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Abstract

Adaptive resistance contributes significantly to treatment failure in many cancers. Despite

the increased prevalence of experimental studies that interrogate this phenomenon, there

remains a lack of applicable quantitative tools to characterise data, and importantly to

distinguish between resistance as a discrete phenotype and a (potentially heterogeneous)

continuous distribution of phenotypes. To address this, we develop a stochastic individual-

based model of adaptive resistance in low-cell-count proliferation assays. That our model

corresponds probabilistically to common partial differential equation models of resistance

allows us to formulate a likelihood that captures the intrinsic noise ubiquitous to such

experiments. We apply our framework to assess the identifiability of key model parameters

in several population-level data collection regimes; in particular, parameters relating to

the adaptation velocity and within-population heterogeneity. Significantly, we find that

heterogeneity is practically non-identifiable from both cell count and proliferation marker

data, implying that population-level behaviours may be well characterised by homogeneous

ordinary differential equation models. Additionally, we demonstrate that population-level

data are insufficient to distinguish resistance as a discrete phenotype from a continuous

distribution of phenotypes. Our results inform the design of both future experiments and

future quantitative analyses that probe adaptive resistance in cancer.
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1 Introduction

Adaptive resistance is acknowledged as a significant factor in the eventual failure in the treat-

ment of many cancers [1–4]. Such short-term phenotypic adaptation arises in isogenic popula-

tions through epigenetics such that cells quickly manifest a reversible drug-tolerant phenotype

when exposed to sufficiently high doses of a therapeutic drug [5, 6]. Both experimental [6, 7]

and theoretical [8, 9] studies have proposed adaptive therapy and the intermittent delivery of

drug to overcome this phenomenon. Mathematical models, in particular, have been proposed

to characterise this behaviour; interpret experimental studies of phenotypic adaptation; and to

develop treatment schedules robust to resistance [10–16].

Complicating the characterisation of tumour-level plasticity within a given cancer are the

seemingly opposing observations that resistance corresponds to a well-defined discrete phenotype

[17–20] and to a continuous spectrum of phenotypes [21,22]. Indeed, many mathematical models

of resistance describe a heterogeneous population comprising cells that are either firmly drug-

sensitive or drug-resistant [18, 23–25]. While mathematical models that capture continuous

phenotype adaptation have been proposed [26–28] and are in fact well studied in the partial

differential equation (PDE) literature [21,29], they remain largely unvalidated with experimental

data. Issues relating to the identifiability [30] of mechanisms behind adaptive plasticity from

these models are likely to be further exacerbated by the heterogeneity present in even isogenic

cell populations [31]. Despite the increased prevalence of experimental studies that interrogate

adaptive plasticity, there remains a lack of quantitative tools to calibrate models that capture

continuous heterogeneity to data. Thus key questions—such as the data requisite to identify

the mechanisms behind adaptive plasticity, and the ability to distinguish between discrete and

continuous heterogeneity—remain unanswered.

We are motivated by a recent study of intermittent therapy of mutant melanoma cells by

Kavran et al. [6], in which the authors provide genetic evidence for the presence of at least

two (reversible) phenotype states: a drug-resistant phenotype and a drug-sensitive phenotype

arising within a seven-day period of drug exposure and drug removal, respectively. From re-

ported cell fold-change data from each phenotype, we have previously quantified a dose and

phenotype dependent difference in net growth rate (Fig. 1a); a characteristic of high interest

in the context of the eventual development of treatments robust to adaptation [32]. Notably,

Kavran et al. [6] provide compelling evidence for a continuous distribution of phenotypes present

in the intermediate period between resensitisation and addiction through observations of the

cell-adhesion marker L1CAM (reproduced in Fig. 1b), a protein well-known as a marker of the

epithelial-to-mesenchymal transition and drug resistance in melanoma [33]. While sequence and

protein data provide qualitative insight into the adaptive dynamics, their link to cell growth

rate is unlikely to be direct. We must, therefore, resort to using cell count data arising from

proliferation assay experiments (Fig. 1c) to quantify adaptive dynamics and the corresponding,

possibly heterogeneous, net cellular growth rate.

To capture the stochasticity intrinsic to low-cell count experiments such as proliferation

assays, we develop an individual-based model (IBM) of drug-based adaptation [27]. We build on
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Figure 1. Experimental data of phenotype adaptation. An example suite of experimental data
of phenotype adaptation. (a) Kavran et al. [6] expose WM239A melanoma cells to either a continuous
treatment, or an intermittant treatment, as shown in (e). Net growth rate of cells calculated for various
drug dose levels [32]. Cells that have been exposed to drug in the 7 days prior to measurement are classi-
fied as drug-resistant; cells that have not as drug-sensitive. (b) Phenotype characterised experimentally
by the expression of L1CAM, a marker for cell adhesion. Day 14 intermittent data (i.e., cells that have
not been exposed to drug between days 7 and 14) show a similar profile to day 0. Reprinted from [6]
with permission from the author. (c) Schematic of a cell proliferation assay. (d) Example suite of cell
proliferation assay data; experiments conducted with a low density of 3T3 Fibroblast cells (reprinted
from [34] under a CC-BY license and further analysed in [35]). (e) Cells are subject to either continuous
treatment, in which a drug concentration is maintained, or to intermittent treatment, in which treatment
alternates between 7-day periods of drug exposure and drug removal. (f,g) Schematics of continuous and
discrete models of phenotypic heterogeneity, respectively (see text for details).
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the IBM of Hamis et al. in a stochastic differential equation (SDE) framework to present a model

in a continuous phenotypic space where a heterogeneous population of cells tend toward either

a drug-sensitive state (mathematically, denoted by x = 0) or a drug-resistant state (denoted by

x = 1). Key to our analysis is that drug-responsive movement throughout the phenotypic space

is both stochastic and described, on average, by a function of potentially unknown analytical

form. The choice to work in an SDE framework means that our IBM corresponds precisely in

a probabilistic sense to common PDE models of phenotypic adaptation [36].

