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Abstract

We show that the state spaces of multifactor Markovian processes,
coming from approximations of nonnegative Volterra processes, are given
by explicit linear transformation of the nonnegative orthant. We demon-
strate the usefulness of this result for applications, including simulation
schemes and PDE methods for nonnegative Volterra processes.
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1 Introduction
Multifactor Markovian approximations for fractional Brownian motion were ini-
tially introduced by Carmona and Coutin [14] and revisited more recently by
Abi Jaber and El Euch [3] in the context of nonnegative stochastic Volterra
equations, motivated by rough and Volterra Heston models of El Euch and
Rosenbaum [19] and Abi Jaber, Larsson, and Pulido [5]. Since then, substantial
literature has emerged on such multifactor processes for numerical approxima-
tion methods (Alfonsi and Kebaier [7], Bayer and Breneis [11, 10, 12], Chevalier,
Pulido, and Zúñiga [15], Harms [20]), deep learning approaches (Papapantoleon
and Rou [22]), modeling (Abi Jaber [1]), and optimal control (Abi Jaber, Miller,
and Pham [6]). It should be noted that such approximations are also heav-
ily used in physics, chemistry and other fields, see, e.g., Baczewski and Bond
[8], Bochud and Challet [13].

∗eduardo.abi-jaber@polytechnique.edu.
†christian.bayer@wias-berlin.de
‡simon.breneis@wias-berlin.de
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The starting point is a nonnegative solution to the stochastic Volterra equa-
tion

Yt = Y0 +

∫ t

0

K(t− s)b(Ys) ds+

∫ t

0

K(t− s)σ(Ys) dWs, (1)

where the kernel K is (approximated by) a weighted sum of exponentials of the
form

K(t) =

N∑
i=1

wie
−xit (2)

with positive nodes x = (xi)i=1,...,N and weights w = (wi)i=1,...,N . Such series
in terms of exponential functions are sometimes known as Prony series. The
coefficients b, σ : R → R are continuous and satisfy the boundary conditions

b(0) ≥ 0 and σ(0) = 0, (3)

to ensure that the process Y remains nonnegative for any Y0 ≥ 0.
Then, the nonnegative Volterra process Y can be written in the form Yt =∑N

i=1 wiY
(i)
t , where Y = (Y (i))i=1,...,N is the solution to the N -dimensional

stochastic differential equation

dY
(i)
t = −xi

(
Y

(i)
t − y

(i)
0

)
dt+ b(Yt) dt+ σ(Yt) dWt, (4)

with initial values Y
(i)
0 , which are often, but not necessarily chosen to coincide

with y
(i)
0 , for i = 1, . . . , N .

The aim of the paper is to determine a state space of the multifactor Marko-
vian process Y . That is, we want to determine a set D ⊆ RN such that for
every starting value Y0 ∈ D, there exists a D-valued solution Y to (4), that is
Yt ∈ D for all t ≥ 0 almost surely.

Beyond the mathematical importance of defining the state space of the
Markovian process Y , the knowledge of the state space is crucial for several
practical applications, some of which have been considered so far:

• Modeling and Calibration: The multifactor model (4) can serve as a
model in its own right (and not solely as an approximation of Volterra
models), usually for stochastic volatility factors, as seen in the lifted He-
ston model of Abi Jaber [1]. Here, the knowledge of the state space is
crucial for calibrating the initial values of Y0 directly to market data.

• Simulation accuracy: The identification of a valid state space allows for
more precise simulation schemes for Y . For instance, Bayer and Breneis
[12] generalized a simulation scheme for the square-root process of Lileika
and Mackevičius [21] to simulate paths from the dynamics in (4) with
σ(z) =

√
z. However, the authors were not able to show that their simu-

lation scheme is well-defined because they did not know the state space.
Indeed, when simulating from (4), great care has to be taken to ensure
that the aggregated process Y does not become negative, or if it does, one
has to determine how to proceed with the square root term

√
Y .
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• Efficient Domain Meshing for PDE Solutions: In Papapantoleon
and Rou [22], for example, the authors use a rejection algorithm that
discards simulations failing to satisfy the condition

∑
i wiY

(i)
0 ≥ 0, this

approach is not precise and becomes inefficient in high dimensions.

For all these reasons, the geometry of the state space for multifactor processes
Y quickly became a central focus in the associated literature for nonnegative
Volterra processes. For the lifted Heston model of Abi Jaber [1], simulations
demonstrated that while individual processes Y (i) might take negative values,
their aggregated sum Y remains nonnegative. In this context, two key papers
provided abstract characterizations of possible state spaces: one based on the
resolvent of the first kind of the kernel by Abi Jaber and El Euch [2], and
the other using the resolvent of the second kind of the kernel by Cuchiero and
Teichmann [16] (we refer to Appendix B for further details on these state spaces
and their connections). While these spaces are valid for a wide range of kernels,
they remain somewhat abstract and challenging to make explicit, making it
almost impossible to determine the good conditions on the initial values Y ≥ 0
of the process Y . Finally, using the simulation algorithm for the rough Heston
model due to Bayer and Breneis [12], we visually represent the process’s support
by a sample plot, see Figure 1 – replicating a similar plot already presented in
that paper. One can clearly recognize that the sample paths do not only seem
to lie in the half-plane Y = w1Y

(1) + w2Y
(2) ≥ 0 marked with the down-ward

oriented black line, but in an even smaller cone seemingly below the upward
oriented line {y ∈ R2 : y1 ≥ y2}.

Main contributions. The main question we are interested in can be summa-
rized as follows:

What constitutes a suitable state space for the multifactor Markovian process
Y in (4)?

Our main results in Theorem 2.3 and Corollary 2.7 establish that this state
space can be represented as a linear transformation of RN

+ , and we provide an
explicit form for this transformation.

As a first application of this result, we prove that the weak simulation scheme
for the rough Heston process proposed by Bayer and Breneis [12] is well-defined
in the sense that the variance process always stays non-negative, see Section 3.
In Section 4, we derive the corresponding pricing PDE on the transformed do-
main RN

+ , and solve it numerically by the finite element method after truncation
of the domain. Naturally, knowing the PDE’s precise domain is crucial for accu-
rate numerical approximations. Finally, in Section B, we show how the explicit
formula for the domain compares with general, abstract characterizations given
in the literature by Abi Jaber and El Euch [2] and Cuchiero and Teichmann
[16].

