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A Phoneme-Scale Assessment
of Multichannel Speech
Enhancement Algorithms

Nasser-Eddine Monir , Paul Magron and Romain Serizel

Abstract
In the intricate acoustic landscapes where speech intelligibility is challenged by noise and reverberation, multichannel speech

enhancement emerges as a promising solution for individuals with hearing loss. Such algorithms are commonly evaluated at

the utterance scale. However, this approach overlooks the granular acoustic nuances revealed by phoneme-specific analysis,

potentially obscuring key insights into their performance. This paper presents an in-depth phoneme-scale evaluation of three

state-of-the-art multichannel speech enhancement algorithms. These algorithms—filter-and-sum network, minimum variance

distortionless response, and Tango—are here extensively evaluated across different noise conditions and spatial setups,

employing realistic acoustic simulations with measured room impulse responses, and leveraging diversity offered by multiple

microphones in a binaural hearing setup. The study emphasizes the fine-grained phoneme-scale analysis, revealing that while

some phonemes like plosives are heavily impacted by environmental acoustics and challenging to deal with by the algorithms,

others like nasals and sibilants see substantial improvements after enhancement. These investigations demonstrate important

improvements in phoneme clarity in noisy conditions, with insights that could drive the development of more personalized

and phoneme-aware hearing aid technologies. Additionally, while this study provides extensive data on the physical metrics of

processed speech, these physical metrics do not necessarily imitate human perceptions of speech, and the impact of the find-

ings presented would have to be investigated through listening tests.
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Introduction
Speech within a noisy environment is a complicated scenario
that can substantially diminish the clarity of spoken words.
Background noise can obscure important acoustic cues, chal-
lenging listeners in differentiating individual speech sounds
and words. Speech enhancement is a solution to enhance
speech intelligibility in noisy environments (Loizou, 2007).
This technique estimates the speech signal from the noisy
mixture, by relying on acoustic cues and temporal patterns
inherent to the speech. Speech enhancement algorithms are
broadly categorized into two types: single channel and mul-
tichannel, depending on the number of available micro-
phones to record the sound.

In scenarios where audio is captured through a single
microphone, speech enhancement algorithms concentrate
on temporal, frequency, and spectro-temporal characteristics
to filter out the noise (Loizou, 2007). Such single-channel
speech enhancement is limited to the information captured
by one reference point and often focuses on aspects like
noise variance over time or spectral consistency.

Conversely, multichannel speech enhancement algorithms
harness the power of spatial diversity by exploiting the
various captures of speech across microphones (Benesty
et al., 2008). This multifold capture allows for considering
the spatial characteristics and the directionality of sound.
By comparing the different signal channels obtained at the
microphones, these algorithms offer a more robust recon-
struction of the original speech, effectively mitigating the
masking effects of background noise.

As a subset of multichannel speech enhancement algo-
rithms, beamformers manipulate spatial sound attributes
using microphone arrays (Benesty et al., 2008). Unlike
broader multichannel algorithms that filter or cancel noise,
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beamformers enhance speech intelligibility by precisely
manipulating the spatial attributes of the acoustic signal,
such as sound’s directionality. They amplify speech from a
specific direction while reducing noise and reverberation
from others. This targeted approach is particularly effective
in noisy environments, where it isolates the speaker’s voice
from disruptive background sounds, enhancing speech
clarity and intelligibility.

Current state-of-the-art multichannel speech enhancement
systems are characterized by advanced beamforming algo-
rithms and the integration of neural networks to improve
the intelligibility of speech in noise. The minimum variance
distortionless response (MVDR) beamformer optimizes
noise reduction while preserving the desired speech direc-
tionality (Capon, 1969; Heymann et al., 2016). In hybrid
algorithms, neural networks provide parameters for signal
processing filters. These include the distributed multichannel
Wiener filter (MWF) (Bertrand & Moonen, 2010; Furnon
et al., 2021) and its adaptations like the generalized eigen-
value decomposition MWF (GEVD-MWF) (Serizel et al.,
2014). Alternatively, some algorithms relying entirely on
neural networks have been proposed, such as the
filter-and-sum network (FaSNet) beamformer (Luo et al.,
2019). This model uses neural networks to directly predict
signals rather than the parameters of a spatial filter, which
allows for enhanced flexibility in optimization. These devel-
opments reflect a shift towards sophisticated, binaural pro-
cessing setups where hearing aids on both sides
collaborate, leveraging spatial information to differentiate
speech from noise effectively (Kollmeier & Koch, 1994;
Van den Bogaert et al., 2009).

Usually, speech enhancement algorithms are evaluated at
the utterance scale using objective signal-to-noise ratio
(SNR)-like metrics, which offers a convenient way to quan-
tify their performance at a coarse level and compare algo-
rithms. However, this evaluation process does not capture
the nuanced ways different phonemes interact with noise,
nor the way algorithms process these phonemes, which
potentially simplify their true effectiveness. Studies con-
trasting English phoneme recognition in noise for native
and nonnative speakers reveal this complexity (Adachi
et al., 2006). For instance, Miller and Nicely (1955) indicate
that consonants vary in noise tolerance, suggesting that some
phonemes are more susceptible to noise masking than
others. This variance may significantly affect the perceived
effectiveness of speech enhancement models. Furthermore,
phoneme confusion observed in both human and automatic
speech recognition systems suggests that consonants and
vowels experience a different impact from information loss
due to noise (Meyer et al., 2010; Zaar & Dau, 2017).
Studies have shown that a degraded classification of
voicing can lead to more confusion between voiced and
unvoiced phonemes, such as /p/ and /b/. In contrast, pho-
nemes differing in the place of articulation, like /p/ and /d/,

remain distinguishable (Dubno & Levitt, 1981; Gelfand et al.,
1985). Additionally, different amplification strategies affect
phoneme perception in hearing-impaired listeners (Scheidiger
Christoph, 2017).

Research on phoneme recognition, such as the study by
Meyer et al. (2010), shows that intrinsic speech variations
(e.g., speaking rate, effort, style, and dialect) significantly
affect phoneme recognition in noisy environments. For
instance, Li et al. (2010) showed that the robustness of stop
consonants to noise relies on dominant acoustic features
like bursts and F2 transitions. Woods et al. (2010) investi-
gated consonant identification in consonant–vowel–conso-
nant syllables presented in speech-spectrum noise,
revealing that baseline SNRs required for consonant identifi-
cation vary by more than 40 dB across different consonants.
Furthermore, Phatak and Allen (2007) demonstrated that
consonants can be grouped into three distinct sets based on
their susceptibility to noise masking: low-scoring consonants
such as /f/, /θ/, /v/, /ð/, /b/, and /m/; high-scoring consonants
such as /t/, /s/, /z/, /b/, and /ʧ/; and an intermediate set includ-
ing consonants such as /n/, /p/, /g/, /k/, and /d/. These groups
highlight how different consonants exhibit a varying resil-
ience to noise, with significant implications for the improve-
ment and evaluation of speech enhancement algorithms.