Exploiting the tractability of the SDE and analogous PDE model, we build an inference

framework that captures intrinsic noise in low-cell-count proliferation assay experiments without

the pervasive, but often unjustified, assumption that experimental observations of cell count are

subject to additive Gaussian noise. To do this, we derive and present a chemical master equation

(CME) that describes the time-evolution of cell count, with which we construct a likelihood

function [37]. We then perform inference and identifiability analysis under three data collection

scenarios. First, we consider a suite of cell proliferation experiments for cells that are initially

either resistant or sensitive and are exposed (or not) to a drug over a seven day period. Second,

we consider a hypothetical scenario in which proliferation assays are observed continuously

such that the time of cell-proliferation and cell-death events are directly observed. Lastly,

we consider another hypothetical scenario in which a cell proliferation marker (i.e., L1CAM)

correlates weakly, but linearly, with cell proliferation. All analysis is initially conducted in an

idealised scenario where the functional form of the phenotype adaptation mechanism is correctly

specified. We later relax this assumption and perform model selection.

Together, the data collection regimes we study establish the identifiability of individual

model parameters and, more importantly, our ability to distinguish phenotypic heterogeneity

from possible model misspecification. Given that the entrenched model of phenotypic hetero-

geneity is that of two well-defined discrete phenotypes, we conclude our study by investigating

whether such discrete heterogeneity can be distinguished, using cell count data alone, from a

model comprising a continuous phenotypic space. As we are primarily interested in establishing

the theoretical identifiability of model parameters and mechanisms, in the main text we focus

our analysis on regimes where cell counts are extracted from images precisely; we relax this

assumption in the supplementary material by investigating where identifiability is lost if only

imprecise measurements can be made.

2 Mathematical methods

2.1 Individual-based model

We assume that individuals undergo a biased random walk in phenotype space, such that the

phenotype of a cell i, denoted xi, is given by

dxi = v(xi, Tx) dt+ β dWi, (1)
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where Tx ∈ {0, 1} indicates untreated and treated states, respectively; v(xi, Tx) describes the

adaptation velocity; β describes the magnitude of diffusive movement thoughout the phenotype

space, and Wi is a Wiener process. We further assume that, for β = 0, the system has a stable

steady state at xi = 0 for Tx = 0 (this is referred to as the sensitive state), and likewise at

xi = 1 for Tx = 1 (referred to as the resistant state).

We take net cellular growth rate to be a linear function of x [32], given by

λ(x, Tx) =

󰀫
γ1 + (γ3 − γ1)x if Tx = 0,

γ2 + (γ4 − γ2)x if Tx = 1,
(2)

as shown in Fig. 1a. Provided that the growth rate is monotonic in x, the functional form

of λ is arbitrary since we could, in theory, rescale the phenotypic space in Eq. (1) and thus

equivalently the functional form of v. Furthermore, we follow [32], and assume that λ(x, Tx) < 0

corresponds solely to net death (apoptosis or necrosis), and λ(x, Tx) > 0 corresponds solely to

net proliferation. We further assume that both proliferation and death events occur according

to a Poisson process. Upon death, a cell is removed from the population. Upon proliferation,

a cell is replicated such that daughter cells are created with an (initially) identical phenotype

index to the parent.

While we focus on analysis of synthetic data, we choose biologically realistic parameters

based upon analysis on the emergence of reversible resistance to the BRAF-inhibitor LGX818

in BRAFV600E-mutant melanoma cells [6, 32]. The growth rate parameters are chosen to be

γ1 = 0.15, γ2 = −0.3, γ3 = γ4 = 0.1 to approximately match the mean growth rate of sensitive

and resistance cells under drug and no drug conditions (see dose-response curve in Fig. 1a).

Very little information is available regarding the adaptation dynamics through v(xi, Tx) and

diffusivity β, other than the qualitative observation that cells move between drug-sensitive and

drug-resistant states within a seven day window. For preliminary analysis we set v(xi, Tx) =

−ν(xi−Tx) with ν = 0.4 such that xi is an Ornstein-Uhlenbeck process. Further, we set β = 0.05

such that the stationary distribution of sensitive cells has a standard deviation of approximately

0.05. Implicit in our model is an assumption that the mechanisms behind drug-sensitisation and

the reverse are identical. However, this need not be the case as we later exposit: it is sufficient

to study identifiability in a single direction.

We set the initial condition in the model to a probabilistic representation of a spatially

uniform low-cell count proliferation assay experiment; specifically, a cell proliferation assay

conducted in a standard 9mm well initialised with approximately 1000 cells (this is slightly

larger than the initial population in [6]). The field-of-view of the imaged proliferation assay in

Fig. 1c–d is 817×614 µm, and so each cell has probability ρ = 817× 614/(45002π) of presenting

in the field-of-view. The initial condition is thus set to n0 ∼ Binomial(1000, ρ), corresponding

to a mean initial cell count of approximately 7.9 per image.

In Fig. 2a–d, we simulate a set of synthetic cell proliferation assay experiments with our

IBM under both continuous and intermittent treatments; the latter is defined as alternating

7-day periods of drug and no drug (Fig. 1d). Results in Fig. 2a,b highlight emergent isogenetic

heterogeneity due to white-noise driven fluctuations in the phenotype index. Results in Fig. 2c,d
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Figure 2. Model comparison. We compare realisations of the SDE-based IBM to the solution of both
the corresponding Fokker-Planck PDE (Eq. (3)) and the CME (Eq. (11)) for the population size. (a–b)
A single realisation of an IBM initiated with drug sensitive cells. The mean phenotype is zero in the
equilibrium drug-sensitive state, and unity in the equilibrium drug-resistant state. Treatment applied is
(a) continuous; and (b) intermittent (Fig. 1e). (c–d) Cell count observations from 10 realisations of the
IBM (blue) under both (c) continuous and (d) intermittent treatment. Also shown is the expected popu-
lation 〈N〉(t) computed from a numerical solution of the PDE (black), and both a 50% and 95% credible
region computed from a numerical solution of the CME (grey). A full comparison between the solution
of the CME and the IBM is provided as supplementary material (Fig. S1). (e–f) Comparison between
the phenotypic distribution computed empirically using an IBM initiated with 500 cells (coloured) and
from the PDE (black dashed). Results in (e) show the phenotype distribution for both continuous and
intermittent treatment for 0 ≤ t ≤ 7 d (in which both regimes are identical) and in (f) for intermittent
treatment from 7 ≤ t ≤ 14 d.

show high levels of stochasticity in cell count. Since the simulations are discrete, there is a non-

zero probability of extinction as our model does not, in its standard formulation, consider

migration into and out of the cell proliferation assay field-of-view (Fig. 1c).

