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THE WEIL REPRESENTATION FOR A FINITE FIELD OF
CHARACTERISTIC TWO

AURÉLIE PAULL

Abstract. We study the Weil representations associated to a finite field F of character-
istic two. Starting from a non-degenerate symplectic form on a finite-dimensional vector
space W over F, we consider any associated bilinear form B on W and the corresponding
Heisenberg group H(B). The pseudo-symplectic group Ps(B) acts on H(B) by automor-
phisms leaving its center fixed. Let W = X ⊕ Y be a complete polarization and let χ̃ be
a character of the abelian subgroup X ×F of H(B) having non-trivial restriction χ to F.
From this data, we construct the projective Weil representation of Ps(B). We linearize

this representation and define the Weil representation of a two-fold covering P̃s(B)χ̃ of

Ps(B). All the formulas we obtain are explicit. In particular, we exhibit explicit formulas
for the projective cocycle and the character of the Weil representation. Finally, we use
our results to give the complete description of the two-dimensional case W ≃ F2

2.
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Introduction

The Weil representation has been studied in various settings and has numerous appli-
cations in mathematics and physics. In his pioneering work, Weil [28] studies algebraic
groups over local fields and adelic rings. He defines a Heisenberg group H associated to a
fixed bilinear form over a finite-dimensional vector space and then the pseudo-symplectic
group Ps, which is a subgroup of the automorphism group of H acting trivially on its
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center. He then obtains a unitary projective representation of Ps which he lifts to a cen-
tral extension of Ps by the unit circle. In characteristic different from two and if the field
is not that of complex numbers, Ps is isomorphic to the symplectic group Sp and the
extension can be reduced to an extension of Sp by two elements, i.e. a two-fold covering
of Sp. This is the metaplectic extension, and the linear representation obtained this way
is called the oscillator, metaplectic or Weil representation.

In his article, Weil said that a possible extension of his work to the case of a finite field
would have been interesting. This was done using different methods in odd characteristic
for example by Gérardin [7], Teruji [26], [27] and Aubert-Przebinda [2]. In this case, the
projective Weil representation appears to be a linear representation of Sp, no coverings
needed. However the situation is completely different in characteristic two: Ps is not
isomorphic to Sp, the symplectic group does not act on the Heisenberg group anymore
and Ps does not even project onto Sp but only onto the orthogonal group O, which is a
proper subgroup of Sp (with only one exception; see Proposition 1.12 below). The work
of Blasco [3] shows that the metaplectic extension does not split and is a two-fold covering
of Ps.

In this article, we study the Weil representations associated to a finite field F of char-
acteristic two. We consider a finite-dimensional vector space W over F equipped with a
non-degenerate symplectic form ⟨·, ·⟩ (i.e. alternating). We fix a bilinear form B on W
such that

⟨w1, w2⟩ = B(w1, w2)−B(w2, w1)

for all w1, w2 ∈ W and consider the quadratic form Q associated to B, i.e. Q(w) =
B(w,w). This leads to the definition of the symplectic group Sp(W ) and the orthogonal
group O(Q) in Definition 1.6. We point out that Weil fixes a particular form B whereas
the results we obtain in the sequel (like Blasco’s results) can be applied to any bilinear
form B satisfying the equality above. We start by defining a Heisenberg group H(B) in
this setting in Definition 1.1. Notice that non-equivalent bilinear forms can lead to non-
isomorphic Heisenberg groups, which is a major difference from the odd characteristic
case, for which there is only one Heisenberg group to consider (cf. Proposition 1.4). If
F = F2, the situation is completely clear: H(B) is an extraspecial 2-group and there
are only two different Heisenberg groups up to isomorphism (see Proposition 1.5 and the
appendix for the definition and structure of extraspecial groups). For arbitrary F, we
define the pseudo-symplectic group Ps(B) associated with B in Proposition 1.8 and we
describe its structure in Proposition 1.11.

The Weil representation arises from an intrinsic property of the Heisenberg group H(B),
namely the Stone-von Neumann theorem, of which we give a short proof in our setting in
Theorem 2.9. This theorem states that, up to isomorphism, H(B) has a unique unitary
irreducible representation acting on its center F as a fixed non-trivial character χ. For
every non-trivial character χ of F and extension χ̃ of χ to the abelian subgroup X × F
of H(B), we give in Lemma 2.3 a realization ρχ̃ of this representation. However, we
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will point out in Remark 2.10 that this theorem is in fact not necessary to obtain the
intertwining operators we need to construct the Weil representation. Then, we deduce the
results of Blasco but in a different manner. In fact, we were inspired at the beginning by
Glasby’s article [8] for F = F2 since it treats extraspecial 2-groups, and then we extended
the formulas we obtained to every finite field F of characteristic two. In particular, we
give explicit formulas for the projective Weil representation of Ps(B) in Proposition 3.2.
(Notice that Blasco treats simultaneously the local and the finite case, and gives a formula
for the finite case which does not apply to all elements of Ps(B).) We also compute the

associated cocycle in Corollary 3.4 and define the two-fold covering P̃s(B)χ̃ of Ps(B). This
definition provides possibly several non-isomorphic coverings, but we prove in Proposition
3.8 and Proposition 3.15 that there are conditions to ensure that the isomorphism class of
this extension does not depend on the character χ we choose and on the choices we make
to define the intertwining operators in Proposition 3.2. We obtain thus explicit formulas

for the Weil representation of P̃s(B)χ̃ and its character in Corollary 3.10 and Proposition
3.11, respectively. Here we highlight that the Weil representation is unitary, faithful and
irreducible.

Finally, we investigate in detail the case of the smallest dimension for W , i.e. W ∼= F2
2.

In this case, there are two different Heisenberg groups which can arise from the different

possibilities for B. If H(B) ≃ D4 then the two-fold covering P̃s(B)χ̃ is either isomor-

phic to the dihedral group D8 or to the semi-dihedral group SD16 (see section 4.1). If
H(B) ≃ Q8 then, as mentioned in Proposition 1.12, the situation is very exceptional since

O(Q) = Sp(W ). Here the two-fold covering P̃s(B)χ̃ is either isomorphic to the conformal

special unitary group CSU2(F3) or to the general linear group GL2(F3) (see section 4.2,
and [29] for more details on these finite groups). Observe that this last example is the
only one which enables us to provide a Weil representation which is directly related to
the entire symplectic group Sp(W ), and not only to O(Q). The construction of the Weil
representation of a metaplectic group related to the entire symplectic group over F = F2

will be described in a forthcoming article.

Aknowledgements: This article is the result of part of my thesis work, supervised
by Angela Pasquale (Université de Lorraine) and Tomasz Przebinda (University of Okla-
homa). I would like to thank them for their careful reading, and more generally for their
guidance and support during my PhD.

1. The Heisenberg group H(B) and the pseudo-symplectic group Ps(B)

Let F be a finite field of characteristic two and let W be a finite dimensional F-vector
space of dimension 2n. Since the Weil representation arises from the Heisenberg group,
we first have to properly define the Heisenberg group in these settings. In fact, this group
is in general defined from a non-degenerate symplectic form over W and this requires
a division by two. Since this definition is not available here, we use a bilinear form B
(related to the non-degenerate symplectic form by (5)) to define the Heisenberg group.
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In particular, there are different bilinear forms B that can be used to define this group.
If F = F2, there are only two different Heisenberg groups to consider up to isomorphism
(cf. Proposition 1.5).

Definition 1.1. Let B be a non-zero bilinear form defined on W with values in F. We
define the Heisenberg group associated to B, denoted by H(B), as the set W ×F endowed
with the following product:

(w1, t1)(w2, t2) = (w1 + w2, t1 + t2 +B(w1, w2)) (1)

for all w1, w2 ∈ W and t1, t2 ∈ F. In particular, the identity element of H(B) is (0, 0) and
the inverse of (w, t) ∈ H(B) is (−w,−t+B(w,w)).

Example 1.2. Let X be a finite dimensional vector space over F with dual space X∗.
Set W = X × X∗ and define a non-degenerate symplectic form on W by ⟨w1, w2⟩ =
x∗2(x1)−x∗1(x2) for all w1 = (x1, x

∗
1), w2 = (x2, x

∗
2) ∈ X ×X∗. We denote by H(BWeil) the

Heisenberg group associated to the bilinear form BWeil defined by

BWeil(w1, w2) = x∗2(x1).

(We call it BWeil since it is the bilinear form used by Weil in [28].)

We denote by Q(W ) the set of quadratic forms defined on W with values in F, i.e. the
set of maps f : W → F such that

(w1, w2) 7→ f(w1 + w2)− f(w1)− f(w2) is a bilinear form, and (2)

f(tw) = t2f(w) for all t ∈ F and w ∈ W . (3)

We also denote by Qa(W ) the subset of Q(W ) consisting of the quadratic forms which
are additive.

Remark 1.3. If F = F2 then the condition (3) is automatically satisfied by any map
from W to F2 which satisfies (2).

The quadratic form associated to the bilinear form B is defined by Q(w) = B(w,w)
for all w ∈ W . Two quadratic forms Q and Q′ are said to be equivalent if there exists an
isomorphism σ of W such that Q′ = Q◦σ. Let Q ∈ Q(W ) and let V be a vector subspace
of W . Then V is said to be singular if Q|V = 0. Following [5, §16], we denote by ν the
(Witt) index of the quadratic form Q, i.e. the maximal dimension of a singular subspace V
ofW . We also recall the definition of the Arf invariant of a quadratic form onW (we refer
to [1], [20], [5, p. 34], [4, p.197–199] and [11, Theorem 12.9] for the original definitions
and more general results). If the bilinear form (w1, w2) 7→ Q(w1 + w2)−Q(w1)−Q(w2)

is non-degenerate, then there exists a basis {vi}1≤i≤2n of W such that for all w =
2n∑
i=1

λivi,

Q(w) = λ1λn+1 + λ2λn+2 + · · ·+ λn−1λ2n−1 + (ξλ2n + λnλ2n + ξλ22n),

where ξ = 0 or ξ is such that the polynomial ξX2+X+ξ is irreducible in F. Then the Arf
invariant of Q is defined by Arf(Q) = ξ2. Two quadratic forms Q and Q′ are equivalent
if and only if Arf(Q) − Arf(Q′) = u2 + u for some u ∈ F, or equivalently, if and only if
ν(Q) = ν(Q′). In particular, if F = F2, we obtain Arf(Q) = ξ ∈ {0, 1}.
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Proposition 1.4. Let B and B′ be two non-zero bilinear forms from W to F. Let Q and
Q′ be the quadratic forms associated to B and B′, respectively.

1. The product (1) defines a group H(B) and a central extension 0 → F → H(B) →
W → 0. Moreover, if the alternating form

(w1, w2) 7→ B(w1, w2)−B(w2, w1)

is non-degenerate then the center of H(B) is isomorphic to F.
2. B is a cocycle and the cohomology class of B in H2(W,F) is the one associated to

the isomorphism class of the central extension defined by H(B).
3. The central extensions

0 → F → H(B) → W → 0 and 0 → F → H(B′) → W → 0

are isomorphic if and only if B and B′ are cohomologous. In particular, if these
extensions are isomorphic then B −B′ is alternating, i.e. Q = Q′.

4. The groups H(B) and H(B′) are isomorphic if and only if there exists a map
f : W → F, an automorphism of abelian groups σ : W → W and an automorphism
of additive abelian groups g : F 7→ F such that for all (w1, w2) ∈ W :

f(w1 + w2)− f(w1)− f(w2) = B′(σ(w1), σ(w2))− g(B(w1, w2)). (4)

In this case, the isomorphism is given by

Φ(σ,f,g) : H(B) → H(B′)

(w, t) 7→ (σ(w), f(w) + g(t)).

Any isomorphism between H(B) and H(B′) is of this form.

Proof. 1. The two group homomorphisms ϕ : F → H(B)

t 7→ (0, t)

and ψ : H(B) → W

(w, t) 7→ w

are such

that ϕ is injective, ψ is surjective and Ker(ψ) = Im(ϕ). Moreover, for every t ∈ F,
the element (0, t) is in the center of H(B) by (1). Let (w′, t′) be in the center of
H(B). Then, for every (w, t) ∈ H(B),

(w, t) = (w′, t′)(w, t)(w′, t′)−1 = (w′ + w, t′ + t+B(w′, w))(−w′,−t′ +B(w′, w′))

= (w, t+B(w′, w) +B(w′, w′)−B(w′ + w,w′))

= (w, t+B(w′, w)−B(w,w′)).

This implies that B(w′, w) − B(w,w′) = 0 for all w ∈ W . Hence w′ = 0 if
(w1, w2) 7→ B(w1, w2)−B(w2, w1) is non-degenerate.

2. B is a cocycle because B is a bilinear form: for every w1, w2, w3 ∈ W , B(w1, 0) =
B(0, w1) = 0 and

B(w1, w2) +B(w1 + w2, w3) = B(w2, w3) +B(w1, w2 + w3).
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Now, define the section τ : w 7→ (w, 0) of the homomorphism ψ : (w, t) 7→ w.
Then for every w1, w2 ∈ W ,

τ(w1)τ(w2)τ(w1 + w2)
−1 = (w1, 0)(w2, 0)(−w1 − w2, B(w1 + w2, w1 + w2))

= (0, B(w1, w2) +B(w1 + w2, w1 + w2)−B(w1 + w2, w1 + w2))

= ϕ(B(w1, w2)).

This shows that B is a cocycle that can be associated to the central extension
defined by H(B). Thus the cohomology class of B in H2(W,F) is the one associated
to the isomorphism class of the central extension defined by H(B).

3. If the extensions defined by H(B) and H(B′) are isomorphic then B and B′ are
cohomologous by the preceding point. Hence, there exists a map δ : W → F such
that for every w1, w2 ∈ F,

B(w1, w2)−B′(w1, w2) = δ(w1) + δ(w2)− δ(w1 + w2).

In particular, B(w1, w1) − B′(w1, w1) = 2δ(w1) − δ(2w1) = 0, i.e. B − B′ is
alternating. This implies that Q(w1) = B(w1, w1) = B′(w1, w1) = Q′(w1), hence
Q = Q′.

4. Suppose that there exists a map f : W → F, an automorphism of abelian groups
σ : W → W and an automorphism of additive abelian groups g : F 7→ F such that
(4) is satisfied. Then, for every (w1, t1), (w2, t2) ∈ H(B),

Φ(σ,f,g)(w1, t1)Φ(σ,f,g)(w2, t2)

= (σ(w1), f(w1) + g(t1))(σ(w2), f(w2) + g(t2))

= (σ(w1) + σ(w2), f(w1) + f(w2) + g(t1) + g(t2) +B′(σ(w1), σ(w2)))

Φ(σ,f,g)((w1, t1)(w2, t2))

= Φ(σ,f,g)(w1 + w2, t1 + t2 +B(w1, w2))

= (σ(w1 + w2), f(w1 + w2) + g(t1 + t2 +B(w1, w2)))

= (σ(w1) + σ(w2), f(w1) + f(w2) + g(t1) + g(t2) +B′(σ(w1), σ(w2))) by (4).

Hence Φ(σ,f,g)((w1, t1)(w2, t2)) = Φ(σ,f,g)(w1, t1)Φ(σ,f,g)(w2, t2), which proves that
Φ(σ,f,g) is a group homomorphism. Moreover, for every (w′, t′) ∈ H(B′), since σ is
bijective, there exists a unique w ∈ W such that σ(w) = w′. Since g is bijective,
there exists a unique t ∈ F such that g(t) = f(w) + t′. Thus, we obtain a unique
element (w, t) ∈ H(B) such that Φ(σ,f,g)(w, t) = (σ(w), f(w) + g(t)) = (w′, t′).
Therefore Φ(σ,f,g) is an isomorphism.

Conversely, suppose that s : H(B) 7→ H(B′) is a group isomorphism. Then we
can decompose s as follows: s : (w, t) 7→ (s1(w, t), s2(w, t)), where s1 : H(B) 7→ W
and s2 : H(B) 7→ F. Hence, for every (w, t) ∈ H(B),

s(w, t) = s((w, 0)(0, t)) = s(w, 0)s(0, t) = (s1(w, 0), s2(w, 0))(0, s2(0, t))

= (s1(w, 0), s2(w, 0) + s2(0, t)),
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where we used the fact that s1(0, t) = 0 because s maps the center of H(B) to
the center of H(B′). Thus s1(w, t) = s1(w, 0), i.e. s1 depends only on W , and
s2(w, t) = s2(w, 0) + s2(0, t). We can set s1(w, t) = σ(w), s2(w, 0) = f(w) and
s2(0, t) = g(t) with σ : W → W , f : W → F and g : F → F. Then s acts on H(B)
by s(w, t) = (σ(w), f(w) + g(t)). Moreover,

• f(0) = s2(0, 0) = 0 and g(0) = s2(0, 0) = 0 because s(0, 0) = 0.
• σ is an abelian group homomorphism and (4) is satisfied. In fact, for every
w1, w2 ∈ W , the fact that s is a group homomorphism implies the equality of
the following two elements of H(B′):

s((w1, 0)(w2, 0)) = s(w1 + w2, B(w1, w2)) = (σ(w1 + w2), f(w1 + w2) + g(B(w1, w2)))

s(w1, 0)s(w2, 0) = (σ(w1), f(w1))(σ(w2), f(w2))

= (σ(w1) + σ(w2), f(w1) + f(w2) +B′(σ(w1), σ(w2))).

• g is an abelian group homomorphism. In fact, for every t1, t2 ∈ F, the equality
s((0, t1)(0, t2)) = s(0, t1)s(0, t2) implies that

(σ(0), f(0) + g(t1 + t2)) = (σ(0), f(0) + g(t1))(σ(0), f(0) + g(t2))

i.e. (0, g(t1 + t2)) = (0, g(t1) + g(t2)).
• σ and g are bijective. In fact, let us consider s−1 and write it under the form
s−1 : (w′, t′) 7→ (σ′(w′), f ′(w′)+g′(t′)), where σ′ : W → W is an abelian group
homomorphism and f ′ : W → F and g′ : F → F satisfy f ′(0) = g′(0) = 0.
Then for every (w, t) ∈ H(B),

(w, t) = (ss−1)(w, t) = s(σ′(w), f ′(w) + g′(t)) = (σ(σ′(w)), f(σ′(w)) + g(f ′(w) + g′(t))).

Hence w = σ(σ′(w)), i.e. σ is bijective and σ′ = σ−1. Moreover, choosing
w = 0, we obtain t = f(0) + g(f ′(0) + g′(t)) = g(g′(t)), i.e. g is bijective and
g−1 = g′.

Therefore, any isomorphism s : H(B) → H(B′) is of the form s = Φ(σ,f,g) given in
the statement.

□

From now on, we suppose that the bilinear form

(w1, w2) 7→ ⟨w1, w2⟩ = B(w1, w2)−B(w2, w1) (5)

is non-degenerate. This endows W with a symplectic vector space structure. We denote
this space by (W, ⟨·, ·⟩).

Let B and B′ be two non-zero bilinear forms on W . By Proposition 1.4.4, if H(B) and
H(B′) are isomorphic, then there exists f , σ and g such that (4) is satisfied. Let Q and
Q′ denote the quadratic forms associated to B and B′, respectively. Then Q′(σ(w)) =
B′(σ(w), σ(w)) = g(B(w,w)) = g(Q(w)) for all w ∈ W , i.e. Q′ ◦ σ = g ◦Q. In particular,
if F = F2, then the only possibility for g is the identity. Therefore Q′ ◦ σ = Q, which
implies that Q and Q′ are equivalent. In fact, for F = F2, we can state a more precise
result in Proposition 1.5. In this case, the Heisenberg group appears to be what is called
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an extraspecial 2-group. This implies that H(B) and H(B′) are isomorphic groups if and
only if Q and Q′ are equivalent, and thus there are only two different Heisenberg groups.
We refer to the appendix for the definition and structure of extraspecial 2-groups, the
link with the Heisenberg group H(B) and a proof of Proposition 1.5.

Proposition 1.5. Suppose that F = F2. Let B be a non-zero bilinear form on W and
Q be its associated quadratic form. Then H(B) is an extraspecial 2-group. In particular,
there are two Heisenberg groups up to isomorphism, depending whether ν(Q) = n (or
equivalently Arf(Q) = 0) or ν(Q) = n− 1 (or equivalently Arf(Q) = 1). This means that
for two bilinear forms B and B′, the groups H(B) and H(B′) are isomorphic if and only
if Q and Q′ are equivalent.

Proof. Cf. Proposition A.11. □

Now that the Heisenberg group H(B) has been defined, we are able to study its automor-
phisms. We write Aut(H(B)) for the group of automorphisms of H(B) and Aut0(H(B))
for the subgroup of Aut(H(B)) consisting of the automorphisms of H(B) acting trivially
on the center of H(B).

Definition 1.6. A vector space automorphism σ : W → W is said to be symplectic if it
preserves the non-degenerate symplectic form ⟨·, ·⟩, i.e. for all w1, w2 ∈ W ,

B(σ(w1), σ(w2))−B(w1, w2) = B(σ(w2), σ(w1))−B(w2, w1).

The set of symplectic automorphisms is a group, which we denote by Sp(W ).
A vector space automorphism σ : W → W is said to be orthogonal if it preserves the
quadratic form Q : w 7→ Q(w) = B(w,w), i.e. for all w ∈ W ,

Q(σ(w)) = B(σ(w), σ(w)) = B(w,w) = Q(w).

The set of orthogonal automorphisms is a group, which we denote by O(Q).

Proposition 1.7. Aut0(H(B)) is the set of elements s = (σ, f), where σ ∈ Sp(W ) and
f : W → F are such that for all w1, w2 ∈ W ,

f(w1 + w2)− f(w1)− f(w2) = B(σ(w1), σ(w2))−B(w1, w2). (6)

The element s = (σ, f) acts on H(B) by (σ, f)(w, t) = (σ(w), f(w) + t). The product of
two elements of Aut0(H(B)) is given by

(σ, f)(σ′, f ′) = (σσ′, f ′ + f ◦ σ′), where (f ′ + f ◦ σ′)(w) = f ′(w) + f(σ′(w)).

In particular, the inverse of s = (σ, f) is s−1 = (σ−1,−f ◦ σ−1).

Proof. Let s ∈ Aut0(H(B)). Since s is an automorphism of H(B), by Proposition 1.4.4,
there exists a map f : W → F, an automorphism of abelian groups σ : W → W and an
automorphism of additive abelian groups g : F 7→ F such that s = Φ(σ,f,g). In particular,
s : (w, t) 7→ (σ(w), f(w) + g(t)), and for all (w1, w2) ∈ W ,

f(w1 + w2)− f(w1)− f(w2) = B(σ(w1), σ(w2))− g(B(w1, w2)).
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Since s fixes the center of H(B), (0, t) = s(0, t) = (0, g(t)) for all t ∈ F, i.e. g is the
identity and (6) is satisfied. Since the left-hand side of (6) is symmetric, σ is symplectic
provided we prove that σ is F-linear.
Let B = {e1, . . . , en, e−1, . . . , e−n} be a symplectic basis of W , i.e. a basis such that

⟨ei, ej⟩ = δi,−j for all 1 ≤ i, j ≤ n. Then Fe1 = {e1, . . . , en, e−2, . . . , e−n}⊥, where we
take the orthogonal complement with respect to ⟨·, ·⟩. Set w1 = σ−1(e1). For every
j ̸= −1, we have that ⟨w1, σ

−1(ej)⟩ = ⟨σ−1(e1), σ
−1(ej)⟩ = ⟨e1, ej⟩ = 0. Hence Fw1 ⊆

{σ−1(e1), . . . , σ
−1(en), σ

−1(e−2), . . . , σ
−1(e−n)}⊥. This implies that σ(Fw1) ⊆ Fe1. Then,

by definition of w1, we obtain σ(Fw1) ⊆ Fσ(w1). In a similar way, if we set w−1 =
σ−1(e−1), then σ(Fw−1) ⊆ Fσ(w−1). Thus for every a ∈ F, there exist λ1(a) ∈ F and
λ−1(a) ∈ F such that σ(aw1) = λ1(a)σ(w1) and σ(aw−1) = λ−1(a)σ(w−1). Now, let a ∈ F.
Then

⟨aw1, w−1⟩ = ⟨w1, aw−1⟩ = a⟨w1, w−1⟩.

Hence

⟨σ(aw1), σ(w−1)⟩ = ⟨σ(w1), σ(aw−1)⟩ = a⟨σ(w1), σ(w−1)⟩,

i.e.

⟨λ1(a)σ(w1), σ(w−1)⟩ = ⟨σ(w1), λ−1(a)σ(w−1)⟩ = a⟨σ(w1), σ(w−1)⟩.

Since ⟨σ(w1), σ(w−1)⟩ = ⟨e1, e−1⟩ = 1, we conclude that

λ1(a) = λ−1(a) = a.

This proves that, for every a ∈ F, σ(aw1) = aσ(w1) and σ(aw−1) = aσ(w−1). This reason-
ing applies with wj = σ−1(ej) and w−j = σ−1(e−j) for all j ∈ {1, . . . , n}. Hence σ(aw±j) =
aσ(w±j). Since ⟨wi, wj⟩ = δi,−j for all 1 ≤ i, j ≤ n, the set {w1, . . . , wn, w−1, . . . , w−n} is
a basis of W . Thus σ(tw) = tσ(w) for all t ∈ F and w ∈ W . □

Definition-Proposition 1.8. Let Ps(B) be the set of elements (σ, f) ∈ Sp(W )×Q(W )
such that for all w1, w2 ∈ W ,

f(w1 + w2)− f(w1)− f(w2) = B(σ(w1), σ(w2))−B(w1, w2), i.e. (6) is satisfied.

