complement our recent work assessing specialized metabolism on the same soil samples588

that highlighted some bacterial members of the lagoon microbiome with niche-adaptations for589

the acquisition of organic nitrogen throughout heterocyst glycolipid-like mechanisms and for590

osmotic stress resistance throughout ectoines (Andreani-Gerard et al., 2024).591

MAGs highlight emergent properties from functionally redundant gene592

reservoirs593

The metabolic potential recovered from the TLT metagenomes evidenced a high functional594

redundancy across the sampled ecosystems, where more than 60% of producible metabolites595

predicted with the community-wide approach were found in every site regardless of the simu-596

lation conditions. This is consistent with previous observations made on 845 soil communities597

across 17 climate zones around the globe where, due to functional redundancy, microbial func-598

tions based on gene abundances were more stable regarding geography than taxonomy and599

soil properties (Chen et al., 2022). Another effort surveying 962 metagenomic studies from600
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nine different ecosystems showed that, while metabolic overlap in soils is overall lower com-601

pared to other environments (e.g., marine and freshwater), extreme environments exhibited602

the highest functional redundancy (Hester et al., 2019). Given that functional redundancy is603

a necessary condition for taxonomic turnover within functional groups (organisms capable of604

performing a specific metabolic function) (Louca et al., 2018), we hypothesize that the micro-605

bial communities inhabiting the TLT depend on a fairly exhaustive gene reservoir to withstand606

the environmental perturbations they may sporadically encounter in such extreme conditions.607

Nevertheless, our regression-based strategy distinguished 90 compounds that accounted for the608

metabolic differences – at first sight hidden behind such redundancy – between sites, when609

whole communities were assessed.610

In this sense, it has been speculated that populations with similar metabolic repertoires may611

specialize on distinct nutrients and, thus, express separate ‘realized’ niches rather than ‘funda-612

mental’ niches at the transcriptional level (Hutchinson, 1957; Louca et al., 2018). Considering613

that the metabolic functions performed by a given population are finely tuned by the environ-614

ment, including the presence and activity of other community members, only a few members615

of a same functional group may emerge to actively perform a given function. Thus, while some616

members can exhibit alternative modes to gain energy, others may simply be inactive due to617

differing enzyme efficiencies, growth kinetics, and other traits influencing their growth rates618

under specific conditions (Louca et al., 2018). The latter would explain why MAGs in our619

dataset display a site-driven metabolic behavior fitted to their corresponding geographies, with620

little functional overlaps. Therefore, we propose that the genome-resolved approach offers valu-621

able insights into the emergent properties of metabolisms thriving in specific contexts and that622

reconstructing MAG-scale metabolic networks is particularly useful for identifying adaptations623

that enable organisms to dominate a community under defined environmental conditions.624

Assessment of MAGs enabled us to identify key species involved in biosynthesis of key metabo-625

lites, this is, showing an association with the environment. These key species are classified626

as essential or alternative symbionts depending on whether they were strictly required for the627

production of targeted metabolites or whether they could be functionally replaced by another628

member of the community (Belcour et al., 2020). Although it is uncertain whether MAGs629

herein defined as essential symbionts exert a critical role in organizing the structure of their630
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respective soil microbiomes, they exhibit unique metabolic functions that connect tightly with631

biosynthetic steps found in the genomes of other community members, i.e., metabolic hand-632

offs (Anantharaman et al., 2016; Hug and Co, 2018), and, hence, could constitute keystone633

taxa (Banerjee et al., 2018). We hypothesize that some of these metabolic dependencies may634

constitute cross-feeding through putative cooperation events and that the removal of the pro-635

posed keystone taxa could alter microbiome stability, potentially causing downstream impacts636

on ecosystem processes (Mataigne et al., 2021). Finally, we acknowledge that our approach637

may have overlooked other organisms displaying keystone roles due to limitations in the ge-638

nomic assemblies related to low abundance (Ejaz et al., 2024) and that, even though minimal639

communities is a reasonable mathematical solution for delving into ecological functioning of640

microbiomes, it may not comprehensively reflect the (non-minimal) mechanisms employed in641

nature.642

The potential of metabolic modeling to decipher community-wide and643

genome-resolved functions644

A methodological contribution of this work is the systems biology framework that relies on645

dynamical systems for modeling the metabolic potential of metagenomes and collections of646