Notation and Conventions. We denote by ei is the i-th unit vector, which
has a 1 in the i-th component, and 0 in every other component, 1 := (1, 1, . . . , 1)⊤
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Figure 1: Samples of the two-dimensional process (Y (1), Y (2)) using 105 sample
paths on a time grid with M = 1000 time steps. Plotted are all the points Yti

for every time step ti, i = 0, . . . , 1000, and all the 105 samples. The decreasing
black line is the line where the aggregated process w1Y

(1)+w2Y
(2) = 0, and the

aggregated process is positive above that line. The nearly orthogonal second
line cuts out a cone, which seems to give the actual support of the process.

is the vector with 1 in every component, Id is the identity matrix, diag(a) for
a vector a ∈ RN is the diagonal matrix with entries a in the diagonal, and
w := 1⊤w =

∑N
i=1 wi. Throughout, italic letters a denote real numbers and

bold letters a denote vectors, where we write a = (ai)
N
i=1 for the components

of a. An exception are stochastic processes, where components are denoted by
Yt = (Y

(i)
t )Ni=1 (due to the time variable in the subscript).

Acknowledgments EAJ is grateful for the financial support from the Chaires
FiME-FDD, Financial Risks, Deep Finance & Statistics and Machine Learn-
ing and systematic methods in finance at Ecole Polytechnique. CB and SB
gratefully acknowledge the support by the IRTG 2544 “Stochastic Analysis in
Interaction”. CB also acknowledges support from DFG CRC/TRR 388 “Rough
Analysis, Stochastic Dynamics and Related Fields”, Project B02.

2 State spaces of the multifactor Markovian pro-
cess

Fix N ≥ 1. We consider the N -dimensional stochastic differential equation

dYt = −diag(x) (Yt − y0) dt+ b(w⊤Yt)1dt+ σ(w⊤Yt)1dWt, (5)
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where b, σ : R → R are continuous, satisfy the linear growth condition

|b(y)| ∨ |σ(y)| ≤ C (1 + |y|) , y ∈ R, (6)

and the boundary conditions (3). The speeds of mean-reversion x = (xi)i=1,...,N

are positive and ordered, i.e. 0 < x1 ≤ x2 ≤ · · · ≤ xN , the weights w =
(wi)i=1,...,N are positive, W is a one-dimensional Brownian motion, and where
Y0,y0 ∈ RN may be different. This corresponds to (4) written in vector form.

The aim of this section is to determine a state space of the multifactor
process Y . That is, we want to determine a set D ⊆ RN such that for every
starting value Y0 ∈ D, there exists a D-valued weak solution Y to (5), that
is Yt ∈ D for all t ≥ 0 almost surely. In particular, the domain D should
be a subset of the half-plane {y ∈ RN : w⊤y ≥ 0} to ensure non-negativity
of the aggregated weighted process Y := w⊤Y , which for the specific case
y0 = Y0 would correspond the Volterra process (1) for the weighted sum of
exponential kernel K given in (2). As illustrated in Figure 1, and following the
abstract characterizations of domains of (possibly infinite-dimensional) lifts of
nonnegative Volterra processes in Abi Jaber and El Euch [2] and Cuchiero and
Teichmann [16], we suspect the domain D to be a cone.

2.1 Main result
We prove that the domain D is a cone characterized by the set Q of admissible
matrices, which is defined as follows.

Definition 2.1. A matrix Q ∈ RN×N is called admissible if it satisfies the
following assumptions:

1. Q is invertible,

2. e⊤NQ = w⊤,

3. Q1 = weN , where w := w⊤1,

4. (Qdiag(x)Q−1)i,j ≤ 0 for i, j ∈ {1, . . . , N} with i ̸= j.

We denote by Q the set of all admissible matrices.

Before stating our main theorem, we first show that the set of admissible ma-
trices Q is nonempty by providing an explicit example of an admissible matrix.
However, Q is not reduced to a singleton as shown in Example 2.10 below.

Theorem 2.2. The matrix Q = (qi,j)i,j=1,...N ∈ RN×N given by

qi,j = wj , j ≤ i, qi,i+1 = −
i∑

j=1

wj , i = 1, . . . , N − 1,

and zeros elsewhere is admissible. In particular, Q is nonempty.

Proof. The proof is given in Appendix C.1.
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We are now ready to state our main theorem that gives state spaces of the
multifactor Markovian process (5).

Theorem 2.3. Let b, σ : R → R be continuous functions satisfying the lin-
ear growth condition (6) and the boundary conditions (3). Let Q ∈ Q be an
admissible matrix in the sense of Definition 2.1 and suppose that

y0 = µdiag(x)−11 for some µ ≥ 0. (7)

Set D = Q−1RN
+ . Then, for each Y0 ∈ D, there exists a D-valued weak solution

Y to (5).

Proof. The proof is given in Section 2.4.

Example 2.4. For the admissible matrix Q given in Theorem 2.2, the set
D = Q−1RN

+ corresponds to the set of y ∈ RN such that w⊤y ≥ 0 and

i∑
j=1

wjyj ≥
i∑

j=1

wjyi+1 for i = 1, . . . , N − 1.

Remark 2.5. The domain Q−1RN
+ is not unique, see Appendix A.

In practice, for instance for the multifactor approximations of Volterra pro-
cesses, we often have Y0 = y0. Hence, it may be interesting to know whether y0

as given in (7) is in Q−1RN
+ . We treat this question in a slightly more general

context in the following lemma.

Lemma 2.6. Let Q be an admissible matrix and let y0 ∈ RN satisfy (7). Then
y0 ∈ Q−1RN

+ .

Proof. The proof is given in Appendix C.2.

We remark that condition (7) on y0 can easily be dropped by using affine
transformations of RN

+ instead of linear ones. We give the specific details in the
next corollary.