2.2 Partial differential equation model

We now define u(x, t) as the density of cells with phenotype x at time t, such that the dynamics

of u(x, t) are governed by the Fokker-Planck equation

∂u(x, t)

∂t
+

∂

∂x

󰀓
v(x, Tx(t))u(x, t)

󰀔
= β

∂2u(x, t)

∂x2

󰁿 󰁾󰁽 󰂀
Fokker-Planck equation

+ λ(x, Tx(t))u(x, t)

󰁿 󰁾󰁽 󰂀
Proliferation and Death

, (3)

subject to the usual set of no-flux and vanishing far-field boundary conditions [27, 36,38].

Experiments are initiated with a sample of cells from a zero-net-growth stationary distribu-

tion for either a sensitive or resistant population. For the Ornstein-Uhlenbeck formulation of
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v(x, Tx), this corresponds approximately to

xi(0) ∼ N (0,β/
√
2ν), (4)

which we set as the initial condition in the model.

We denote by 〈N〉(t) the expected cell count and by p(x, t) probability density function

(PDF), given by

〈N〉(t) :=
󰁝

R
u(x, t) dx, (5)

and

p(x, t) :=
u(x, t)

〈N〉(t) , (6)

respectively.

In Fig. 2e–f, we compare a finite-difference approximation to the PDE (see supplementary

code) to a set of realisations of the IBM initialised with a large (n0 = 500) number of initial

cells. We remind the reader that we expect a close match (that converges as n0 → ∞), as the

PDE is an exact probabilistic representation the IBM.

2.3 Chemical master equation

We now derive an approximate master equation for the time-evolution of the probability mass

function for the cell count, defined as

q(n, t) := P(N(t) = n). (7)

We consider that

q(n, t+ δt) = q(n, t) + P
󰀃
proliferation in (t, t+ δt)|N(t) = n− 1

󰀄
q(n− 1, t)

+ P
󰀃
death in (t, t+ δt)|N(t) = n+ 1

󰀄
q(n+ 1, t)

− P
󰀃
proliferation in (t, t+ δt)|N(t) = n

󰀄
q(n, t),

− P
󰀃
death in (t, t+ δt)|N(t) = n

󰀄
q(n, t).

(8)

Note that we can also include terms in the above that explicitly capture migration into and out

of the field of view. Generally, however, we would expect these to vanish if we assume that the

assay as a whole is sufficiently homogeneous such that migration out of the window occurs at

the same rate as migration into the window (i.e., periodic boundary conditions).

To make progress, we assume that the phenotypic states of cells are independent. While

not strictly true for very high proliferation and death rates (since cells inherit their phenotype

from a parent), this is appropriate for the range of growth rates we observe (Fig. 1a). Under

these assumptions, the per-capita instantaneous proliferation and death rates are given by

rprol(t) =

󰁝

R
p(x, t)max(0,λ(x, t)) dx, (9)
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and

rdeath(t) = −
󰁝

R
p(x, t)min(0,λ(x, t)) dx, (10)

respectively.

For δt sufficiently small, we can consider a Taylor expansion of the exact Poisson probability

to obtain an asymptotic expression for the event probabilities in Eq. (8). These are given by

P
󰀃
proliferation in (t, t+ δt)|N(t) = n

󰀄
∼ nrprol(t)δt,

and

P
󰀃
death in (t, t+ δt)|N(t) = n

󰀄
∼ nrdeath(t)δt.

Substituting into the difference equation (Eq. (8)) and taking δt → 0, we arrive at the CME

dq(n, t)

dt
= (n− 1)rprol(t)q(n− 1, t)

− n
󰀃
rprol(t) + rdeath(t)

󰀄
q(n, t)

+ (n+ 1)rdeath(t)q(n+ 1),

(11)

subject to absorbing boundaries such that q(n) = 0 for n < 0.

In Fig. 2c–d, we compare the solution of the CME to realisations of the IBM, showing that

the CME captures both the average and variance of the cell count. A more detailed comparison

is provided in Fig. S1.

2.4 Likelihood-based inference

We take a Bayesian approach to parameter estimation and identifiability analysis and apply

the CME (Eq. (11)) to construct a likelihood for cell count data reported from proliferation

assays. The advantage of this approach, compared to a more standard approach that considers

an average cell count subject to additive Gaussian noise, is that we account directly for the

stochasticity intrinsic to the proliferation death process. As we are primilarly interested in the

identifiability of model parameters, we assume that all cell counts are exact. In the supple-

mentary material, we investigate identifiability in the case that experimental observations are

potentially subject to miscounting.

Experiments are conducted for t days, at the conclusion of which a cell count observation is

taken. We denote by n
(t,Tx,P)
k the kth cell count taken from an experiment terminated at time

t, conducted entirely with (Tx = 1) or without (Tx = 0) drug, using an initial population of

sensitive (denoted P = 0) or resistant (denoted P = 1) cells, and denote by D the complete

set of data. Further denoting the solution to the CME with conditions (P, Tx) and parameter

values θ by q(P,Tx)(n, t;θ), the log-likelihood is given by

ℓD(θ) =
󰁛

(P,Tx)

󰁛

t

󰁛

k

log q(P,Tx)

󰀃
n
(t,Tx,P)
k , t;θ

󰀄
. (12)

Note that we have assumed that cell count observations are independent between time points;
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effectively assuming that measurements are taken at the termination of an experiment and not

as a time-series. While our approach could be trivially extended to account for time-series data,

this would add significant computational cost by potentially requiring a numerical solution to

the CME for each individual observation. While we focus our results on inference using cell

count data, we also consider log-likelihood functions constructed for two other data types: event

timing data (i.e., the exact time of proliferation or cell death observed from temporal data) and

from a cell proliferation marker that may linearly correlate with the net growth rate.