In this paper, we propose evaluating three state-of-the-art
speech enhancement algorithms at the phoneme scale for a
nuanced analysis that aligns with the distinct acoustic proper-
ties of phonetic elements. Such detailed scrutiny can reveal
the specific strengths and weaknesses of algorithms in pre-
serving the fidelity of speech sounds. This approach also
offers valuable insights for the design of future speech
enhancement algorithms, ensuring they are tuned to
enhance phonemic clarity by accounting for the unique
acoustic characteristics of specific phonemes.

The rest of this paper is structured as follows. First, we
provide an overview of multichannel speech enhancement
by setting the problem and detailing the algorithms we use
in our study. Then, the Methodology section delves into
the process of data collection and generation, and notably
highlights the phoneme classification. The next section
describes our extensive experiments and discusses its
results, with a particular emphasis on the phoneme-scale
evaluation. Finally, the last section draws some concluding
remarks.

Overview of Multichannel Speech
Enhancement

Problem Statement and Notations
Consider an acoustic scenario with two punctuate sources
and several distant microphones. One source is the target
speech, while the other is some interfering noise. In the
case of hearing aids, we have M microphones on each
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hearing aid and two hearing aids: one on the left (L) and one
on the right (R). This scenario is illustrated in Figure 1.

We note S and N ∈ RT̃ the time-domain speech and noise
signals, where T̃ denotes the length (in samples) of these
signals. Assuming the signals are band limited, we express
these in the time–frequency domain using the short-time
Fourier transform. The target speech source and interfering
noise are denoted S and N, respectively.1 The contribution
of the speech signal recorded at the mth microphone of the
right (respectively left) hearing aids is denoted SR,m (respec-
tively SL,m). Similarly, NR,m and NL,m denote the interfering
noise contribution at the mth microphone of the right and
left hearing aids, respectively. These signals are referred to
as images of speech (respectively noise) at the microphones.

The noisy mixture signal at the hearing aids is the combi-
nation of the speech and noise images:

Xi,m=Si,m+Ni,m, i ∈ {L, R}.

We denote XR[XR,1, . . . , XR,M] the set of noisy signals at the
right hearing aid, and similarly for XL, and XBin as the set of
all mixture signals. The same notation applies to the target
speech and noise signals.

Speech enhancement encompasses noise reduction
(Loizou, 2007), dereverberation (Naylor & Gaubitch,
2010), or both. Noise reduction aims to estimate the speech
signal at a microphone Si,m given the recorded mixture
Xi i ∈ {L, R, Bin}. Dereverberation aims to estimate the
speech source S from the speech recorded by one or
several microphone Si,m. Estimating the speech source S
from the recorded mixture Xi combines noise reduction and
dereverberation. This paper focuses on noise reduction.

In hearing aid scenarios, there are two possible speech
enhancement setups (Figure 2). In the bilateral setup, there
is no communication between the hearing aids, and each
side is processed independently. Therefore, the input of the
left hearing aid filter is XL, and the input of the right
hearing aid filter is XR. Each hearing aid acts as a compact
microphone array (Benesty et al., 2008).

In the binaural speech enhancement setup (Kollmeier &
Koch, 1994), the hearing aids communicate with each
other, giving each filter access to more diverse information
improving effectiveness in asymmetric scenarios (Van den
Bogaert et al., 2009). This is also known as distributed
microphone arrays (Bertrand & Moonen, 2010). Each
hearing aid filter processes the entire set XBin as input, but
with different ordering XBin,R = [XR, XL] for the right filter
(XBin,L = [XL, XR] for the left one). Each filter uses a differ-
ent reference signal, usually from the ear of interest (a micro-
phone from the left ear is used as a reference for the filter that
will produce the output signal sent to the left ear) (Bronkhorst
& Plomp, 1988). In this paper, we will focus on the binaural
setup and assume perfect signal transmission without any
latency or packet loss, the impact of which has been
studied by Cornelis (2014).

Algorithms
Multichannel filters exploit the spatial information about the
acoustic scene obtained through multiple microphones.
Because of their ability to focus on one direction in space,
these algorithms are commonly referred to as beamformers.
Recently, the use of neural networks in multichannel
speech enhancement algorithms has significantly improved
their performance and applicability in realistic scenarios.

These algorithms can be divided into two categories. On
the one hand, hybrid algorithms combine traditional signal
processing spatial filters (obtained as a solution to an optimi-
zation problem—see below) with neural networks that esti-
mate these filters’ parameters (Carbajal et al., 2020;
Hendriks & Gerkmann, 2011; Heymann et al., 2016;
Nugraha et al., 2016). On the other hand, end-to-end algo-
rithms use neural networks to directly estimate signals or
multichannel filters, optimizing parameters on training sets
(Dowerah et al., 2023; Luo et al., 2019; Tolooshams et al.,
2020).

In this paper, we study the behavior of three different algo-
rithms. The motivation for choosing these is threefold.
Firstly, their source code and trained parameters are available
publicly. Secondly, these algorithms can be applied in a
binaural enhancement setup. Finally, they cover a wide
variety of methodologies among the neural-based multichan-
nel speech enhancement algorithms. The first two algorithms
integrate neural networks within signal processing-based fil-
tering; thus, they belong to the category of hybrid algorithms.
One algorithm is designed principally for compact micro-
phone arrays and relies on a single-channel neural network,
while the other is designed for distributed arrays and relies
on a multichannel neural network. The last algorithm is
fully based on neural networks; thus, it is representative of
the category of end-to-end algorithms.

Minimum Variance Distortionless Beamformer
The MVDR beamformer is a particular spatial filtering tech-
nique, which in general can be expressed as applying a filter
W ∈ C

M to the vector of noisy mixtures X to yield an
enhanced signal via WHX, where H denotes the Hermitian
transpose. More specifically, in MVDR, the goal is to
design a filter that minimizes the noise contribution in the
noisy mixture while the signal coming from the target direc-
tion (here, the target speech) is left unaltered (Capon, 1969).
This can be formulated as solving the following constrained
optimization process:

min
W

||WHNi||2 subject toWHd = 1,

where d ∈ CM is the steering vector. This optimization
problem is usually reformulated as follows:

min
W

WHRNW,

Monir et al. 3



where RN is the correlation matrix of the noise component.
Solving this optimization problem leads to the so-called
MVDR filter:

WMVDR = R−1
N d

dHR−1
N d

.

Instead of estimating the steering vector d and the noise cor-
relation matrix RN , to compute this filter, an alternative is to

estimate the steering vector as the principal component of the
correlation matrix of the speech component RS. Thus, com-
puting the MVDR filter relies solely on estimating the
speech and noise correlation matrices.