Corollary 2.7. Let b, σ : R → R be continuous functions satisfying the linear
growth condition (6) and the boundary conditions (3). Let Q ∈ Q be an admis-
sible matrix in the sense of Definition 2.1, and assume that w⊤y0 ≥ 0. Let ỹ0

be chosen according to (7) with w⊤ỹ0 = w⊤y0. Define the set

D = Q−1RN
+ + (y0 − ỹ0). (8)

Then, for any Y0 ∈ D, there exists a D-valued weak solution Y to (5).

Proof. Denote by Ỹ a weak solution to

dỸt = −diag(x)
(
Ỹt − ỹ0

)
dt+ b(w⊤Ỹt)1dt+ σ(w⊤Ỹt)1dWt
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with initial condition Ỹ0 := Y0 + ỹ0 − y0. Note that Ỹ0 ∈ Q−1RN
+ , so Theorem

2.3 imply the existence of such a solution Ỹ that stays in Q−1RN
+ . Define the

process R := Ỹ + y0 − ỹ0 and note that w⊤R = w⊤Ỹ . Thus, R satisfies
R0 = Y0 and

dRt = −diag(x) (Rt − y0) dt+ b(w⊤Rt)1dt+ σ(w⊤Rt)1dWt.

But this means that R is a solution to (5) that stays in D. The corollary follows
immediately.

We now give the specific result for the multifactor square-root process.

Example 2.8. Consider the multifactor square-root model

dV N
t = −diag(x)

(
V N
t − v0

)
dt+

(
θ − λw⊤V N

t

)
1dt+ ν

√
w⊤V N

t 1dWt. (9)

Let Q be an admissible matrix, and assume that w⊤v0 ≥ 0. Then,

D = Q−1RN
+ +

(
v0 −

w⊤v0

w⊤diag(x)−11
diag(x)−11

)
.

2.2 Link with nonnegative Volterra processes
As an application of our result, one can obtain the existence of nonnegative
solutions to Volterra equations with kernels of the form (1). We note that such
existence can be obtained by working directly on the level of the Volterra equa-
tion as done in Abi Jaber, Larsson, and Pulido [5, Theorem 3.6 and Example
3.7]. Here, our result provides another alternative as illustrated in the following
corollary.

Corollary 2.9. Let b, σ : R → R be continuous functions satisfying the linear
growth condition (6) and the boundary conditions (3). Let the kernel K be
given by a weighted sum of exponentials as in (2). Then, for each Y0 ≥ 0, the
stochastic Volterra equation (1) admits a nonnegative weak solution Y .

Proof. Fix Y0 ≥ 0 and let y0 ∈ RN be such that w⊤y0 = Y0. Let ỹ0 be
chosen according to (7) with w⊤ỹ0 = w⊤y0. Let Q ∈ Q be an admissible
matrix, for instance given by Theorem 2.2. Then, it follows from Lemma 2.6
that ỹ0 ∈ Q−1R. Hence, y0 = ỹ0 + (y0 − ỹ0) ∈ D, with D given by (8). An
application of Corollary 2.7, with the starting value Y0 = y0 ∈ D, yields the
existence of a D-valued weak solution Y to the equation (5). Thanks to the
variation of constants formula, we can re-write the equation in the form

Yt = y0 +

∫ t

0

exp(−diag(x)(t− s))1
(
b(w⊤Ys) ds+ σ(w⊤Ys) dWs

)
,

so that the process Y defined by Y = w⊤Y solves the equation

Yt = Y0 +

∫ t

0

N∑
i=1

wie
−xi(t−s) (b(Ys) ds+ σ(Ys) dWs) ,

7



which is precisely the Volterra equation (1) with the kernel K given by (2). It
remains to argue that, for all t ≥ 0, Yt remains nonnegative by using the fact
that Yt ∈ D. Indeed, using Condition 2 of Definition 2.1 and the fact that
w⊤ỹ0 = w⊤y0, we obtain that

w⊤D = e⊤NQQ−1RN
+ + (w⊤y0 −w⊤ỹ0) = e⊤NRN

+ = R+.

Hence, for all t ≥ 0, Yt = w⊤Yt ∈ w⊤D = R+, which ends the proof.

2.3 On admissible matrices for N ∈ {2, 3}
In this section we give examples of admissible matrices.

Example 2.10. In the case N = 2, the Conditions 2 and 3 of Definition 2.1
imply that we are looking for a matrix of the form

Q =

(
q −q
w1 w2

)
,

for some q ̸= 0 to ensure invertibility. Then,

Qdiag(x)Q−1 =
1

w

(
w1x2 + w2x1 (x1 − x2)q

w1w2(x1 − x2)q
−1 w1x1 + w2x2

)
.

Since x1 ≤ x2, the last condition in Definition 2.1 is satisfied for any q > 0, and
indeed, the domain Q−1R2

+ is independently of the precise choice of q given by

D =
{
y ∈ R2

+ : w⊤y ≥ 0, y1 ≥ y2
}
. (10)

For the case of the multifactor square-root process (9), the resulting sample
paths of V 2 and U := QV 2 are illustrated in Figure 2. Note that we chose the
large maturity T = 100 to give the process more time to explore its domain.
Thereby, it is more clearly visible that the domain of U is indeed R2

+, than if
we had set T = 1.

For N = 3, a similar computation – relegated to the appendix due to its
length – gives multiple choices of domains. See Appendix A for details.

2.4 Proof of Theorem 2.3
Fix an admissible matrix Q ∈ Q. The main idea of the proof is to reduce the
study to the process Z = QY and prove that its associated stochastic differential
equation admits an RN

+ -valued solution.
We start by writing the stochastic differential equation for Z. For this we

first observe that due to (7), Y satisfies

dYt = −diag(x)Yt dt+ bµ(w
⊤Yt)1dt+ σ(w⊤Yt)1dWt

8



Figure 2: Samples of V 2 (right) and U (left) using 103 sample paths on a time
grid with M = 105 time steps. The black lines correspond to the hyperplanes
in (10). The parameters used are x = (1, 10),w = (1, 2), λ = 0.3, ν = 0.3, V0 =
0.02, θ = 0.02, T = 100, and v0 = V0/(2x)(w1/x1 + w2/x2), i.e. v0 is chosen to
be proportional to x−1.

where bµ(z) = b(z) + µ. Using Q as a transformation of basis (in the sense
Z = QY ), we get, thanks to the invertibility of Q, the following stochastic
differential equation

dZt = −Qdiag(x)Q−1Zt dt+ bµ(w
⊤Q−1Zt)Q1dt+ σ(w⊤Q−1Zt)Q1dWt.