Then Ps(B) is a subgroup of Aut0(H(B)), which we call the pseudo-symplectic group
associated to B.

Remark 1.9. The only difference between Aut0(H(B)) and Ps(B) is that an element
s = (σ, f) in the pseudo-symplectic group is such that f satisfies the supplementary
condition (3). In particular, Remark 1.3 implies that Ps(B) = Aut0(H(B)) if F = F2.

Proposition 1.10. [3, 1.3, Proposition b] The group Ps(B) defines a short exact sequence:

0 → Qa(W ) → Ps(B) → O(Q) → 1.

It splits if and only if either dimF(W ) = 2 or F = F2 and dimF2(W ) = 4.
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Proposition 1.11 (The structure of Ps(B)). 1. There are |W | = |F|2n additive
quadratic forms on W . More precisely, if we choose a basis B = {v1, . . . , v2n} of
W , then

Qa(W ) = {fz :
∑

1≤j≤2n

λjvj 7→
∑

1≤j≤2n

λ2j⟨z, vj⟩, z ∈ W}.

If F = F2, then fz = ⟨z, ·⟩ for all z ∈ W . Hence Qa(W ) is the set of linear forms
⟨z, ·⟩, z ∈ W .

2. Let χ be a character of (F,+). Then the maps χ ◦ fz, where z ∈ W , are precisely
all the characters of W .

3. Let s = (σ, f) be in Ps(B). Then:
a. σ belongs to the orthogonal group O(Q).
b. For any choice of basis B = {v1, . . . , v2n} of W , we can define a quadratic

form on W associated to σ by

fσ(
∑

1≤i≤2n

λivi) =
∑

1≤i<j≤2n

λiλjβσ(vi, vj), (7)

where βσ is the bilinear form on W defined by

βσ(w1, w2) = B(σ(w1), σ(w2))−B(w1, w2). (8)

Then (σ, fσ) is an element of Ps(B).
c. s can be uniquely written in the form (σ, fσ + fz), where fz : W → F is an

additive quadratic form.
4. Every element σ of the orthogonal group O(Q) leads to exactly |W | = |F|2n ele-

ments of Ps(B). These elements can be written explicitly as {(σ, fσ+fz), z ∈ W}.
5. Let Psa(B) be the set of elements of Ps(B) of the form (1, f). Then Psa(B) is an

abelian subgroup of Ps(B) and

Psa(B) = {(1, fz), z ∈ W}. (9)

Proof. 1. If F = F2, we already mentioned in Remark 1.3 that the only condition
for a function f : W → F2 to be quadratic is that (w1, w2) 7→ f(w1 + w2) −
f(w1)− f(w2) is bilinear. Hence, if f is supposed to be quadratic and additive, it
is automatically linear on F2. Conversely, any linear form on W is also additive
and thus quadratic. Moreover, the map which sends z ∈ W to the linear form
⟨z, ·⟩ on W is an isomorphism because the symplectic form is non-degenerate.
Thus Qa(W ) is exactly the set of linear forms ⟨z, ·⟩, where z ∈ W .

Suppose now that F is an arbitrary finite field of characteristic two. Let B =
{v1, . . . , v2n} be a basis of W . For every z ∈ W , define fz : W → F by

fz(w) =
∑

1≤j≤2n

λ2j⟨z, vj⟩ for all w =
∑

1≤j≤2n

λjvj.

Then fz is an additive quadratic form. Moreover, fz ̸= fz′ for all z ̸= z′ ∈ W .
In fact, if fz = fz′ , then in particular ⟨z, vk⟩ = ⟨z′, vk⟩ for all 1 ≤ k ≤ 2n. This
implies that the linear forms ⟨z, ·⟩ and ⟨z′, ·⟩ coincide on the basis B of W and
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thus are equal. Since ⟨·, ·⟩ is non-degenerate, this implies the equality z = z′. In
this way, we defined |W | additive quadratic forms.
Conversely, every additive quadratic form f is entirely determined by its images

on the basis elements: for all w =
2n∑
i=1

λivi,

f(w) =
2n∑
i=1

λ2i f(vi).

For all i ∈ {1, . . . , 2n} there are |F| possible values for f(vi). This means that
there are exactly |F|2n = |W | additive quadratic forms on W . This is enough to
conclude that Qa(W ) = {fz, z ∈ W}.

2. Let B = {v1, . . . , v2n} be a basis of W . Recall from 1 that Qa(W ) = {fz, z ∈ W}.
For every z ∈ W , χ ◦ fz is a character of W because fz is additive and χ is a
character of F. Moreover, χ ◦ fz = χ ◦ fz′ implies that the image of the additive
quadratic form fz − fz′ is contained in the kernel of χ. If we set u = z − z′, then
fz − fz′ = fu. If fu ̸= 0, there exists w0 ∈ W such that fu(w0) = α ∈ F∗. Fix
any λ ∈ F. Since F = F2 (Lemma 2.1), we can set α = β2 and λ = µ2. Hence
fu(µβ

−1w0) = µ2β−2fu(w0) = λ. This shows that the image of fu is equal to F.
Since χ is non-trivial, the only possibility is fu = fz − fz′ = 0, i.e. z = z′ by
1. Thus the maps χ ◦ fz define |W | distinct characters of W , i.e. they describe
exactly the set of characters of W .

3. Let s = (σ, f) be in Ps(B).
a. Recall that, by definition of Ps(B), for all w1, w2 ∈ W ,

f(w1 + w2)− f(w1)− f(w2) = B(σ(w1), σ(w2))−B(w1, w2).

If we take w1 = w2, this gives 0 = B(σ(w), σ(w))− B(w,w), i.e. σ preserves
the quadratic form Q.

b. Let B = {v1, . . . , v2n} be a basis of W over F. For all w1 =
2n∑
i=1

λivi and

w2 =
2n∑
i=1

µivi,

βσ(w1, w2) =
∑

1≤i,j≤2n

λiµjβσ(vi, vj) =
∑

1≤i<j≤2n

(λiµj + λjµi)βσ(vi, vj),

where the last equality is due to the fact that βσ is alternating (because σ ∈
O(Q)), and thus symmetric in characteristic two. Now, for all w =

∑
1≤i≤2n

λivi,

and for all t ∈ F,

fσ(tw) =
∑

1≤i<j≤2n

tλitλjβσ(vi, vj) = t2
∑

1≤i<j≤2n

λiλjβσ(vi, vj) = t2fσ(w).
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Moreover

fσ(w1 + w2)− fσ(w1)− fσ(w2)

=
∑

1≤i<j≤2n

(λi + µi)(λj + µj)βσ(vi, vj)−
∑

1≤i<j≤2n

λiλjβσ(vi, vj)−
∑

1≤i<j≤2n

µiµjβσ(vi, vj)

=
∑

1≤i<j≤2n

(λiµj + λjµi)βσ(vi, vj)

= βσ(w1, w2).

Thus fσ is a quadratic form on W such that (σ, fσ) belongs to Ps(B).
c. Since s = (σ, f) and (σ, fσ) both belong to Ps(B), then for all w1, w2 ∈ W ,

f(w1 + w2)− f(w1)− f(w2) = βσ(w1, w2) = fσ(w1 + w2)− fσ(w1)− fσ(w2),

i.e. (f−fσ)(w1+w2)−(f−fσ)(w1)−(f−fσ)(w2) = 0. This means that f−fσ
is an additive quadratic form on W , which we can denote by fz = f − fσ.
Hence the choice of a basis B leads to a unique expression of any element
of Ps(B) in the form (σ, f) = (σ, fσ + fz) where fσ is defined in (7) and
fz = f − fσ ∈ Qa(W ).

4. If we choose a basis B = {v1, . . . , v2n} of W then Qa(W ) = {fz, z ∈ W}. We can
thus conclude thanks to the preceding points that any element σ in O(Q) leads to
exactly |W | = |F|2n elements of Ps(B), namely the elements (σ, fσ + fz), z ∈ W .

5. Let s1 = (1, f1) and s2 = (1, f2) be in Psa(B). Observe first that f1, f2 ∈ Qa(W )
by (6). Moreover,

s1s
−1
2 = (1, f1)(1,−f2) = (1, f1 − f2) = (1,−f2)(1, f1) = s−1

2 s1.

Since f1 − f2 ∈ Qa(W ), this shows that Psa(B) is an abelian subgroup of Ps(B).
Then 1 yields (9).

□

The next proposition describes the relation between the symplectic and the orthogonal
groups in characteristic two.

Proposition 1.12 (Relation between Sp(W ) and O(Q)). We denote by q the order
of the field F (q is a power of the prime number 2).

1. The orders of the symplectic and orthogonal groups are given by:

| Sp(W )| = qn
2

n∏
k=1

(q2k − 1)

|O(Q)| =


2qn(n−1)(qn − 1)

n−1∏
k=1

(q2k − 1) if ν = n

2qn(n−1)(qn + 1)
n−1∏
k=1

(q2k − 1) if ν = n− 1.
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2. The orthogonal group is contained in the symplectic group, i.e. O(Q) ⊆ Sp(W ).
This inclusion is strict unless q = 2 (i.e. F = F2), n = 1 (i.e. dimF2(W ) = 2) and
ν = n− 1 = 0.

Proof. 1. Cf. [4, p. 94 and p. 206].
2. Let σ ∈ O(Q). Then for all w1, w2 ∈ Sp(W ),

0 = Q(σ(w1 + w2))−Q(w1 + w2)

= Q(σ(w1)) +Q(σ(w2)) + ⟨σ(w1), σ(w2)⟩ −Q(w1)−Q(w2)− ⟨w1, w2⟩
= ⟨σ(w1), σ(w2)⟩ − ⟨w1, w2⟩.

This proves that σ belongs to Sp(W ). Suppose now that n = 1. By 1,

| Sp(W )| = q(q2 − 1) and |O(Q)| =

{
2(q − 1) if ν = 1

2(q + 1) if ν = 0.

Hence if q = 2 then

| Sp(W )| = 6 and |O(Q)| =

{
2 if ν = 1

6 if ν = 0,

i.e. O(Q) = Sp(W ) if ν = 0. If q > 2 then

| Sp(W )|
|O(Q)|

=

{
q(q+1)

2
≥ 10 if ν = 1

q(q−1)
2

≥ 6 if ν = 0,

which shows in particular that O(Q) is strictly contained in Sp(W ). In the same
way, if n ≥ 2:

| Sp(W )|
|O(Q)|

=

{
q2n−1

2q−n(qn−1)
= (qn+1)qn

2
≥ 10 if ν = n

q2n−1
2q−n(qn+1)

= (qn−1)qn

2
≥ 6 if ν = n− 1,

(10)

i.e. O(Q) is again strictly contained in Sp(W ).
□

Remark 1.13. Comparing the orders of the groups O(Q) and Sp(W ) in (10), we realize
that, in general, the pseudo-symplectic group is really far from being sufficient to define
a Weil representation related to the symplectic group, since Ps(B) only surjects to the
orthogonal group O(Q). The construction of a metaplectic group related to the entire
symplectic group over F = F2 will be described in a forthcoming article. The only case
for which the construction of the Weil representation in the present article can be related
to the entire symplectic group is treated in section 4.2.

2. The Stone-von Neumann theorem and the projective Weil
representation

Recall that F is a finite field of characteristic two. We denote the Pontryagin dual

of (F,+) by F̂. We fix a non-trivial character χ of F. As before, we consider a finite
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dimensional F-vector spaceW of dimension 2n equipped with a non-degenerate symplectic
form ⟨·, ·⟩. We also fix a complete polarisation ofW , i.e. two totally isotropic subspaces X
and Y of W (which means that X ⊆ X⊥ and Y ⊆ Y ⊥, where the orthogonal complement
is relative to the non-degenerate symplectic form ⟨·, ·⟩) of maximal dimension such that
W = X ⊕ Y . In this setup, the non-degenerate symplectic form on W is given by

⟨w1, w2⟩ = ⟨x1 + y1, x2 + y2⟩ = ⟨x1, y2⟩ − ⟨x2, y1⟩,

for all w1 = x1 + y1 and w2 = x2 + y2 in W , with x1, x2 ∈ X and y1, y2 ∈ Y . Moreover,
the map which sends y ∈ Y to the linear form ⟨y, ·⟩ on X, defines an isomorphism from
Y to X∗. This enables us to identify W with X ×X∗, fix a bilinear form B such that

⟨w1, w2⟩ = B(w1, w2)−B(w2, w1)

for all w1, w2 ∈ W , and define the Heisenberg group H(B) from section 1. For example,
the expression of the bilinear form used by Weil is in this setting:

BWeil(w1, w2) = ⟨x1, y2⟩.

An important feature of the Heisenberg group is the fact that it has, up to isomorphism,
a unique irreducible unitary representation acting as χ on its center. In our setting (finite
dimensional vector spaces over a finite field of characteristic two), we can give an easy
proof of this result, which is known as the Stone-von Neumann theorem. This proof is
based on counting the irreducible representations of H(B). We begin by associating to
each non-trivial character of F a unitary irreducible representation of H(B).

Lemma 2.1. 1. Every element of F is a square in F.
2. Every character of F takes its values in {±1} and can uniquely be written in the

form χa : t 7→ χ(at), where a ∈ F. In particular there are |F| − 1 non-trivial
characters of F.

3. χ can be extended to the commutative subgroup X × F of H(B) in |F|n different
ways. Let χ̃ be such an extension. Then χ̃ takes its values in {±1,±i}. More
precisely, χ̃ takes the values±i if and only ifX is not a singular space, i.e. Q|X ̸= 0.

Proof. Suppose that the order of F is equal to q = 2m with m ≥ 1, i.e. F = F2m .

1. Let a, b ∈ F be such that a2 = b2. Then (a+ b)2 = a2+ b2 = 0. Hence a = b, which
implies that the map a 7→ a2 is injective. Since F is finite, this map is bijective.

2. Let ψ be a character of F. Then ψ takes its values in {±1} because for all t ∈ F,

1 = ψ(0) = ψ(2t) = ψ(t)2.

The fact that F → F̂
a 7→ χa

(where χa : t 7→ χ(at)) is an isomorphism follows from the

fundamental theorem for finitely generated abelian groups: (F2m ,+) is isomorphic

to (Z/2Z)m and Ẑ/2Z ≃ Z/2Z. Hence F̂ ≃ ̂(Z/2Z)m ≃ (Ẑ/2Z)m ≃ (Z/2Z)m ≃ F.
3. Since F = F2m , F is a F2-vector space of dimension m. Let {t1, . . . , tm} be a

basis of F over F2 and let {x1, . . . , xn} be a basis of X over F. Suppose that
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χ̃ is an extension of χ to X × F. Observe that for every integer N ≥ 2 and
w1, . . . , wN ∈ W , we have(

N∑
k=1

wk, 0

)
=

(
0,−

N−1∑
j=1

N∑
l=j+1

B(wj, wl)

)
N∏
k=1

(wk, 0) (11)

in H(B).
Now let (x, t) be an element of the commutative subgroup X × F of H(B).

Then there exists µk,l ∈ F2 and λk =
m∑
l=1

µk,ltl ∈ F such that (x, t) = (
n∑
k=1

λkxk, t).

Applying (11) to wk =
∑

1≤l≤m
µk,ltlxk, where 1 ≤ k ≤ n, we obtain:(

n∑
k=1

m∑
l=1

µk,ltlxk, 0

)
= (0, T )

n∏
k=1

(
m∑
l=1

µk,ltlxk, 0

)
(12)

where

T = −
n−1∑
j=1

n∑
l=j+1

B
( m∑
r=1

µj,rtrxj,
m∑
s=1

µl,stsxl

)
= −

n−1∑
j=1

n∑
l=j+1

( m∑
r=1

µj,rtr

)( m∑
s=1

µl,sts

)
βj,l

and
βj,l = B(xj, xl).

Applying (11) to vl = µk,ltlxk, where 1 ≤ l ≤ m and k is fixed, we obtain(
m∑
l=1

µk,ltlxk, 0

)
= (0, Tk)

m∏
l=1

(µk,ltlxk, 0), (13)

where

Tk = −
m−1∑
r=1

m∑
s=r+1

B(µk,rtrxk, µk,stsxk) = −
(m−1∑
r=1

µk,rtr

)( m∑
s=r+1

µk,sts

)
βk,k.

Thus:
χ̃(x, t) = χ̃((0, t)(x, 0))

= χ(t)χ̃

( ∑
1≤k≤n, 1≤l≤m

µk,ltlxk, 0

)
(12)
= χ(t)χ(T )χ̃

(
n∏
k=1

( m∑
l=1

µk,ltlxk, 0
))

= χ(t)χ(T )
n∏
k=1

χ̃
( m∑
l=1

µk,ltlxk, 0
)

(13)
= χ(t)χ(T )

n∏
k=1

χ(Tk)
m∏
l=1

χ̃(µk,ltlxk, 0).
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Since µk,l ∈ F2, the character χ̃ is entirely determined by the images χ̃(tlxk) for
all 1 ≤ k ≤ n and 1 ≤ l ≤ m, via the formula

χ̃(x, t) = χ(t)χ(T )
n∏
k=1

χ(Tk)
m∏
l=1

χ̃(tlxk, 0)
µk,l . (14)

Now let 1 ≤ k ≤ n and 1 ≤ l ≤ m. Since (tlxk, 0)(tlxk, 0) = (0, t2l βk,k), the
value of χ̃(tlxk) depends entirely on βk,k = Q(xk). In fact, if βk,k = 0 then the
order of (tlxk, 0) in X × F is 2, and thus χ̃(tlxk) ∈ {±1}, whereas if βk,k ̸= 0 then
the order of (tlxk, 0) in X × F is 4, and thus χ̃(tlxk) ∈ {±i}. In any case, there
are two possibilities for χ̃(tlxk). This leads to at most 2nm possibilities for the
extension χ̃. Conversely, any choice of χ̃(tlxk) in {±1} if βk,k = 0, or in {±i} if
βk,k ̸= 0, for all 1 ≤ k ≤ n and 1 ≤ l ≤ m, defines by (14) a character of X × F
which extends χ. Therefore, there are exactly 2nm = qn = |F|n extensions of χ
to X × F, which can be explicitly computed thanks to the formula (14) above.
We have also shown that any such extension χ̃ takes its values in {±1,±i}, and
more precisely the values ±i are taken if and only if there exists x ∈ X such that
Q(x) = B(x, x) ̸= 0, i.e. if and only if X is not Q-singular.

□

Now we fix the counting measures of Y and Ŷ , respectively, by

µY =
1√
|Y |

∑
y∈Y

δy and µŶ =
1√
|Y |

∑
ξ∈Ŷ

δξ.

Since Y is finite, the set L2(Y ) of square-integrable functions ϕ : Y → C coincides with
the set of all functions ϕ : Y → C. We denote by BY = {δy, y ∈ Y } the natural basis of
L2(Y ). Hence dimC(L

2(Y )) = |Y | = |F|n. Moreover, we can define a scalar product ⟨·, ·⟩2
on L2(Y ) by:

⟨ϕ, ψ⟩2 =
∫
Y

ϕ(y)ψ(y) dµY (y),

for all ϕ, ψ ∈ L2(Y ). We also define the Fourier transform F over L2(Y ) and its inverse:

F(ϕ)(ξ) =

∫
Y

ϕ(y)ξ(y) dµY (y)

ϕ(y) =

∫
Ŷ

F(ϕ)(ξ)ξ(−y) dµŶ (ξ),

for all ϕ ∈ L2(Y ), y ∈ Y and ξ ∈ Ŷ . In this way, the Plancherel theorem states that
∥F(ϕ)∥2 = ∥ϕ∥2 for all ϕ ∈ L2(Y ). Finally we define the adjoint of an operator U ∈
EndC(L

2(Y )) as the operator U∗ which satisfies for all ϕ, ψ ∈ L2(Y ):

⟨U∗(ϕ), ψ⟩2 = ⟨ϕ, U(ψ)⟩2.
Now we define the Schrödinger model of the Heisenberg representation of the group H(B).
Then, in Lemma 2.3, we prove that it is a unitary irreducible representation of H(B) and
present its realization on L2(Y ).
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Definition 2.2 (Schrödinger model of the Heisenberg representation). Let χ̃ be
an extension of χ to the abelian subgroup X × F of H(B). We denote by H(X, χ̃) the
C-vector space of functions ϕ : H(B) → C such that for all (x, t) ∈ X × F and for all
h ∈ H(B),

ϕ(h(x, t)) = χ̃(x, t)−1ϕ(h).

Let ρχ̃ : H(B) → EndC(H(X, χ̃)) be the map defined by ρχ̃(g)ϕ(h) = ϕ(g−1h).

Lemma 2.3. H(X, χ̃) is isomorphic to L2(Y ) by restriction to Y . As a representation of
H(B) on the Hilbert space L2(Y ), ρχ̃ is unitary, irreducible and acts as χ on the center.
It is given by the following formula: for all g = (x + y, t) ∈ H(B), for all φ ∈ L2(Y ) and
for all y′ ∈ Y ,

ρχ̃(x+ y, t)φ(y′) = χ̃(x, t−Q(y) + ⟨x, y′⟩ −B(x+ y′, y))φ(y′ − y). (15)

The character of ρχ̃ is given by

Trace(ρχ̃(x+ y, t)) =

{
χ(t)|Y | if x = y = 0

0 otherwise,
(16)

and does not depend on the choice of extension χ̃. In particular, another choice of exten-
sion χ♯ gives a representation ρχ♯ which is equivalent to ρχ̃.

Remark 2.4. The fact that ρχ̃ is a representation of H(B) implies in particular that for
all w,w′ ∈ W ,

ρχ̃(w)ρχ̃(w
′) = ρχ̃(w + w′, B(w,w′)) = χ(B(w,w′))ρχ̃(w + w′). (17)

Remark 2.5. We can wonder why we need to extend the character χ of F to the abelian
subgroup X×F of H(B). In fact, we could want to extend trivially χ to X×F, and define
the space H(X,χ) as the set of functions ϕ : H(B) → C such that for all (x, t) ∈ X × F
and for all h ∈ H(B),

ϕ(h(x, t)) = χ(t)−1ϕ(h).

However, this is only possible if B|X×X = 0. In fact, suppose that χ̃ extends χ trivially.
Then for all (x1, t1), (x2, t2) ∈ X × F,{

χ̃(x1, t1)χ̃(x2, t2) = χ(t1)χ(t2) = χ(t1 + t2)

χ̃((x1, t1)(x2, t2)) = χ̃(x1 + x2, t1 + t2 +B(x1, x2)) = χ(t1 + t2 +B(x1, x2)).
(18)

Since χ̃ is a character, (18) implies that χ(B(x1, x2)) = 1 for all x1, x2 ∈ X. If B|X×X is
non-zero then its image is F. This means that F ⊆ Ker(χ), which is impossible since χ
is non-trivial by hypothesis. Hence B|X×X = 0. This happens for example if B is BWeil.
Consequently, if B|X×X is non-zero then the trivial extension of χ is not a character of
X×F. This is why, following [3], we consider arbitrary characters χ̃ of X×F that restrict
to χ on F in Definition 2.2, in order to get a realization of the Heisenberg representation
which is valid for any bilinear form B.

Proof of Lemma 2.3. First we show that ρχ̃ is a representation of H(B) on H(X, χ̃) acting
as χ on the center. For all g, g′, h ∈ H(B), for all (x, t) ∈ X × F and for all ϕ ∈ H(X, χ̃),
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• ρχ̃(g)ϕ(h(x, t)) = ϕ(g−1h(x, t)) = χ̃(x, t)−1ϕ(g−1h) = χ̃(x, t)−1ρχ̃(g)ϕ(h). Hence
ρχ̃(g)ϕ is in the space H(X, χ̃).

• ρχ̃(0, 0)ϕ(h) = ϕ((0, 0)−1h) = ϕ(h) and

ρχ̃(gg
′)ϕ(h) = ϕ((gg′)−1h) = ϕ(g′−1g−1h) = ρχ̃(g

′)ϕ(g−1h) = (ρχ̃(g)ρχ̃(g
′))ϕ(h).

• ρχ̃(0, t)ϕ(h) = ϕ((0, t)−1h) = ϕ((0,−t)h) = ϕ(h(0,−t)) = χ(−t)−1ϕ(h) = χ(t)ϕ(h),
so ρχ̃(0, t) = χ(t) IdH(X,χ̃).

To show that ρχ̃ is unitary and irreducible, we first prove the vector space isomorphism
between H(X, χ̃) and L2(Y ), and then we use the realization of ρχ̃ on L2(Y ).
Consider the linear map H(X, χ̃) → L2(Y )

ϕ 7→ ϕ|Y

, where ϕ|Y (y) = ϕ(y, 0) for all y ∈ Y .

• If ϕ ∈ H(X, χ̃) satisfies ϕ|Y = 0, then for all h = (x+ y, t) ∈ H(B),

ϕ(h) = ϕ((y, 0)(x, t−B(y, x))) = χ̃(x, t−B(y, x))−1ϕ(y, 0) = 0.