Following the construction of the log-likelihood function, we can either take a frequentist

approach and find the maximum likelihood estimate (MLE), or apply a Bayesian approach to

quantify identifiability and parameter uncertainty. While unusual to consider both approaches,

we do so in this work as the former is advantageous as it allows us to perform model selection

using frequentist hypothesis tests [39].

For the latter, we assume that knowledge about model parameters is initially encoded in a

prior distribution, p(θ). We choose p(θ) to be independent uniform over a sufficiently wide range

of parameter magnitudes (full details are given as supplementary material). This choice also

ensures that the maximum a posteriori estimate (MAP) corresponds to the MLE. Following

a set of observations, denoted by D, arising from cell proliferation assay measurements, or

otherwise, we update our knowledge about the model parameters using the relevant likelihood

denoted ℓD to obtain the posterior distribution, given by

p(θ|D) ∝ exp(ℓD(θ))p(θ). (13)

When applying the Bayesian approach, we sample from the posterior using an adaptive

Markov-Chain Monte Carlo algorithm [40]. To obtain MLEs we apply the DIRECT global search

algorithm implemented in NLopt for Julia [41]. As we are primarily interested in parameter

and model identifiability, we initiated each chain using the “true” set of parameter values that

are used to generate synthetic data.

3 Results

3.1 Phenotypic heterogeneity is poorly identified from cell count data

We begin our analysis by considering a suite of synthetic cell proliferation assays conducted

within a seven day period (specifically, a set of assays that terminate at t = 1, 3, 5, and 7 d).

For each termination time, we conduct a set of four experiments: with or without drug and

initiated with either a population of fully sensitive or resistant cells. We devote two 96-well

plates to each termination time, such that the sample size for each condition is M = 48. The

duration is chosen based on the observation that the population adapts or resensitizes within a

seven day interval [6] (in the supplementary material, we consider a variety of termination time

sets).

Applying the CME-based Bayesian inference procedure reveals that all growth rate parame-

ters are practically identifiable. The results in Fig. 3a–b show how model predictions produced

9



at the MAP align with synthetic cell count data observations (additionally, the model also cap-

tures higher order moments of cell count, although this is not shown). Furthermore, results

in Fig. 3c show that the adaptation speed parameter, ν, is identifiable. However, we see from

results in Fig. 3d that the diffusion parameter β, which corresponds to the variance in the phe-

notype variable x within an adapting population, is only one-sided identifiable: we can establish

an upper bound, but no lower bound. The parameter is, however, structurally identifiable: we

show this in the supplementary material using a significantly larger (M = 768) data set, how-

ever the parameter becomes again non-identifiable when imprecise cell-count observations are

made (Figs. S4 and S5). Thus, we expect, from cell count data alone, models with phenotypic

heterogenity to be indistinguishable from models with deterministic adaptation (the β = 0

scenario).

To investigate the identifiability of β further, we recall that the phenotype distribution,

p(x, t), affects overall cell count dynamics only indirectly. Specifically, cell proliferation and

death is governed at the population-level by the overall proliferation and death rates, given by

Eqs. (9) and (10). For β = 0, p(x, t) tends to a degenerate distribution such that rprol(t) =

λ(x̄, t), where x̄ is the mean phenotype (in the case of homogeneity, the only phenotype). The

most obvious consequence of the β = 0 parameter regime is that proliferation and death cannot

occur simultaneously: thus, we expect a sharp proliferation-death transition at rprol(t) = 0 as

the population switches between death and proliferation events, depending on the presence of

drug and the mean phenotype. In contrast, the transition at rprol(t) = 0 will be diffuse for

non-zero β. In Fig. 4, we compare the event rates for various values of β. Clearly, aside from

minor differences at the proliferation-death transition, rate curves are visually indistinguishable

for decreasing values of β. For large β, which has very little or no posterior mass (see Fig. 3d),

the proliferation rate curve becomes distinguishable.
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Figure 3. Proliferation assay inference. We perform Bayesian inference on a set of synthetic cell
proliferation assay data using the CME as a likelihood. Independent cell count observations (M = 48
replicates per condition) are collected from experiments conducted with fully sensitive or fully resistant
cells, with and without drug, and terminated at t = {1 d, 3 d, 5 d, 7 d}. (a–b) Synthetic proliferation
assay cell count data (box plots) and the model predicted mean cell count at the MAP (solid lines).
(c–d) Posterior distributions for the logarithms of v, the adaptation speed, and β, the diffusivity. Shown
also is the uniform prior (blue), the true value (black dashed), and the MAP (red dashed). While the
adaptation speed is identifiable (as are all other parameters; not shown), the diffusivity is only one-sided
identifiable; the model cannot be distinguished from that with purely deterministic adaptation (i.e., no
heterogeneity).
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Figure 4. Practical non-identifiability from cell count data. Practical non-identifiability of the
diffusion parameter β (corresponding to a measure of the heterogeneity), seen through differences in
the total expected proliferation and death rate functions, rprol(t) and rdeath(t), respectively. All other
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a proliferation rate constructed where β 󰀁→ 2β; we have seen previously that β is one-sided identifiable.
However, reducing β shows (visually) very minor differences between the proliferation and death rate
functions as both tend to the deterministic limit (in this case, corresponding to exponential decay from the
negative maximum death rate through to the maximum proliferation rate. In the absence of heterogenity
(i.e., for β → 0), proliferation and death events cannot occur simultaneously in a population.

3.2 Phenotype heterogeneity is identifiable from event-timing data

Under the current model formulation, in which heterogeneity is driven soley by diffusion through

the phenotypic space, it is only in the regime where β > 0 that we will ever see proliferation

and death events occur simultaneously. Thus, in the constraints of our model formulation, we

expect to be able to more precisely identify heterogeneity if we observe the precise timings of

cellular proliferation and death events from, for example, live cell imaging.