Using the admissibility conditions 2 and 3 in Definition 2.1, we have that
w⊤Q−1 = e⊤NQQ−1 = e⊤N and Q1 = weN , which simplifies the equation to

dZt = −Qdiag(x)Q−1Zt dt+ wbµ(Z
(N)
t )eN dt+ wσ(Z

(N)
t )eN dWt. (11)

Recall that Z(N) is the N -th component of Z.
In order to prove Theorem 2.3, it suffices to prove that for each Z0 ∈ RN

+ ,
there exists an RN

+ -valued Z weak solution to (11). In particular, this would
hold for any initial value of the form Z0 = QY0 with Y0 ∈ D = Q−1R+

N and
setting Y = QZ, one obtains a D-valued weak solution Y to (5) started at Y0.

Hence, this boils down to establish that the set RN
+ is stochastically viable

with respect to the equation (11). Viability and invariance theory for stochastic
differential equations have been extensively studied in the literature in various
contexts and with different assumptions on the domain and the coefficients, we
refer to Abi Jaber, Bouchard, and Illand [4], Da Prato and Frankowska [17, 18]
and the references therein.

For the non-negative orthant RN
+ the characterization in terms of the coef-

ficients is very simple and means that, at boundary points, the diffusive coeffi-
cient has to be tangential to the boundary and the drift inward pointing. This
is summarized in the following lemma.

Lemma 2.11. Let b̃, σ̃ : RN → RN be continuous satisfying the growth condi-
tions

∥b̃(z)∥+ ∥σ̃(z)∥ ≤ L(1 + ∥y∥), z ∈ RN ,
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and the boundary conditions, for all z ∈ RN
+ ,

zi = 0 ⇒ e⊤i b̃(z) ≥ 0 and e⊤i σ̃(z) = 0, i = 1, . . . , N, (12)

then, for each Z̃0 ∈ RN
+ , there exists a weak RN

+ -valued solution to the following
stochastic differential equation

dZ̃t = b̃
(
Z̃t

)
dt+ σ̃

(
Z̃t

)
dWt.

Proof. See for instance Da Prato and Frankowska [18, Example 2.7].

We now proceed to the proof of Theorem 2.3.

Proof of Theorem 2.3. It remains to apply Lemma 2.11 on the equation (11).
For this, we define

b̃(z) = −Qdiag(x)Q−1z + wbµ(zN )eN and σ̃(z) = wσ(zN )eN , z ∈ RN .

Then, it readily follows from the continuity and growth conditions of b and σ
that b̃, σ̃ are also continuous with at most linear growth conditions. As for the
boundary conditions (12), we fix z ∈ RN

+ such that zi = 0 for some i = 1, . . . , N .
• For the diffusion term, we have

e⊤i σ̃(z) = wσ(zN )e⊤i eN = 0,

since e⊤i eN = 0 if i < N and σ(zN ) = σ(0) = 0 if i = N , where we used the
boundary condition on σ in (3).

• For the drift term, we first observe that for the same reason bµ(zN )e⊤i eN =
(b(zN ) + µ)e⊤i eN ≥ 0, since b(0) + µ ≥ 0 thanks to the boundary condition on
b in (3) and the fact that µ ≥ 0, so that we can write

e⊤i b̃(z) = −e⊤i Qdiag(x)Q−1z + wbµ(zN )e⊤i eN

≥ −
∑
j ̸=i

(Qdiag(x)Q−1)ijzj

≥ 0,

where the first inequality follows from zi = 0 and the second inequality follows
from the admissibility condition 4 in Definition 2.1 for the matrix Q and the
fact that zj ≥ 0.

This shows that the boundary conditions (12) are satisfied by b̃, σ̃, so that an
application of Lemma 2.11 yields the existence of an RN

+ -valued solution Z to
(11) for any initial condition Z0 ∈ RN

+ . In particular, it holds for the initial value
Z0 = QY0 with Y0 ∈ D = Q−1R+

N . Setting Y = QZ, one obtains a D-valued
weak solution Y to (5) started at Y0 and ends the proof of theorem.

10



3 The weak scheme is cone-preserving
In Section 2, we determined the state space D ⊆ RN of the multifactor square-
root process V N given by (9). Assume now that we approximate the process
V N using the weak simulation scheme proposed in Bayer and Breneis [12]. The
goal of this section is to prove that the resulting approximation has the same
viable domain D as V N .

Let us first start by recalling the weak simulation scheme of Bayer and
Breneis [12]. First, the SDE in (9) is split into two parts, one containing the
drift and the other the diffusion. Denote by D(z, h) := Zh := (Z

(i)
h )Ni=1 the

solution at time h of the ordinary differential equation (ODE)

dZi
t = −xi(Z

i
t − vi0) dt+ (θ − λZt) dt, Zi

0 = zi, i = 1, . . . , N, Zt = w⊤Zt,
(13)

and by S(y, h) := Yh := Y i
h the solution at time h of the SDE

dY i
t = ν

√
Yt dWt, Y i

0 = yi, i = 1, . . . , N, Yt = w⊤Yt. (14)

Then, the ODE (13) is linear and can hence be solved exactly. Therefore,
the simulation scheme D̂ for the ODE is simply given by

D̂(z, h) := D(z, h) := eAhz +A−1(eAh − Id)b,

where
A := −λ1w⊤ − diag(x), and b := θ1+ diag(x)v0.