Hence the map ϕ 7→ ϕ|Y is injective.
• Let φ ∈ L2(Y ). For all (x+y, t) ∈ H(B), set ϕφ(x+y, t) = χ̃(x, t−B(y, x))−1φ(y).
Then

ϕφ(y, 0) = χ(B(y, 0))φ(y) = φ(y),

i.e. ϕφ|Y = φ, and for all h = (x′ + y′, t′) ∈ H(B),

ϕφ(h(x, t)) = ϕφ(x
′ + y′ + x, t′ + t+B(x′ + y′, x))

= χ̃(x+ x′, t+ t′ +B(x′ + y′, x)−B(y′, x+ x′))−1φ(y′)

= χ̃((x′, t′ −B(y′, x′))(x, t))−1φ(y′)

= χ̃(x, t)−1χ̃(x′, t′ −B(y′, x′))−1φ(y′)

= χ̃(x, t)−1ϕφ(h).

Hence ϕφ ∈ H(X, χ̃) and the map ϕ 7→ ϕ|Y is surjective.

Thus the map ϕ 7→ ϕ|Y defines an isomorphism between H(X, χ̃) and L2(Y ), allowing us
to realize ρχ̃ on L2(Y ). For every φ ∈ L2(Y ), for every (x + y, t) ∈ H(B) and for every
y′ ∈ Y ,

ρχ̃(x+ y, t)φ(y′) = ρχ̃(x+ y, t)ϕφ(y
′, 0)

= ϕφ((x+ y, t)−1(y′, 0))

= ϕφ((−x− y,−t+B(x+ y, x+ y))(y′, 0))

= ϕφ(−x− y + y′,−t+B(x+ y, x+ y)−B(x+ y, y′))

= χ̃(−x,−t+B(x+ y, x+ y − y′)−B(y − y′, x))−1φ(y′ − y)

= χ̃(x, t−Q(x)− ⟨x, y − y′⟩ −B(y, x− y′)−Q(y) +Q(x))φ(y′ − y)

= χ̃(x, t−Q(y) + ⟨x, y′⟩ −B(x, y)−B(y, y′))φ(y′ − y)

= χ̃(x, t−Q(y) + ⟨x, y′⟩ −B(x+ y′, y))φ(y′ − y).



THE WEIL REPRESENTATION FOR A FINITE FIELD OF CHARACTERISTIC TWO 19

Suppose now that V ⊆ L2(Y ) is a ρχ̃-invariant non-zero vector subspace, i.e. V ̸= 0
and ρχ̃(h)V ⊆ V for all h ∈ H(B). If V ̸= L2(Y ) then there exists a non-zero φ0 ∈ V such
that ρχ̃(H(B))φ0 ̸= L2(Y ). Thus the subspace orthogonal to ρχ̃(H(B))φ0 is different from
{0}, i.e. there exists a non-zero ψ0 ∈ L2(Y ) such that

⟨ρχ̃(h)φ0, ψ0⟩2 = 0 for all h ∈ H(B). (19)

For all functions φ, ψ ∈ L2(Y ) and for all w ∈ W we define:

Λφ,ψ(w) = ⟨ρχ̃(w, 0)φ, ψ⟩2,

i.e. for w = x+ y, where x ∈ X and y ∈ Y :

Λφ,ψ(x+ y) =

∫
Y

ρχ̃(x+ y)φ(y′)ψ(y′) dy′

(15)
=

∫
Y

χ̃(x,−Q(y) + ⟨x, y′⟩ −B(x+ y′, y))φ(y′ − y)ψ(y′) dy′

= χ̃(x,−Q(y)−B(x, y))

∫
Y

χ(⟨x, y′⟩ −B(y′, y))φ(y′ − y)ψ(y′) dy′

= χ̃(x,−Q(y)−B(x, y))

∫
Y

ξx(y
′)fφ,ψ,y(y

′) dy′,

where fφ,ψ,y : y′ 7→ χ(−B(y′, y))φ(y′ − y)ψ(y′) is an element of L2(Y ) and ξx : y′ 7→
χ(⟨x, y′⟩) is a character of Y . Thus:

Λφ,ψ(x+ y) = χ̃(x,−Q(y)−B(x, y)) F(fφ,ψ,y)(ξx).

Hence

∥Λφ,ψ∥22 =
∫
X

∫
Y

|Λφ,ψ(x+ y)|2 dy dx

=

∫
X

∫
Y

|χ̃(x,−Q(y)−B(x, y))|2 |F(fφ,ψ,y)(ξx)|2 dy dx

=

∫
X

∫
Y

|F(fφ,ψ,y)(ξx)|2 dy dx

=

∫
Ŷ

∫
Y

|F(fφ,ψ,y)(ξ)|2 dy dξ because x 7→ ξx is a group isomorphism between

X and Ŷ

=

∫
Y

∥F(fφ,ψ,y)∥22 dy
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Applying Plancherel’s formula, we obtain:

∥Λφ,ψ∥22 =
∫
Y

∥fφ,ψ,y∥22 dy

=

∫
Y×Y

|χ(−B(y′, y))φ(y + y′)ψ(y′)|2 dy′ dy

=

∫
Y×Y

|φ(y + y′)|2|ψ(y′)|2 dy dy′

=

∫
Y

|φ(y′′)|dy′′
∫
Y

|ψ(y′)|2 dy′

= ∥φ∥22 ∥ψ∥22.

Thus

∥φ0∥22 ∥ψ0∥22 = ∥Λφ0,ψ0∥22 =
∫
X

∫
Y

|Λφ0,ψ0(x+y)|2 dy dx =

∫
X

∫
Y

|⟨ρχ̃(x+y)φ0, ψ0⟩2|2 dy dx
(19)
= 0.

This contradicts the fact that φ0 and ψ0 are non-zero. Hence V = L2(Y ), and thus ρχ̃ is
irreducible.

Now, we prove that ρχ̃ is unitary. Let h = (x+ y, t) ∈ H(B) and φ ∈ L2(Y ), then

∥ρχ̃(h)φ∥22 =
∫
Y

|ρχ̃(x+ y, t)φ(y′)|2 dy′

(15)
=

∫
Y

|χ̃(x, t−Q(y) + ⟨x, y′⟩ −B(x+ y′, y))φ(y′ − y)|2 dy′

=

∫
Y

|φ(y′ − y)|2 dy′

=

∫
Y

|φ(y′′)|2 dy′′

= ∥φ∥22.

This shows that the operator ρχ̃(h) preserves the norm, and thus is unitary.
The last point to prove is that if χ̃ and χ♯ are two different extensions of χ to X × F

then the representations ρχ̃ and ρχ♯ are equivalent. To this extent, we first determine the
character of the representation ρχ̃ in the basis BY = {δz, z ∈ Y } of L2(Y ). By (15), for
every x ∈ X, y, y′, z ∈ Y and t ∈ F,

ρχ̃(x+ y, t)δz(y
′) = χ̃(x, t−Q(y) + ⟨x, y′⟩ −B(x+ y′, y))δz(y

′ − y)

= χ̃(x, t−Q(y) + ⟨x, z + y⟩ −B(x+ z + y, y))δz+y(y
′)

= χ̃(x, t−Q(y) + ⟨x, z⟩ −B(z + y, y)−B(y, x))δz+y(y
′)

= χ̃(x, t− 2Q(y) + ⟨x, z⟩ −B(y, x+ z))δz+y(y
′)

i.e.

ρχ̃(x+ y, t)δz = χ̃(x, t+ ⟨x, z⟩ −B(y, x+ z))δz+y. (20)
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Hence by Schur’s orthogonality relations, ρχ̃(x+ y, t)δz contributes to the trace of ρχ̃(x+
y, t) with value χ̃(x, t+ ⟨x, z⟩) if y = 0, and 0 otherwise. Thus:

Trace(ρχ̃(x+ y, t)) =


∑
z∈Y

χ̃(x, t+ ⟨x, z⟩) = χ̃(x, t)
∑
z∈Y

χ(⟨x, z⟩) if y = 0

0 otherwise.

The character χ(⟨x, ·⟩) is trivial on Y if and only if x = 0. Hence (16) follows. □

Remark 2.6. In the proof of Lemma 2.3, the irreducibility of ρχ̃ can also be proven
using Lemma 2.8 below. In fact, if V ⊆ L2(Y ) is a ρχ̃-invariant vector subspace, then V
is invariant under the operator ρχ̃(w) for every w ∈ W , hence V is invariant under all the
operators of EndC(L

2(Y )). Then V = L2(Y ). A third proof can be given using Schur’s
orthogonality relations. We compute (16) first and then write:

(ρχ̃, ρχ̃) =
1

|H(B)|
∑

h∈H(B)

|Trace(ρχ̃(h))|2 =
1

|H(B)|
∑

(x+y,t)∈H(B)

|χ(t)|2|Y |2δ(0,0)(x, y)

=
1

|H(B)|
∑

(0,t)∈H(B)

|Y |2

=
|F||Y |2

|H(B)|
= 1.

Corollary 2.7. The character of ρχ̃ is a function supported on the center of H(B). For
h = (w, t) ∈ H(B), it is given by

Trace(ρχ̃(w, t)) = χ(t)|Y |δ0(w).

Proof. This is exactly the proof of (16) in Lemma 2.3 above. □

Lemma 2.8. {ρχ̃(w), w ∈ W} is a basis of EndC(L
2(Y )).

Proof. Suppose that for every w = x+ y ∈ W , there exists λ(w) = λ(x, y) ∈ C such that∑
w∈W

λ(w)ρχ̃(w) = 0.

Then for every y′ ∈ Y , by (20):

0 =
∑
w∈W

λ(w)ρχ̃(w)δy′ =
∑
w∈W

λ(w)χ̃(x, ⟨x, y′⟩ −B(y, x+ y′))δy′+y

=
∑
y∈Y

χ(−B(y, y′))
∑
x∈X

λ(x, y)χ̃(x, ⟨x, y′⟩ −B(y, x))δy′+y.

Since {δy′+y, y ∈ Y } is a basis of L2(Y ),∑
x∈X

λ(x, y)χ̃(x, ⟨x, y′⟩ −B(y, x)) = 0 (21)
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for all y, y′ ∈ Y . Since X and Y are finite and have the same cardinality N = |Y | = |F|n,
we can define the following matrices:{

A = (ay′,x)y′∈Y,x∈X ∈ MN(C) by ay′,x = χ(⟨x, y′⟩)
B = (bx,y)x∈X,y∈Y ∈ MN(C) by bx,y = λ(x, y)χ̃(x,−B(y, x)).

Then, writing (21) for every y, y′ ∈ Y is equivalent to writing AB = 0. Now, for all
(y, y′) ∈ Y 2,

(AAT )y′,y =
∑
x∈X

χ(⟨x, y′⟩)χ(⟨y, x⟩) =
∑
x∈X

χ(⟨x, y′ − y⟩) = |X|δy(y′),

where the last equality is justified by Schur’s orthogonality relations. This proves that A
is invertible, its inverse being |X|−1AT . In particular, AB = 0 implies that B = 0. Hence,
for every x ∈ X and y ∈ Y , λ(x, y)χ̃(x,−B(y, x)) = 0. Since χ̃ is a character, it takes
its values in U(1). Thus λ(w) = 0 for all w ∈ W . This proves that {ρχ̃(w), w ∈ W} is
a family of |W | = |Y |2 = N2 linearly independent operators of EndC(L

2(Y )), which is of

dimension dimC(L
2(Y))

2
= |Y |2 = N2. This is enough to conclude that {ρχ̃(w), w ∈ W}

is a basis of EndC(L
2(Y )). □

The usual approach for constructing the metaplectic representation of a covering of the
pseudo-symplectic group is based on the Stone-von Neumann Theorem. As we shall see
below, we shall not use it in our construction. However, for the sake of completeness, we
now state and give a simple proof of this theorem.

Theorem 2.9 (Stone-von Neumann). The Heisenberg group H(B) has, up to isomor-
phism, a unique unitary irreducible representation acting as χ on its center, which will
be called the Heisenberg representation. For every non-trivial character χ of F and ex-
tension χ̃ of χ to X × F, the map ρχ̃ defined by (15) is a realization of the Heisenberg
representation on L2(Y ), which is therefore of dimension |Y | = |F|n.

Proof. We begin by listing the irreducible representations of H(B). Notice first that for
all w,w′ ∈ W and t, t′ ∈ F,

(w, t)(w′, t′)(w, t)−1(w′, t′)−1

= (w + w′, t+ t′ +B(w,w′))(−w − w′,−t− t′ +Q(w) +Q(w′) +B(w,w′))

= (0, Q(w) +Q(w′) + 2B(w,w′)−B(w + w′, w + w′))

= (0, B(w,w′)−B(w′, w))

= (0, ⟨w,w′⟩).
Hence the commutator subgroup [H(B),H(B)] of H(B) is exactly the center of H(B), and
is isomorphic to F. The quotient H(B)/[H(B),H(B)] is thus isomorphic to W , which
is an abelian group and has |W | = |Y |2 one-dimensional representations. This leads to
|Y |2 one-dimensional representations of H(B). Moreover, for every non-trivial character χ,
extending χ toX×F and using Lemma 2.3, we provide a unitary irreducible representation
of H(B) acting as χ on its center. This implies in particular that if χ and ψ are two distinct
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characters of H(B), then ρχ̃ and ρψ̃ are not equivalent. This leads to |F| − 1 additional

inequivalent irreducible representations of H(B) of dimension |Y | (cf. Lemma 2.1). If we
sum their dimensions squared, we obtain

|Y |2 + (|F| − 1)|Y |2 = |Y |2|F| = |H(B)|,
which shows (as a consequence of Schur’s orthogonality relations) that we found all the
pairwise inequivalent irreducible representations of H(B). In particular, for every non-
trivial character χ of F, ρχ̃ is up to isomorphism the unique unitary irreducible represen-
tation of H(B) acting as χ on its center. □

The Stone-von Neumann theorem enables us to define a projective representation of
Ps(B). In fact, for every s ∈ Ps(B), we define the map ρsχ̃ : H(B) → EndC(L

2(Y )) by
ρsχ̃(g) = ρχ̃(s(g)). Then ρsχ̃ is a unitary irreducible representation of H(B) which acts as
χ on the center. Therefore, the Stone-von Neumann theorem implies that ρχ̃ and ρsχ̃ are

equivalent, i.e. there exists ωχ̃(s) ∈ U(L2(Y )) such that

ρsχ̃(h) = ωχ̃(s)ρχ̃(h)ωχ̃(s)
−1 for all h ∈ H(B). (22)

Schur’s lemma also implies that ωχ̃(s) is unique up to multiplication by an element of
U(1).

Remark 2.10. Notice that proving the existence of the intertwining operators in (22)
does not require the Stone-von Neumann theorem. Indeed, since the representations we
consider are all finite-dimensional, it is enough to use Corollary 2.7: for every s ∈ Ps(B),
ρχ̃ and ρsχ̃ have the same character. Since these representations are irreducible, they are

equivalent. Thus the existence of the intertwining operator ωχ̃(s) ∈ U(L2(Y )) satisfying
(22) follows.

Lemma 2.11. The map s 7→ ωχ̃(s) defines a projective representation of Ps(B) on L2(Y ).

Proof. By definition of ωχ̃(s) in (22), if s = (1, 0) then for every h ∈ H(B),

ρχ̃(h) = ωχ̃(1, 0)ρχ̃(h)ωχ̃(1, 0)
−1.

Hence ωχ̃(1, 0) intertwines ρχ̃ with itself. By Schur’s lemma, there exists z0 ∈ U(1) such
that ωχ̃(1, 0) = z0 IdL2(Y ). In particular, ωχ̃(1, 0) belongs to the center of GL(L2(Y )) and
we can choose z0 = 1.

Now let s1, s2 ∈ Ps(B). Then for every h ∈ H(B), by (22),

ρs1s2χ̃ (h)ωχ̃(s1)ωχ̃(s2) = ρs1χ̃ (s2(h))ωχ̃(s1)ωχ̃(s2)

= ωχ̃(s1)ρχ̃(s2(h))ωχ̃(s2)

= ωχ̃(s1)ρ
s2
χ̃ (h)ωχ̃(s2)

= ωχ̃(s1)ωχ̃(s2)ρχ̃(h).

Hence ωχ̃(s1s2) and ωχ̃(s1)ωχ̃(s2) both intertwine ρχ̃ and ρ
s1s2
χ̃ . Thus there exists cχ̃(s1, s2) ∈

U(1) such that
ωχ̃(s1)ωχ̃(s2) = cχ̃(s1, s2)ωχ̃(s1s2). (23)
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This proves that s 7→ ωχ̃(s) is a projective representation of Ps(B). □

Remark 2.12. The fact that s 7→ ωχ̃(s) is a projective representation implies that the
map cχ̃ : Ps(B)× Ps(B) → U(1) defined in (23) is a cocycle.

3. Lifting the projective Weil representation to a two-fold covering

P̃s(B)χ̃ of Ps(B)

The next step is to see if the projective representation ωχ̃ defined in Lemma 2.11 can
be lifted to a linear representation, either of Ps(B) or of a finite central extension of this
group. To answer this question, we first construct an explicit section of ωχ̃. This allows
us to give an explicit formula for the cocycle cχ̃. Then we prove that the best result we

can obtain is to lift ωχ̃ to a non-split extension P̃s(B)χ̃ of Ps(B) by µ2(C) = {±1}, i.e. a
two-fold covering of Ps(B).

Lemma 3.1. Let s = (σ, f) be in Ps(B). Set K(σ) = Ker(1− σ) and I(σ) = Im(1− σ).

1. K(σ) and I(σ) are orthogonal subspaces of W with respect to the non-degenerate
symplectic form ⟨·, ·⟩.

2. The restriction f|K(σ) of f to K(σ) is additive and there exists ws ∈ W such that

χ ◦ f|K(σ) = χ ◦ ⟨ws, ·⟩|K(σ). (24)

In particular, if F = F2 then f|K(σ) = ⟨ws, ·⟩|K(σ).
3. w′

s ∈ W satisfies (24) if and only if w′
s − ws belongs to I(σ).

4. If s ∈ Psa(B) then the element ws satisfying (24) is unique. More precisely,
• w(1,0) = 0.
• If F = F2 then ws is the unique element v such that s = (1, ⟨v, ·⟩).
• If F is arbitrary and s = (1, fz), then ws is the unique element v such that
χ ◦ fz = χ ◦ (⟨v, ·⟩).

5. For every s1 = (σ1, f1) and s2 = (σ2, f2) in Ps(B), and for all choices of ws1 ,ws2
and ws1s2 satisfying (24) for s1, s2 and s1s2, respectively:

• K(σ1) ∩K(σ2) ⊆ K(σ1σ2) and I(σ1σ2) ⊆ I(σ1) + I(σ2).
• There exists ws1,s2 ∈ I(σ1) + I(σ2) such that ws1s2 − ws1 − ws2 = ws1,s2 .

Proof. 1. For every u = (1− σ)(w) ∈ I(σ) and w′ ∈ K(σ),

⟨u,w′⟩ = ⟨(1− σ)(w), w′⟩ = ⟨w,w′⟩ − ⟨σ(w), w′⟩
= ⟨w,w′⟩ − ⟨w, σ−1(w′)⟩
= ⟨w,w′⟩ − ⟨w,w′⟩
= 0.

This shows that I(σ) ⊆ K(σ)⊥. Since ⟨·, ·⟩ is non-degenerate,

dim(K(σ)⊥) = dimW − dim(K(σ)) = dim(I(σ)).

Thus K(σ)⊥ = I(σ).
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2. Recall from (8) that we defined βσ : (w1, w2) 7→ B(σ(w1), σ(w2)) − B(w1, w2). If
w1 and w2 belong to K(σ), then f(w1 + w2) − f(w1) − f(w2) = βσ(w1, w2) = 0.
Hence f is additive on K(σ). We can extend f|K(σ) to W by taking any vector
subspace Vσ such that W = K(σ)⊕Vσ and setting F (w) = F (z+ v) = f(z) for all
w = z + v ∈ K(σ)⊕ Vσ. We obtain in this way an additive quadratic form on W .
If F = F2, we can apply Proposition 1.11.1 and deduce that there exists ws ∈ W
such that F = ⟨ws, ·⟩, which implies that f|K(σ) = ⟨ws, ·⟩|K(σ). Now if F is any
finite field of characteristic two, then the fact that f|K(σ) is additive implies that
χ ◦ F is a character of W . By Proposition 1.11.2, there exists ws ∈ W such that
χ ◦ F = χ ◦ ⟨ws, ·⟩. In particular, χ(f(w)) = χ(⟨ws, w⟩) for all w ∈ K(σ).

3. Suppose that w′
s ∈ W satisfies the same property (24) as ws. Then for all w ∈

K(σ),

χ(⟨w′
s − ws, w⟩) = χ(f(w)− f(w)) = 1.

Hence the image of the linear form ⟨w′
s − ws, ·⟩ defined on K(σ) is contained in

the kernel of χ. If this linear form were not identically zero then we would have
F ⊆ Ker(χ), which is impossible since χ is non-trivial by hypothesis. Hence
⟨w′

s − ws, w⟩ = 0 for all w ∈ K(σ), which is equivalent to the fact that w′
s − ws ∈

K(σ)⊥ = I(σ).
Conversely, if w′

s − ws ∈ I(σ) = K(σ)⊥, then ⟨w′
s − ws, w⟩ = 0 for all w ∈ K(σ).

Hence χ(⟨w′
s, w⟩) = χ(⟨ws, w⟩) = χ(f(w)) for all w ∈ K(σ), i.e. w′

s satisfies (24).
4. Suppose that s = (1, f) ∈ Psa(B). Then K(σ) = W , I(σ) = {0} and f ∈ Qa(W )

by (6). By 3, w′
s satisfies (24) if and only if w′

s − ws ∈ I(σ), i.e. w′
s = ws. This

shows that the element ws satisfying (24) is unique. If s = (1, 0) then (24) is
written

1 = χ(⟨ws, w⟩) for all w ∈ W .

Since ⟨ws, ·⟩ is a linear form, its image is either {0} or F. Since χ is non-trivial,
this implies that ⟨ws, ·⟩ = 0, i.e. ws = 0 because ⟨·, ·⟩ is non-degenerate. Suppose
now that F = F2. By Propositions 1.11.1 and 1.11.5, there exists a unique element
z ∈ W such that f = ⟨z, ·⟩. Hence (24) is written

χ(⟨z, w⟩) = χ(⟨ws, w⟩) for all w ∈ W ,

and we can conclude in the same way that ws − z = 0, i.e. ws = z. Finally,
suppose that F is arbitrary. Then there exists a unique z ∈ W such that f = fz
by Propositions 1.11.1 and 1.11.5. Since the maps χ ◦ fw, w ∈ W , describe
completely the set of characters of W by Proposition 1.11.2, there exists a unique
v ∈ W such that χ ◦ fz = χ ◦ (⟨v, ·⟩). Then (24) is written:

χ(⟨ws, w⟩) = χ(fz(w)) = χ(⟨v, w⟩) for all w ∈ W .

Hence ws = v, which concludes the proof of 4.
5. Let s1 = (σ1, f1) and s2 = (σ2, f2) be in Ps(B).

• Let w ∈ W such that σ1(w) = σ2(w) = w, then (σ1σ2)(w) = σ1(w) = w.
Hence K(σ1) ∩ K(σ2) ⊆ K(σ1σ2). Taking the orthogonal complement with
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respect to ⟨·, ·⟩, we obtain K(σ1σ2)
⊥ ⊆ (K(σ1) ∩K(σ2))

⊥, i.e.

I(σ1σ2) ⊆ K(σ1)
⊥ +K(σ2)

⊥ = I(σ1) + I(σ2).

• By definition of ws1 , ws2 and ws1s2 , for every w ∈ K(σ1) ∩K(σ2) ⊆ K(σ1σ2),

χ((f2 + f1 ◦ σ2)(w)) = χ(⟨ws1s2 , w⟩)
χ(f2(w))χ(f1(w)) = χ(⟨ws1s2 , w⟩)

χ(⟨ws1 , w⟩)χ(⟨ws2 , w⟩) = χ(⟨ws1s2 , w⟩)
χ(⟨ws1s2 − ws1 − ws2 , w⟩) = 1.

This implies that ⟨ws1s2 − ws1 − ws2 , w⟩ = 0 for all w ∈ K(σ1) ∩K(σ2), since
otherwise χ would be trivial. Thus ws1s2 − ws1 − ws2 ∈ (K(σ1) ∩ K(σ2))

⊥ =
I(σ1) + I(σ2), and we can set ws1,s2 = ws1s2 − ws1 − ws2 ∈ I(σ1) + I(σ2).

□

Definition-Proposition 3.2 (Projective Weil representation of Ps(B)). For every
s = (σ, f) ∈ Ps(B) and for every ws ∈ W satisfying (24), we define:

ωχ̃(s, ws) = |K(σ)|−1γ(σ)
∑
w∈W

ρχ̃(s(w))
−1ρχ̃(ws)ρχ̃(w) (25)

where γ(σ) is a complex number such that |γ(σ)|2 = 2− dim I(σ) and γ(1) = 1. Then
ωχ̃(s, ws) satisfies the following properties:

1. For every h ∈ H(B),

ρχ̃(s(h)) = ωχ̃(s, ws)ρχ̃(h)ωχ̃(s, ws)
−1. (26)

2. For every u ∈ I(σ), choose any w ∈ W such that u = (1− σ)(w). Then

ωχ̃(s, ws) = γ(σ)
∑
u∈I(σ)

χ(f(w) + ⟨ws, w⟩+B(u,w + ws))ρχ̃(u+ ws). (27)

3. ωχ̃(s, ws) ∈ U(L2(Y )).
4. If we make another choice of element w′

s satisfying (24) then ωχ̃(s, ws) and ωχ̃(s, w
′
s)

can only differ by a sign. More precisely:

ωχ̃(s, w
′
s) = χ(−f(v) + ⟨v, ws⟩+B(w′

s − ws, v − ws))ωχ̃(s, ws) (28)

where v is any element such that w′
s − ws = (1− σ)(v).