Heymann et al. (2016) proposed to estimate these matrices
using time–frequency masks computed with a recurrent
neural network (Heymann et al., 2016). The noisy mixture
is input to the neural networks, which returns a speech

Figure 1. Spatialized acoustic scenarios with two sources: a speech source and a noise source. The acoustic sources are point sources. The

signal Xi,m recorded by each of the microphone is the sum of the reverberated images of these sources Si,m and Ni,m at the hearing aid

microphones.

Figure 2. Speech enhancement setups: bilateral (left) and binaural (right).

4 Trends in Hearing



mask coefficient MS indicating the speech presence in the
mixture in each time–frequency point (Figure 1). The
speech correlation matrix is then obtained as follows:

RS(f ) = 1
T

∑T
t=1

MS(t, f )X(t, f )HX(t, f ). (1)

A similar process is conducted to obtain the noise correlation
component. As a result, the MVDR filter is calculated in each
frequency channel, but it is time independent (Figure 3).

Distributed MWF
The goal of the MWF is to estimate the speech component at
an arbitrary reference microphone Sref (Doclo & Moonen,
2002). This can be formulated as minimizing the mean
squared error:

minW ||WHX− S2
ref
||,

where Sref = dHrefX, and dref is a vector whose entries are
equal to 0, except for the one corresponding to the reference
channel where it is equal to 1. Solving this optimization
problem leads to the MWF formula:

WMWF = R−1
X RSdref .

The computation of the MWF relies on the correlation matri-
ces RX and RS, which can be estimated with neural networks
as for the MVDR.

Variants of the MWF include the speech distortion
weighted MWF for balancing the noise reduction and
speech distortion (Spriet et al., 2004), and the
GEVD-MWF for a more robust filtering in noisy conditions
(Serizel et al., 2014). This latter variant is used in this paper.

Bertrand and Moonen (2010) proposed an algorithm
adapted to microphone arrays. Initially, this algorithm
assumed perfect voice activity detection to estimate the cor-
relation matrices. It was later adapted to use a two-step neural
network-based mask estimation algorithm called Tango
(Furnon et al., 2021).

In the first stage, a mask is obtained for one local channel,
similarly to the MVDR. This mask helps in isolating the
primary speech signal by attenuating the background noise.
Specifically, the mask is estimated by focusing on the
time–frequency representation of the signal, where the
neural network identifies and suppresses the noise compo-
nents while preserving the speech components. In the
second stage, the neural network uses signals from both
ears to jointly estimate the masks, incorporating binaural
cues to refine and enhance the initial mask. This process
involves the neural network analyzing the spatial and spectral
characteristics of the signals from both ears. By leveraging
the interaural time and level differences, the network can
better differentiate between the target speech and background
noise. The binaural integration allows the model to exploit

the spatial separation between the speech and noise
sources, leading to a more precise and robust mask estimation
(Figure 4).

FaSNet Beamformer
The last beamformer that we study in this paper is a beamfor-
mer that relies mainly on neural networks, the so-called
FaSNet beamformer (Luo et al., 2019). More precisely, the
beamformer itself is computed with neural networks and
directly applied to the signals recorded by the microphones.

This algorithm also operates in two stages. In the first step,
the algorithm computes a filtered speech signal at an arbitrary
reference channel using the multichannel input mixture (here:
four-channel). In the second step, this filtered reference signal
is used to compute pairwise beamformers for all other channels.
Unlike the previous hybrid algorithms, this one is directly
trained in an end-to-end fashion by minimizing a loss
between the clean and enhanced speech signals. In the paper,
the FaSNet beamformer is trained to optimize a scale-invariant
signal-to-distortion ratio (SI-SDR) (Le Roux et al., 2019).

Methodology
First, we present the pipeline used for simulating multichan-
nel speech data in realistic noisy conditions. Then, we intro-
duce the evaluation metrics. Finally, we describe the
phoneme categories and the classification method that
allows for a fine-grain assessment.

Data Generation
We simulate mixtures that replicate diverse acoustic scenar-
ios with the target speech contaminated by interfering
noise. To that end, we consider real-life speech excerpts
and measured room impulse response (RIR), while the mix-
tures themselves are simulated. This approach allows for the
creation of a large quantity of signals with various configura-
tions, which would be complex and costly to obtain through
real-world recordings.

Speech Data. The speech data used to simulate mixtures
comprises 1,000 speech signals extracted from the test set
of LibriSpeech (Panayotov et al., 2015). This dataset is a
comprehensive corpus encompassing approximately 1000 h
of English speech. The data is obtained from audiobooks
within the LibriVox project, where audio recordings have
been aligned with their corresponding texts and partitioned
into short segments. The signals are sampled at 16 kHz.

Noise Types. We consider both synthetic and recorded noise
types (see Figure 5). This approach allows us to observe
and understand the different behavior of the speech enhance-
ment algorithms described above.

Monir et al. 5



First, we consider white noise, which is characterized by
its uniform frequency distribution (Keith & Talis, 1972).
Using white noise in our experiments provides a consistent
baseline for evaluating speech enhancement algorithms.
Indeed, testing our algorithms against white noise ensures
that they can handle even simple noise types effectively,
serving as a foundational benchmark. This approach aligns
with many standard clinical tests that still employ white
noise (Reynard et al., 2021).

We also consider speech-shaped noise,2 a type of noise
signal designed to mimic the average spectral characteristics
of natural human speech. Unlike white noise, which has a
uniform frequency distribution, speech-shaped noise is
crafted to simulate the energy distribution across frequencies
of speech sounds. To generate speech-shaped noise, we use
five speech signals (from three females and two males)
from LibriSpeech that are not part of our mixture subset.

By transforming the signal (i.e., preserving its magnitude
and randomizing its phase), we create a noise signal with
the same spectral properties as the original speech.

Finally, we consider a babble noise signal taken from
Freesound (Font et al., 2013). The selected clip was recorded
in a restaurant during a lunch break. This audio signal consists
of a soundscape where multiple people are conversing simulta-
neously. Unlike synthetic noise signals (e.g., white noise or
speech-shaped noise), babble noise comprises overlapping
speech from various speakers in the same acoustic scene,
which introduces a higher amount of acoustic complexity. This
complexity mirrors real-world scenarios to investigate how indi-
viduals with hearing loss navigate challenging auditory scenes.

RIRs. A RIR is a filter that describes the impact of sound prop-
agationwithin a room from the positionwhere the sound source
is emitted to the microphone where it is recorded.

Figure 3. Neural network-based mask estimation. The neural network is fed noisy signal at the input and provides a mask that indicates the

amount of speech in each time–frequency bin.