We now recall the simulation scheme for the SDE (14). Note that the right-
hand side of (14) is the same for all i. Thus, after multiplying (14) with w, we
get

dYt = νw
√

Yt dWt, Y0 = w⊤y,

where w := 1⊤w. This is now a one-dimensional SDE, which was already studied
in Lileika and Mackevičius [21], where a second-order simulation scheme was
given. This scheme is based on matching the first 5 moments, while preserving
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the non-negativity of Y . Define the quantities

x := w⊤y, z := ν2w2h, (15)

m1 := x, m2 := x2 + xz, m3 := x3 + 3x2z +
3

2
xz2,

p1 :=
m1x2x3 −m2(x2 + x3) +m3

x1(x3 − x1)(x2 − x1)
,

p2 :=
m1x1x3 −m2(x1 + x3) +m3

x2(x3 − x2)(x1 − x2)
,

p3 :=
m1x1x2 −m2(x1 + x2) +m3

x3(x1 − x3)(x2 − x3)
,

x1 := x+

(
A+

3

4

)
z −

√√√√(3x+

(
A+

3

4

)2

z

)
z, (16)

x2 := x+Az,

x3 := x+

(
A+

3

4

)
z +

√√√√(3x+

(
A+

3

4

)2

z

)
z, (17)

A :=
3 +

√
3

4
.

Then, we define Ŷh to be the random variable which is xi with probability pi,
i = 1, 2, 3.

We can now reconstruct an approximation Ŷ from Ŷ . Indeed, since the
right-hand side of (14) is the same for all i = 1, . . . , N , the solution of (14) must
be of the form

Y i
h = yi +R, i = 1, . . . , N, (18)

for some scalar random variable R. Taking the inner product of (18) with w,
we get

Yh = w⊤y + wR, implying R =
Yh −w⊤y

w
.

Hence, we set

Ŝ(y, h) := Ŷh := y +
Ŷh −w⊤y

w
.

Finally, we use Strang splitting to get the scheme

ACIR(v, h) := D

(
Ŝ

(
D

(
v,

h

2

)
, h

)
,
h

2

)
for approximating Vh given v. Therefore, we get a simulation algorithm

V N,M
tj+1

:= ACIR(V N,M
tj , tj+1 − tj), j = 0, . . . ,M − 1,

where 0 = t0 < t1 < · · · < tM = T. The only problem that could occur is that
the square root in (16) or (17) is not well-defined. However, note that if we can

12



prove that V N,M does not leave D, where D is the same cone as in Theorem
2.3, then in particular, x = w⊤y in (15) will always be non-negative, and hence
the square roots in (16) and (17) are always well-defined. Proving that V N,M

stays in D is the aim of the following theorem.

Theorem 3.1. Let Q be an admissible matrix and let v0 be chosen according
to (7). Then, for all v ∈ Q−1RN

+ and h ≥ 0, the weak simulation algorithm
ACIR described above satisfies ACIR(v, h) ∈ Q−1RN

+ . In particular, ACIR is
well-defined.

Proof. Given z,y ∈ Q−1RN
+ and h ≥ 0, we want to show that D(z, h) ∈ Q−1RN

+ ,
and Ŝ(y, h) ∈ Q−1RN

+ . This will prove the theorem.
Consider first the algorithm Ŝ. Recall that Ŝ(y, h) = y+R1 for some scalar

random variable R. We have to verify that QŜ(y, h) = Qy + RQ1 ∈ RN
+ . The

last component of this vector is given by

(QŜ(y, h))N = w⊤y +Rw,

and we recall that this was given by the random variable Ŷh in Section 3, which
by definition is non-negative, as verified in Lileika and Mackevičius [21]. Con-
versely, for i = 1, . . . , N − 1, we have

(QŜ(y, h))i = (Qy)i + 0 ≥ 0

by the assumption that Qy ∈ R+
N . Hence, Ŝ leaves the domain Q−1RN

+ invariant.
Next, consider the algorithm D. Recall that D(z, h) was given as the exact

solution at time h of the ODE

dZt = −diag(x)(Zt − v0) dt+ (θ − λw⊤Zt)1dt, Z0 = z.

Note that due to (7), diag(x)v0 = µ1 for some µ ≥ 0. Defining Z̃ := QZ, we
have

dZ̃t =
(
−Qdiag(x)Q−1Z̃t + (θ + µ− λZ̃N

t )Q1
)
dt, Z̃0 = Qz ∈ RN

+ ,

and we have to show that Z̃t ∈ RN
+ . We prove this by invoking Lemma 2.11,

where we note that

b(z) = −Qdiag(x)Q−1z + (θ + µ− λzN )Q1, σ ≡ 0.

In particular, we have to show that bi(z) ≥ 0 for z ∈ RN
+ with zi = 0.

We start with i = N . Here, we have

bN (z) = −(Qdiag(x)Q−1z)N + (θ + µ)w.

Of course, (θ + µ)w ≥ 0. Moreover, due to Definition 2.1, −(Qdiag(x)Q−1z)N
is a linear combination of zi where all the coefficients are non-negative, with

13



the exception of the coefficient of zN . However, since zN = 0, this implies that
bN (z) ≥ 0.

Next, consider i = 1, . . . , N − 1. Then,

bi(z) = −(Qdiag(x)Q−1z)i.

As before, −(Qdiag(x)Q−1z)i is again a linear combination of the zj , where
all coefficients are non-negative, with the exception of the coefficient of zi. But
since zi = 0, this implies that bi(z) ≥ 0, proving the theorem.

4 Solving PDEs
As an application of the domain, we want to solve PDEs. Recall that the
multifactor square-root process V N is given by

dV N
t = −diag(x)

(
V N
t − v0

)
dt+

(
θ − λw⊤V N

t

)
1dt+ ν

√
w⊤V N

t 1dWt,

see (9). After a transformation of variables using Z := QV N and z0 := Qv0,
where Q is the matrix in Theorem 2.2, we have

dZt = −Qdiag(x)Q−1 (Zt − z0) dt+w
(
θ − λZ

(N)
t

)
eN dt+νw

√
Z

(N)
t eN dWt.

Let f : RN
+ → R be a “nice” payoff function. Then, we define the value

function u : RN
+ × [0, T ] → R,

u(z, t) := E
[
f(ZT )

∣∣Zt = z
]
.

Then, u satisfies the PDE

∂tu−(∇u)⊤Qdiag(x)Q−1(z−z0)+w (θ − λzN ) ∂zNu+
1

2
ν2w2zN∂2

zNu = 0 (19)

with the boundary condition u(z, T ) = f(z), z ∈ RN
+ .