Thus for each choice {ws satisfying (24), s ∈ Ps(B)}, the map s 7→ ωχ̃(s, ws) is an explicit
section of the projective Weil representation on L2(Y ).

Proof. 1. Let s = (σ, f) ∈ Ps(B), ws ∈ W satisfying (24) and h = (v, t) ∈ H(B).
Then:

ρχ̃(s(h))ωχ̃(s, ws) = |K(σ)|−1γ(σ)
∑
w∈W

ρχ̃(s(h))ρχ̃(s(w))
−1ρχ̃(ws)ρχ̃(w)

= |K(σ)|−1γ(σ)
∑
w∈W

ρχ̃(s(h)s(w)
−1wsw).
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Setting w′ = w − v, we see that

s(h)s(w)−1wsw

= (σ(v), f(v) + t)(−σ(w),−f(w) +Q(σ(w)))wsw

= (σ(v − w), f(v)− f(w) + t+Q(σ(w))−B(σ(v), σ(w)))wsw

= (σ(v − w),−f(w − v)−B(σ(w − v), σ(v)) +B(w − v, v) + t+Q(σ(w))−B(σ(v), σ(w)))wsw

= (−σ(w′),−f(w′)−B(σ(w′), σ(v)) +B(w′, v) + t+Q(σ(w′)) +Q(σ(v)) + ⟨σ(w′), σ(v)⟩
−B(σ(v), σ(w′ + v)))wsw

= (−σ(w′),−f(w′) +B(w′, v) + t+Q(σ(w′)) + ⟨σ(w′), σ(v)⟩+ ⟨σ(v), σ(w′)⟩ − 2B(σ(v), σ(w′)))

· wsw
= (−σ(w′),−f(w′) +B(w′, v) + t+Q(σ(w′)))ws(w

′ + v)

= (−σ(w′),−f(w′) +Q(σ(w′)))(0, B(w′, v) + t)wsw
′(v,−B(w′, v))

= s(w′)−1wsw
′(v, t)

= s(w′)−1wsw
′h.

Hence:

ρχ̃(s(h))ωχ̃(s, ws) = |K(σ)|−1γ(σ)
∑
w∈W

ρχ̃(s(h)s(w)
−1wsw)

= |K(σ)|−1γ(σ)
∑
w′∈W

ρχ̃(s(w
′)−1wsw

′h)

= ωχ̃(s, ws)ρχ̃(h).

2. Let s = (σ, f) ∈ Ps(B) and ws ∈ W satisfying (24). Then:

ωχ̃(s, ws) = |K(σ)|−1γ(σ)
∑
w∈W

ρχ̃(s(w)
−1wsw),

where

s(w)−1wsw = (−σ(w),−f(w) +Q(σ(w)))(ws + w,B(ws, w))

= ((1− σ)(w) + ws,−f(w) +Q(σ(w)) +B(ws, w)−B(σ(w), ws + w))

= ((1− σ)(w) + ws,−f(w) +Q(σ(w))−Q(w) + ⟨ws, w⟩+B((1− σ)(w), ws + w))

= ((1− σ)(w) + ws, f(w) + ⟨ws, w⟩+B((1− σ)(w), ws + w))

since 0 = f(2w) = 2f(w) +Q(σ(w))−Q(w) = Q(σ(w))−Q(w) by (6). Hence

ρχ̃(s(w)
−1wsw) = χ(f(w) + ⟨ws, w⟩+B((1− σ)(w), ws + w))ρχ̃((1− σ)(w) + ws). (29)
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Now for every v ∈ K(σ), by (29):

ρχ̃(s(w + v)−1ws(w + v))

= χ(f(w + v) + ⟨ws, w + v⟩+B((1− σ)(w + v), ws + w + v))ρχ̃((1− σ)(w + v) + ws)

= χ(f(w) + f(v) +B(σ(w), σ(v))−B(w, v) + ⟨ws, w⟩+ ⟨ws, v⟩+B((1− σ)(w), ws + w)

+B((1− σ)(w), v))ρχ̃((1− σ)(w) + ws)

= χ(f(w) + f(v) + ⟨ws, w⟩+ ⟨ws, v⟩+B((1− σ)(w), ws + w))ρχ̃((1− σ)(w) + ws) since 2B = 0

= χ(f(v) + ⟨ws, v⟩)χ(f(w) + ⟨ws, w⟩+B((1− σ)(w), ws + w)))ρχ̃((1− σ)(w) + ws)

= χ(f(v) + ⟨ws, v⟩)ρχ̃(s(w)−1wsw),

i.e. by (24):

ρχ̃(s(w + v)−1ws(w + v)) = ρχ̃(s(w)
−1wsw).

This shows that ρχ̃(s(w)
−1wsw) does not depend on the left coset of w modulo

K(σ). This together with (29) enables us to write:

ωχ̃(s, ws) = |K(σ)|−1γ(σ)
∑
w∈W

ρχ̃(s(w)
−1wsw)

= |K(σ)|−1γ(σ)
∑

w+K(σ)∈W/K(σ)

|K(σ)|ρχ̃(s(w)−1wsw)

= γ(σ)
∑

w+K(σ)∈W/K(σ)

χ(f(w) + ⟨ws, w⟩+B((1− σ)(w), ws + w))ρχ̃((1− σ)(w) + ws)

= γ(σ)
∑
u∈I(σ)

χ(f(w) + ⟨ws, w⟩+B(u,ws + w))ρχ̃(u+ ws),

where w ∈ W is any element such that u = (1−σ)(w), and we use the isomorphism
between W/K(σ) and I(σ).

3. Because of the intertwining property (26) and Schur’s lemma, in order to verify
that ωχ̃(s, ws) is invertible, it is enough to show that it is not the zero operator.
The expression (27) of ωχ̃(s, ws) implies that ωχ̃(s, ws) has coefficients equal to ±1
in the basis {ρχ̃(w), w ∈ W} of EndC(L

2(Y )) (cf. Lemmas 2.1.2 and 2.8). Thus
ωχ̃(s, ws) cannot be the zero operator. Furthermore, using the unitarity of ρχ̃, we
can write

ωχ̃(s, ws)ωχ̃(s, ws)
∗ = |K(σ)|−2γ(σ)2

∑
w∈W

ρχ̃(s(w)
−1wsw)

∑
w′∈W

ρχ̃(s(w
′)−1wsw

′)∗

= |K(σ)|−2|γ(σ)|2
∑

w,w′∈W

ρχ̃(s(w)
−1wsw)ρχ̃(w

′−1w−1
s s(w′)).
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To compute the expression on the right-hand side, observe first that by (29):

s(w)−1wsww
′−1w−1

s s(w′)

= ((1− σ)(w) + ws, f(w) + ⟨ws, w⟩+B((1− σ)(w), ws + w))

· (−(1− σ)(w′)− ws,−f(w′)− ⟨ws, w′⟩ −B((1− σ)(w′), ws + w′) +Q((1− σ)(w′) + ws))

= ((1− σ)(w − w′), f(w)− f(w′) + ⟨ws, w − w′⟩+B((1− σ)(w), ws + w)

−B((1− σ)(w′), ws + w′) +Q((1− σ)(w′) + ws)−B((1− σ)(w) + ws, (1− σ)(w′) + ws))

= ((1− σ)(w − w′), T (w,w′, ws)),

where, if we set z = w − w′,

T (w,w′, ws)

= f(w − w′) +B(σ(w − w′), σ(w′))−B(w − w′, w′) + ⟨ws, w − w′⟩+B((1− σ)(w), ws + w)

−B((1− σ)(w′), ws + w′) +Q((1− σ)(w′) + ws)−B((1− σ)(w) + ws, (1− σ)(w′) + ws)

= f(z) +B(σ(z), σ(w′))−B(z, w′) + ⟨ws, z⟩+B((1− σ)(z + w′), ws + z + w′)

−B((1− σ)(w′), ws + w′) +Q((1− σ)(w′) + ws)−B((1− σ)(z + w′) + ws, (1− σ)(w′) + ws)

= f(z) +Q(z) + ⟨ws, z⟩ −B(σ(z), z) + ⟨z, (1− σ)(w′)⟩.

Thus, by (29),

ωχ̃(s, ws)ωχ̃(s, ws)
∗ = |K(σ)|−2|γ(σ)|2

∑
w,w′∈W

ρχ̃(s(w)
−1wsw)ρχ̃(w

′−1w−1
s s(w′))

= |K(σ)|−2|γ(σ)|2
∑
z∈W

χ(f(z) +Q(z) + ⟨ws, z⟩ −B(σ(z), z))∑
w′∈W

χ(⟨z, (1− σ)(w′)⟩)ρχ̃((1− σ)(z))

= |K(σ)|−2|γ(σ)|2
∑
z∈W

χ(f(z) +Q(z) + ⟨ws, z⟩ −B(σ(z), z))∑
w′∈W

χ(⟨(1− σ−1)(z), w′⟩)ρχ̃((1− σ)(z))

= |K(σ)|−2|γ(σ)|2
∑
z∈K(σ)

|W |ρχ̃(0)

= |K(σ)|−1|γ(σ)|2|W | IdL2(Y )

= 2− dimK(σ)−dim I(σ)2dimK(σ)+dim I(σ) IdL2(Y )

= IdL2(Y ),

where the three last equalities are justified by the fact that w′ 7→ χ(⟨(1−σ−1)(z), w′⟩)
is a character of W which is trivial if and only if z ∈ K(σ), Schur’s orthogonality
relations, and the isomorphism between W/K(σ) and I(σ). Therefore ωχ̃(s, ws) is
a unitary operator of L2(Y ).
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4. Let w′
s ∈ W be such that (24) is satisfied, i.e. χ ◦ f|K(σ) = χ ◦ ⟨w′

s, ·⟩|K(σ). Then
Lemma 3.1.3 implies that w′

s −ws ∈ I(σ). Hence we can set w′
s −ws = (1− σ)(v)

for some v ∈ W . Then

ωχ̃(s, w
′
s) = |K(σ)|−1γ(σ)

∑
w∈W

ρχ̃(s(w)
−1w′

sw),

where, by (29) and if we set z = w + v,

s(w)−1w′
sw = ((1− σ)(w) + w′

s, f(w) + ⟨w′
s, w⟩+B((1− σ)(w), w′

s + w))

= ((1− σ)(w) + ws + (1− σ)(v), f(w) + ⟨ws + (1− σ)(v), w⟩
+B((1− σ)(w), ws + (1− σ)(v) + w))

= ((1− σ)(z) + ws, f(z − v) + ⟨ws + (1− σ)(v), z − v⟩
+B((1− σ)(z − v), ws + (1− σ)(v) + z − v))

= ((1− σ)(z) + ws, f(z) + ⟨ws, z⟩+B((1− σ)(z), ws + z)− f(v)− ⟨ws, v⟩
−B((1− σ)(v), ws − v))

= ((1− σ)(z) + ws, f(z) + ⟨ws, z⟩+B((1− σ)(z), ws + z))

· (0,−f(v)− ⟨ws, v⟩+B(w′
s − ws, v − ws))

(29)
= s(z)−1wsz(0,−f(v)− ⟨ws, v⟩+B(w′

s − ws, v − ws))

Thus if we apply the change of variables z = w + v in the sum, this leads to

ωχ̃(s, w
′
s) = |K(σ)|−1γ(σ)

∑
z∈W

χ(−f(v) + ⟨v, ws⟩+B(w′
s − ws, v − ws))ρχ̃(s(z)

−1wsz)

= χ(−f(v) + ⟨v, ws⟩+B(w′
s − ws, v − ws))ωχ̃(s, ws).

□

Notation 3.3. In Proposition 3.2, we defined an operator ωχ̃(s, ws) for all s = (σ, f) ∈
Ps(B) and for all ws satisfying (24). From now on, to simplify the notation, if it is clear
that a choice of ws has been made, then we will write indifferently ωχ̃(s, ws) or ωχ̃(s).

Corollary 3.4 (Computation of the metaplectic cocycle). We keep the same no-
tations as in Lemma 3.1 and Proposition 3.2, and we assume that a choice of ws ∈ W
satisfying (24) has been made for all s ∈ Ps(B). The cocycle cχ̃ associated to the pro-
jective Weil representation ωχ̃ will be called the metaplectic cocycle. It is given by the
following formula. For every s1 = (σ1, f1) and s2 = (σ2, f2) in Ps(B),

cχ̃(s1, s2)=C1,2

∑
u1∈I(σ1),u2∈I(σ2)
u1+u2=ws1,s2

χ(f1(w1)+⟨ws1 , w1⟩+B(u1, w1+ws1)+f2(w2)+⟨ws2 , w2⟩)
χ(B(u2, w2+ws2)+B(u1+ws1 , u2+ws2))

(30)
where C1,2 = γ(σ1)γ(σ2)γ(σ1σ2)

−1, ws1,s2 = ws1s2 − ws1 − ws2 and wi is any element such
that (1− σ)(wi) = ui for i ∈ {1, 2}. In particular, the cocycle cχ̃ does not depend on the
choice of the extension χ̃ of χ: we can denote it by cχ instead of cχ̃.



THE WEIL REPRESENTATION FOR A FINITE FIELD OF CHARACTERISTIC TWO 31

Remark 3.5. The fact that cχ is a cocycle implies that for every s = (σ, f) ∈ Ps(B),

cχ(s, (1, 0)) = cχ((1, 0), s) = 1.

This can also be recovered directly from (30) since γ(1) = 1.

Proof of Corollary 3.4. Let s1 = (σ1, f1) and s2 = (σ2, f2) be in Ps(B). The fact that ωχ̃
is a projective representation implies that cχ̃ satisfies

ωχ̃(s1)ωχ̃(s2) = cχ̃(s1, s2)ωχ̃(s1s2), (31)

where we recall from Remark 3.3 that ωχ̃(s1) = ωχ̃(s1, ws1) and ωχ̃(s2) = ωχ̃(s2, ws2).
Now we compute separately ωχ̃(s1)ωχ̃(s2) and ωχ̃(s1s2), using the expression (27) found
in Proposition 3.2 and (17):

ωχ̃(s1)ωχ̃(s2)

= γ(σ1)γ(σ2)
∑

u1∈I(σ1)
u2∈I(σ2)

χ(f1(w1) + ⟨ws1 , w1⟩+B(u1, w1 + ws1) + f2(w2) + ⟨ws2 , w2⟩)
χ(B(u2, w2 + ws2))ρχ̃(u1 + ws1)ρχ̃(u2 + ws2)

= γ(σ1)γ(σ2)
∑

u1∈I(σ1)
u2∈I(σ2)

χ(f1(w1) + ⟨ws1 , w1⟩+B(u1, w1 + ws1) + f2(w2) + ⟨ws2 , w2⟩)
χ(B(u2, w2 + ws2) +B(u1 + ws1 , u2 + ws2))ρχ̃(u1 + ws1 + u2 + ws2)

and

ωχ̃(s1s2) = γ(σ1σ2)
∑

u∈I(σ1σ2)

χ((f2+f1 ◦σ2)(w)+ ⟨ws1s2 , w⟩+B(u,w+ws1s2))ρχ̃(u+ws1s2).

Now, using the fact that the operators ρχ̃(w), w ∈ W , form a basis of EndC(L
2(Y )) (cf.

Lemma 2.8) and identifying the coefficients of ωχ̃(s1)ωχ̃(s2) and ωχ̃(s1s2) in this basis, we
obtain for all u ∈ I(σ1σ2):

cχ̃(s1, s2)γ(σ1σ2)χ((f2 + f1 ◦ σ2)(w) + ⟨ws1s2 , w⟩+B(u,w + ws1s2))

= γ(σ1)γ(σ2)

·
∑

u1∈I(σ1),u2∈I(σ2)
u1+u2+ws1+ws2=u+ws1s2

χ(f1(w1) + ⟨ws1 , w1⟩+B(u1, w1 + ws1) + f2(w2) + ⟨ws2 , w2⟩)
χ(B(u2, w2 + ws2) +B(u1 + ws1 , u2 + ws2)).

Taking u = 0 and replacing ws1s2 − ws1 − ws2 by ws1,s2 (defined in Lemma 3.1.5) in the
previous equation, we finally obtain:

cχ̃(s1, s2) = γ(σ1)γ(σ2)γ(σ1σ2)
−1

·
∑

u1∈I(σ1),u2∈I(σ2)
u1+u2=ws1,s2

χ(f1(w1) + ⟨ws1 , w1⟩+B(u1, w1 + ws1) + f2(w2) + ⟨ws2 , w2⟩)
χ(B(u2, w2 + ws2) +B(u1 + ws1 , u2 + ws2)).

In particular, this expression does not depend on the choice of the extension χ̃ of χ, so
we can write cχ instead of cχ̃. □
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Now that we have determined an explicit formula for the metaplectic cocycle, the next
goal is to know its range in order to construct the smallest possible extension of Ps(B).
In fact, the range of cχ will depend on the choice made for γ(σ) in the definition (25) of
the operator ωχ̃(s, ws), for every s = (σ, f) ∈ Ps(B). Recall from Proposition 3.2 that the
only conditions on γ(σ) are that |γ(σ)|2 = 2− dim I(σ), to ensure that ωχ̃(s, ws) is a unitary
operator, and γ(1) = 1, to have ωχ̃((1, 0), 0) = IdL2(Y ). This means that we can set

γ(σ) = 2−
dim I(σ)

2 eiθ(σ), where θ(σ) ∈ R and θ(1) ≡ 0 mod 2π. (32)

Corollary 3.6 (Range of the metaplectic cocycle). The cocycle cχ takes its values
in U(1). Furthermore, cχ takes its values in µ2(C) = {±1} if and only if

θ(σ1) + θ(σ2)− θ(σ1σ2) ≡ 0 mod π for all σ1, σ2 ∈ O(Q), (33)

where the map σ 7→ θ(σ) is defined by (32). In particular, this is the case if γ(σ) ∈ R for

all σ ∈ O(Q), for example if γ(σ) = 2−
dim I(σ)

2 .

Proof. Equation (31), together with the unitarity of the operators ωχ̃(s) for all s ∈ Ps(B),
implies that cχ takes its values in U(1). Since χ takes its values in µ2(C), formula (30)
implies that cχ takes its values in R if and only if C1,2 = γ(σ1)γ(σ2)γ(σ1σ2)

−1 is real for
all σ1, σ2 ∈ O(Q). By (32),

C1,2 ∈ R ⇐⇒ ei(θ(σ1)+θ(σ2)−θ(σ1σ2)) ∈ R
⇐⇒ θ(σ1) + θ(σ2)− θ(σ1σ2) ≡ 0 mod π.

□

Remark 3.7. Recall that we want to extend the projective Weil representation of Ps(B)
defined in Proposition 3.2 to a linear representation of either Ps(B) or a smallest possible
extension of Ps(B). The range of cχ will therefore play a crucial role, since it determines
the size of the extension we construct. If the cocycle were a coboundary, then it would be
symmetric on Psa(B) (defined in Proposition 1.11.5), which we are going to prove to be
false in Proposition 3.8.2. Since the cocycle cχ is not a coboundary, the projective Weil
representation is not a linear representation of Ps(B). Thus the best we can obtain is to
lift the projective representation s 7→ ωχ̃(s) to an extension of Ps(B) by two elements.
By Corollary 3.6, this is possible if and only if (33) is satisfied.

Now that we know that the best we can do is to lift the projective Weil representation
to a two-fold covering of Ps(B), we define such a covering in the following result.

Definition-Proposition 3.8 (Two-fold covering of Ps(B)). We keep the notations
and assumptions from Lemma 3.1 and Proposition 3.2. In particular, we suppose that a
choice of ws satisfying (24) has been made for all s ∈ Ps(B). We fix also γ(σ) defined in
Proposition 3.2 such that (32) and (33) are satisfied. Set

P̃s(B)χ̃ = {(s, (−1)kωχ̃(s)), s ∈ Ps(B), k ∈ Z}. (34)

Then:
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1. P̃s(B)χ̃ is a subgroup of Ps(B)× U(L2(Y )).

2. P̃s(B)χ̃ is a two-fold covering of Ps(B), i.e. it defines a non-split central exact
sequence

1 −→ µ2(C)
Φ̃−→ P̃s(B)χ̃

Ψ̃−→ Ps(B) −→ 1.

Moreover, P̃s(B)χ̃ is a stem extension of Ps(B) and cχ is a cocycle which can be
associated to this extension.

3. Different choices of {ws, s ∈ Ps(B)} lead to isomorphic extensions of Ps(B).
4. Different choices of extensions χ̃ of χ lead to isomorphic extensions of Ps(B).
5. Let {γ′(σ), σ ∈ O(Q)} be another set of elements satisfying (32) and (33). If

θ′(σ) ≡ θ(σ) mod π for all σ ∈ O(Q) (35)

then the extensions P̃s(B)χ̃ and P̃s(B)
′

χ̃ (associated to the choices γ(σ) and γ′(σ),

respectively) are isomorphic. In particular, this is the case if γ(σ) and γ′(σ) are
chosen to be real for all σ ∈ O(Q).

6. Let P̃s(B)χ̃ be the two-fold covering of Ps(B) defined with the extension χ̃ of χ

and the choices {ws, s ∈ Ps(B)} and {γ(σ), σ ∈ O(Q)} such that (24), (32) and

(33) are satisfied. Define similarly P̃s(B)χ♯ with the extension χ♯ of χ and the

choices {w′
s, s ∈ Ps(B)} and {γ′(σ), σ ∈ O(Q)} such that (24), (32) and (33) are

satisfied. If (35) is satisfied then

I : P̃s(B)χ̃ → P̃s(B)χ♯

(s, (−1)kωχ̃(s, ws, γ(σ))) 7→ (s, (−1)kν(s)−1γ(σ)γ′(σ)−1ωχ♯(s, w
′
s, γ

′(σ)))

(36)

is an isomorphism of central extensions, where ν is defined by (38). This means
that the following diagram is commutative:

1 µ2(C) P̃s(B)χ̃ Ps(B) 1

1 µ2(C) P̃s(B)χ♯ Ps(B) 1

id

Φ̃

I

Ψ̃

id

Φ̃′ Ψ̃′
(D1)
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Proof. 1. Let s̃1 = (s1, (−1)k1ωχ̃(s1)) and s̃2 = (s2, (−1)k2ωχ̃(s2)) be in P̃s(B)χ̃.

Then, by definition, s̃1 and s̃2 belong to Ps(B)× U(L2(Y )). Moreover,

s̃1s̃2
−1 = (s1, (−1)k1ωχ̃(s1))(s

−1
2 , (−1)−k2ωχ̃(s2)

−1)

= (s1s
−1
2 , (−1)k1−k2ωχ̃(s1)ωχ̃(s2)

−1)

= (s1s
−1
2 , (−1)k1−k2cχ(s2, s

−1
2 )−1ωχ̃(s1)ωχ̃(s

−1
2 )) by (31)

= (s1s
−1
2 , (−1)k1−k2cχ(s2, s

−1
2 )−1cχ(s1, s

−1
2 )ωχ̃(s1s

−1
2 )) by (31).

Since (33) is satisfied, Corollary 3.6 implies that (−1)k1−k2cχ(s2, s
−1
2 )−1cχ(s1, s

−1
2 )

belongs to µ2(C) = {±1}. Hence s̃1s̃2−1 ∈ P̃s(B)χ̃, and thus P̃s(B)χ̃ is a subgroup

of Ps(B)× U(L2(Y )).

2. Define Φ̃ : µ2(C) → P̃s(B)χ̃

z 7→ ((1, 0), z IdL2(Y ))

and Ψ̃ : P̃s(B)χ̃ → Ps(B)

(s, (−1)kωχ̃(s)) 7→ s

. Then Φ̃

and Ψ̃ are group homomorphisms such that:

• if Φ̃(z) = ((1, 0), IdL2(Y )) then z = 1 by definition of Φ̃, and thus Φ̃ is injective.
• For every s ∈ Ps(B), we proved in Proposition 3.2 that ωχ̃(s) is a unitary

operator on L2(Y ). Hence (s, ωχ̃(s)) ∈ P̃s(B)χ̃. Moreover, Ψ̃(s, ωχ̃(s)) = s,

which implies that Ψ̃ is surjective.

• If Ψ̃(s, (−1)kωχ̃(s)) = (1, 0) then s = (1, 0). Thus (s, (−1)kωχ̃(s)) ∈ Im(Φ̃)

by definition of Φ̃, Ψ̃ and ωχ̃. Conversely, it is clear that Im(Φ̃) ⊆ Ker(Ψ̃).

Therefore Im(Φ̃) = Ker(Ψ̃).

This shows that 1 → µ2(C)
Φ̃−→ P̃s(B)χ̃

Ψ̃−→ Ps(B) → 1 is a central extension.
Now we want to show that this extension does not split. First we remark that cχ
is a cocycle associated to this extension. In fact, define τ(s) = (s, ωχ̃(s)) for all

s ∈ Ps(B). Then τ is a section of Ψ̃, which satisfies for every s1, s2 ∈ Ps(B):

τ(s1)τ(s2) = (s1, ωχ̃(s1))(s2, ωχ̃(s2)) = (s1s2, ωχ̃(s1)ωχ̃(s2)) = (s1s2, cχ(s1, s2)ωχ̃(s1s2))

= Φ̃(cχ(s1, s2))τ(s1s2).