Figure 4. Distributed MWF in the binaural case.
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Even though RIRs can be simulated using an acoustic
model, in this work, we use measured RIRs since they
allow for more realism. More specifically, we use the RIRs
collected from Delebecque and Serizel (2023), which corre-
spond to a typical hearing aid use-case scenario. In a nutshell,
these RIRs are measured by playing a sweep signal at the
source location and recording the reverberated signal at the
listener’s position (Novak et al., 2015). We use the RIRs
obtained for a source signal angled at 0° (in front, relative
to the forward-facing listener), 45°, and 90°. The reverber-
ated signals were recorded by Delebecque and Serizel
(2023) using a Portable Hearing Laboratory (PHL) placed
on a KEMAR head and torso model simulator. The PHL
device comprises two behind-the-ear hearing aid shells,
each of which being equipped with two omnidirectional
microphones; thus, it yields a realistic four-channel signal
as typically processed by hearing aid devices. The room is
rectangular with dimensions of 6.62 m (length)× 2.57 m
(width)× 2.60 m (height), and the reverberation time
(RT60) is 0.20 s. The KEMAR head is positioned 2.27 m
from the wall along the length axis and centrally in the

room along the width. Both the loudspeakers and the
KEMAR head’s ears are placed 1.48 m above the floor.
The loudspeakers are placed 1 m away from the KEMAR.
We refer the interested reader to the original publication
(Delebecque & Serizel, 2023) for more details on the data
acquisition setup.

Mixtures. We use RIRs to simulate mixtures, creating scenar-
ios where the speech is at a 0° angle and the noise is angled at
either 45° or 90° to the right (see Figure 6 for noise angled at
45°). To build these noisy mixtures, we first need to adjust
the relative speech and noise amounts. To that end, we
apply an amplification factor to the noise source, and we
control the amount of noise via the gain, defined as:

gain = 10. log 10
||s||2
||n||2

( )
,

and expressed in decibels (dB), where s and n denote the
anechoic speech and noise signals, respectively. In practice,
the gain is computed by only considering segments where

Figure 5. Spectrograms of white noise, speech-shaped noise, and babble noise.
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the speech signal is active. Note that the gain is adjusted by
considering source signals (before applying the RIR).
Subsequently, the clean speech and the scaled noise are con-
volved with the RIRs as detailed in the previous section,
resulting in a four-channel-audio mixture signal by
summing the two convolved signals. Noisy mixtures are
built using a gain of −5, 0, or 5 dB. This process aims to rep-
licate the acoustic characteristics of a real-world environment
as closely as possible.

Evaluation Metrics
In our evaluation, we use objective metrics to compare the
target speech with the speech estimated with the different
speech enhancement algorithms at utterance and phoneme
scales. Traditionally, speech enhancement algorithms are
tested using metrics that measure the quantity of interference,
artifacts, and distortions that remain in the estimated speech.
To that end, we use the BSS eval metrics from Vincent et al.
(2006), originally tailored for source separation applications,
but widely used for speech enhancement. Note that other
metrics are designed for evaluating speech signals in terms
of intelligibility (Taal et al., 2010) or perceived quality
(Rix, 2001). However, these operate on audio segments
(about 300 ms to 1 s) that are significantly longer than the
duration of individual phonemes. As such, they are not suita-
ble for our experiments since assessing their relevance at the
phoneme scale would require a dedicated study.

Let us consider the following decomposition of the error
between the target speech signal starget and its estimate ŝ at
a reference microphone:

ŝ = starget + einterf + eartif ,

where einterf and eartif denote the interference and artifacts
errors, that is, the contributions of the nontarget source(s).
Here, the interference3 is the contribution of the noise
source, and the artifacts represent other types of distortions
(e.g., burbling noise) in the speech estimate. From this

decomposition, we define the following signal-to-distortion
ratio (SDR), signal-to-artifact ratio (SAR), and SNR as
follows:

SDR = 10. log10
||starget||2

||einterf + eartif ||2
,

SAR = 10. log10
||starget + einterf ||2

||eartif ||2
,

SNR = 10. log10
||starget||2
||einterf ||2

.

These ratios are expressed in decibels, and for all metrics, the
higher the better. Since they are computed using estimated
speech signals, that is, the outputs of the speech enhancement
algorithms, we will refer to them as SDRout, SARout, and
SNRout.

Note that to quantify the actual noise reduction achieved
by the speech enhancement algorithm, it is necessary to
compare a given output metric to a reference initial value.
To that end, we calculate the metrics by replacing the esti-
mated speech with the noisy mixture: since the resulting
metrics are computed at the input of the algorithms (before
any processing), we refer to them as SDRin, SARin, and
SNRin.

In particular, SNRin measures the ratio of desired speech
to background noise as it is received at the ear. In our
setup, since we do not consider any additional measurement
noise (e.g., induced by the recording device), this is equiva-
lent to a SNR, except it is calculated using the images instead
of the source signals. As such, this metric is critical for under-
standing the impact of a room’s acoustics on the listener’s ear
and serves as a reference point for the mixture signal quality
(i.e., before enhancement). By comparing SNRout and SNRin,
we can quantify the actual noise reduction achieved by the
speech enhancement model.

Note that in theory, there are no artifacts in the input
signals, so SARin is infinite and the SDRin is equal to
SNRin. Therefore, we will not consider these metrics when
presenting our results.

WSNR is a metric that evaluates the quality of speech by
assigning a weight to each frequency segment of the
speech signal (Greenberg et al., 1993). This approach
ensures that the metric reflects the relative importance of dif-
ferent frequency components of speech, and it has demon-
strated a strong correlation with the speech reception
threshold. Similar to the previous metric, WSNRout refers to
the evaluation using the estimated speech.

When evaluating speech enhancement algorithms, these
metrics are typically computed at the utterance scale and
aggregated over several sentences to obtain a consolidated
metric. This process overlooks the potential performanceFigure 6. Spatial configuration of the speech and noise sources.
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variability of algorithms depending on the phonetic content
of the speech signals.

Phoneme Classes
In our study, we investigate the evaluation of speech
enhancement algorithms at the phoneme scale. In this
regard, we perform phoneme segmentation of clean speech
signals. This process involves using a phoneme recognizer
to estimate the boundaries of each phoneme within a
speech signal.

We used the Montreal Forced Aligner (MFA) (McAuliffe
et al., 2017) to align spoken audio recordings with their cor-
responding phonetic transcriptions. In our analysis, we uti-
lized the “English MFA dictionary v2.2.1” version, which
has been trained on a dataset comprising 95,278 words.
This ensured the alignment model’s proficiency in handling
a diverse range of phonetic patterns and nuances present in
the clean speech data.

As shown in Figure 7, the speech dataset comprises 55
phonemes, each with varying frequencies. Most frequent
phonemes include /ə/ with 2,373 occurrences, /ɪ/ with
2,022, and /n/ with 1,972. The least frequent phonemes
occur less than 10 times in the whole dataset. Hence, a
study at the phoneme scale would hardly lead to any statisti-
cally significant outcome on these phonemes.