We therefore investigate a hypothetical scenario where we have access to noise-free event

timings from a set of proliferation assays that are initiated with a total of 10,000 cells. Without

loss of generality, for the rest of the study we focus only on adaptation in the forward direction

(i.e., from drug-sensitive to drug-resistant), since an analogous analysis could be conducted in

the reverse direction. A log-likelihood function can be constructed by discretising the resultant

Poisson process such that the number of proliferation and death events occuring in the interval

(t, t+ δt), denoted E
(δt)
prol(t) and E

(δt)
death(t), respectively, are distributed according to

E
(δt)
prol(t) ∼ Po

󰀃
rprol(t)N(t)δt

󰀄
, E

(δt)
death(t) ∼ Po

󰀃
rdeath(t)N(t)δt

󰀄
, (14)

where N(t) is the (observed) cell population at time t. Under the well-mixed phenotype as-

sumption for which the CME applies, Eq. (14) is exact as δt → 0. We choose δt = 0.035 such

that the seven-day experiment is subdivided into 200 observation intervals (as a consequence,

one could also consider event-timing data that is not exact, but accurate to intervals of width

δt that correspond to a finite imaging frequency).

The synthetic data set is shown in Fig. 5a, along with an estimate for the instanteous event

rate constructed using a moving average. Visually, heterogeneity can be detected by comparing
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Figure 5. Identifiability of heterogeneity from event timing data. We generate a synthetic data
set from an experiment (or set of experiments) that are initiated with a total of 10,000 cells that are under
continuous treatment. The exact event timings (i.e., time of cell proliferation, and time of cell death)
are recorded and used for inference. (a) Synthetic event timing data. Shown is a rug plot of a sample of
500 each of proliferation and death events, and a local regression (LOESS) of the observed proliferation
and death rate. (b) Posterior distribution for log(β), previously non-identifiable, constructed using a
Poisson likelihood for the exact timing data. Shown also is the uniform prior (blue), the true value
(black dashed), and the MAP (red dashed).

the transition from primarily cell proliferation to primarily cell death to the results shown

previously in Fig. 5a. We proceed to perform inference on this synthetic data set using the

Poisson likelihood, with the posterior shown for β in Fig. 5b (all other relevant parameters

remain identifiable). Clearly, heterogeneity is now identifiable; estimates of β can be drawn

precisely.

3.3 Phenotype heterogeneity is not identifiable from proliferation marker

data

Our study is in part motivated by Kavran et al. [6] who provide compelling evidence for a con-

tinuous transition from a sensitive to resistant state through the cell-adhesion marker L1CAM.

Such data are difficult to interpret directly due to uncertainty in the precise link between the net

growth rate and the expected marker expression and the resultant flow cyometry measurement.

Challenges aside, we now consider identifiability of β in the case that the measured marker

expression correlates linearly with the proliferation rate (and effectively, since the link between

the net growth rate and phenotype index is also linear, the phenotype index).

We assume that the observed marker expression for a cell, Mi, is given by

Mi ∼ xi + ε (15)

where ε is independent of xi. We consider both that ε is normally distributed with zero mean

and unknown standard deviation σ, and a scenario where the shape of ε is additionally unknown

such that ε is given by a translated Gamma distribution with zero mean, unknown standard

deviation, and unknown skewness ω (this distribution becomes normal as ω → 0) [42]. By

convoluting the distribution of ε with that for x, we can construct an exact log-likelihood for
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a set of marker data. In Fig. 6a, we show the resultant (weak) linear correlation between

phenotype index and marker measurement.

We fix all other mechanistic parameters, which we previously established to be identifiable

from cell count data, at the corresponding true values. We then consider a synthetic data set in

which marker data is taken from a set of proliferation assays terminated at t = {1 d, 3 d, 5 d, 7 d}.
Results in Fig. 6b show samples from the joint posterior distribution for log(σ) and log(β) in

the case that ω = 0. In both the case where the marker error shape is known (ω = 0) and

unknown, we are unable to place a lower bound on β. Furthermore, the shape of the posterior

in Fig. 6b indicates that, even if we had knowledge of σ, β would remain non-identifiable. We

conclude that, from marker data, cellular heterogeneity is indistinguishable from marker noise.

3.4 Model selection and misspecification for cell-count data

We have made two significant observations thus far: first, that the β > 0 regime is indistinguish-

able from the β = 0 regime from cell count data; and second, that all other model parameters

are identifiable given a correctly specified model. As a consequence of the first observation,

we perform all remaining analysis using what we term the “homogeneous model”: an ordinary

differential equation (ODE) model given by Eq. (1) with β = 0 in place of the PDE model. In

light of the second observation, we assess whether we can not only identify model parameters,

but also the functional form of the adaptation velocity v(x, Tx) (without loss of generality in

the case that Tx = 1 such that v(x, 1) := v(x)).
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Figure 6. Identifiability of heterogeneity from noisy marker data. We generate a synthetic data
set comprising noisy measurements of the phenotype state of each cell using a hypothetical marker for cell
proliferation (i.e., L1CAM). (a) Measurements are normalised such that the mean of fully sensitive cells is
approximately zero, and that of fully resistant cells (which arise in the limit as t → ∞) is approximately
unity. The marker is assumed to weakly linearly correlate with growth rate (and hence, the phenotype
index); we model this by a measurement noise process that is normally distributed with variance σ2. (b)
We perform Bayesian inference on a dataset generated from cell proliferation assays with fully sensitive
cells, exposed to drug continuously, with independent measurements taken at t = {1 d, 3 d, 5 d, 7 d}
(M = 48 replicates per measurement time). All other parameters, identifiable from cell count data, are
fixed, and σ and β are estimated, with the joint posterior (grey discs) shown alongside the true value
(blue diamond). (c) We repeat the analysis in the case that the shape (skewness, quantified by ω) of the
measurement noise distribution is additionally unknown.
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We consider that v(x) is given by

v(x) = asgn(x) + (1− x)(b+ cx+ dx2), (16)

and consider cell proliferation assays conducted with drug sensitive cells under continuous treat-

ment and terminated at t = {1 d, 3 d, 5 d, 7 d} (M = 48 per condition). The true model is given

by setting a = c = d = 0. We can recover a variety of velocity models using the functional form

given by Eq. (16), including for b = c = d = 0 the constant adaptation presented in our previous

work [32]. As the growth rate parameters for the drug-on experiment, γ2 and γ4, were found

to be identifiable (and can be established by conducting drug-off and drug-on experiments with

sensitive and resistant cells, respectively) we fix each to their corresponding true value.