Suppose that this extension splits. Then cχ is a coboundary, i.e. there exists
ν : Ps(B) → µ2(C) such that for all s1, s2 ∈ Ps(B),

cχ(s1, s2) = ν(s1)ν(s2)ν(s1s2)
−1. (37)

Recall from Proposition 1.11.5 that Psa(B) denotes the abelian subgroup of Ps(B)
consisting of the elements of the form (1, f). In particular, (37) has to be satisfied
for all elements of Psa(B). We therefore have for every s1 = (1, f1) and s2 = (1, f2)
in Psa(B):

cχ(s2, s1) = ν(s2)ν(s1)ν(s2s1)
−1 = ν(s1)ν(s2)ν(s1s2)

−1 = cχ(s1, s2).
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This means that the cocycle cχ is symmetric on Psa(B). Now let w1 and w2 in
W be such that χ(⟨w1, w2⟩) ̸= 1. Such a choice is possible. For example, if we
pick an arbitrary w1 in W\{0}, then ⟨w1, ·⟩ is a linear form on W with image F.
Hence there exists w2 such that χ(⟨w1, w2⟩) ̸= 1 because χ is non-trivial. In turn,
χ(⟨w1, w2⟩) ̸= 1 is equivalent to have χ(B(w1, w2)) ̸= χ(B(w2, w1)). Moreover,
χ(⟨w1, ·⟩) and χ(⟨w2, ·⟩) are two distinct characters of W . By Proposition 1.11.2,
there exists fz1 and fz2 in Qa(W ) such that χ(⟨w1, ·⟩) = χ◦fz1 , χ(⟨w2, ·⟩) = χ◦fz2
and z1 ̸= z2. Define now s1 = (1, fz1) and s2 = (1, fz2), which are in Psa(B) by
definition. Then by Lemma 3.1.4, the two elements ws1 and ws2 satisfying (24) for
s1 and s2, respectively, are such that ws1 = w1 and ws2 = w2. Thus if we compute
the cocycle with the formula (30) found in Corollary 3.4, we obtain

cχ(s1, s2) = χ(B(ws1 , ws2)) = χ(B(w1, w2))

and

cχ(s2, s1) = χ(B(ws2 , ws1)) = χ(B(w2, w1)).

In particular, cχ(s1, s2) ̸= cχ(s2, s1) since we supposed that χ(⟨w1, w2⟩) ̸= 1.

Therefore, cχ is not symmetric on Psa(B) and the extension P̃s(B)χ̃ does not
split.

Finally, it remains to prove that P̃s(B)χ̃ is a stem extension, i.e. that Φ̃(−1) is

in the commutator subgroup [P̃s(B)χ̃, P̃s(B)χ̃]. As in the last paragraph above,

let w1, w2 ∈ W be such that χ(⟨w1, w2⟩) ̸= 1. Consider again s1 = (1, fz1) and
s2 = (1, fz2) in Psa(B). Set s̃1 = (s1, ωχ̃(s1, w1)) and s̃2 = (s2, ωχ̃(s2, w2)). Then

by (27), s̃1 and s̃2 are two elements of P̃s(B)χ̃ such that

s̃1s̃2s̃1
−1s̃2

−1 = (s1s2s
−1
1 s−1

2 , ωχ̃(s1, w1)ωχ̃(s2, w2)ωχ̃(s1, w1)
−1ωχ̃(s2, w2)

−1)

= ((1, 0), ρχ̃(w1)ρχ̃(w2)ρχ̃(w1)
−1ρχ̃(w2)

−1) since Psa(B) is commutative

= ((1, 0), ρχ̃(w1)ρχ̃(w2)ρχ̃(−w1, Q(w1))ρχ̃(−w2, Q(w2)))

= ((1, 0), ρχ̃(0, B(w1, w2) +Q(w1) +Q(w2) +B(w1, w2)−Q(w1 + w2)))

= ((1, 0), ρχ̃(0,−⟨w1, w2⟩))
= ((1, 0), χ(−⟨w1, w2⟩) IdL2(Y ))

Since χ(⟨w1, w2⟩) ̸= 1 and χ takes its values in {±1} (see Lemma 2.1.2), we obtain

that s̃1s̃2s̃1
−1s̃2

−1 = ((1, 0),− IdL2(Y )) = Φ̃(−1).

3. Suppose that for every s ∈ Ps(B), w′
s also satisfies (24). Denote by P̃s(B)

′

χ̃ the set

of elements {(s, (−1)kωχ̃(s, w
′
s), s ∈ Ps(B), k ∈ Z}. Then by (28) in Proposition

3.2, for every s ∈ Ps(B),

ωχ̃(s, w
′
s) = χ(−f(v) + ⟨v, ws⟩+B(w′

s − ws, v − ws))ωχ̃(s, ws),

where v is any element such that w′
s − ws = (1 − σ)(v). Since χ takes its values

in µ2(C), the set of operators (−1)kωχ̃(s, w
′
s) is exactly the same as the set of
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operators (−1)kωχ̃(s, ws), where k ∈ Z. Hence P̃s(B)χ̃ and P̃s(B)
′

χ̃ are equal as
sets.

Let c′χ denote the cocycle associated to the projective representation s 7→

ωχ̃(s, w
′
s) (and then also associated to the extension P̃s(B)

′

χ̃). Then we can prove

that cχ and c′χ are cohomologous. In fact, ωχ̃(s, ws) and ωχ̃(s, w
′
s) satisfy the same

intertwining property: for every s ∈ Ps(B) and h ∈ H(B),

ρχ̃(s(h))ωχ̃(s) = ωχ̃(s)ρχ̃(h).

Schur’s lemma then implies the existence of ν : Ps(B) → U(1) such that ωχ̃(s, w
′
s) =

ν(s)ωχ̃(s, ws). We computed such a map ν in Proposition 3.2 (28), since we proved
that

ωχ̃(s, w
′
s) = χ(−f(v) + ⟨v, ws⟩+B(w′

s − ws, v − ws))ωχ̃(s, ws),

where v is any element such that w′
s − ws = (1− σ)(v). Hence we obtained

ν(s) = χ(−f(v) + ⟨v, ws⟩+B(w′
s − ws, v − ws)) ∈ {±1}. (38)

Thus for all s1, s2 ∈ Ps(B),

ωχ̃(s1, w
′
s1
)ωχ̃(s2, w

′
s2
) = ν(s1)ν(s2)ωχ̃(s1, ws1)ωχ̃(s2, ws2)

c′χ(s1, s2)ωχ̃(s1s2, w
′
s1s2

) = ν(s1)ν(s2)cχ(s1, s2)ωχ̃(s1s2, ws1s2)

c′χ(s1, s2)ν(s1s2)ωχ̃(s1s2, ws1s2) = ν(s1)ν(s2)cχ(s1, s2)ωχ̃(s1s2, ws1s2).

Hence
c′χ(s1, s2)cχ(s1, s2)

−1 = ν(s1)ν(s2)ν(s1s2)
−1. (39)

Since ν takes its values in {±1}, this shows that cχ and c′χ are cohomologous.

Therefore, P̃s(B)χ̃ and P̃s(B)
′

χ̃ are extensions whose associated cocycles are coho-

mologous: they are isomorphic extensions. In particular, the groups P̃s(B)χ̃ and

P̃s(B)
′

χ̃ are isomorphic.

4. Formula (30) found for the metaplectic cocycle in Corollary 3.4 does not depend

on the choice of extension χ̃ of χ. In particular, two different extensions P̃s(B)χ̃

and P̃s(B)χ♯ corresponding to the extensions χ̃ and χ♯ of χ, respectively, can be

associated to the same cocycle cχ. This implies that the extensions (hence also

the groups) P̃s(B)χ̃ and P̃s(B)χ♯ are isomorphic.

5. Let {γ′(σ), σ ∈ O(Q)} be another set of elements satisfying (32) and (33). We
denote by ω′

χ̃(s) and c′χ the operators and the cocycle associated to this choice.
Then formula (30) implies that for all s1, s2 ∈ Ps(B),

c′χ(s1, s2) = γ′(σ1)γ
′(σ2)γ

′(σ1σ2)
−1γ(σ1)

−1γ(σ2)
−1γ(σ1σ2)cχ(s1, s2),

i.e.

c′χ(s1, s2)cχ(s1, s2)
−1 = γ′(σ1)γ(σ1)

−1γ′(σ2)γ(σ2)
−1(γ′(σ1σ2)γ(σ1σ2)

−1)−1. (40)
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If θ′(σ) ≡ θ(σ) mod π for all σ ∈ O(Q), then

γ′(σ)γ(σ)−1 = ei(θ
′(σ)−θ(σ)) ∈ {±1},

which shows that the map σ 7→ γ′(σ)γ(σ)−1 takes its values in {±1}. Thus c′χc−1
χ

is a coboundary by (40). This implies that the extensions P̃s(B)χ̃ and P̃s(B)
′

χ̃ are
isomorphic.

6. Denote by cχ and c′χ the cocycles associated to the extensions P̃s(B)χ̃ and P̃s(B)χ♯
defined in the statement, respectively. (Recall that χ♯ does not appear in the
notation of these cocycles since the metaplectic cocycle does not depend on the
choice of extension of χ by Corollary 3.4.) Let s̃1 = (s1, (−1)k1ωχ̃(s1, ws1 , γ(σ1)))

and s̃2 = (s2, (−1)k2ωχ̃(s2, ws2 , γ(σ2))) in P̃s(B)χ̃. Then

I(s̃1)I(s̃2) = (s1, (−1)k1ν(s1)
−1γ(σ1)γ

′(σ1)
−1ωχ♯(s1, w

′
s1
, γ′(σ1)))

· (s2, (−1)k2ν(s2)
−1γ(σ2)γ

′(σ2)
−1ωχ♯(s2, w

′
s2
, γ′(σ2)))

= (s1s2, (−1)k1+k2ν(s1)
−1ν(s2)

−1γ(σ1)γ
′(σ1)

−1γ(σ2)γ
′(σ2)

−1ωχ♯(s1, w
′
s1
, γ′(σ1))

ωχ♯(s2, w
′
s2
, γ′(σ2)))

= (s1s2, (−1)k1+k2ν(s1)
−1ν(s2)

−1γ(σ1)γ
′(σ1)

−1γ(σ2)γ
′(σ2)

−1c′χ(s1, s2)

ωχ♯(s1s2, w
′
s1s2

, γ′(σ1σ2)))

I(s̃1s̃2) = I(s1s2, (−1)k1+k2ωχ̃(s1, ws1 , γ(σ1))ωχ̃(s2, ws2 , γ(σ2))

= I(s1s2, (−1)k1+k2cχ(s1, s2)ωχ̃(s1s2, ws1s2 , γ(σ1σ2)))

= (s1s2, (−1)k1+k2cχ(s1, s2)ν(s1s2)
−1γ(σ1σ2)γ

′(σ1σ2)
−1ωχ♯(s1s2, w

′
s1s2

, γ′(σ1σ2))).
(41)

Hence I is a group homomorphism if and only if

ν(s1)
−1ν(s2)

−1γ(σ1)γ
′(σ1)

−1γ(σ2)γ
′(σ2)

−1c′χ(s1, s2) = cχ(s1, s2)ν(s1s2)
−1γ(σ1σ2)γ

′(σ1σ2)
−1,

i.e.

c′χ(s1, s2)cχ(s1, s2)
−1 = ν(s1)ν(s2)ν(s1s2)

−1γ(σ1σ2)γ
′(σ1σ2)

−1γ(σ1)
−1γ′(σ1)γ(σ2)

−1γ′(σ2).
(42)

Denote by c′′χ the cocycle associated to the two-fold covering of Ps(B) which
is defined with the extension χ̃ of χ and the choices {w′

s, s ∈ Ps(B)} and
{γ(σ), σ ∈ O(Q)} such that (24), (32) and (33) are satisfied. By (39),

c′′χ(s1, s2)cχ(s1, s2)
−1 = ν(s1)ν(s2)ν(s1s2)

−1. (43)

By (40), since (35) is satisfied,

c′χ(s1, s2)c
′′
χ(s1, s2)

−1 = γ′(σ1)γ(σ1)
−1γ′(σ2)γ(σ2)

−1(γ′(σ1σ2)γ(σ1σ2)
−1)−1. (44)
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Since c′χ(s1, s2)cχ(s1, s2)
−1 = c′χ(s1, s2)c

′′
χ(s1, s2)

−1c′′χ(s1, s2)cχ(s1, s2)
−1, (43) and

(44) imply (42). Let s̃ = (s, (−1)kωχ̃(s, ws, γ(σ))) ∈ Ker(I). Then s = (1, 0) and

IdL2(Y ) = (−1)kν(s)−1γ(σ)γ′(σ)−1ωχ♯(s, w
′
s, γ

′(σ))

= (−1)kν(1, 0)−1γ(1)γ′(1)−1ωχ♯((1, 0), 0, γ
′(1))

= (−1)k IdL2(Y ) .

Hence k ∈ 2Z. This enables us to conclude that (s, (−1)kωχ̃(s, ws, γ(σ))) =

((1, 0), ωχ̃((1, 0), 0, γ(1))) = ((1, 0), IdL2(Y )), i.e. I is injective. Since P̃s(B)χ̃ and

P̃s(B)χ♯ have the same order, I is an isomorphism.

Now, it only remains to prove that the diagram (D1) commutes. First we have
that

(I ◦ Φ̃)(−1) = I((1, 0),− IdL2(Y )) = ((1, 0),−ωχ♯((1, 0), 0, γ(1))) = ((1, 0),− IdL2(Y ))

= Φ̃′(−1).

In addition, let s̃ = (s, (−1)kωχ̃(s, ws, γ(σ))) ∈ P̃s(B)χ̃. Then

(Ψ̃′ ◦ I)(s̃) = Ψ̃′(s, (−1)kν(s)−1γ(σ)γ′(σ)−1ωχ♯(s, w
′
s, γ

′(σ))) = s = Ψ̃(s).

This proves that the diagram (D1) is commutative.
□

Remark 3.9. • We do not know if the converse of the statement of Proposition 3.8.5
holds in general, i.e. if the isomorphism of extensions implies that θ′(σ) ≡ θ(σ)
mod π for all σ ∈ O(Q). There is a necessary condition for the extensions to be
isomorphic since we can construct non-isomorphic extensions (cf. [8], Theorem
5, or the two-dimensional case detailed in section 4). Proposition 3.8.5 shows in
particular that if we choose γ(σ) and γ′(σ) to be real (consistent with the fact
that χ is real) then the extensions obtained with these choices are isomorphic. If
W is two-dimensional, then we prove in Propositions 4.2 and 4.5 that the converse
of Proposition 3.8.5 holds.

• We can wonder whether we can obtain all the possible non-split stem extensions
of Ps(B) by two elements with all possible choices of {γ(σ), σ ∈ Ps(B)} satisfying
(33). This is false in general, as we shall see for the two-dimensional case (cf.
Remark 4.3). Nevertheless, we prove in this example that we obtain all the possible
non-split stem extensions of Ps(B) by two elements which contain a copy of the
Heisenberg group H(B).

Now we have everything we need to lift the projective Weil representation of Ps(B) to

a linear representation of P̃s(B)χ̃.

Corollary 3.10 (The Weil representation). 1. The projective Weil representa-

tion ωχ̃ of Ps(B) can be lifted to a linear representation ω̃χ̃ of P̃s(B)χ̃, which will
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be called the Weil representation. ω̃χ̃ is defined by

ω̃χ̃(s̃) = (−1)kωχ̃(s) for all s̃ = (s, (−1)kωχ̃(s)) ∈ P̃s(B)χ̃. (45)

2. ω̃χ̃ is unitary, faithful and irreducible.
3. The image of ω̃χ̃ contains all the operators ρχ̃(w), w ∈ W (which form a basis of

EndC(L
2(Y ))). More precisely, for every w ∈ W ,

ρχ̃(w) = ωχ̃((1, fz), w), (46)

where fz ∈ Qa(W ) is such that χ ◦ fz = χ(⟨w, ·⟩).

Proof. Define the map ω̃χ̃ by (45).

1. Observe first that for s = (1, 0), since ws = 0 by Lemma 3.1.4, we obtain by (25)
that

ωχ̃((1, 0), 0) = |K(1)|−1γ(1)
∑
w∈W

ρχ̃(w)
−1ρχ̃(0)ρχ̃(w) = IdL2(Y ) .

Then ω̃χ̃((1, 0), ωχ̃((1, 0), 0)) = IdL2(Y ). Moreover, for every s̃1 = (s1, (−1)k1ωχ̃(s1))

and s̃2 = (s2, (−1)k2ωχ̃(s2)) in P̃s(B)χ̃,

ω̃χ̃(s̃1)ω̃χ̃(s̃2) = (−1)k1ωχ̃(s1)(−1)k2ωχ̃(s2) = cχ(s1, s2)(−1)k1+k2ωχ̃(s1s2)

and

ω̃χ̃(s̃1s̃2) = ω̃χ̃(s1s2, (−1)k1ωχ̃(s1)(−1)k2ωχ̃(s2)) = ω̃χ̃(s1s2, (−1)k1+k2cχ(s1, s2)ωχ̃(s1s2))

= cχ(s1, s2)(−1)k1+k2ωχ̃(s1s2).

Thus ω̃χ̃ is a linear representation of P̃s(B)χ̃, which lifts the projective Weil rep-

resentation of Ps(B).

2. Let s = (σ, f) ∈ Ps(B) and s̃ = (s, (−1)kωχ̃(s)) ∈ P̃s(B)χ̃. Suppose that ω̃χ̃(s̃) =

IdL2(Y ), then (−1)kωχ̃(s) = IdL2(Y ). Then by (27) in Proposition 3.2,

(−1)kγ(σ)
∑
u∈I(σ)

χ(f(w) + ⟨ws, w⟩+B(u,w + ws))ρχ̃(u+ ws) = IdL2(Y ) = ρχ̃(0),

where w ∈ W is any element such that u = (1 − σ)(w). The operators ρχ̃(w)
form a basis of EndC(L

2(Y )) according to Lemma 2.8, and χ takes its values in
{±1}. Hence only one term ρχ̃(u+ ws) can appear in the sum, the one for which
u+ws = 0. Moreover, since u ∈ I(σ), this means that I(σ) is a vector space which
contains only one element in this case. Hence I(σ) = {0} and ws = u = 0. This
implies that K(σ) = W , i.e. σ = 1. In addition, ws = 0 implies by (24) that
χ ◦ f|K(σ) = χ ◦ f = χ ◦ ⟨ws, ·⟩ = 1, i.e. χ ◦ f = 1. If f ̸= 0 then f(W ) = F,
which implies that F ⊆ Ker(χ). This is impossible because χ is non-trivial by
hypothesis. Hence f = 0 and s = (1, 0). In particular, ωχ̃(s) = IdL2(Y ). Since
(−1)kωχ̃(s) = IdL2(Y ) by hypothesis, this implies that k ∈ 2Z, i.e. s̃ = 1. Finally,
this proves that ω̃χ̃ is faithful. We prove the irreducibility of ω̃χ̃ in the next point.
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3. For every w ∈ W , we proved in Proposition 3.8.2 that there exists z ∈ W and
s = (1, fz) ∈ Psa(B) such that ws = w. Then, by (27) in Proposition 3.2,

ωχ̃(s, w) =
∑
u∈I(1)

χ(fz(v) + ⟨w, v⟩+B(u, v + w))ρχ̃(u+ w) = ρχ̃(w)

where v is any element such that u = (1− 1)(v) = 0. This shows that ω̃χ̃(P̃s(B)χ̃)

contains the operators ρχ̃(w) for all w ∈ W . Now, if V ⊆ L2(Y ) is a vector
subspace invariant by ω̃χ̃ then, in particular, V is invariant under all the operators
ρχ̃(w), w ∈ W . Since these operators form a basis of EndC(L

2(Y )) by Lemma 2.8,
then either V = {0} or V = L2(Y ), i.e. ω̃χ̃ is irreducible.

□

Proposition 3.11 (Character of the Weil representation). Let Θχ̃ be the character
of ω̃χ̃. We suppose as before that a choice of {γ(σ), σ ∈ O(Q)} and {ws, s ∈ Ps(B)} has

been made. Then, for every s̃ = (s, (−1)kωχ̃(s, ws)) in P̃s(B)χ̃,

Θχ̃(s̃) = (−1)kγ(σ)|Y |χ(f(w)−B(ws + w,ws))1I(σ)(ws), (47)

where w ∈ W is any element such that (σ − 1)(w) = ws. In particular, Θχ̃ does not
depend on the choice of extension χ̃ of χ and we can denote it by Θχ. Moreover, Θχ

satisfies the following properties:

1. The support of Θχ is

supp(Θχ) = {s̃ = (s, (−1)kωχ̃(s, ws)) ∈ P̃s(B)χ̃, s = (σ, f) with χ ◦ f|K(σ) = 1}.
Hence it does not depend on the choices of {γ(σ), σ ∈ O(Q)} and {ws, s ∈ Ps(B)}.

2. For every σ ∈ O(Q), there exists s̃ = (s, (−1)kωχ̃(s, ws)) ∈ P̃s(B)χ̃ such that the

projection of s on O(Q) is σ and Θχ(s̃) ̸= 0.
3. Let σ ∈ O(Q). Then the following assertions are equivalent:

• Θχ(s̃) ̸= 0 for all s̃ = (s, (−1)kωχ̃(s, ws)) ∈ P̃s(B)χ̃ such that the projection

of s on O(Q) is σ.
• 1− σ is invertible.

Proof. 1. Let s̃ = (s, (−1)kωχ̃(s)) ∈ P̃s(B)χ̃, where s = (σ, f) ∈ Ps(B). By definition

of ω̃χ̃, Θχ̃(s̃) = Trace(ω̃χ̃(s̃)) = (−1)k Trace(ωχ̃(s)). Recall the expression (27)
proved in Proposition 3.2:

ωχ̃(s) = γ(σ)
∑
u∈I(σ)

χ(f(w) + ⟨ws, w⟩+B(u,w + ws))ρχ̃(u+ ws),

where w ∈ W is any element such that u = (1− σ)(w). We can first compute the
trace of every operator of the form ρχ̃(w), w ∈ W . In fact, this computation has
already been done in Lemma 2.3 in the basis BY = {δy, y ∈ Y } of L2(Y ), and the
result is given by (16): for all w0 ∈ W ,

Trace(ρχ̃(w0)) = |Y |δ0(w0).



THE WEIL REPRESENTATION FOR A FINITE FIELD OF CHARACTERISTIC TWO 41

Then we obtain

Trace(ωχ̃(s)) = γ(σ)
∑
u∈I(σ)

χ(f(w) + ⟨ws, w⟩+B(u,w + ws)) Trace(ρχ̃(u+ ws))

= γ(σ)
∑
u∈I(σ)

χ(f(w) + ⟨ws, w⟩+B(u,w + ws))|Y |δ0(u+ ws)

= γ(σ)|Y |χ(f(w) + ⟨ws, w⟩ −B(ws, w + ws))1I(σ)(ws)

= γ(σ)|Y |χ(f(w)−B(ws + w,ws))1I(σ)(ws),

where w ∈ W is any element such that ws = (σ − 1)(w). This proves (47). Now,
Θχ(s̃) is non-zero if and only if ws ∈ I(σ), which does not depend on the choice
made for γ(σ). By Lemma 3.1.3, the fact that ws belongs to I(σ) is independent
of the choice of ws. Moreover, since K(σ) and I(σ) are orthogonal with respect to
the non-degenerate symplectic form ⟨·, ·⟩ (Lemma 3.1), ws ∈ I(σ) is equivalent to
have χ ◦ f|K(σ) = 1 by (24).

2. Let σ be an element of O(Q). Let {v1, . . . , vl} be a basis of K(σ) and complete
it into a basis B = {v1, . . . , v2n} of W . Then we can associate to σ an element
sσ = (σ, fσ) ∈ Ps(B) by Proposition 1.11, where fσ and βσ are given by (7) and
(8):

fσ(w =
∑

1≤i≤2n

λivi) =
∑

1≤i<j≤2n

λiλjβσ(vi, vj),

and for every w1, w2 ∈ W ,

βσ(w1, w2) = B(σ(w1), σ(w2))−B(w1, w2).

In particular, if w =
∑

1≤i≤l
λivi belongs to K(σ), then βσ(vi, vj) = 0 for all 1 ≤ i <

j ≤ l, and thus fσ(w) = 0. Then (24) is written

1 = χ(fσ(w)) = χ(⟨wsσ , w⟩)

for all w ∈ K(σ). This implies that wsσ belongs to I(σ). In fact, this is au-
tomatically true if I(σ) = W , and otherwise K(σ) ̸= {0} and the image F of
the linear map ⟨wsσ , ·⟩|K(σ) would be contained in the kernel of χ. If we set

s̃σ = (sσ, ωχ̃(sσ, wsσ)) ∈ P̃s(B)χ̃, then we obtain that Θχ(s̃) ̸= 0 by (47).