To simplify the analysis, we group phonemes into catego-
ries. This classification relies on a slightly modified version
of the MFA IPA chart, as we included an additional vowel
class for the near-close near-front unrounded phoneme /ɪ/
and the near-close near-back rounded phoneme /ʊ/. This
decision was driven by the important presence of the
unrounded phoneme within the dataset, prompting us to
investigate the near-close performance and behavior in the
evaluations. Moreover, we include both /e/ and /ej/ in the
close-mid category as the number of /o/ and /ow/ is very low.

As illustrated in Figure 8, the most prominent phoneme
categories in our dataset are plosives, open-mid, and nasals,
occurring 6,214, 4,287, and 2,489 times, respectively. The
close-mid, affricate, and tap phoneme categories add to the
phonetic diversity, albeit as the least frequent, enriching the
overall representation of speech.

Experimental Setup
As outlined in the section Overview of Multichannel Speech
Enhancement, we selected three speech enhancement algo-
rithms whose pretrained weights are available online. All
the models are used in their default setup. For each ear, the
front microphone of the speech enhancement algorithm is
selected as the reference microphone. The MVDR and
FaSNet models are implemented in the ESPnet toolbox (Li
et al., 2021), and the corresponding weights can be readily
downloaded from the toolbox. Both models have been
trained on the CHiME-44 dataset, which includes 8,738

noisy utterances (1,600 recorded and 7,138 simulated) with
speaker distribution of 4 speakers for recorded noisy
speech mixtures and 83 speakers for simulated noisy
speech mixtures (Vincent et al., 2017). The environments
where noise signals were recorded include buses, cafes,
pedestrian areas, and street junctions. Impulse responses
are provided in the simulated training set to simulate rever-
beration effects.

The Tango model (Furnon et al., 2021) is trained on the
same dataset as in the original paper, including several
babble noise recordings as well as speech-shaped noise,
and its code and pretrained weights are also available
online. This training data includes noise sources amplified
by a random gain between −6 and 0 dB (after convolution,
most of the gains range from −10 to 10 dB). The simulated
environments include a meeting room and a living room. In
the meeting room setup, two sources (target and interference)
are placed around a circular table (0.5–1 m radius), and four
nodes5 with microphones are positioned at 90° angles around
the table, between 5 and 20 cm from the edge. In the living
room scenario, the nodes are placed within 50 cm of the
walls to mimic shelf placement, while the sources are ran-
domly positioned at least 50 cm away from the nodes and
walls.

In our study,6 we compute the BSS eval metrics using the
mir_eval library (Raffel et al., 2014).

Experimental Results
First, we detail the results at the utterance scale, as speech
enhancement evaluations are typically conducted. Then, we
delve into a finer-grain evaluation at the phoneme scale.

Evaluation at the Utterance Scale
Comparison between the Left and Right Microphones. Let us
first recall that each algorithm produces an enhanced signal
at a reference channel that can be on either the left or right
device (we arbitrarily chose it to be the front microphone
of the device). This first experiment compares the results
obtained in these two cases. We operate in an asymmetrical
scenario since the noise source is placed on the right side
of the head in our setup (see Figure 6). This investigation
aims to clarify how the noise’s spatial orientation affects
the binaural algorithms’ performance on each microphone.

Figure 9 displays the results of the algorithms’ effective-
ness to enhance the speech at each ear (note that these
results are averaged across noise types and positions, gain
factors, and models). In line with our expectations, the influ-
ence of noise is more pronounced on the right ear. The right
ear shows lower input SNR, which can be attributed to the
proximity of the right reference microphone to the noise
source. On the contrary, the head shadow effect impacts
the sound propagation to the left ear and the input SNR is
larger.

Monir et al. 9



Even though assessments of the estimated speech (output)
indicate a better absolute performance on the left micro-
phone, it is noteworthy that the relative improvement is
more important for the right microphone. Specifically, we

observe that the SNR improvement is more substantial on
the right side (10.60 dB) than on the left side (2.86 dB).
This outlines that the right-side microphone benefits more
from the binaural property of the speech enhancement

Figure 7. Phoneme distribution in our speech dataset.

Figure 8. Distribution of phoneme per categories in our speech dataset.
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algorithm, albeit with a relatively greater amount of distortion
compared to the left ear. The WSNRout results show a similar
trend to the output SNR, with the right ear benefiting more
from the algorithm’s enhancements. Nonetheless, prior
studies in audiology have outlined the importance of reducing
the amount of noise at the best ear (here, the left) (Bronkhorst
& Plomp, 1988). Thus, in the phoneme-scale evaluation that
follows, we will focus our analysis on the results for the left
reference microphone.We leave to future work a fully binaural
evaluation of speech enhancement that would account for both
noise and artifact reduction at both ears.

Comparison between Noise Types. In this experiment, we
investigate the influence of the noise type on performance.

We consider three noise types: white noise, speech-shaped
noise, and babble noise. The results are averaged across
gain factors and models and displayed in Figure 10.

First, we observe an overall consistent performance for the
white noise and the speech-shaped noise. The babble noise is
more challenging for models to deal with than the other noise
types, as indicated by the corresponding low values of input
SDR, SNR, and SAR. As the focus of the paper is not to
analyze the performance of speech enhancement algorithms
under challenging scenarios, but rather to understand their
behavior at a fine-grained scale, we will focus on white
noise and speech-shaped noise. As demonstrated by Stone
et al. (2012), the presence of temporal modulations in noise
undermines the intelligibility of speech. While white noise
and speech-shaped noise exhibit less complex temporal mod-
ulations compared to babble noise, speech-shaped noise can
serve as a proxy for babble noise due to its similar spectral
characteristics.

Regarding WSNRout, we observe an opposite trend com-
pared to the output SNR, with white noise showing the
highest values and babble noise the lowest. This outcome
is expected, as WSNRout is designed to be more sensitive to
the frequency content of the residual noise, which is more
prominent in audible regions for babble noise.

Impact of the Noise Location. This experiment analyzes the
impact of the noise location on the performance of the
speech enhancement algorithms. The noise source can be
positioned at either 45° or 90° relative to the forward-facing
listener (see Figure 6). The results are averaged across noise
types, gain factors, and models, and presented in Figure 11.

First, we remark that the input SNR is slightly higher
when the noise is oriented at 90° relative to the listener.
This was expected since these results correspond to the left-

Figure 9. Comparison between the left and right microphones.

Figure 10. Comparison between the white noise,

speech-shaped noise, and babble noise.