We perform model selection using the frequentist likelihood ratio test (equivalent to profile

likelihood). For example, to test whether a = 0, we compare the likelihood at the MLE (equiv-

alently, the MAP) for a = 0, denoted by θ̂[a] to that for the model where all parameters in

Eq. (16) are non-zero, denoted by θ̂. Figure 7a shows the resultant set of log-likelihoods, trans-

lated such that ℓ(θ̂) = 0. From the likelihood ratio test [39], we can construct a threshold based

on a 95% confidence interval outside of which we reject a null hypothesis that the parameter

set, i.e., [a] is equal to zero.

Results in Fig. 7a show that any individual parameter can be set to zero. Furthermore,

any pair of parameters can be set to zero except a and b simultaneously. Finally, only the

parameter triples that do not contain both a and b can be set to zero. If the goal was to identify

a single model, one would use an information criterion [39] (or similar) to penalise differences

in log-likelihood by the dimensionality of the non-zero parameter set; in our case, we expect a

model where only one of a or b is non-zero as the most parsimonious.
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Figure 7. Model selection and misspecification. We perform inference and model selection on a
general adaptation velocity function of form given by Eq. (16). The true model corresponds to b = 0.4
and a = c = d = 0 (i.e., the combination [a, c, d]). (a) Results from a likelihood ratio test where the null
hypothesis in each column is that the stated parameter combination [·] is zero. Relative log-likelihood
values below the relevant threshold (colours correspond to different dimensionalities) indicate that the
null hypothesis can be rejected at the level of a 95% confidence interval. Arrows indicate that observed
statistics are below the plotted region. (b,c) Identified possible adaptation velocities and phenotype
transitions respectively.
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Our analysis has identified a family of possible adaptation velocity functions, given by the

MLE for each combination for which the relative log-likelihood in Fig. 7a is above the corre-

sponding threshold. In Fig. 7b we compare the identified adaptation velocities for the true

model (b non-zero) to the full model and a model where only a is non-zero. Clearly, there

remains large uncertainty as to the functional form of v(x) throughout the phenotype space.

Results in Fig. 7c, however, demonstrate why these differences do not manifest in statistically

different cell count observations: while v(x) varies significantly, the possible paths for x(t) are

similar.

3.5 Continuous and discrete-binary heterogeneity may be indistinguishable

Arguably the standard model of plasticity describes a drug-dependent switch between two dis-

crete phenotypes: sensitive and resistant. Such an analogue of our model is

X0
r01⇋
r10

X1, (17)

where sensitive cells, X0, have net growth rate λ̃0, and resistant cells, X1, have net growth

rate λ̃1 (Fig. 1g). We assume that r10 and r01 are drug-dependent, and focus our analysis on

adaptation from the sensitive to the resistant state.

As Eq. (17) is linear, the mean cell count in each subpopulation, denoted by n0(t) and n1(t),

is given by
dn0

dt
= λ̃0n0 − r01n0 + r10n1,

dn1

dt
= λ̃1n1 + r01n0 − r10n1.

(18)

To draw a correspondence to the continuous model, we consider now the mean x̃(t) := n1(t)/(n0(t)+

n1(t)), which we expect to correspond with x(t) in the continuous model (although not exactly,

as in general at equilibrium x̃(t) ∕= 1). The dynamics of x̃(t) are governed by

dx̃

dt
= r01 +

󰀃
λ̃1 − λ̃0 − r01 − r10

󰀄
x̃+

󰀃
λ̃0 − λ̃1

󰀄
x̃2 = A+Bx̃+ Cx̃2. (19)

Thus, we expect the average cell count in the discrete model to correspond exactly to the

average cell count in a continuous model with a quadratic adaptation velocity. We cannot make

an equivalent statement for higher order moments, however we can define an exact CME for the

evolution of the joint density q̃(n1, n2, t) := P(N1(t) = n1, N2(t) = n2) and hence the probability

mass q̃(n, t) := P(N1(t) +N2(t) = n) in the discrete model (supplementary material).

For a given set of discrete model parameters, we compute a rescaled velocity function and

set of continuous model net growth rates such that both models have equivalent initial and fully

adapted net growth rates. In Fig. 8a, we demonstrate that the mean cell counts are identical

between models; from average cell count data, and by extension large-cell-count proliferation

assays, we cannot distinguish a discrete model from a continuous model with quadratic adapta-

tion velocity. Results in Fig. 8b–d demonstrate (subtle) differences in higher-order moments and

the mass function for each model. We conclude, therefore, that within our modelling framework
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Figure 8. Continuous and discrete-binary models are only distinguishable from higher
order moments. We compare the solutions of the CME for a discrete-binary model and a continuous
model with quadratic adaptation velocity. (a) Exact correspondence in the mean cell count for each
model; the regimes are structurally non-identifiable. (b–d) Solution to the complete CME at various
time points, showing higher-order differences between the models. Discrete model parameters are give
by r01 = 1, r10 = 0.01, λ̂0 = −0.3, λ̂1 = 0.1.

it may be possible to distinguish between the discrete and continuous models using higher order

moments in low-cell-count proliferation assays; however this is unlikely to be the case if only

imprecise cell count observations are available.

4 Discussion and Conclusion

Phenotype plasticity and the rapid adaptation of cells upon the application of treatment are

widely recognised as a significant factor in the failure of many anti-cancer treatments [43].