Remark 3.12. This proof shows that, for every σ ∈ O(Q), there always exists a
basis of W such that fσ|K(σ) = 0. However, it requires to fix a basis of K(σ) and
then complete it into a basis of W . There is in fact an alternative solution if we
do not want to fix these bases. We can define fσ from any basis of W with (7).
Then, since (σ, fσ) ∈ Ps(B), we know that fσ is additive on K(σ) by (6). Hence
there exists v ∈ W such that χ ◦ fσ = χ ◦ ⟨v, ·⟩ on K(σ) by Proposition 1.11.1. Set

s = (σ, f = fσ − ⟨v, ⟩̇). Then s ∈ Ps(B) and χ ◦ f = 1 on K(σ). This enables to
conclude by (24) that ws ∈ I(σ), and we also obtain 2 in this way.
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3. Let σ ∈ O(Q). If 1−σ is invertible, then I(σ) = W . Then every ws satisfying (24)
belongs to I(σ). By (47), this implies that Θχ(s̃) ̸= 0 for all s̃ = (s, (−1)kωχ̃(s)) ∈
P̃s(B)χ̃ such that the projection of s on O(Q) is σ. Conversely, suppose that 1−σ
has a non-trivial kernel K(σ). Define first fσ as in the proof of 2 above, i.e. with
a basis B = {v1, . . . , v2n} of W such that {v1, . . . , vl} is a basis of K(σ), with
l ≥ 1. In particular, fσ satisfies fσ|K(σ) = 0. Since K(σ)⊥ = I(σ), 1 − σ is not
invertible and ⟨·, ·⟩ is non-degenerate, then K(σ)⊥ ̸= W . Hence there exists an
element w0 /∈ K(σ)⊥ = I(σ). In particular, the map ⟨w0, ·⟩|K(σ) is not identically
zero. Then the image of the linear form ⟨w0, ·⟩|K(σ) is equal to F. It follows that
χ ◦ ⟨w0, ·⟩|K(σ) ̸= 1 since χ is non-trivial by hypothesis. Now, by Proposition
1.11.2, there exists z ∈ W such that χ ◦ fz = χ ◦ ⟨w0, ·⟩, where fz ∈ Qa(W ). Set
s = (σ, fσ + fz) ∈ Ps(B). Then for all w ∈ K(σ):

χ(⟨w0, w⟩) = χ(fz(w)) = χ((fσ + fz)(w)) = χ(f(w)),

i.e. w0 satisfies (24) for s = (σ, f) with f = fσ + fz. Thus, by Lemma 3.1.3,
ws − w0 ∈ I(σ), which implies that ws does not belong to I(σ). This shows that
Θχ(s̃) = 0 for s̃ = (s, ωχ̃(s, ws)). Since the projection of s on O(Q) is σ, this
completes the proof by contraposition.

□

Corollary 3.13. For every σ ∈ O(Q), choose γ(σ) satisfying (32) such that γ(σ) is real.
Then the Weil representation ω̃χ̃ defined by (45) is self-dual.

Proof. Let ω̃∗
χ̃ be the dual representation of ω̃χ̃ and denote by Θ∗

χ its character. Since ω̃χ̃

is unitary, for every s̃ = (s, (−1)kωχ̃(s, ws)) ∈ P̃s(B)χ̃,

Θ∗
χ(s̃) = Trace(ω̃χ̃(s̃

−1)T ) = Trace((ω̃χ̃(s̃)
∗)T ) = Trace(ω̃χ̃(s̃)) = Θχ(s̃).

If γ(σ) is real for all σ ∈ O(Q) then the character Θχ of the Weil representation ω̃χ̃ is real
by (47). In particular, the character Θ∗

χ of the dual representation ω̃∗
χ̃ is exactly equal to

the character Θχ of the Weil representation ω̃χ̃. □

Corollary 3.14. Let χ̃ and χ♯ be two extensions of χ to X × F. For every σ ∈ O(Q),
choose γ(σ) and γ′(σ) satisfying (32). For every s ∈ Ps(B), choose ws and w

′
s satisfying

(24). Suppose that (33) and (35) are satisfied. Then the Weil representation ω̃χ̃, obtained
with χ̃, {ws satisfying (24), s ∈ Ps(B)} and {γ(σ) satisfying (32), σ ∈ O(Q)}, is isomor-
phic to the Weil representation ω̃χ♯ ◦I, obtained with χ♯, {w′

s satisfying (24), s ∈ Ps(B)}
and {γ′(σ) satisfying (32), σ ∈ O(Q)}. In other terms, there exists an isomorphism T ∈
U(L2(Y )) such that the following diagram commutes:

ω̃χ♯(I(s̃)) = T ◦ ω̃χ̃(s̃) ◦ T−1 for all s̃ ∈ P̃s(B)χ̃, i.e.

L2(Y ) L2(Y )

L2(Y ) L2(Y )

ω̃χ̃(s̃)

T T

ω̃
χ♯

(I(s̃))

(D2)
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where I is defined by (36).

Proof. Since (35) is satisfied, by Proposition 3.8.6, the extensions P̃s(B)χ̃ and P̃s(B)χ♯
associated to the choices (χ̃, γ(σ), ws) and (χ♯, γ′(σ), w′

s), respectively, are isomorphic. An
explicit isomorphism I is given by (36). Hence, I is also a group isomorphism between

P̃s(B)χ̃ and P̃s(B)χ♯ . Now, we denote by Θχ and Θ′
χ the characters of ω̃χ̃ and ω̃χ♯ ,

respectively. Then by definition of I, Θχ and Θ′
χ, for every s̃ = (s, (−1)kωχ̃(s, ws, γ(σ))) ∈

P̃s(B)χ̃,

Trace(ω̃χ♯(I(s̃)))
= Trace((−1)kν(s)−1γ(σ)γ′(σ)−1ωχ♯(s, w

′
s, γ

′(σ)))

= (−1)kν(s)−1γ(σ)γ′(σ)−1Θ′
χ(s, ωχ♯(s, w

′
s, γ

′(σ)))

(38),(47)
= (−1)kγ(σ)γ′(σ)−1χ(f(v)− ⟨v, ws⟩ −B(w′

s − ws, v − ws))γ
′(σ)|Y |

χ(f(w′)−B(w′
s + w′, w′

s))1I(σ)(w
′
s)

= (−1)kγ(σ)|Y |χ(f(v)− ⟨v, ws⟩ −B(w′
s − ws, v − ws) + f(w′)−B(w′

s + w′, w′
s))

1I(σ)(w
′
s),

where v is any element such that w′
s − ws = (1− σ)(v) and w′ ∈ W is any element such

that (σ − 1)(w′) = w′
s. By Lemma 3.1.3, 1I(σ)(w

′
s) = 1I(σ)(ws). Moreover,

f(v)− ⟨v, ws⟩ −B(w′
s − ws, v − ws) + f(w′)−B(w′

s + w′, w′
s)

= f(v + w′)−B(σ(v), σ(w′)) +B(v, w′)−B(v, ws) +B(ws, v)−B(w′
s, v − ws)−B(ws, ws)

+B(ws, v)−B(w′
s, w

′
s)−B(w′, (1− σ)(v) + ws)

= f(v + w′)−B(ws + v + w′, ws)−B(σ(v), σ(w′)) +B(v, w′)−B(w′
s, v − ws + w′

s)

−B(w′, (1− σ)(v))

= f(v + w′)−B(ws + v + w′, ws)−B(σ(v), σ(w′)) +B(v, w′) +B((σ − 1)(w′), σ(v))

−B(w′, (1− σ)(v))

= f(v + w′)−B(ws + v + w′, ws)− ⟨σ(v), σ(w′)⟩+ ⟨v, w′⟩
= f(v + w′)−B(ws + v + w′, ws) since σ ∈ Sp(W ).

Hence

Trace(ω̃χ♯(I(s̃))) = (−1)kγ(σ)|Y |χ(f(v + w′)−B(ws + v + w′, ws))1I(σ)(ws),

where (σ−1)(v+w′) = ws. Therefore, by Proposition 3.11, we obtain Trace(ω̃χ♯(I(s̃))) =
Θχ(s̃). This proves that ω̃χ̃ and ω̃χ♯ ◦ I are two irreducible representations with the same
character, hence they are isomorphic. □

We proved in Proposition 3.8.6 that the two-fold covering P̃s(B)χ̃ of Ps(B) we construct

does not depend on the choices made for the extension χ̃ of χ, {ws satisfying (24), s ∈ Ps(B)}
and {γ(σ) satisfying (32) and (33), σ ∈ O(Q)}, provided (35) is satisfied. However, this
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two-fold covering of Ps(B) depends a priori on the choice of non-trivial character χ of F
that we fixed in the beginning of section 1. In fact, we can prove that different choices of
characters lead to isomorphic extensions of Ps(B), provided (35) is satisfied.

Proposition 3.15. Let ψ be a non-trivial character of F. We suppose that a choice of
ws satisfying (24) for χ has been made for all s ∈ Ps(B). We fix also γ(σ) satisfying (32)
for all σ ∈ O(Q) and (33). Then:

1. There exists a = b2 ∈ F\{0} such that ψ(t) = χ(at) for all t ∈ F.
2. For all s = (σ, f) ∈ Ps(B), the element b−1ws satisfies (24) for ψ, i.e.

ψ ◦ f|K(σ) = ψ ◦ ⟨b−1ws, ·⟩|K(σ).

3. Let P̃s(B)χ̃ be the two-fold covering of Ps(B) obtained from the extension χ̃ of χ

to X ×F and the choices {ws, s ∈ Ps(B)} and {γ(σ), σ ∈ O(Q)}. Let P̃s(B)
′

ψ̃ be

the two-fold covering of Ps(B) obtained from the extension ψ̃ of ψ to X × F and
the choices {b−1ws, s ∈ Ps(B)} mentioned in 2, and {γ′(σ), σ ∈ O(Q)}. If (35)

is satisfied then the extensions P̃s(B)χ̃ and P̃s(B)
′

ψ̃ are isomorphic.

4. Let P̃s(B)χ̃ be the extension defined in 3. Let P̃s(B)ψ̃ be the two-fold covering of

Ps(B) obtained from the extension ψ̃ of ψ toX×F and the choices {vs, s ∈ Ps(B)}
and {δ(σ), σ ∈ O(Q)} such that (24), (32) and (33) are satisfied. If (35) is satisfied

then the extensions P̃s(B)χ̃ and P̃s(B)ψ̃ are isomorphic. An explicit isomorphism
of central extensions is

J : P̃s(B)χ̃ → P̃s(B)χ♯

(s, (−1)kωχ̃(s, ws, γ(σ))) 7→ (s, (−1)kν(s)−1γ(σ)δ(σ)−1ωψ̃(s, vs, δ(σ)))

(48)

where ν relates the choices {b−1ws, s ∈ Ps(B)} and {vs, s ∈ Ps(B)} by (38), i.e.

ν(s) = ψ(−f(v) + ⟨v, b−1ws⟩+B(vs − b−1ws, v − b−1ws)), (49)

where v is any element such that vs − b−1ws = (1 − σ)(v). This means that the
following diagram is commutative:

1 µ2(C) P̃s(B)χ̃ Ps(B) 1

1 µ2(C) P̃s(B)ψ̃ Ps(B) 1

id

Φ̃

J

Ψ̃

id

Φ̂ Ψ̂

(D3)

Proof. 1. This was proven in Lemma 2.1.
2. For every w ∈ K(σ), by 1 and the fact that f is quadratic,

ψ(f(w)) = χ(af(w)) = χ(f(bw)) = χ(⟨ws, bw⟩) = χ(a⟨b−1ws, w⟩) = ψ(⟨b−1ws, w⟩),
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where the third equality comes from the fact that ws satisfies (24) for χ. This
proves that b−1ws satisfies (24) for ψ.

3. To show that the extensions P̃s(B)χ̃ (associated to {ws, s ∈ Ps(B)} and {γ(σ), σ ∈

O(Q)}) and P̃s(B)
′

ψ̃ (associated to {b−1ws, s ∈ Ps(B)} and {γ′(σ), σ ∈ O(Q)}) are
isomorphic, it is enough to show that the cocycles cχ and c′ψ associated to these
extensions are cohomologous. Let s1 = (σ1, f1) and s2 = (σ2, f2) be in Ps(B).
Then, by (30) in Corollary 3.4,

cχ(s1, s2) = C1,2

∑
u1∈I(σ1),u2∈I(σ2)
u1+u2=ws1,s2

χ(f1(w1) + ⟨ws1 , w1⟩+B(u1, w1 + ws1) + f2(w2))

χ(⟨ws2 , w2⟩+B(u2, w2 + ws2) +B(u1 + ws1 , u2 + ws2))

where C1,2 = γ(σ1)γ(σ2)γ(σ1σ2)
−1, (1 − σ)(wi) = ui for i ∈ {1, 2}, and ws1,s2 =

ws1s2 −ws1 −ws2 . This implies that b−1ws1,s2 = b−1ws1s2 − b−1ws1 − b−1ws2 . If we
set u′i = b−1ui and w

′
i = b−1wi, then (1− σ)(w′

i) = u′i and

cχ(s1, s2) = C1,2

∑
u′1∈I(σ1),u′2∈I(σ2)
u′1+u

′
2=b

−1ws1,s2

χ(f1(bw
′
1) + ⟨ws1 , bw′

1⟩+B(bu′1, bw
′
1 + ws1) + f2(bw

′
2))

χ(⟨ws2 , bw′
2⟩+B(bu′2, bw

′
2 + ws2) +B(bu′1 + ws1 , bu

′
2 + ws2))

= C1,2

∑
u′1∈I(σ1),u′2∈I(σ2)
u′1+u

′
2=b

−1ws1,s2

χ(af1(w
′
1) + a⟨b−1ws1 , w

′
1⟩+ aB(u′1, w

′
1 + b−1ws1) + af2(w

′
2))

χ(a⟨b−1ws2 , w
′
2⟩+ aB(u′2, w

′
2 + b−1ws2) + aB(u′1 + b−1ws1 , u

′
2 + b−1ws2))

= C1,2

∑
u′1∈I(σ1),u′2∈I(σ2)
u′1+u

′
2=b

−1ws1,s2

ψ(f1(w
′
1) + ⟨b−1ws1 , w

′
1⟩+B(u′1, w

′
1 + b−1ws1) + f2(w

′
2))

ψ(⟨b−1ws2 , w
′
2⟩+B(u′2, w

′
2 + b−1ws2) +B(u′1 + b−1ws1 , u

′
2 + b−1ws2))

= γ(σ1)γ
′(σ1)

−1γ(σ2)γ
′(σ2)

−1γ(σ1σ2)
−1γ′(σ1σ2)c

′
ψ(s1, s2),

i.e.

cχ(s1, s2)c
′
ψ(s1, s2)

−1 = γ(σ1)γ
′(σ1)

−1γ(σ2)γ
′(σ2)

−1γ(σ1σ2)
−1γ′(σ1σ2). (50)

Since σ 7→ γ(σ)γ′(σ)−1 takes its values in {±1} by (35), cχc
′−1
ψ is a coboundary.

4. Consider again the extension P̃s(B)χ̃ defined in 3. Let {δ(σ), σ ∈ O(Q)} such that

(32) and (33) are satisfied. Suppose also that (35) is satisfied. Let P̃s(B)
′′

ψ̃ be the

extension defined from ψ̃, {b−1ws, s ∈ Ps(B)} and {δ(σ), σ ∈ O(Q)}. By 3, the

extensions P̃s(B)χ̃ and P̃s(B)
′′

ψ̃ are isomorphic. Define now the extension P̃s(B)ψ̃
from the extension ψ̃ of ψ and the choices {vs, s ∈ Ps(B)} and {δ(σ), σ ∈ O(Q)}.
Then the extensions P̃s(B)

′′

ψ̃ and P̃s(B)ψ̃ are isomorphic by Proposition 3.8.3.

This is enough to conclude that the extensions P̃s(B)χ̃ and P̃s(B)ψ̃ are isomorphic.

More precisely, define J as in (48). We denote by c′′ψ and cψ the cocycles associated

to P̃s(B)
′′

ψ̃ and P̃s(B)ψ̃, respectively. Let s̃1 = (s1, (−1)k1ωχ̃(s1, ws1 , γ(σ1))), s̃2 =
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(s2, (−1)k2ωχ̃(s2, ws2 , γ(σ2))) ∈ P̃s(B)χ̃. As in Proposition 3.8.6, we prove that

J (s̃1)J (s̃2) = (s1s2, (−1)k1+k2ν(s1)
−1ν(s2)

−1γ(σ1)δ(σ1)
−1γ(σ2)δ(σ2)

−1cψ(s1, s2)

ωψ̃(s1s2, vs1s2 , δ(σ1σ2)))

J (s̃1s̃2) = (s1s2, (−1)k1+k2cχ(s1, s2)ν(s1s2)
−1γ(σ1σ2)δ(σ1σ2)

−1ωψ̃(s1s2, vs1s2 , δ(σ1σ2))).

(51)
Hence J is a group homomorphism if and only if

cψ(s1, s2)cχ(s1, s2)
−1 = ν(s1)ν(s2)ν(s1s2)

−1γ(σ1σ2)δ(σ1σ2)
−1γ(σ1)

−1δ(σ1)γ(σ2)
−1δ(σ2).

(52)
By (39),

cψ(s1, s2)c
′′
ψ(s1, s2)

−1 = ν(s1)ν(s2)ν(s1s2)
−1. (53)

By (50),

c′′ψ(s1, s2)cχ(s1, s2)
−1 = δ(σ1)γ(σ1)

−1δ(σ2)γ(σ2)
−1(δ(σ1σ2)γ(σ1σ2)

−1)−1. (54)

Since cψ(s1, s2)cχ(s1, s2)
−1 = cψ(s1, s2)c

′′
ψ(s1, s2)

−1c′′ψ(s1, s2)cχ(s1, s2)
−1, (53) and

(54) imply (52). The fact that J is an isomorphism such that the diagram (D3)
commutes can be proven exactly in the same way as for I in Proposition 3.8.6.

□

Corollary 3.16. Let χ and ψ be two non-trivial characters of F (such that ψ(t) =

χ(at) for all t ∈ F, where a = b2, cf. Lemma 2.1). Let χ̃ and ψ̃ be two exten-
sions of χ and ψ to X × F, respectively. For every σ ∈ O(Q), choose γ(σ) and δ(σ)
satisfying (32) with χ and ψ, respectively. For every s ∈ Ps(B), choose ws and vs
satisfying (24) with χ and ψ, respectively. Suppose that (33) and (35) are satisfied.
Then the Weil representation ω̃χ̃, obtained with χ̃, {ws satisfying (24), s ∈ Ps(B)} and
{γ(σ) satisfying (32), σ ∈ O(Q)}, is isomorphic to the Weil representation ω̃ψ̃ ◦ J , ob-

tained with ψ̃, {vs satisfying (24), s ∈ Ps(B)} and {δ(σ) satisfying (32), σ ∈ O(Q)}. In
other terms, there exists an isomorphism U ∈ U(L2(Y )) such that the following diagram
commutes:

ω̃ψ̃(J (s̃)) = U ◦ ω̃χ̃(s̃) ◦ U−1 for all s̃ ∈ P̃s(B)χ̃, i.e.

L2(Y ) L2(Y )

L2(Y ) L2(Y )

ω̃χ̃(s̃)

U U

ω̃
ψ̃
(J (s̃))

(D4)

where J is defined by (48).

Proof. Since (35) is satisfied, by Proposition 3.15.4, the extensions P̃s(B)χ̃ and P̃s(B)ψ̃
associated to the choices (χ̃, γ(σ), ws) and (ψ̃, δ(σ), vs), respectively, are isomorphic. An
explicit isomorphism J is given by (48). Hence, J is also a group isomorphism between

P̃s(B)χ̃ and P̃s(B)ψ̃. Now, we denote by Θχ and Θψ the characters of ω̃χ̃ and ω̃ψ̃, re-

spectively. Then by definition of J , Θχ and Θψ, for every s̃ = (s, (−1)kωχ̃(s, ws, γ(σ))) ∈
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P̃s(B)χ̃, we have that

Trace(ω̃ψ̃(J (s̃)))

= Trace((−1)kν(s)−1γ(σ)δ(σ)−1ωψ̃(s, vs, δ(σ)))

= (−1)kν(s)−1γ(σ)δ(σ)−1Θψ(s, ωψ̃(s, vs, δ(σ)))

(47),(49)
= (−1)kγ(σ)δ(σ)−1ψ(f(v)− ⟨v, b−1ws⟩ −B(vs − b−1ws, v − b−1ws))δ(σ)|Y |

ψ(f(w)−B(vs + w, vs))1I(σ)(vs)

= (−1)kγ(σ)|Y |ψ(f(v)− ⟨v, b−1ws⟩ −B(vs − b−1ws, v − b−1ws) + f(w)−B(vs + w, vs))

1I(σ)(vs),

where v is any element such that vs− b−1ws = (1− σ)(v) and w ∈ W is any element such
that (σ − 1)(w) = vs. As in Corollary 3.14, we can prove that

f(v)− ⟨v, b−1ws⟩ −B(vs − b−1ws, v − b−1ws) + f(w)−B(vs + w, vs)

= f(v + w)−B(b−1ws + v + w, b−1ws).

Hence

Trace(ω̃ψ̃(J (s̃))) = (−1)kγ(σ)|Y |ψ(f(v + w)−B(b−1ws + v + w, b−1ws))1I(σ)(ws)

= (−1)kγ(σ)|Y |χ(af(v + w)− aB(b−1ws + v + w, b−1ws))1I(σ)(ws)

= (−1)kγ(σ)|Y |χ(f(bv + bw)−B(ws + bv + bw,ws))1I(σ)(ws),

where (σ − 1)(bv + bw) = ws − bvs + bvs = ws. Therefore, by Proposition 3.11, we
obtain Trace(ω̃ψ̃(J (s̃))) = Θχ(s̃). This proves that ω̃χ̃ and ω̃ψ̃ ◦ J are two irreducible
representations with the same character, hence they are isomorphic. □

4. The two-dimensional case for F = F2, i.e. W ≃ F2
2

In this section, we apply the results of the previous three sections in order to describe
explicitly the groups involved and the Weil representation when W is a symplectic F2-
vector space of dimension two. Most of the groups are found explicitly thanks to the
database “GroupNames” [29]. We keep the notations used in the preceding sections and
we use them with n = 1. In particular, W is a F2-vector space of dimension 2, endowed
with a non-degenerate and alternating form ⟨·, ·⟩. Then W is isomorphic to F2

2, and we
can set W = X ⊕ Y with X = Vect{(1, 0)} and Y = Vect{(0, 1)}. This means that
W = {(0, 0), (1, 0), (0, 1), (1, 1)}, where 0, 1 ∈ F2. We will write an element w ∈ W either
as w = x+ y with x ∈ X and y ∈ Y , or as w = (x, y). With respect to the fixed complete
polarization W = X ⊕ Y , the non-degenerate symplectic form is given by

⟨x1 + y1, x2 + y2⟩ = x1y2 − y1x2

for all wi = xi + yi ∈ W , i.e. its matrix is Ω =

(
0 1
−1 0

)
. Since W is a two-dimensional

vector space over F2, the space Y is one-dimensional and hence dimC(L
2(Y )) = 2. Thus
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all the operators we obtain in this example are two-by-two matrices.

The first step is to determine the Heisenberg groups H(B) in this example, which
amounts to determine all the possible bilinear forms B such that for every wi = xi+ yi ∈
W , i ∈ {1, 2},

⟨x1 + y1, x2 + y2⟩ = B(w1, w2)−B(w2, w1).

In addition, since H(B) is an extraspecial 2-group (see Proposition 1.5 and appendix), it
is enough by Proposition A.11 to find two bilinear forms B whose associated quadratic
forms Q have different Witt index/Arf invariant.

In terms of matrices, we are looking forB =

(
β1,1 β1,2
β2,1 β2,2

)
such that for every x1+y1 ∈ W

and x2 + y2 ∈ W ,(
x1 y1

)
B

(
x2
y2

)
−
(
x2 y2

)
B

(
x1
y1

)
=
(
x1 y1

)
Ω

(
x2
y2

)
,

i.e. β1,2(x1y2 − y1x2)− β2,1(x1y2 − y1x2) = x1y2 − y1x2. Thus β1,2 − β2,1 = 1. This leads
to eight possibilities for B:

B1 =

(
0 1
0 0

)
, B2 =

(
1 1
0 0

)
, B3 =

(
0 1
0 1

)
, B4 =

(
1 1
0 1

)
,

B5 =

(
0 0
1 0

)
, B6 =

(
1 0
1 0

)
, B7 =

(
0 0
1 1

)
, B8 =

(
1 0
1 1

)
.

These bilinear forms are given in coordinates by:

• B1(w1, w2) = x1y2, i.e. B1 = BWeil

• B2(w1, w2) = x1y2 + x1x2
• B3(w1, w2) = x1y2 + y1y2
• B4(w1, w2) = x1y2 + x1x2 + y1y2

• B5(w1, w2) = y1x2
• B6(w1, w2) = y1x2 + x1x2
• B7(w1, w2) = y1x2 + y1y2
• B8(w1, w2) = y1x2 + x1x2 + y1y2.

Thus the corresponding quadratic forms are written as follows:

• Q1(w) = xy
• Q2(w) = xy + x2

• Q3(w) = xy + y2

• Q4(w) = xy + x2 + y2

• Q5(w) = xy
• Q6(w) = xy + x2

• Q7(w) = xy + y2

• Q8(w) = xy + x2 + y2.