Figure 11. Comparison between noise angles at 45° and at 90°.
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side microphone, which is less contaminated with noise when
the source is placed on the opposite side of the head rather
than at 45°. Likewise, we also observe that speech enhance-
ment algorithms exhibit a higher performance when the noise
is placed at 90° compared to 45°, as indicated by the output
SDR and SNR. Nevertheless, the differences between the
two scenarios are not very important in terms of both input
and output metrics. Therefore, selecting either one of the
two scenarios would not impact the overall analysis
greatly. In the rest of our study at the phoneme scale, we
will focus on the 45° scenario that is potentially more chal-
lenging for the speech enhancement algorithms. In terms of
WSNRout, we observe that the trend is consistent with the
output SNR, showing better performance at 90° compared
to 45°.

Impact of the Amount of Noise. Figure 12 presents the impact
of varying the mixture noise gain factors on both the input
and the output evaluation metrics.

First, comparing the gain factor (computed using the
anechoic sources) and the input SNR (computed using the
image sources) highlights the influence of room acoustics
on the mixtures at the ears’ position. On average, this phe-
nomenon results in a drop of approximately 2 dB in terms
of amount of noise for the three scenarios. This is justified
by the propagation in the room and the relative position of
the sources with respect to the walls (Delebecque &
Serizel, 2023). This underscores the importance of comput-
ing the SNR at the microphone as a reference value and
not relying on the gain that is set on the dry sources.

Overall, we observe that the algorithms’ performance
improves as the mixture gain increases. We can also note
an important drop in all the metrics for the scenarios where
the gain is −5 dB. This indicates that it will probably be

useful to control the performance of the algorithms at differ-
ent gain. Yet, for the simplicity of the analysis, in our
phoneme-scale experiments, we will focus mainly on the sce-
nario with a gain of 0 dB in the phoneme-scale evaluations.
Indeed, this setting is sufficiently challenging for the task at
hand and allows us to examine the relative performance of
speech enhancement algorithms without inducing an exces-
sive degradation of the signal. Still, we will examine the
impact of the mixture gain on specific phonemes, where it
might deserve some finer-grain analysis.

The output WSNR results reveal that higher gain factors
consistently lead to better speech enhancement performance.
Additionally,WSNRout follows a similar performance pattern
as the output SNR, indicating consistent improvements in
overall speech quality across different amounts of noise.

Evaluation at the Phoneme Scale
We now delve into our evaluation at the phoneme scale,
which we illustrate by the following introductive example.
Figure 13 displays the spectrogram of a clean speech
signal, as well as the spectrograms of this same signal con-
taminated with noise, and where some specific phonemes
are highlighted.

The spectrograms display for instance the phonemes “g”
and “s” across different noise conditions. In the clean
speech, the phoneme “g” shows distinct horizontal striations
representing its voiced nature with a rich harmonic structure.
The phoneme “s” is characterized by a high-frequency,
almost texture-like pattern, indicating its sibilant, unvoiced
nature.

When white noise is added to the clean speech, we
observe that the low-frequency harmonics of the phoneme
“g” remains relatively intact. On the other hand, the sibilant
“s” is strongly affected by this noise, since its energy is more
concentrated in the higher frequencies where the white noise
also contains energy.

With speech-shaped noise, the impact on the phoneme “g”
is less uniform. Similar to white noise, speech-shaped noise
fills in the temporal gaps of stopped consonants, making it
difficult to discern the phoneme’s harmonic patterns. The
phoneme “s” remains relatively discernible, but its crisp
edges are somewhat softened, and the definition between
silence and sibilance is less clear.

The presence of babble noise introduces a more complex
interference. The phoneme “g” is disrupted by the varying
intensities and frequencies of overlapping speech, obfuscat-
ing its harmonic structure. Conversely, while still visible
due to its high-frequency content, the phoneme “s” competes
with similar sounds from the babble, which can make it chal-
lenging to isolate from the background chatter. Note that in
addition to this so-called energetic masking, babble noise is
known to introduce an informational masking (Brungart,
2001) due to its cognitive interference with the speechFigure 12. Comparison between gain factors (−5, 0, and 5 dB).
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Figure 13. Spectrogram of clean speech and mixtures with diverse types of noise on the utterance “He began a confused complaint against

the wizard who had vanished behind the curtain on the left” segmented into phonemes. Note: The white noise has been filtered with an RIR,

altering its characteristics, and the low-frequency region of the speech-shaped noise appears less intense due to intensity scaling.
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signal. While accounting for such a masking is necessary in
listening tests, it is outside the scope of this paper.

This analysis underscores the critical importance of eval-
uating speech enhancement algorithms at the phoneme scale.
The differences in how various phonemes are affected by
several types of noise highlight the nuanced challenges
faced by the speech enhancement systems. Voiced pho-
nemes, with their rich harmonic structures, and unvoiced
phonemes, with their high-frequency energy, require differ-
ent enhancement strategies to overcome the masking
effects of noise. Understanding these varied impacts is essen-
tial for improving speech enhancement algorithms that can
effectively disentangle and clarify the essential elements of
speech, ensuring that each phoneme, regardless of its
unique acoustic properties, is accurately reproduced and
easily discernible, even is adverse listening conditions.

An Overview of the Results at the Phoneme Scale. We first
present an overview of the results at the phoneme scale. In
all the following experiments (except for the last one), the
mixtures are at 0 dB. The results are displayed in
Figure 14. A notable observation is that plosives, fricatives,
and taps are the most impacted by the noise. These are also
the phoneme categories on which the speech enhancement
algorithms perform the worst.

The experiment reveals that, on average, the speech
enhancement models yield a substantial improvement in all
the other phoneme categories. They particularly reduce the
amount of noise while introducing only a controlled
amount of distortion and artifacts. However, this positive
trend in phoneme categorization contrasts with the findings
at the utterance scale. Indeed, the evaluation of artifacts at
the utterance scale tends to overestimate the performance
across all phoneme categories. This suggests that while the
models perform well at refining speech at the phoneme
scale, their effectiveness may be overstated when considering
the broader context of complete utterances.

Some phoneme categories show different performance in
WSNRout versus output SNR. For instance, in the case of sib-
ilants, the output SNR indicates that speech enhancement
algorithms perform better at enhancing sibilants compared
to the overall utterance scale. In contrast, the WSNRout for
sibilants suggests that the frequency-weighted SNR of sibi-
lants is lower than the overall utterance evaluation.

Overall, we observe different trends per phoneme catego-
ries, which motivates us to analyze these results in more
depth. We conduct such an analysis in the following experi-
ments, for which we select specific categories of phonemes
such that the comparison is made clearer.

Impact of the Noise Type on Plosive, Approximant, and Open
Phonemes. In this experiment, we analyze the results (dis-
played in Figure 15) for opens, approximant, and plosive
phonemes with respect to the noise type (white noise or
speech-shaped noise). In examining the outcomes across

various metrics, it is apparent that the general trend persists
regardless of the noise type. Nonetheless, there is a slightly
higher SNR improvement when speech-shaped noise is
present as compared to white noise. This can be explained
by the fact that speech-shaped noise is commonly used for
training speech enhancement models. Additionally, the spec-
tral density differences between the two noise types result in
differential effects on phonemes, such as fricatives and
vowels. It is interesting however to see that the performance
in terms of SAR remains consistent across phoneme catego-
ries, regardless of the noise type. This indicates that the SNR
improvement does not occur at the costs of a lower SAR,
while such a trade-off is usually observed in speech enhance-
ment algorithms.