MAGs in the Atacama soils. The use of numerical models such as flux balance analysis (re-647

viewed in Cerk et al. (2024)) would be hardly applicable in a context where metabolic networks648

were reconstructed automatically and curation is limited for non-model organisms of such ex-649

treme environment. Dynamical system simulations with ordinary differential equations on the650

other hand would require setting up many parameters. Here, the discrete model of metabolic651

producibility is an approximation of such numerical models that offers flexibility and predicts652

fixed points of the dynamical system (Frioux et al., 2020). As a model, it enables nonetheless653

to go beyond pathway description because it predicts the effect of environmental nutrients on654

the metabolism. The approach used here relies on the network expansion algorithm (Ebenhöh655

et al., 2004) which was implemented in a logic paradigm and extended to the ecosystem level656

(Frioux et al., 2018; Belcour et al., 2020).657

Our model uses both community-wide metabolic networks, constructed from gene catalogs of658
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metagenome assemblies by site, and genome-scale metabolic networks. The former (MetaG-659

GEMs) captures the most functions of the ecosystem as it takes into account any gene that is660

assembled, but it does not provide information in regards to which organism carries each func-661

tion. The latter (MAG-GEMs) on the other hand enables predicting the relationship between662

taxonomy and function, although it underestimates the complexity of the community due to663

the difficulty of MAG reconstruction in complex microbiomes such as those from soils (Ejaz664

et al., 2024). Improvements in genome-resolved metagenomics, for instance with long-read se-665

quencing will increase the number of genomes that can be obtained, and thereby enhance the666

quality of associated metabolic models (Cerk et al., 2024). Each of the six sites of the transect667

in this study is analyzed both at the level of the whole community’s metabolic network or with668

its associated collection of MAG-derived networks. In both cases, our approach highlights the669

sensitivity of the metabolism to varying nutrients sources and a core set of functions that could670

be reachable regardless of nutrients available in the environment.671

Among the simplifications performed by the model, any metabolite producible by a taxon will672

be considered available to the community, hence the cost of transporting metabolites is ignored.673

While this characteristic could raise false positive cross-feeding predictions, it arises from both674

a modeling limitation related to transporter annotation (Casey et al., 2024) and ecological675

considerations that stress the importance of metabolic exchanges in microbiomes, and their676

expected limited cost for microbial fitness Pacheco et al. (2019). In addition to the above677

caveat, the cost of enzyme biosynthesis is not modeled, whereas it can have a strong impact678

on microbial adaptation to an environment with scarce nutrient availability (Noor et al., 2016;679

Goelzer et al., 2015; Domenzain et al., 2022). We further acknowledge that metabolic reactions680

databases are incomplete, and that many proteins remain of unknown function, suggesting that681

an important part of the transect metabolism still has to be elucidated.682

Conclusions683

We conceived a generic modeling framework, suitable for non-model microorganisms and scal-684

able for large datasets, that facilitates progress toward disentangling the complex metabolic685

interactions that shape microbiome functioning. With few inputs, i.e., sequence data, custom686
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nutritional scenarios, and physicochemical metadata, we link metabolic insights with taxon-687

omy and, more importantly, with the environment. Prediction of the metabolic potential688

under varying conditions, inference of key metabolites associated with environmental drivers,689

and identification of key species involved in the biosynthesis of those metabolites, allowed us to690

uncover niche adaptations evolved along the Talabre-Lejía transect, such as the influence of soil691

organic matter on aromatic degradation and of salinity and other stressful abiotic factors on692

nitrogen cycling. We also captured the crucial role of organic forms of sulfur in this oligotrophic693

environment that stood over the impact of carbon and nitrogen on microbial metabolism. Fi-694

nally, our choice of modeling entire communities and individual organisms in parallel allowed695

to fathom the functional overlap often found in metagenomes as a gene reservoir that provides696

whole microbial communities means to adapt to future environmental shifts, MAGs accounting697

for single populations as divergent, emergent properties of microbiome functioning adapted to698

current environmental conditions, and the added value of cooperation for enduring them.699
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