In particular, the quadratic forms of Witt index 1 (Arf invariant 0) are Q1 = Q5,
Q2 = Q6 and Q3 = Q7, whereas the Witt index of Q4 = Q8 is 0 (Arf invariant 1).
Therefore, to study all the possibilities for the Heisenberg groups, it is enough to consider
B1 = BWeil and B4. Before separating the two cases depending on the index of Q, we
can give some details about the additive maps and the symplectic group involved in this

example. We will identify any linear map σ : W → W with its matrix

(
α β
γ δ

)
in the
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basis B = {(1, 0), (0, 1)} of W and, similarly, any linear map T : L2(Y ) → L2(Y ) with its
matrix in the basis BY = {δ0, δ1} of L2(Y ).

Proposition 4.1. 1. The set Qa(W ) of additive quadratic forms on W is given by
the set of linear forms (x, y) 7→ 0, (x, y) 7→ x, (x, y) 7→ y and (x, y) 7→ x+ y.

2. The symplectic group of W is

Sp(W ) =

{(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 1
1 1

)
,

(
1 0
1 1

)
,

(
1 1
0 1

)
,

(
1 1
1 0

)}
,

i.e. Sp(W ) = GL2(F2) = SL2(F2), and in particular

Sp(W ) ≃ S3 = ⟨a, b | a3 = b2 = 1, bab = a−1⟩,

where for example a =

(
0 1
1 1

)
and b =

(
0 1
1 0

)
.

Proof. 1. The additive quadratic forms on W with values in F2 are just the linear
maps f : W → F2. Such a map f is entirely determined by f(1, 0) and f(0, 1).
There are two possibilities for each of them, so this gives four possibilities for f :
f(x, y) = xf(1, 0) + yf(0, 1).

2. σ =

(
α β
γ δ

)
is symplectic if and only if σT

(
0 1
−1 0

)
σ =

(
0 1
−1 0

)
, which is

equivalent to αδ − γβ = 1, i.e. σ ∈ GL2(F2) = SL2(F2).
□

4.1. The case Arf(Q) = 0. In this part, we suppose that the bilinear form B is such
that Q has Arf invariant 0, or equivalently (Witt) index 1. In particular, we can consider
the bilinear form B = BWeil which appears in Weil’s article, i.e. B(w1, w2) = x1y2 for all
wi = xi + yi ∈ W , i ∈ {1, 2}. Hence the matrix of B in the basis {(1, 0), (0, 1)} of W is(
0 1
0 0

)
, and Q(w) = xy for all w = x+ y ∈ W . In this case, H(B) is the set of elements

(x, y, t) ∈ F3
2 with product

(x1, y1, t1)(x2, y2, t2) = (x1 + x2, y1 + y2, t1 + t2 + x1y2).

In particular, H(B) is isomorphic to the dihedral group D4 = ⟨a, b | a4 = b2 = 1, bab = a−1⟩,
where for example a = (1, 1, 0) and b = (1, 0, 0).
We need to fix an extension χ̃ of the unique non-trivial character χ of F2 to X × F2.

This extension is entirely determined by χ̃(1, 0, 0), which can take the values ±1 because
X is Q-singular (cf. Lemma 2.1). Set

ε̃ = χ̃(1, 0, 0) ∈ {±1}. (55)

The first groups we compute explicitly are the orthogonal group O(Q) and the pseudo-
symplectic group Ps(B). Then, in order to obtain all the possible two-fold coverings
defined in Proposition 3.8.2

1 −→ µ2(C)
Φ̃−→ P̃s(B)χ̃

Ψ̃−→ Ps(B) −→ 1,
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we consider all the possible choices of {γ(σ) satisfying (32) and (33), σ ∈ O(Q)}. We will
see in (56) that, up to isomorphism, there are only two different coverings.

Proposition 4.2. 1. The orthogonal group is O(Q) =

{(
1 0
0 1

)
,

(
0 1
1 0

)}
. If we

set τ =

(
0 1
1 0

)
then O(Q) = {1, τ} =< τ >.

2. The pseudo-symplectic group is

Ps(B) =


((

1 0
0 1

)
, 0

)
,

((
1 0
0 1

)
, x

)
,

((
1 0
0 1

)
, y

)
,

((
1 0
0 1

)
, x+ y

)
,((

0 1
1 0

)
, xy

)
,

((
0 1
1 0

)
, xy + x

)
,

((
0 1
1 0

)
, xy + y

)
,

((
0 1
1 0

)
, xy + x+ y

)
 .

We will denote these elements in the same order by {s1, s2, s3, s4, r1, r2, r3, r4}.
In particular, Ps(B) is isomorphic to the dihedral group of order eight D4 =
⟨a, b | a4 = b2 = 1, bab = a−1⟩, an isomorphism being for example given by a = r2
and b = s2.

3. The different choices of {γ(σ) = 2−
dim I(σ)

2 eiθ(σ), σ ∈ O(Q)} satisfying (32) and (33)
lead to two non-isomorphic pseudo-symplectic extensions

1 −→ µ2(C)
Φ̃−→ P̃s(B)χ̃

Ψ̃−→ Ps(B) −→ 1.

More precisely,
• If θ(τ) ≡ 0 mod π then the pseudo-symplectic covering

P̃s(B)χ̃ = {(s, (−1)lωχ̃(s)), s ∈ Ps(B), l ∈ Z}

is given by

P̃s(B)χ̃ =



(
s1, (−1)l

(
1 0
0 1

))
,

(
s2, (−1)l

(
0 1
1 0

))
,

(
s3, (−1)lε̃

(
1 0
0 −1

))
,(

s4, (−1)lε̃

(
0 −1
1 0

))
,

(
r1,

(−1)l√
2

(
ε̃ 1
1 −ε̃

))
,

(
r2,

(−1)l√
2

(
1 −ε̃
ε̃ 1

))
,(

r3,
(−1)l√

2

(
1 ε̃
−ε̃ 1

))
,

(
r4,

(−1)l√
2

(
ε̃ −1
−1 −ε̃

))


where ε̃ = χ̃(1, 0, 0) is as in (55). In particular, P̃s(B)χ̃ is isomorphic to the

dihedral group D8 = ⟨a, b | a8 = b2 = 1, bab = a−1⟩, an isomorphism being

given for example by a =

(
r2,

1√
2

(
1 −ε̃
ε̃ 1

))
and b =

(
s2,

(
0 1
1 0

))
.

• If θ(τ) ≡ π
2

mod π then the pseudo-symplectic covering

P̃s(B)χ̃ = {(s, (−1)lωχ̃(s)), s ∈ Ps(B), l ∈ Z}
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is given by

P̃s(B)χ̃ =



(
s1, (−1)l

(
1 0
0 1

))
,

(
s2, (−1)l

(
0 1
1 0

))
,

(
s3, (−1)lε̃

(
1 0
0 −1

))
,(

s4, (−1)lε̃

(
0 −1
1 0

))
,

(
r1,

(−1)li√
2

(
ε̃ 1
1 −ε̃

))
,

(
r2,

(−1)li√
2

(
1 −ε̃
ε̃ 1

))
,(

r3,
(−1)li√

2

(
1 ε̃
−ε̃ 1

))
,

(
r4,

(−1)li√
2

(
ε̃ −1
−1 −ε̃

))


where ε̃ = χ̃(1, 0, 0) is as in (55). In particular, P̃s(B)χ̃ is isomorphic to the

semi-dihedral group SD16 = ⟨ a, b | a8 = b2 = 1, bab = a3⟩, an isomorphism

being given for example by a =

(
r2,

i√
2

(
1 −ε̃
ε̃ 1

))
and b =

(
s2,

(
0 1
1 0

))
.

Proof. 1. σ is orthogonal if and only if
(
x y

)
σT
(
0 1
0 0

)
σ

(
x
y

)
=
(
x y

)(0 1
0 0

)(
x
y

)
for all x, y ∈ F2.

2. According to Proposition 1.11, the elements of Ps(B) are given by (σ, fσ+f), where
σ ∈ O(Q) and f ∈ Qa(W ). This gives f1 = 0 and fτ (x, y) = xy. Proposition 4.1
gives all the eight elements of Ps(B) listed above.

3. First we make a choice of ws satisfying (24) for all s = (σ, f) ∈ Ps(B). If s = si
then σ = 1 and K(σ) = W . Hence there is only one choice of ws satisfying
f|K(σ) = f = ⟨ws, ·⟩, namely ws1 = 0, ws2 = (0, 1), ws3 = (1, 0) and ws4 = (1, 1).
If s = ri then σ = τ and K(σ) = {0, (1, 1)}. Hence there are two choices of ws for
each s, namely wr1 ∈ {(1, 0), (0, 1)}, wr2 ∈ {0, (1, 1)}, wr3 ∈ {0, (1, 1)} and wr4 ∈
{(1, 0), (0, 1)}. Since P̃s(B)χ̃ does not depend of the choice of {ws, s ∈ Ps(B)},
we can choose for example wr1 = wr4 = (1, 0) and wr2 = wr3 = 0. This enables us
to compute the operators ωχ̃(s) for all s ∈ Ps(B) thanks to Proposition 3.2:

ωχ̃(s) = γ(σ)
∑
u∈I(σ)

χ(f(w) + ⟨ws, w⟩+B(u,w + ws))ρχ̃(u+ ws),

where w ∈ W is any element such that u = (1− σ)(w) and γ(σ) satisfies (32) and
(33). This formula together with (15) with t = 0 gives:

• ωχ̃(s1) = ρχ̃(ws1) = ρχ̃(0) = I2

• ωχ̃(s2) = ρχ̃(ws2) = ρχ̃(0, 1) =

(
0 1
1 0

)
• ωχ̃(s3) = ρχ̃(ws3) = ρχ̃(1, 0) =

(
ε̃ 0
0 −ε̃

)
• ωχ̃(s4) = ρχ̃(ws4) = ρχ̃(1, 1) =

(
0 −ε̃
ε̃ 0

)
• ωχ̃(r1) = eiθ(τ)√

2
(ρχ̃(1, 0) + ρχ̃(0, 1)) =

eiθ(τ)√
2

(
ε̃ 1
1 −ε̃

)
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• ωχ̃(r2) = eiθ(τ)√
2
(ρχ̃(0) + ρχ̃(1, 1)) =

eiθ(τ)√
2

(
1 −ε̃
ε̃ 1

)
• ωχ̃(r3) = eiθ(τ)√

2
(ρχ̃(0)− ρχ̃(1, 1)) =

eiθ(τ)√
2

(
1 ε̃
−ε̃ 1

)
• ωχ̃(r4) = eiθ(τ)√

2
(ρχ̃(1, 0)− ρχ̃(0, 1)) =

eiθ(τ)√
2

(
ε̃ −1
−1 −ε̃

)
.

Moreover, since τ 2 = 1, (33) implies that

θ(τ) + θ(τ)− θ(1) ≡ 0 mod π.

Since θ(1) ≡ 0 mod 2π by (32), we obtain that θ(τ) ≡ 0 mod π
2
. Hence there are

four possibilities for eiθ(τ), but these choices lead to at most two non-isomorphic
extensions by Proposition 3.8.5, corresponding to the choices θ(τ) ≡ 0 mod π
and θ(τ) ≡ π

2
mod π, respectively. Then Proposition 3.8 leads to the list of all

elements of P̃s(B)χ̃ given in the statement above. Finally, we want to identify

the two groups P̃s(B)χ̃ defined in this way in the database [29]. We know by 2

that Ps(B) is isomorphic to D4 and we know by Proposition 3.8.2 that P̃s(B)χ̃ is

a non-split stem extension of Ps(B) by two elements. According to [29], there are

only three possibilities for P̃s(B)χ̃, namely the groups D8, SD16 and Q16. These
groups have different numbers of elements of order two. Since we have already

computed all the elements of the groups P̃s(B)χ̃, we can easily obtain the orders
of these elements and then deduce the following group isomorphisms:

P̃s(B)χ̃ ≃

{
D8 if θ(τ) ≡ 0 mod π

SD16 if θ(τ) ≡ π
2

mod π.
(56)

□

Remark 4.3 (related to Remark 3.9). The result obtained in (56) proves that in general,
we cannot obtain all the non-split stem extensions of Ps(B) by two elements with all
possible choices of {γ(σ), σ ∈ O(Q)} satisfying (32) and (33). In fact, the number
of central extensions of Ps(B) ≃ D4 by two elements can be found with the universal
coefficient theorem, which provides the following short split exact sequence:

0 → Ext1Z(H1(D4,Z),Z/2Z) → H2(D4,Z/2Z) → HomZ(H2(D4,Z),Z/2Z) → 0.

The Schur multiplier of D4 is H2(D4,Z) = Z/2Z (see [17, p. 278]). Moreover, H1(D4,Z) ≃
D4 /[D4,D4] ≃ (Z/2Z)2, and thus Ext1Z(H1(D4,Z),Z/2Z) = Ext1Z((Z/2Z)2,Z/2Z) =
(Z/2Z)2. Hence |H2(D4,Z/2Z)| = 8, which means that there are eight non-isomorphic
extensions of Ps(B) ≃ D4 by two elements. The database [29] gives six possible groups
associated to these extensions, three of them being associated to non-split stem exten-
sions: D8, SD16 and Q16. However, by (56), there is no choice of {γ(σ), σ ∈ O(Q)} which

enables us to obtain a group P̃s(B)χ̃ which is isomorphic to the generalised quaternionic
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group Q16. Nevertheless, P̃s(B)χ̃ contains a copy of the Heisenberg group H(B), which is
isomorphic to D4 in this example, and Q16 does not contain D4. Therefore, we obtain in

fact all the possible groups P̃s(B)χ̃ associated to non-split stem extensions of Ps(B) by

two elements which contain the Heisenberg group H(B). Moreover, (56) shows also that
3.8.5 is an equivalence in this case.

Remark 4.4. We give a short proof of the fact that the extension defined by the pseudo-
symplectic group splits when dim(W ) = 2 and F = F2; see Proposition 1.10. Recall that
Ps(B) defines a short exact sequence:

0 → Qa(W )
Φ−→ Ps(B)

Ψ−→ O(Q) → 1

where Φ : fz = ⟨z, ·⟩ 7→ (1, fz) and Ψ : (σ, f) 7→ σ. Recall also that we defined a section

σ 7→ fσ of Ψ̃ in Proposition 1.11. If we consider the basis B = {(1, 0), (0, 1)} of W , then
for every σ ∈ O(Q) and (x, y) ∈ W ,

fσ(x, y) =


0 if σ = 1

xy if σ = τ =

(
0 1

1 0

)
.

Hence

(f1 + f1 ◦ 1)(x, y) = 0 = f1·1

(f1 + fτ ◦ 1)(x, y) = xy = fτ ·1

(fτ + f1 ◦ σ1)(x, y) = xy = f1·τ

(fτ + fτ ◦ τ)(x, y) = xy + yx = 0 = fτ2 = f1.

This shows that σ 7→ fσ is a group homomorphism, which implies that the extension
splits. This proof can also be easily adapted to the case of a F-vector space of dimension
2, where F is an arbitrary finite field of characteristic two.

4.2. The case Arf(Q) = 1. In this part, we suppose that the bilinear form B is such that
Q has Arf invariant 1, or equivalently (Witt) index 0. In particular, we can consider the
bilinear form B given by B(w1, w2) = x1y2+x1x2+y1y2 for all wi = xi+yi ∈ W , i ∈ {1, 2}.

Thus the matrix of B in the basis {(1, 0), (0, 1)} of W is

(
1 1
0 1

)
and Q(w) = xy+x2+y2

for all w = x+y ∈ W . In this case, H(B) is the set of elements (x, y, t) ∈ F3
2 with product

(x1, y1, t1)(x2, y2, t2) = (x1 + x2, y1 + y2, t1 + t2 + x1y2 + x1x2 + y1y2).

In particular, H(B) is isomorphic to the quaternionic group

Q8 = ⟨a, b | a4 = 1, b2 = a2, bab−1 = a−1⟩,
where for example a = (1, 0, 0) and b = (0, 1, 0).
We need to fix an extension χ̃ of the unique non-trivial character χ of F2 to X × F2.

This extension is entirely determined by χ̃(1, 0, 0), which can take the values ±i since
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B((1, 0), (1, 0)) = 1 (cf. Lemma 2.1). Set

ξ̃ = χ̃(1, 0, 0) ∈ {±i}. (57)

As in the previous subsection, we compute first the groups O(Q) and Ps(B). Then we
consider all the possible choices of {γ(σ) satisfying (32) and (33), σ ∈ O(Q)} in order to
obtain all the possible two-fold coverings

1 −→ µ2(C)
Φ̃−→ P̃s(B)χ̃

Ψ̃−→ Ps(B) −→ 1

defined in Proposition 3.8.2. As in Proposition 4.2, we will find in (62) two different
coverings up to isomorphism.

Let v ∈ W . We denote by σv the transvection in Sp(W ) defined by σv(w) = w+⟨w, v⟩v,
for every w ∈ W .

Proposition 4.5. 1. The orthogonal group is O(Q) = GL2(F2) = SL2(F2), i.e.

O(Q) =

{(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 1
1 1

)
,

(
1 0
1 1

)
,

(
1 1
0 1

)
,

(
1 1
1 0

)}
.

In particular, this is the only case for which O(Q) = Sp(W ) (cf Proposition 1.12).
2. The pseudo-symplectic group is

Ps(B) =



((
1 0
0 1

)
, 0

)
,

((
1 0
0 1

)
, x

)
,

((
1 0
0 1

)
, y

)
,

((
1 0
0 1

)
, x+ y

)
,((

0 1
1 0

)
, xy

)
,

((
0 1
1 0

)
, xy + x

)
,

((
0 1
1 0

)
, xy + y

)
,

((
0 1
1 0

)
, xy + x+ y

)
,((

0 1
1 1

)
, 0

)
,

((
0 1
1 1

)
, x

)
,

((
0 1
1 1

)
, y

)
,

((
0 1
1 1

)
, x+ y

)
,((

1 0
1 1

)
, xy

)
,

((
1 0
1 1

)
, xy + x

)
,

((
1 0
1 1

)
, xy + y

)
,

((
1 0
1 1

)
, xy + x+ y

)
,((

1 1
0 1

)
, xy

)
,

((
1 1
0 1

)
, xy + x

)
,

((
1 1
0 1

)
, xy + y

)
,

((
1 1
0 1

)
, xy + x+ y

)
,((

1 1
1 0

)
, 0

)
,

((
1 1
1 0

)
, x

)
,

((
1 1
1 0

)
, y

)
,

((
1 1
1 0

)
, x+ y

)



.

In particular, Ps(B) is isomorphic to the symmetric group

S4 = ⟨ a, b, c, d | a2 = b2 = c3 = d2 = 1, cac−1 = dad = ab = ba, cbc−1 = a, bd = db, dcd = c−1⟩,

an isomorphism being for example given by a = (1, x), b = (1, y), c =

((
0 1
1 1

)
, 0

)
and d =

((
1 1
0 1

)
, xy + x+ y

)
.
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3. The different choices of {γ(σ) = 2−
dim I(σ)

2 eiθ(σ), σ ∈ O(Q)} satisfying (32) and (33)
lead to two non-isomorphic pseudo-symplectic extensions

1 −→ µ2(C)
Ψ̃−→ P̃s(B)χ̃

Ψ̃−→ Ps(B) −→ 1.

More precisely,
• If θ(σ(1,0)) ≡ 0 mod π then the pseudo-symplectic covering is

P̃s(B)χ̃ = {(s, (−1)lωχ̃(s)), s ∈ Ps(B), l ∈ Z},

where the set of operators (−1)lωχ̃(s) is given by (in the same order as the

elements of Ps(B) above, and where ξ̃ is as in (57)):

(−1)l
(
1 0
0 1

)
, (−1)l

(
0 −1
1 0

)
, (−1)l

(
ξ̃ 0

0 −ξ̃

)
, (−1)l

(
0 ξ̃

ξ̃ 0

)
,

(−1)l√
2

(
ξ̃ −1

1 −ξ̃

)
,
(−1)l√

2

(
1 ξ̃

ξ̃ 1

)
,
(−1)l√

2

(
1 −ξ̃

−ξ̃ 1

)
,
(−1)l√

2

(
ξ̃ 1

−1 −ξ̃

)
,

(−1)l

2

(
1− ξ̃ 1− ξ̃

−1− ξ̃ 1 + ξ̃

)
,
(−1)l

2

(
1− ξ̃ −1 + ξ̃

1 + ξ̃ 1 + ξ̃

)
,
(−1)l

2

(
1 + ξ̃ −1− ξ̃

1− ξ̃ 1− ξ̃

)
,
(−1)l

2

(
1 + ξ̃ 1 + ξ̃

−1 + ξ̃ 1− ξ̃

)
,

(−1)l√
2

(
1 −1
1 1

)
,
(−1)l√

2

(
1 1
−1 1

)
,
(−1)lξ̃√

2

(
1 1
1 −1

)
,
(−1)lξ̃√

2

(
1 −1
−1 −1

)
,

(−1)l√
2

(
1− ξ̃ 0

0 1 + ξ̃

)
,
(−1)l√

2

(
0 −1− ξ̃

1− ξ̃ 0

)
,
(−1)l√

2

(
1 + ξ̃ 0

0 1− ξ̃

)
,
(−1)l√

2

(
0 −1 + ξ̃

1 + ξ̃ 0

)
,

(−1)l

2

(
1 + ξ̃ −1 + ξ̃

1 + ξ̃ 1− ξ̃

)
,
(−1)l

2

(
1− ξ̃ 1 + ξ̃

−1 + ξ̃ 1 + ξ̃

)
,
(−1)l

2

(
1− ξ̃ −1− ξ̃

1− ξ̃ 1 + ξ̃

)
,
(−1)l

2

(
1 + ξ̃ 1− ξ̃

−1− ξ̃ 1− ξ̃

)



.

In particular, P̃s(B)χ̃ is isomorphic to the conformal special unitary group

CSU2(F3) = ⟨a, b, c, d | a4 = c3 = 1, b2 = d2 = a2, bab−1 = dbd−1 = a−1, cac−1 = ab,

dad−1 = a2b, cbc−1 = a, dcd−1 = c−1⟩,

an isomorphism being given for example by

a =

(
(1, x),

(
0 −1
1 0

))
, b =

(
(1, y),

(
i 0
0 −i

))
,

c =

(((
0 1
1 1

)
, (x+ y)δ−i(ξ̃)

)
,−1

2

(
1− i 1− i
−1− i 1 + i

))
and

d =

(((
0 1
1 0

)
, xy + (x+ y)δi(ξ̃)

)
,
1√
2

(
i 1
−1 −i

))
.
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• If θ(σ(1,0)) ≡ π
2

mod π then the pseudo-symplectic covering is

P̃s(B)χ̃ = {(s, (−1)lωχ̃(s)), s ∈ Ps(B), l ∈ Z},

where the set of operators (−1)lωχ̃(s) is exactly as the previous one, only

replacing every factor (−1)l√
2

by (−1)li√
2
. In particular, P̃s(B)χ̃ is isomorphic to

the general linear group

GL2(F3) = ⟨a, b, c, d |a4 = c3 = d2 = 1, b2 = a2, bab−1 = dbd = a−1, cac−1 = ab,

dad = a2b, cbc−1 = a, dcd = c−1⟩,

an isomorphism being given for example by

a =

(
(1, x),

(
0 −1
1 0

))
, b =

(
(1, y),

(
i 0
0 −i

))
,

c =

(((
0 1
1 1

)
, (x+ y)δ−i(ξ̃)

)
,−1

2

(
1− i 1− i
−1− i 1 + i

))
and

d =

(((
0 1
1 0

)
, xy + (x+ y)δi(ξ̃)

)
,
i√
2

(
i 1
−1 −i

))
.

Proof. 1. σ is orthogonal if and only if
(
x y

)
σT
(
1 1
0 1

)
σ

(
x
y

)
=
(
x y

)(1 1
0 1

)(
x
y

)
for all x, y ∈ F2.

2. According to Proposition 1.11, the elements of Ps(B) are given by (σ, fσ + f),

where σ ∈ O(Q) and f ∈ Qa(W ). This gives fσ = 0 if σ ∈
{
I2,

(
0 1
1 1

)
,

(
1 1
1 0

)}
and fσ(x, y) = xy if σ ∈

{(
0 1
1 0

)
,

(
1 0
1 1

)
,

(
1 1
0 1

)}
. Proposition 4.1 gives all

the 24 elements of Ps(B) listed in the statement above.
3. Before computing the operators ωχ̃(s, ws) for every s ∈ Ps(B) with the formula

(25), we are going to study the different possibilities for the choices of {γ(σ) =

2−
dim I(σ)

2 eiθ(σ), σ ∈ O(Q)} satisfying (32) and (33). Let v ∈ W and let σv be the
transvection in Sp(W ) defined by σv(w) = w + ⟨w, v⟩v, for every w ∈ W . Then
the group O(Q) = Sp(W ) is given by

Sp(W ) =

{
σ(0,0) =

(
1 0
0 1

)
, σ(1,1) =

(
0 1
1 0

)
, σ(1,0)σ(0,1) =

(
0 1
1 1

)
, σ(0,1) =

(
1 0
1 1

)
,

σ(1,0) =

(
1 1
0 1

)
, σ(0,1)σ(1,0) =

(
1 1
1 0

)}
.