For numerical approximation, we then need to truncate the domain in space,
and impose appropriate boundary conditions. For simplicity, we will instead
fabricate an appropriate source term such that the PDE has an explicit, given
solution, which we then also impose as Dirichlet boundary condition on the
boundary of the truncated domain.

Specifically, suppose that we want the exact solution to have the form

u(z, t) = ũ(z, t) := 1 +

N∑
i=1

αi(z
i)2 + βt, z ∈ RN

+ , t ∈ [0, T ].

Plugging this formula into (19), we obtain a source term

ϕ(z) = β − 2

N∑
i=1

αiz
i

N∑
j=1

gij(z
j − zj0) + 2αNw(θ − λzN )zN + ν2w2αNzN ,

14



N θ λ ν x w v0

2 0.8 1.2 0.7 (0.1, 3.5) (0.4, 1.8) (0.2, 0.3)

Table 1: Parameters of the stochastic volatility of the lifted rough Heston model
used for the numerical example.

i.e., u satisfies

∂tu− (∇u)⊤Qdiag(x)Q−1(z − z0) + w (θ − λzN ) ∂zNu+
1

2
ν2w2zN∂2

zNu = ϕ,

now with the terminal condition u(z, T ) = ũ(z, T ). The precise parameters
chosen are summarized in Table 1, with a dimension N = 2 and an admissible
matrix Q given by Example 2.10. We furthermore choose α = (3, 4), β = 1.6,
and the terminal time T = 2.

After truncation of the domain, we solve the PDE by the finite element
method, using the package FEniCSx, see Baratta et al. [9], and compare against
the exact solution ũ. In Table 2 we present the L2-errors on the truncated
domain for three choices of truncated domains, each of side-length 4:

1. D = [0, 4]2, corresponding to a truncation in v-space which respects the
cone-shaped actual domain of the process;

2. D = [−0.5, 3.5]2 corresponding to a truncation in v-space, which neither
respects the cone-shaped actual domain, nor the non-negativity condition;

3. D = [−0.5, 3.5]× [0, 4] corresponding to a domain truncation, which does
not respect the cone-shaped actual domain in v-space, but does respect
the non-negativity.

We use first order Lagrange-type finite elements, with nt time-steps as well as
mesh-size nx = nt in each space dimension. (We refer to https://github.com/
bayerc2/domain_multifactor_volterra for more details.)

We would like to emphasize that, while it might seem trivial to choose [0, 4]2

as the domain instead of, say, [−0.5, 3.5]× [0, 4], this choice is based on correctly
identifying the matrix Q and the domain D = Q−1R2

+, which is appropriately
truncated here to Q−1[0, 4]2. Without knowledge of Q, one would need to guess
D to truncate the domain, a task that becomes increasingly nontrivial in higher
dimensions.

When non-negativity of the variance process is preserved (cases 1 and 3), the
numerical method empirically exhibits second order convergence, with slightly
smaller error when the computational domain is a subset of the support of the
process (case 1). On the other hand, when non-negativity of the variance process
is not preserved on the computational domain (case 2) the error explodes due
to the instability of the heat equation backward in time.
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L2-error over the domain D

n D = [0, 4]2 D = [−0.5, 3.5]2 D = [−0.5, 3.5]× [0, 4]

4 7.3× 101 3.0× 103 5.5× 101

8 1.4× 101 7.7× 101 1.5× 101

16 3.2× 100 2.2× 1010 3.3× 100

32 7.5× 10−1 1.5× 1080 8.0× 10−1

64 1.8× 10−1 1.4× 1050 2.0× 10−1

128 4.6× 10−2 inf 4.9× 10−2

256 1.1× 10−2 inf 1.2× 10−2

512 2.9× 10−3 inf 3.0× 10−3

1024 7.2× 10−4 inf 7.6× 10−4

Table 2: L2 errors over the truncated domain for the approximate FEM solution
to the PDE for nt = nx = n.

A Invariant domains in dimension N = 3

We extend the calculations presented for N = 2 in Example 2.10 to the three-
dimensional case. We are looking for a matrix of the form

Q =

a1 a2 −a1 − a2
b1 b2 −b1 − b2
w1 w2 w3

 . (20)

Note that there are some scaling invariances in the equation Qx ∈ RN
+ . We may

multiply rows of Q with positive (!) constants without changing this condition.
Hence, we restrict ourselves to

Q =

 1 −a −1 + a
1 b −1− b
w1 w2 w3

 .

Note that this corresponds to the assumption that a1 and b1 in (20) are both
positive. Indeed, if we chose one of these entries to be 0 or −1, we would fail to
find an appropriate matrix Q.

Define the matrix R := −wQdiag(x)Q−1, where we denote R = (ri,j)
N
i,j=1,
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and set y1 := x2 − x1 and y2 := x3 − x2. Then,

r1,3 = y1 + y2 − ay2,

r2,3 = y1 + y2 + by2,

r3,2 =
(w1w2y1 + w1w3(y1 + y2))a− w1w2y1 + w2w3y2

a+ b
,

r3,1 =
(w1w2y1 + w1w3(y1 + y2))b+ w1w2y1 − w2w3y2

a+ b
,

r1,2 =
w1y2a

2 + (w3y1 + w2(y1 + y2)− w1y2)a− w2(y1 + y2)

a+ b
,

r2,1 =
−w1y2b

2 + (w3y1 + w2(y1 + y2)− w1y2)b+ w2(y1 + y2)

a+ b
,

and all these quantities have to be non-negative. Assume now further that
a, b ≥ 0. Then, r2,3 ≥ 0 is trivially satisfied, and r1,3, r3,2, r3,1, r1,2, r2,1 ≥ 0
simplify to

a ≤ y1 + y2
y2

,

a ≥ w2

w1

w1y1 − w3y2
w2y1 + w3(y1 + y2)

,

b ≥ w2

w1

−w1y1 + w3y2
w2y1 + w3(y1 + y2)

,

0 ≤ w1y2a
2 + ca− w2(y1 + y2),

0 ≥ w1y2b
2 − cb− w2(y1 + y2),

where c := w3y1 + w2(y1 + y2)− w1y2.
This further implies for a that

−c+
√
c2 + 4w1w2y2(y1 + y2)

2w1y2
∨ w2

w1

w1y1 − w3y2
w2y1 + w3(y1 + y2)

≤ a ≤ y1 + y2
y2

.