WSNRout exhibits the same trend for both white noise and
speech-shaped noise. However, while WSNRout aligns with
output SNR trends, plosives show better quality in both
noise types than the output SNR suggests. This difference
indicates that plosives contain a higher amount of noise rel-
ative to the utterance scale, despite appearing to have better
quality.

Comparison of the Algorithms on Nasals, Affricates, and
Sibilants. The input SNR indicates that the nasals are the
least degraded by the noise (with the white noise having
slightly less impact than the speech-shaped noise).

As for the residual interference and distortions in the esti-
mated speech, the performance varies with the noise type.
Tango outperforms other models in mitigating interference
and distortions with the presence of white noise. In contrast,
when using speech-shaped noise, MVDR appears to be the
best at reducing interference and artifacts, whereas Tango
is superior for reducing distortions. FaSNet appears to dete-
riorate the speech signal when white noise is involved,
since the output SNR is larger than its input value. This
could potentially be due to a mismatch between the training
conditions of the model and the testing setup considered here.
Indeed, end-to-end algorithms have been shown to exhibit
less robustness to these conditions (types of noise, amounts
of noise, acoustic environments, etc.) than hybrid algorithms
(Ditter & Gerkmann, 2020). Nevertheless, FaSNet notably
improves the SNR in the presence of speech-shaped noise,
especially for nasal phonemes, indicating its effectiveness
in enhancing certain aspects of speech.

Across different noise conditions, Tango exhibits robust-
ness, consistently improving the SNR, more so for sibilants
than for nasals and affricates. This suggests that Tango pre-
sents a balanced performance across various acoustic noise
scenarios on the three phonemes categories. MVDR performs
well on nasals regardless of the noise type, but its perfor-
mance on affricates and sibilants is always lower than for
nasals. Besides, WSNRout reveals that Tango consistently
improves the frequency-weighted SNR for sibilants across
both white noise and speech-shaped noise, while MVDR
better improves nasals and affricates (Figure 16).
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Comparison of the Algorithms on Vowels. In terms of SNRin,
the initial conditions for all vowel categories are favorable
under both noise types, indicating that the vowels are less
affected by noise than the consonant at the input stage.
Besides, the input SNR remains consistent across all vowel
categories.

The analysis of the speech enhancement algorithms
reveals that Tango is the most effective model for minimizing
distortions, performing with both white noise and speech-
shaped noise. This suggests Tango’s processing techniques
are well suited for maintaining the integrity of the speech

signal even in the presence of various noise types. Tango
also stands out for reducing the interference of vowels in
white noise environments. This is particularly true for open
phonemes, which are more vulnerable to interference due
to their wider spectral spread. MVDR, on the other hand, out-
performs other systems in reducing the interference on
vowels in scenarios with speech-shaped noise. FaSNet is
overall outperformed by MVDR and Tango, except under
speech-shaped noise where it outperforms Tango. Tango’s
performance appears to depend on the initial amount of inter-
ference. The SNR improvement is almost constant for all

Figure 14. Evaluation results across phoneme categories (the results at the utterance scale are also reported). Results are averaged over

algorithms, with a gain of 0 dB and the noise source oriented at 45° relative to the listener.
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categories and the output SNR then depends on the phoneme
category. MVDR, in contrast, improves the SNR more uni-
formly, potentially offering a more predictable enhancement
outcome, especially when the initial amounts of noise in
vowels are varying.

MVDR also prevails at controlling the presence of arti-
facts in the estimated speech, which is crucial for the
overall perceived quality and intelligibility of the enhanced
speech, since a low amount of artifacts implies that the
speech signal retains more of its natural characteristics

Figure 15. Evaluation results per noise types on plosive, approximant, and open phonemes. Results are averaged over algorithms, with a

gain of 0 dB and the noise source oriented at 45° relative to the listener.

Figure 16. Performance of the algorithms on nasals and sibilants on mixtures, with a gain of 0 dB and the noise source oriented at 45°

relative to the listener.
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postestimation. The output SAR obtained with MVDR is
once again almost constant regardless of the phoneme cate-
gory, which could lead to more predictable behavior. The
output SAR obtained by Tango depends on the input SNR
which makes it potentially less predictable than the
MVDR. FaSNet is outperformed by the other systems by a
large margin in terms of SARout. However, the WSNRout

shows that while an algorithm might reduce noise effectively
on specific type of noise, this does not always enhance vowel
quality, and vice versa. In particular, if Tango is better at
reducing white noise on vowels, and MVDR outperforms
with speech-shaped noise, the vowels appear to have
similar quality after enhancement (Figure 17).

Comparison of the Algorithms on Plosives, Fricatives, and Taps.
As in prior experiments, the analysis is conducted in environ-
ments with two types of noise conditions: white noise and
speech-shaped noise. The results are presented in Figure 18.

The results reflect the distinct acoustic challenges that
plosive, fricative, and tap consonants face in the room envi-
ronment. These consonant types are intrinsically affected by
interference due to their articulatory characteristics, with plo-
sives being particularly vulnerable due to the transient nature
of sound production, which can be easily masked by environ-
mental noise.

Tango’s performance with white noise stands out in its
ability to reduce interference, especially in the case of plo-
sives. Despite the challenging initial conditions, Tango
manages to enhance plosives’ clarity while keeping distor-
tion reasonably low, highlighting its efficacy in dealing
with the abrupt and high-intensity nature of plosive sounds.
Under speech-shaped noise, Tango does not exhibit any

remarkable improvement, yet it maintains its proficiency in
interference reduction for plosives. The model’s average per-
formance in artifact reduction suggests that while Tango can
mitigate some noise elements, there’s a trade-off in terms of
introducing new artifacts into the signal.

The MVDR exhibits more nuanced results, as we observe
a persistence of high amounts of distortion and low interfer-
ence improvements when dealing with white noise; however,
it consistently reduces interference across all phoneme cate-
gories and maintains a high SAR under speech-shaped
noise. While Tango performed the best on plosives, the
MVDR provides the highest amount of noise reduction on
tap phonemes.

Similarly, as on vowels, FaSNet fails to reduce interfer-
ence and introduces an important amount of distortion in
the presence of white noise. With speech-shaped noise,
FaSNet exhibits improvement in the SNR. Like for the
MVDR, these improvements are larger on tap phonemes
than on plosives and fricatives. Finally, like vowels, the
WSNRout demonstrates that even though an algorithm may
efficiently reduce noise, this does not necessarily improve
the frequency-weighted SNR of the three consonants.