Complicating a comprehensive characterisation of adaptive resistance is a lack of consensus

as to whether adaptation occurs between a set of well-defined discrete cell states or across a

continuous spectrum of phenotypes. While both hypotheses are associated with mature subsets

of the mathematical modelling literature, there remains—particularly for the latter—a dearth

of statistical methodology to parameterise such models. Indeed, key questions relating to the

identifiability of adaptation mechanisms and within-population heterogeneity, the ability of

practitioners to distinguish between discrete and continuous adaptation, and the experimental

design requirements to parameterise models, remain unanswered.

Our most significant result is that we are unable to identify heterogeneity from population-

level (i.e., cell count or proliferation marker) data. While we find that the relevant model

parameter is in theory identifiable, this identifiability is lost for imprecise cell-counts. Indeed,

the difficulty in distinguishing between the functional form of the adaptation velocity (Fig. 7),

combined with the narrow time window in which the proliferation and death rates are distin-

guishable (Fig. 4) suggests that heterogeneity may be indistinguishable from misspecification

of other model terms. It is only if cell-level information (i.e., timings of proliferation and death

events in the population) are available that we are, in theory, able to establish heterogeneity;

although the timescale of adaptation compared to the cell doubling time (less than 7 d compared

to ∼2–7 d for melanoma [6]) may arise as a practical limitation that prevents heterogeneity from

becoming practically identifiable.

A consequence of the non-identifiability of heterogeneity is that we cannot distinguish be-
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tween a heterogeneous and a homogeneous model. Mathematically, this offers a practical benefit

as it implies that population-level behaviours are well characterised by a simple, and in many

cases analytically tractable, ODE model. All other model parameters: the on- and off-drug

growth rates in each fully adapted state, and the adaptation velocity, are practically identifi-

able. In the supplementary material, we explore a number of experimental designs in which

various combinations of termination times are considered for a fixed total number of prolifer-

ation assays. Even if all experiments are terminated after 3 d, all relevant parameters remain

identifiable; albeit estimates are drawn with reduced precision. The indistinguishability of the

heterogeneous and homogeneous models motivates us to explore the model selection question

using an ODE-based homogeneous model. We are unable to distinguish the functionally correct

adaptation velocity, however we do identify a class of models that manifest similar trajectories

through phenotype space (Fig. 7c).

The theoretical identifiability of heterogeneity from event-timing data using our stochastic

formulation highlights two potential (and rarely considered) sources of model misspecification.

First, that proliferation and death events are mutually exclusive: often it is only in a stochastic

modelling framework that the two can be distinguished [44]. A more realistic (and corre-

spondingly, further parameterised) model would consider individual and phenotype-dependent

proliferation and death rates. Depending on the action of the drug and the metabolic cost

of resistance, it may be appropriate for one of these rates to be phenotype-independent. For

large-cell-count experiments, it may also be appropriate to consider a stochastic analogue of

logistic, rather than exponential, growth. A second source of misspecification, the effects of

which are, to the best of our knowledge, largely unknown in the context of population-level

behaviour in IBMs, is that proliferation occurs according to a Markov process. Clearly, this

is a strong assumption that, while routine in the mathematical literature, may be inappropri-

ate. Given that adaptation occurs on a similar timescale as proliferation, what an appropriate

time-to-proliferation distribution would be is entirely unclear. Furthermore, any move away

from a Markovian formulation in the IBM would render intractable the ODE, PDE, and CME

formulations that we rely upon for inference.

We follow the vast majority of the PDE literature in assuming that heterogeneity arises solely

according to a (biased) random walk in phenotype space [27]. A consequence of this choice is

that the phenotypic state of a cell is constantly evolving, even within a system that appears

static at the population-level. It is only this formulation of heterogeneity that we find to be non-

identifiable. A potentially more realistic model of heterogeneity is one that considers inherent

heterogeneity between individual cells; for example, where individual cells have a unique growth

rate when both fully sensitive and fully adapted or where the adaptation speed varies. The

question of identifiability of these population-level distributions from population-level statistics,

such as cell count, remains open, although there is a fast-growing set of statistical tools that

could be adapted to answer these questions [42, 45].

Our final result is to demonstrate that the discrete-binary model of heterogeneous pheno-

typic adaptation is indistinguishable at the population level from an appropriately formulated

continuous model. Our results do show very minor differences in high-order behaviours (cell
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count variance), although we still expect both models to remain indistinguishable upon consid-

eration of potential model misspecification and measurement noise. We do expect the binary

strategy to be identifiable from marker data, as, mid-adaptation, a binary strategy may manifest

a bimodal distribution that contrasts with the continuous transition we see both experimentally

(Fig. 1b), and in our model (Fig. 6a). The equivalence we derive in Section 3.5 also suggests at

a hybrid discrete-continuous model that could be studied in future. Namely, a model in which

drug-sensitive cells switch to an intermediate transition state with some drug-dependent propen-

sity, in which the phenotypic state varies continuously until the cell reaches the drug-resistant

state.

We establish the identifiability of potentially heterogeneous phenotype adaptation from com-

monly reported low-cell-count proliferation assay experiments. To achieve this, we develop

a computationally efficient inference framework for heterogeneous phenotype adaptation that

captures potential information arising as intrinsic noise, without resorting to the study of a

mean-field model subject to an additive Gaussian measurement process. That we find hetero-

geneity non-identifiable is significant to the mathematical modelling community, and implies

that population-level behaviours (including, importantly, the response of systems to drugs and

the design of adaptive therapies) are well characterised by homogeneous ODE models. For the

experimental community, our methodology can be used to design and characterise experiments

that probe continuous adaptive resistance.

Data availability

Code used to produce the results is available at https://github.com/ap-browning/phenotypic_

heterogeneity_ibm.
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Supplementary Material

S1 IBM/CME comparison

In Fig. S1 we compare the probability mass functions arising from the solution of the CME to

the empirical distribution arising from 1000 cell proliferation assays simulated using the IBM.
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Figure S1. Chemical master equation comparison. Comparison between n = 1000 realisations
of the IBM (blue) and the solution to the CME (black dashed) under continuous treatment (top row)
and intermittent treatment (bottom row). All parameters are consistent with those in Fig. 2 of the main
text.
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S2 MCMC priors and results

The priors for each parameter are given in Table S1. In Fig. S2, we show marginal posterior

distributions for all parameters corresponding to the analysis in Fig. 3 of the main text. In

the main text, we present results for experiment termination times t = {1 d, 3 d, 5 d, 7 d}. In

Fig. S2, we additionally consider various other termination time sets, as indicated.