One can verify that the lower bound is always smaller than the upper bound,
proving that such an a exists. However, it is slightly simpler and perhaps more
illustrative to prove that a = 1 satisfies these inequalities. For the upper bound,
this is trivial. For the lower bound, note that

w2

w1

w1y1 − w3y2
w2y1 + w3(y1 + y2)

≤ w2

w1

w1y1
w2y1

= 1,

and

−c+
√
c2 + 4w1w2y2(y1 + y2)

2w1y2
≤ 1

⇐⇒
√

c2 + 4w1w2y2(y1 + y2) ≤ 2w1y2 + c

⇐⇒ c2 + 4w1w2y2(y1 + y2) ≤ c2 + 4w2
1y

2
2 + 4w1y2c

⇐⇒ w2(y1 + y2) ≤ w1y2 + c.

17



which follows immediately from the definition of c.
Next, for b we get the conditions

0 ∨ w2

w1

−w1y1 + w3y2
w2y1 + w3(y1 + y2)

≤ b ≤
c+

√
c2 + 4w1w2y2(y1 + y2)

2w1y2
.

This time, we verify that b = w2

w1
is admissible. For the lower bound, this is

clear. For the upper bound, note that

w2

w1
≤

c+
√

c2 + 4w1w2y2(y1 + y2)

2w1y2

⇐⇒ 2w2y2 − c ≤
√
c2 + 4w1w2y2(y1 + y2)

⇐= c2 + 4w2
2y

2
2 − 4w2y2c ≤ c2 + 4w1w2y2(y1 + y2)

⇐⇒ w2y2 − c ≤ w1(y1 + y2).

This again follows from the definition of c.
Hence, we have shown that we can choose a = 1 and b = w2

w1
, yielding

Q =

 1 −1 0
1 w2

w1
−1− w2

w1

w1 w2 w3

 .

Note that due to scaling invariance, the matrix

Q =

w1 −w1 0
w1 w2 −w1 − w2

w1 w2 w3


would be equivalent.

Consider now the specific example x := (1, 5, 25) and w := (1, 2, 3). Then,
we get the conditions

0.84 ≈ −5 +
√
85

5
≤ a ≤ 6

5
= 1.2,

1.4 =
7

5
≤ b ≤ 5 +

√
85

5
≈ 2.84.

Comparing to the previous discussion, we see that indeed, a = 1 and b = w2

w1
= 2

are admissible.
The corresponding plots for the multifactor square-root process are shown in

Figure 3. We give projections to two-dimensional planes, as this makes it easier
to visually verify that the samples lie in R3

+. Furthermore, we give three different
choices of (a, b), the first two being admissible, and the third not. Indeed, we
see for the first two choices that the samples lie in R3

+, while this is not the case
for the third choice.
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Figure 3: Samples of projections of U using 103 sample paths on a time grid with
M = 105 time steps. The parameters used are x = (1, 5, 25),w = (1, 2, 3), λ =
0.3, ν = 0.3, V0 = 0.02, θ = 0.02, T = 100, and v0 is chosen to be proportional
to x−1.

B Remark on the link between the sets E and G
In this section, we argue that the two abstract ‘invariance’ sets that appeared
in the literature in Abi Jaber and El Euch [2], Cuchiero and Teichmann [16] are
equal. This part is valid for more general locally square-integrable kernels K
beyond the weighted sum of exponential case.

We introduce the following notations. For suitable functions f, g and mea-
sure L we denote their convolution by ∗:

(f∗g)(t) =
∫ t

0

f(t−s)g(s)ds =

∫ t

0

f(s)g(t−s)ds, (f∗L)(t) :=
∫ t

0

f(t−s)L(ds).

The shift operator ∆h with h ≥ 0, maps any function f on R+ to the function
∆hf given by

∆hf(t) = f(t+ h).

If the function f on R+ is right-continuous and of locally bounded variation,
the measure induced by its distributional derivative is denoted df , so that
f(t) = f(0) +

∫
[0,t]

df(s) for all t ≥ 0. By convention, df does not charge
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{0}.

Two sets appeared so far in the literature to characterize the non-negativity
of solutions to stochastic Volterra equations:

1. Set of Cuchiero and Teichmann [16, Equation (4.7), Definition 4.12 and
Theorem 4.17(i)]:

E =
⋂
w>0

Eη with Eη := {g0 : [0, T ] → R such that g0 −Rη ∗ g0 ≥ 0} .

Here Rη(t) is the resolvent of the second kind of the kernel (ηK) defined
by

Rη = ηK − ηK ∗Rη = ηK −Rη ∗ ηK.

2. Set of Abi Jaber and El Euch [2, Equations (2.4)-(2.5) and Theorem 2.1]:

G =
{
g0 :[0, T ] → R such that

∆hg0 − (∆hK ∗ L)(0)g0 − d(∆hK ∗ L) ∗ g0 ≥ 0 and g0(0) ≥ 0.
}

where L(dt) is the resolvent of the first kind of the kernel1

K ∗ L = 1 = L ∗K.

One can argue that the two sets are equal:

E = G

since both conditions that appear in the set are necessary and sufficient condi-
tions for the non-negativity of the linear Volterra equation

fη = g0 − ηK ∗ fη, (21)

for w > 0. Indeed, on the one hand the solution of (21) can be expressed in
terms of the resolvent of the second kind in the form

fη = g0 −Rη ∗ g0,

which is exactly the form that appears in E . On the other hand, by relying on
the properties of the resolvent of the first kind, see for instance Abi Jaber and
El Euch [2, the proof of Theorem A.2], one can write that

fη(t+ h) = ∆hg0(t)− (∆hK ∗ L)(0)g0(t)− (d(∆hK ∗ L) ∗ g0)(t)
+ (∆hK ∗ L)(0)fη(t) + (d(∆hK ∗ L) ∗ fη)(t)

− w

∫ t+h

t

K(t− s)fη(s)ds.