Comparison of the Algorithms on Approximants and Laterals. In
this experiment, we focus on the performance of the speech
enhancement algorithms on approximant and lateral pho-
nemes. The results provide insights into each algorithm’s
ability to preserve the integrity of these phoneme categories
amidst the interference, distortion, and artifacts. The results
are presented in Figure 19.

In the presence of white noise, Tango demonstrates
proficiency in reducing interference while concurrently

Figure 17. Performance of the algorithms on close and open phonemes, with a gain of 0 dB and the noise source oriented at 45° relative to

the listener.
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maintaining a low amount of distortion, outperforming the
other models for both phoneme types. The trend is inverted
in the presence of speech-shaped noise where MVDR

exhibits the best SNR improvement for both approximants
and laterals. Once again, FaSNet exhibits a deficient perfor-
mance on white noise and performs on par with Tango in

Figure 18. Performance of the algorithms on plosives, fricatives, and taps, with a gain of 0 dB and the noise source oriented at 45° relative

to the listener.

Figure 19. Performance of the algorithms on approximant and lateral phonemes, with a gain of 0 dB and the noise source oriented at 45°

relative to the listener.
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terms of SNR when speech-shaped noise is present. MVDR
stands out for its superior control over distortion across both
phoneme categories, suggesting its advanced capability to
preserve speech quality. Tango and FaSNet, while demon-
strating lower SARs, successfully maintain a reduced quan-
tity of artifacts for both types of noise, confirming the
algorithms’ capabilities in artifact control. It is interesting
to note that each model performs consistently across the
phoneme class considered on each separate noise condition.

In summary, these experiments show that each algorithm
exhibits a different behavior that depends not only on the
noise type but also on the phoneme class.

Impact of the Amount of Noise on Algorithms’ Performance.
Finally, this experiment aims to understand how each
model responds to different amounts of background noise
across a range of speech sounds, from plosives to open
vowels. Figure 20 presents a comparative analysis of the
algorithms, evaluating their performance on mixtures with
speech-shaped noise.

The plosives, which are characterized by a complete
obstruction of the vocal tract, are particularly susceptible to
the acoustic interferences, as seen by the consistently lower
input SNR compared to the gain of the mixtures. This sug-
gests that the high modulation frequencies at the onset of plo-
sives make them more prone to interference. All models
grapple with reducing interference for plosives across scenar-
ios. Even the best performing model (MVDR) only yields a
slight SNR improvement. Tango exhibits the worst SNR
improvement at −5 dB. This could indicate a limit to how
much speech enhancement models can counteract the acous-
tic masking for these rapidly changing phonemes, especially
in environments with strong background noise.

In contrast, approximants, close, and open vowels, which
involve less abrupt articulatory gestures and more continuous
airflow, seem to be easier to enhance even for a gain below
0 dB. This could possibly be due to their more sustained
and resonant acoustic signatures that are less easily masked
by noise. MVDR yields a noticeable improvement in reduc-
ing interference for these phonemes, particularly at 0 and

Figure 20. Performance of the algorithms on plosives, fricatives, closes, and opens with respect to the amount of input noise. The noise

source is oriented at 45° relative to the listener.
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5 dB, highlighting its strength in enhancing such sounds.
Even though this is not as drastic as for the plosive, all the
models struggle to improve the SNR when the gain is
−5 dB. MVDR once again is the algorithm that performs
the best in this case and with speech-shaped noise. Tango
and FaSNet on the other hand show no improvement for
open vowels at −5 dB.

MVDR and Tango produce low artifacts in the estimated
speech across gains from 5 to 0 dB for all phonemes. As in
previous scenarios, FaSNet introduces the largest amount
of artifacts regardless of the gain, as observed for plosives.
For some phonemes, the gap between output SNR and
WSNRout widens as the gain factor increases. For instance,
although the output SNR at −5 dB indicates a high amount
of noise remaining in the signal, the frequency-weighted
SNR of plosives is as good as that of approximations and
close phonemes.

Several studies, such as those by Phatak and Allen (2007)
and Phatak et al. (2008), focus on how different consonants
and vowels are confused in noisy conditions. By examining
the variability in error rates across different consonants and
within individual tokens, Toscano (2014) highlights the
importance of accounting for these differences when assess-
ing speech recognition. Our analysis underscores the need for
speech enhancement models to be tailored to the acoustic
properties of phonemes, considering not only the amount
of background noise but also the phonetic and articulatory
characteristics that define each phoneme’s vulnerability to
acoustic interference.

Conclusions and Perspectives
In this paper, we conducted a comprehensive evaluation of
three state-of-the-art multichannel speech enhancement algo-
rithms (FaSNet, MVDR, and Tango), with a particular
emphasis on the phoneme-scale analysis. This study revealed
that speech enhancement algorithms perform differently
depending on the phonemes, underlining the limitations of
traditional utterance scale evaluations. Specifically, it was
found that specific phonemes like plosives are heavily
impacted by environmental acoustics, whereas nasals and
sibilants show more resistance to noise, especially when it
is speech shaped.

This phoneme-scale evaluation framework reveals the
need for these algorithms to consider the differential impact
of noise on various phonemes and adapt accordingly. This
research direction can focus on integrating phoneme-specific
characteristics into the training of these models, potentially
enhancing their effectiveness in real-world noisy environ-
ments. Particularly, this could lead to enhanced speech intel-
ligibility in real-world scenarios, offering interesting
observations for developing more effective, personalized
hearing aid technologies.

An in-depth analysis would also be interesting to establish
the correlation between the speech quality and the perceived

quality of phonemes. While our current study focuses on
evaluating algorithms at the phoneme level, it is important
to note that human auditory perception may operate at an
even finer granularity. The auditory system might detect
subtle subphonemic cues, which our phoneme-based
approach does not fully capture. This framework is also
applicable to other tasks involving speech enhancement,
such as vocal assistants, where phoneme-scale evaluation
and/or processing could be beneficial. Furthermore, acknowl-
edging that physical measurements do not always align with
human perceptions of speech, the results should be examined
through listening tests.
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Notes
1. In practice, these time–frequency signals are represented as

complex-valued matrices of dimensions F×T, where F and T
denote the number of frequency channels and time frames,
respectively. Nonetheless, for brevity, the notation we employ
in this paper does not account for the frequency channel and
time frame indices, e.g., S( f,t) will be simply denoted S.

2. Note that the correct terminology is “speech spectrum-shaped
(random) noise,” but in this paper, we use “speech-shaped
noise” for brevity.

3. In the following, interference will be represented by the SNR.
4. Information about gain factors and angles was not available on

the CHiME-4 documentation website.
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5. In this context, a node refers to a device with several micro-
phones. Each node can communicate signals with other nodes
without delays or packets loss.

6. For reproducibility purposes, our code is available online at
https://github.com/Nasseredd/SE-Ph-Eval/.
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