By (32), θ(σ(0,0)) ≡ 0 mod 2π. Moreover, σ2
(1,0) = σ2

(0,1) = σ2
(1,1) = 1, so by (33),

θ(σv) ≡ 0 mod
π

2
for every v ̸= 0. (58)
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Observe now that σ(1,0)σ(0,1) = σ(0,1)σ(1,1) = σ(1,1)σ(1,0). By (33), this implies that

θ(σ(1,0)σ(0,1)) ≡


θ(σ(1,0)) + θ(σ(0,1)) mod π

θ(σ(0,1)) + θ(σ(1,1)) mod π

θ(σ(1,1)) + θ(σ(1,0)) mod π.

Hence

θ(σ(1,0)) ≡ θ(σ(0,1)) ≡ θ(σ(1,1)) mod π. (59)

Now by (58) and (59), there are two possibilities:
• If θ(σ(1,0)) ≡ 0 mod π then by (59), θ(σ(0,1)) ≡ θ(σ(1,1)) ≡ 0 mod π. By
(33), we also have θ(σ(1,0)σ(0,1)) ≡ 0 mod π and θ(σ(0,1)σ(1,0)) ≡ 0 mod π.
Finally, this proves that

θ(σ) ≡ 0 mod π for every σ ∈ Sp(W ). (60)

In particular, by Proposition 3.8.5, any other choice {γ′(σ) = 2−
dim I(σ)

2 eiθ
′(σ), σ ∈

Sp(W )} satisfying (32),(33) and such that θ′(σ(1,0)) ≡ 0 mod π, will lead to
an extension which is isomorphic to this one.

• If θ(σ(1,0)) ≡ π
2

mod π then by (59), θ(σ(0,1)) ≡ θ(σ(1,1)) ≡ π
2

mod π. By
(33), we have θ(σ(1,0)σ(0,1)) ≡ 0 mod π and θ(σ(0,1)σ(1,0)) ≡ 0 mod π. In

particular, by Proposition 3.8.5, any other choice {γ′(σ) = 2−
dim I(σ)

2 eiθ
′(σ), σ ∈

Sp(W )} satisfying (32),(33) and such that θ′(σ(1,0)) ≡ π
2

mod π, will lead to
an extension which is isomorphic to this one.

This shows that, up to isomorphism, the different choices {γ(σ) = 2−
dim I(σ)

2 eiθ(σ), σ ∈
Sp(W )} satisfying (32) and (33) lead to at most two pseudo-symplectic extensions.
Now, we can compute explicitly the operator ωχ̃(s, ws) for every s ∈ Ps(B) with
Proposition 3.2:

ωχ̃(s, ws) = γ(σ)
∑
u∈I(σ)

χ(f(w) + ⟨ws, w⟩+B(u,w + ws))ρχ̃(u+ ws), (61)

where w ∈ W is any element such that u = (1−σ)(w), and γ(σ) satisfies (32) and

(33). We give the details of the computations only for s =

(
σ(1,0)σ(0,1) =

(
0 1
1 1

)
, 0

)
,

the other ones being obtained in a similar way. First we make a choice of ws sat-

isfying (24) (the isomorphism class of the extension defined by P̃s(B)χ̃ does not

depend on this choice according to Proposition 3.8). Here we have K(σ(1,0)σ(0,1)) =

Ker

(
1 1
1 0

)
= {0}, so any ws ∈ W satisfies (24), and we can choose for example
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ws = 0. By (61),

ωχ̃(s, 0) = γ(σ(1,0)σ(0,1))
∑
u∈I(σ)

χ(B(u,w))ρχ̃(u)

=
eiθ(σ(1,0)σ(0,1))

2
(ρχ̃(0) + χ(B((1, 0), (0, 1))ρχ̃(1, 0) + χ(B((0, 1), (1, 1))ρχ̃(0, 1)

+ χ(B((1, 1), (1, 0))ρχ̃(1, 1))

=
eiθ(σ(1,0)σ(0,1))

2
(ρχ̃(0)− ρχ̃(1, 0)− ρχ̃(0, 1)− ρχ̃(1, 1))

=
eiθ(σ(1,0)σ(0,1))

2

((
1 0
0 1

)
−

(
ξ̃ 0

0 −ξ̃

)
−
(
0 −1
1 0

)
−

(
0 ξ̃

ξ̃ 0

))
,

i.e.

ωχ̃(s, 0) =
eiθ(σ(1,0)σ(0,1))

2

(
1− ξ̃ 1− ξ̃

−1− ξ̃ 1 + ξ̃

)
,

where eiθ(σ(1,0)σ(0,1)) = ±1 since θ(σ(1,0)σ(0,1)) ≡ 0 mod π for any choice of θ(σ(1,0)).

This enables us to establish the two lists of elements of the groups P̃s(B)χ̃ given in
the above statement. Now, it only remains to identify the groups and extensions

defined by the two possible choices of θ(σ(1,0)). We know that P̃s(B)χ̃ is a non-split

stem central extension of Ps(B) ≃ S4 by two elements. Hence, by [29], P̃s(B)χ̃ is

isomorphic to one of the following groups: CSU2(F3) or GL2(F3). These groups
having different numbers of elements of order two, we can immediately deduce
from the lists of elements given above the following group isomorphisms:

P̃s(B)χ̃ ≃

{
CSU2(F3) if θ(σ(1,0)) ≡ 0 mod π

GL2(F3) if θ(σ(1,0)) ≡ π
2

mod π.
(62)

□

Remark 4.6 (related to Remarks 3.9 and 4.3). The result obtained in (62) proves that
in this case, we obtain all the non-split stem extensions of Ps(B) by two elements with
all possible choices of {γ(σ), σ ∈ O(Q)}. In fact, the number of central extensions of
Ps(B) ≃ S4 by two elements can be found with the universal coefficient theorem, which
provides the following short split exact sequence:

0 → Ext1Z(H1(S4,Z),Z/2Z) → H2(S4,Z/2Z) → HomZ(H2(S4,Z),Z/2Z) → 0.

The Schur multiplier of S4 is H2(S4,Z) = Z/2Z (see [17, p. 279]). Moreover, H1(S4,Z) ≃
S4 /[S4, S4] = S4 /A4 ≃ Z/2Z, and thus Ext1Z(H1(S4,Z),Z/2Z) = Ext1Z(Z/2Z,Z/2Z) =
Z/2Z. Hence |H2(S4,Z/2Z)| = 4, which means that there are four non-isomorphic exten-
sions of Ps(B) ≃ S4 by two elements. The database [29] gives exactly four possible asso-
ciated groups, only two of them being associated to non-split stem extensions: CSU2(F3)
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and GL2(F3). Moreover, P̃s(B)χ̃ contains a copy of the Heisenberg group H(B), which is

isomorphic to Q8 in this example, and the groups CSU2(F3) and GL2(F3) are also the only
ones containing Q8 among the central extensions of S4 by two elements. Therefore, in this

case, we obtain all the possible groups P̃s(B)χ̃ associated to non-split stem extensions of

Ps(B) by two elements, and this set of extensions coincides with the extensions of Ps(B)
by two elements which contain the Heisenberg group H(B). Moreover, (62) shows also
that Proposition 3.8.5 is an equivalence in this case.

Recall from Proposition 1.12 that O(Q) ⊆ Sp(W ). The case dimF2(W ) = 2 and
Arf(Q) = 1 is the only one when O(Q) = Sp(W ). The fact that O(Q) = Sp(W ) im-
plies that the pseudo-symplectic covering, hence the Weil representation, is here directly
related to the entire symplectic group.

Appendix A. Extraspecial 2-groups

Let p be a prime number. Unless otherwise stated, all the groups in the following are
supposed to be finite. We denote by Φ(G) the Frattini subgroup of a finite group G,
which is the intersection of all (proper) maximal subgroups of G. The aim of this section
is to describe the structure of extraspecial 2-groups in order to prove Proposition 1.5.

Definition A.1. Let G be a p-group. Then G is said to be extraspecial if Φ(G) has order
p and Φ(G) = [G,G] = Z(G).

Remark A.2. This definition of extraspecial group is given for instance in [9], [14] and
[19]. Glasby uses in [8] another definition: G is extraspecial if it is a p-group such that
[G,G] = Z(G) has order p and G/Z(G) is elementary abelian (i.e. all elements different
from the trivial one have the same order). These definitions are equivalent. In fact, let
G be a p-group. Suppose that [G,G] = Z(G) has order p and G/Z(G) is elementary
abelian. Then Z(G) = [G,G]∩Z(G) ⊆ Φ(G) by [14, III.3.12]. Since Φ(G) is the smallest
normal subgroup N of G such that G/N is elementary abelian (cf. [14, III.3.14.a)]), one
has Φ(G) ⊆ Z(G), and thus Φ(G) = Z(G). Conversely, if G satisfies Definition A.1 then
G/Z(G) = G/Φ(G) and G/Φ(G) is elementary abelian, again by [14, III.3.14.a)] .

In order to understand the structure of extraspecial groups, we first need to recall the
central product of two groups.

Definition A.3. (cf. [19, 2.2.6])

• A group G is the internal central product of two subgroups H and K if [H,K] = 1,
G = HK and H ∩K = Z(G).

• A group G is the external central product of two groups H and K if there exists
an isomorphism θ : Z(H) → Z(K) such that G = (H ×K)/N , where

N = {(h, k) ∈ Z(H)× Z(K) | θ(h) = k−1}.

We shall denote G by H ◦θ K.
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Notation A.4. The structure of a central product H ◦θ K defined in Definition A.3
depends on the isomorphism θ, i.e. on the way to identify the elements of the center of
H with the elements of the center of K. If θ is implicit for the groups H and K which
are studied, or if θ is unique, then we simply denote the central product of H and K by
G = H ◦ K. We point out that constructing the central product of a finite number of
groups is a commutative and associative operation.

From now on, unless otherwise stated, since we are only interested in 2-groups, we
suppose that p = 2. However, the reader interested in p odd can find the results and
proofs for general p in [14, III], [9, Chapter 5], [25, Chapter 4, 4] and [19, 2.2]. Now, we
include the proof of a crucial result for the study of extraspecial 2-groups, which shows in
particular that the decomposition of a central product of two groups is not unique. We
recall the presentations of the dihedral and quaternionic groups of order eight:

D4 = ⟨a, b | a4 = b2 = 1, bab−1 = a−1⟩
Q8 = ⟨x, y | x4 = 1, y2 = x2, yxy−1 = x−1⟩.

Lemma A.5. The central products D4 ◦D4 and Q8 ◦Q8 are isomorphic.

Proof. Since the centers of D4 and Q8 contain only two elements, there is only one way
to identify them and Notation A.4 applies. In particular there is no need to mention
θ. Define two copies of Q8 as G1 = ⟨x1, y1 | x41 = 1, y21 = x21, y1x1y

−1
1 = x−1

1 ⟩ and G2 =
⟨x2, y2 | x42 = 1, y22 = x22, y2x2y

−1
2 = x−1

2 ⟩. The central product of these groups is written

G1 ◦G2 = ⟨x1, y1, x2, y2 | y21 = x21 = y22 = x22 = z, z2 = 1, y1x1y
−1
1 = x−1

1 , y2x2y
−1
2 = x−1

2 ,

x1x2x
−1
1 = x2, x1y2x

−1
1 = y2, y1x2y

−1
1 = x2, y1y2y

−1
1 = y2⟩,

where we identify the centers Z(Gi) = ⟨x2i = y2i ⟩ and the last four equalities come from
the fact that G1 centralizes G2 in the central product. In a similar way, if we set A1 =
⟨a1, b1 | a41 = b21 = 1, b1a1b

−1
1 = a−1

1 ⟩ and A2 = ⟨a2, b2 | a42 = b22 = 1, b2a2b
−1
2 = a−1

2 ⟩, then
A1 and A2 are two copies of D4 and their central product is written

A1 ◦ A2 = ⟨a1, b1, a2, b2 | a21 = a22 = u, u2 = b21 = b22 = 1, b1a1b
−1
1 = a−1

1 , b2a2b
−1
2 = a−1

2 ,

a1a2a
−1
1 = a2, a1b2a

−1
1 = b2, b1a2b

−1
1 = a2, b1b2b

−1
1 = b2⟩.

Now set H1 = ⟨x1, y1x2⟩ ⊆ G1 ◦ G2 and H2 = ⟨x2, y2x1⟩ ⊆ G1 ◦ G2. Then (y1x2)
2 =

y21x
2
2 = y41 = 1 and (y1x2)x1(y1x2)

−1 = y1x2x1y1x2 = y1x1y1x
2
2 = x−1

1 y21x
2
2 = x−1

1 . This
shows that H1 ≃ D4, and similar computations show that H2 ≃ D4. Moreover, H1

centralizes H2 because G1 centralizes G2. Let ϕ : A1 ◦ A2 → G1 ◦ G2 be defined by
ϕ(a1) = x1, ϕ(b1) = y1x2, ϕ(a2) = x2 and ϕ(b2) = y2x1. Then ϕ can be extended to a
group homomorphism in the natural way. Moreover, ϕ is surjective because x1 = ϕ(a1),
y1 = ϕ(b1a

−1
2 ), x2 = ϕ(a2) and y2 = ϕ(b2a

−1
1 ). Since A1 ◦ A2 and G1 ◦ G2 have the same

number of elements, this is enough to conclude that these two groups are isomorphic. □

The next technical result will be needed to give a symplectic structure to extraspecial
groups and relate them to the Heisenberg groups defined in section 1.
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Lemma A.6. Let G be an extraspecial p-group, with p prime. Then:

1. G is nilpotent of step 2.
2. The exponent of G is either p or p2, and more precisely it equals 4 if p = 2.
3. G/Z(G) can be identified with a finite-dimensional Fp-vector space. More pre-

cisely, G/Z(G) can be endowed with a symplectic vector space structure by defin-
ing the non-degenerate symplectic form ⟨xZ(G), yZ(G)⟩ = l, where Z(G) = ⟨z⟩
and [x, y] = zl, 0 ≤ l ≤ p− 1.

4. Let n ≥ 1 such that |G| = p2n+1. Then every maximal abelian normal subgroup
of G has order pn+1.

Proof. 1. The lower central series of G is G▷ [G,G] ▷ 1 because G is non-abelian and
[[G,G], G] = [Z(G), G] = 1.

2. For all x and y in G, 1 = [x, y]p = [xp, y] by [14, III.1.3] and the fact that

[G,G] = Z(G) has order p. Hence xp ∈ Z(G) and thus xp
2
= 1 because Z(G) has

order p. This shows that the exponent of G is either p or p2. If we suppose that
p = 2 and G has exponent 2 then G should be abelian since every element has
order two. This is impossible by definition of an extraspecial group, hence G has
exponent p2 = 4.

3. Remark A.2 implies that G/Z(G) is elementary abelian. Since G/Z(G) is also a p-
group, it follows from the fundamental theorem of abelian groups that there exists
m ≥ 1 such that G/Z(G) ≃ (Z/pZ)m, if we use an additive notation for G/Z(G).
Thus there exists a generating set {x1, . . . , xm} of G/Z(G), i.e. for all x ∈ G/Z(G)
there exists λi ∈ {0, . . . , p − 1} such that x =

∑
1≤i≤m

λixi. Since every element of

G/Z(G) is of order p, we can consider the λi as elements of Fp = {0, . . . , p − 1}.
For λ ∈ Fp, define λ · x =

∑
1≤i≤m

λλixi. In this way, G/Z(G) becomes an Fp-vector

space of dimension m with basis {x1, . . . , xm}.
Now let x and y be in G. Since [G,G] = Z(G) is cyclic of order p, there exists

z ∈ G such that [G,G] = Z(G) = ⟨z⟩. Hence there exists a unique element
0 ≤ l ≤ p− 1 such that [x, y] = zl, i.e. ⟨·, ·⟩ is well defined. Now let 0 ≤ k ≤ p− 1
and x, y, u be in G such that [x, y] = zl1 and [u, y] = zl2 . Then:

• [x, x] = 1 and [y, x] = [x, y]−1. Hence ⟨xZ(G), xZ(G)⟩ = 0 and ⟨yZ(G), xZ(G)⟩ =
−l1 = −⟨xZ(G), yZ(G)⟩.

• [xu, y] = xuyu−1x−1y−1 = x[u, y]yx−1y−1 = [x, y][u, y] because [G,G] ⊆
Z(G). This implies that [xuk, y] = [x, y][u, y]k. Hence ⟨xZ(G)(uZ(G))k, yZ(G)⟩ =
⟨xukZ(G), yZ(G)⟩ = l1 + kl2 = ⟨xZ(G), yZ(G)⟩+ k⟨uZ(G), yZ(G)⟩.

• Suppose that ⟨xZ(G), vZ(G)⟩ = 0 for all v ∈ G, then [x, v] = 1 for all v ∈ G,
i.e. x ∈ Z(G).

This shows that ⟨·, ·⟩ is an anti-symmetric, alternating and non-degenerate bilinear
form on G/Z(G), i.e. (G/Z(G), ⟨·, ·⟩) is a symplectic vector space. In particular,
the dimension of G/Z(G) is even.

4. The existence of n ≥ 1 such that |G| = p2n+1 has been established in 3. Let
A be a maximal abelian normal subgroup of G. Then A contains the center of
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G. There is a bijective correspondence between subgroups of G containing Z(G)
and subgroups of G/Z(G), and G/Z(G) is identified with a symplectic vector
space. Therefore A/Z(G) is a vector subspace of G/Z(G) of maximal dimension,
which satisfies ⟨a1Z(G), a2Z(G)⟩ = 0 for all a1, a2 ∈ A. In other terms, A/Z(G)
is a maximal isotropic subspace of G/Z(G) and hence of dimension n. Then
|A| = |A/Z(G)||Z(G)| = pnp = pn+1.

□

Lemma A.7. (cf. [9, Chapter 5, Lemma 4.6]) Let G be a p-group and H be an extraspe-
cial p-group, with p prime.

(1) Every automorphism of H acting trivially on H/Z(H) is an inner automorphism
of H.

(2) If H is a subgroup of G such that [G,H] ⊆ Z(H) then G = H ◦ CG(H).

Lemma A.8. (cf. [9, Chapter 5, Theorem 5.1]) Let G be a non-abelian group of order
23. Then G is extraspecial and more precisely G is isomorphic to either D4 or Q8.

Now we come to the central result of this section: up to isomorphism, there are exactly
two distinct extraspecial 2-groups of the same order and they can be described as central
products of extraspecial groups of order 23.

Proposition A.9. (cf. [9, Chapter 5, Theorem 5.2]) Let G be an extraspecial 2-group.
Then there exists n ≥ 1 such that |G| = 22n+1 and G is isomorphic to either the central
product of n copies of the dihedral group D4 (which we denote by D◦n

4 or 21+2n
+ ) or the

central product of n − 1 copies of D4 and one copy of the quaternionic group Q8 (which

we denote by Q8 ◦D
◦(n−1)
4 or 21+2n

− ).

The last step before proving Proposition 1.5 is to exhibit the link between extraspecial
2-groups and the Heisenberg group H(B) introduced in Definition 1.1, where the form

⟨·, ·⟩ : (w1, w2) 7→ B(w1, w2)−B(w2, w1)

is non-degenerate and F = F2. Recall that this endows W with a symplectic vector space
structure (W, ⟨·, ·⟩) of dimension 2n over F2. A priori the group H(B) depends on the
bilinear form chosen to define it, and there are many such bilinear forms. However, as we
are going to prove in Proposition A.11, this group is very particular: H(B) is in fact an
extraspecial group of order 22n+1. This implies that, in spite of the multiple possibilities
for B, there are up to isomorphism only two different groups H(B), corresponding to
the two non-equivalent quadratic forms from W to F2. Recall from the paragraph after
Remark 1.3 the index ν(Q) and the Arf invariant Arf(Q) of a quadratic form Q on W .
Then ν(Q) = n corresponds to Arf(Q) = 0, and ν(Q) = n−1 corresponds to Arf(Q) = 1.

Lemma A.10. To every extraspecial group G, we can associate a symplectic structure
over G/Z(G). More precisely, if Z(G) = ⟨z⟩ then we can define a non-degenerate sym-
plectic form ⟨·, ·⟩ and a quadratic form Q associated to ⟨·, ·⟩ by:

⟨xZ(G), yZ(G)⟩ = k, where [x, y] = zk, and Q(xZ(G)) = l, where x2 = zl.

Moreover, if G ≃ 21+2n
+ then ν(Q) = n, whereas if G ≃ 21+2n

− then ν(Q) = n− 1.
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Proof. The fact that (G/Z(G), ⟨·, ·⟩) is a symplectic vector space has already been proven
in Lemma A.6.3. Let x, y ∈ G be such that [x, y] = zk. By Lemma A.6.2, we can also
write x2 = zl1 and y2 = zl2 since x2, y2 ∈ Z(G). Hence Q is well defined. In addition:

(xy)2 = xyxy = [x, y]yx2y = x2y2[x, y] = zl1+l2+k,

which shows that Q(xZ(G)yZ(G)) − Q(xZ(G)) − Q(yZ(G)) = k = ⟨xZ(G), yZ(G)⟩,
i.e. (xZ(G), yZ(G)) 7→ Q(xZ(G)yZ(G))−Q(xZ(G))−Q(yZ(G)) is bilinear. Thus Q is
quadratic.

Suppose now that G ≃ 21+2n
+ = D◦n

4 , with presentation

G = ⟨a1, . . . , an, b1, . . . , bn | a4i = b2i = 1, biaib
−1
i = a−1

i , a2i = a2j ,

[ai, aj] = [ai, bj] = [bi, bj] = 1 for i ̸= j⟩.

Then every element x of G can be written as a product x = ak11 b
l1
1 · · · aknn blnn , where

0 ≤ ki ≤ 3 and 0 ≤ li ≤ 1. This enables us to compute the expression of Q(xZ(G)).
First, let 1 ≤ i ≤ n. If we do not distinguish between 0 ≤ ki ≤ 3 and its projection in
Z/2Z, and if we use that [akii , b

li
i ] = [ai, bi]

kili (proven in Lemma A.6.3), then:

Q(akii Z(G)b
li
i Z(G)) = Q(akii Z(G)) +Q(blii Z(G)) + ⟨akii Z(G), b

li
i Z(G)⟩ = ki + kili.

Hence, since two copies of D4 commute in the central product, we have by induction that

Q(xZ(G)) =
n∑
i=1

Q(akii Z(G)b
li
i Z(G)) =

n∑
i=1

(ki + kili).

Applying the transformation (ki, li) 7→ (ki, ki + li), we modify Q(xZ(G)) into
n∑
i=1

kili,

which implies that Q has index n.

Finally we suppose that G ≃ 21+2n
− = Q8 ◦D

◦(n−1)
4 , with presentation

G = ⟨x1, y1, a2 . . . , an, b2 . . . , bn | x41 = 1, y1x1y
−1
1 = x−1, a4i = b2i = 1, biaib

−1
i = a−1

i ,

x21 = y21 = a2i = a2j , [ai, aj] = [ai, bj] = [bi, bj] = 1 for i ̸= j⟩.

Then every element x of G can be written as a product x = xk11 y
l1
1 a

k2
2 b

l2
2 · · · aknn blnn , where

0 ≤ ki ≤ 3 for all i, 0 ≤ l1 ≤ 3, and 0 ≤ li ≤ 1 for i ≥ 2. This enables us to compute the
expression of Q(xZ(G)). First, as above, for every 2 ≤ i ≤ n:

Q(akii Z(G)b
li
i Z(G)) = Q(akii Z(G)) +Q(bkii Z(G)) + ⟨akii Z(G), b

li
i Z(G)⟩ = ki + kili,

and similarly,

Q(xk11 Z(G)y
l1
1 Z(G)) = Q(xk11 Z(G)) +Q(yk11 Z(G)) + ⟨xk11 Z(G), yl11 Z(G)⟩ = k1 + l1 + k1l1.

Hence

Q(xZ(G)) = Q(xk11 Z(G)y
l1
1 Z(G))+

n∑
i=2

Q(akii Z(G)b
li
i Z(G)) = k1+ l1+k1l1+

n∑
i=2

(ki+kili).
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Applying the transformation (ki, li) 7→ (ki, ki + li), we modify Q(xZ(G)) into k1 + l1 +
n∑
i=1

kili, which implies that Q has index n− 1. □

Proposition A.11. The Heisenberg group H(B) is extraspecial. In particular, H(B) is
isomorphic to 21+2n

+ if ν(Q) = n, or to 21+2n
− if ν(Q) = n− 1.

Proof. Let h1 = (w1, t1) and h2 = (w2, t2) be in H(B). Then:

[h1, h2] = (w1 + w2, t1 + t2 +B(w1, w2))(−w1 − w2,−t1 − t2 +Q(w1) +Q(w2) +B(w1, w2))

= (0,−Q(w1 + w2) +Q(w1) +Q(w2)) = (0,−⟨w1, w2⟩).
This shows that [H(B),H(B)] ≃ F2, i.e. [H(B),H(B)] has order two and [H(B),H(B)] =
Z(H(B)). Moreover H(B)/Z(H(B)) ≃ W is elementary abelian, since it is isomorphic to
F2n
2 . Therefore we can conclude that H(B) is extraspecial by Remark A.2. In addition,
h2 = (0, Q(w)) for every h = (w, t) ∈ H(B). This implies that the quadratic form
associated to H(B) as an extraspecial group by Lemma A.10 is exactly the quadratic
form Q associated to B. In this way, Lemma A.10 implies that H(B) is isomorphic to
21+2n
+ if ν(Q) = n, or to 21+2n

− if ν(Q) = n− 1. □
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