Table S1. Parameters, parameter descriptions, and parameter priors used for analysis in the main text.

Parameter Description Prior

γ1 Sensitive (x = 0) growth rate off drug Uniform(−1, 1)
γ2 Sensitive (x = 0) growth rate on drug Uniform(−1, 1)
γ3 Resistant (x = 1) growth rate off drug Uniform(−1, 1)
γ4 Resistant (x = 1) growth rate on drug Uniform(−1, 1)
log ν Adaptation speed Uniform(−6, 1)
log β Heterogeneity/diffusivity parameter Uniform(−6,−1)
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Figure S2. Marginal posterior distributions. We show marginal posterior distributions for all
parameters, for various sets of observation termination times. Shown also are the marginal prior distri-
butions (blue) and the true values (black dashed).
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S3 CME for discrete model

Let q(n1, n2, t) be the density for n1 sensitive cells and n2 resistant cells. Let λi denote the

proliferation rate of each cell population, and δi denote the death rate of each cell population

(one of which will be zero). We have that

dq(n1, n2, t)

dt
= (n1 − 1)λ1q(n1 − 1, n2, t) + (n1 + 1)δ1q(n1 + 1, n2, t)

+ (n2 − 1)λ2q(n1, n2 − 1, t) + (n2 + 1)δ2q(n1, n2 + 1, t)

+ n1r12q(n1 + 1, n2 − 1, t) + n2r21q(n1 − 1, n2 + 1, t)

− (n1λ1 + n1δ1 + n2λ2 + n2δ2)q(n1, n2, t).

(20)

To obtain the mass function for the total cell count, q(n, t), we consider that

q(n, t) =

∞󰁛

n1=0

q(n1, n− n1, t). (21)

In practice, we consider a partial sum truncated at n1 = 50, which we find to be sufficient given

the maximum cell counts observed in Fig. 8 of the main text.
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S4 Structural identifiability of heterogeneity

In the main text, we observe that the heterogeneity parameter, β, is one-sided practically iden-

tifiable. In this section, we reproduce the results in Fig. 3 of the main text (and equivalently,

Fig. S2 of this supplementary material document) to investigate a scenario where a large data set

is generated that comprises 768 cell proliferation assays (i.e., eight plates), for each condition, at

a set of termination times t = {0.5 d, 1 d, 1.5 d, · · · , 6.5 d, 7 d}. Results in Fig. S3 show that, in

this large data-set regime (5,376 proliferation assays equivalent to a total of 56 plates), the dif-

fusivity parameter is practically identifiable, demonstrating that it is a structurally identifiable

parameter.
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Figure S3. Large data set proliferation assay inference. We show marginal posterior distribu-
tions for all parameters, for various sets of observation termination times. We perform Bayesian inference
on synthetic cell proliferation assay data using the CME as a likelihood. Independent cell count obser-
vations (M = 768 replicates per condition) are made from experiments conducted with fully sensitive or
fully resistant cells, with and without drug, and terminated at t = {0.5 d, 1 d, 1.5 d, · · · , 6.5 d, 7 d}. (a–b)
Synthetic proliferation assay cell count data (box plots with outliers shown as discs) and the model
predicted mean cell count at the MAP (solid lines). (c–d) Posterior distributions for the logarithm of
v, the adaptation speed, and β, the diffusivity. Shown also is the uniform prior (blue), the true value
(black dashed), and the MAP (red dashed). In this regime, both the adaptation speed and diffusivity
are identifiable.
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S5 Large data set inference with noisy data

In the main text, and in all supplementary results hitherto, we have studied a scenario where

exact cell counts are made. We find in Section S4 that, in this effectively noise-free regime, the

heterogenity parameter is identifiable provided that a sufficiently large data set is available. We

now revisit this assumption by assuming that cell count observations, denoted y, are subject to

binomial noise such that

y |n ∼ Truncated

󰀕
Binomial(M(n), 0.5)− M(n)

2
+ n, 0,∞

󰀖
, (22)

where n is the exact cell count, and M(n) is chosen such that the standard deviation of the

noise term scales with the cell count (note that for the right hand side of Eq. (22) to be valid,

we require that M(n) is always even, such that the noise term Binomial(M(n), 0.5)−M(n)/2

is symmetric about zero. In this section, we set

M(n) = 2round

󰀕
4α2n2 + n0

2

󰀖
, (23)

such that the noise comprises a count independent term, n0 (i.e., noise present even in very

low cell count observations arising from, e.g., cellular debris), and a count dependent term of

magnitude α which scales such that the standard deviation of the noise term is approximately

αn for large n. For the results that follow, we set α = 0.1 and n0 = 5; for these parameter

values we demonstrate the noise distribution and resultant observed cell count distribution in

Fig. S4.
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Figure S4. Observation noise model. (a) We consider cell count observations subject to additive
Binomial error that scales with the cell count, n, according to Eq. (23). (b) Comparison between precise
(black) and noisy (red) cell count distributions from the CME.
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Following the construction of the statistical observation noise model, we reproduce the large

data set results of Fig. S3 in the case that only noisy observations are available. Priors are given

in Table S2 and both fits and marginal posterior distributions in Fig. S4. Results in Fig. S5

demonstrate that the diffusivity parameter is no longer identifiable; even from a large data set,

we cannot distinguish heterogeneity from observation noise.

Table S2. Prior distributions for the noise distribution parameters used in the inference of noisy data.

Parameter Prior

α Uniform(0, 1)
n0 Uniform(0, 10)
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Figure S5. Large data set proliferation assay inference with noisy data. We reproduce the
results in Fig. S3 in the case that cell count observations are subject to noise of the form given in Eq. (22).
The noise parameters α and n0 are assumed to be unknown, with priors given in Table S2.

27