1Under some suitable assumptions on the kernel, see [2, Assumption (H1)], one can show
that K admits a resolvent of the first kind such that ∆hK ∗L is right-continuous and of locally
bounded variation, see [2, Remark B.3], thus the associated measure d(∆hK ∗L) that appears
in the set G is well defined.
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We note that the first line is exactly the condition that appears in the set G. Us-
ing the two above expressions one can show that the non-negativity of the linear
Volterra equation (21), for any w > 0, is equivalent to the condition that appear
in E as well as the one that appears in G, which shows that the two sets are equal.

In principle, to establish a link with our cone D, one should restrict to kernels
that are weighted sums of exponentials of the form

K(t) =

N∑
i=1

wie
−xit,

and input curves of the form

g0(t) =

n∑
i=1

wie
−xitY i

0 .

Then, the resolvents of the second kind and first kind for such kernels must
be computed and plugged into the conditions defining the sets E and G. Even
in dimension N = 2, this leads to highly cumbersome and non-trivial compu-
tations, and it is not clear how to explicitly determine a suitable domain, as
for instance our cone D, for Y i

0 from E and G. This makes the approach in the
current paper particularly crucial.

C Some proofs

C.1 Proof of Theorem 2.2
In preparation for the proof, we introduce the matrix R = (ri,j)i,j=1,...,N defined
by

ri,N =
1

w
, i = 1, . . . , N,

ri,j =
wj+1∑j

ℓ=1 wℓ

∑j+1
ℓ=1 wℓ

, i ≤ j < N,

ri+1,i =
−1∑i+1
ℓ=1 wℓ

, i = 1, . . . , N − 1,

ri,j = 0, i ≥ j + 2,

(22)

that will turn out to be the inverse of Q. For example, for N = 4 we have

R =


w2

w1(w1+w2)
w3

(w1+w2)(w1+w2+w3)
w4

(w1+w2+w3)(w1+w2+w3+w4)
1

w1+w2+w3+w4
−1

w1+w2

w3

(w1+w2)(w1+w2+w3)
w4

(w1+w2+w3)(w1+w2+w3+w4)
1

w1+w2+w3+w4

0 −1
w1+w2+w3

w4

(w1+w2+w3)(w1+w2+w3+w4)
1

w1+w2+w3+w4

0 0 −1
w1+w2+w3+w4

1
w1+w2+w3+w4


Proof of Theorem 2.2. Conditions 2 and 3 of Definition 2.1 are readily satisfied
by construction. To argue Condition 1, we will prove that R given in (22) is
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actually the inverse of Q, i.e. QR = Id. Indeed, consider first the diagonal
elements. Here, we have

(QR)NN =

N∑
k=1

qNkrkN =

N∑
k=1

wk
1

w
= 1,

(QR)ii =

N∑
k=1

qikrki =

i∑
k=1

wk
wi+1∑i

ℓ=1 wℓ

∑i+1
ℓ=1 wℓ

+

(
−

i∑
ℓ=1

wℓ

)
−1∑i+1
ℓ=1 wℓ

= 1,

for i = 1, . . . , N − 1. Next, consider off-diagonal elements. We have

(QR)Nj =

N∑
k=1

qNkrkj =

j∑
k=1

wk
wj+1∑j

ℓ=1 wℓ

∑j+1
ℓ=1 wℓ

+ wj+1
−1∑j+1
ℓ=1 wℓ

= 0,

for j ≤ N − 1,

(QR)iN =

N∑
k=1

qikrkN =

i∑
k=1

wk
1

w
+

(
−

i∑
ℓ=1

wℓ

)
1

w
= 0,

for i ≤ N − 1,

(QR)ij =

N∑
k=1

qikrkj =

i∑
k=1

wk
wj+1∑j

ℓ=1 wℓ

∑j+1
ℓ=1 wℓ

+

(
−

i∑
ℓ=1

wℓ

)
wj+1∑j

ℓ=1 wℓ

∑j+1
ℓ=1 wℓ

= 0,

for i < j ≤ N − 1, and

(QR)ij =

N∑
k=1

qikrkj =

j∑
k=1

wk
wj+1∑j

ℓ=1 wℓ

∑j+1
ℓ=1 wℓ

+ wj+1
−1∑j+1
ℓ=1 wℓ

= 0,

for j < i ≤ N − 1. In particular, this proves that R = Q−1.
Finally, we verify Condition 4 of Definition 2.1 by direct computations. First,

it is easily verified that we have Qdiag(x) = S := (si,j)i,j=1,...,N with

sij = qijxj = wjxj , j ≤ i, si,i+1 = −xi+1

i∑
ℓ=1

wℓ, i = 1, . . . , N − 1.

Now, let us compute Qdiag(x)Q−1 = T := (ti,j)i,j=1,...,N .
We have

ti,N =

N∑
k=1

si,krk,N =
1

w

(
i∑

k=1

wkxk − xi+1

i∑
ℓ=1

wℓ

)
≤ 0

for i = 1, . . . , N − 1, since the xi are ordered increasingly. Similarly,

tN,j =

N∑
k=1

sN,krk,j =

j∑
k=1

xkwk
wj+1∑j

ℓ=1 wℓ

∑j+1
ℓ=1 wℓ

+ xj+1wj+1
−1∑j+1
ℓ=1 wℓ

≤ 0
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for j = 1, . . . , N − 1. Next,

ti,j =

N∑
k=1

si,krk,j =

(
i∑

k=1

wkxk − xi+1

i∑
ℓ=1

wℓ

)
wj+1∑j

ℓ=1 wℓ

∑j+1
ℓ=1 wℓ

≤ 0

for i < j ≤ N − 1. Finally,

ti,j =

N∑
k=1

si,krk,j =

j∑
k=1

wkxk
wj+1∑j

ℓ=1 wℓ

∑j+1
ℓ=1 wℓ

+ wj+1xj+1
−1∑j+1
ℓ=1 wℓ

≤ 0

for j < i ≤ N − 1. This verifies Condition 4 of Definition 2.1 and proves the
theorem.

C.2 The mean-reversion level is in the domain
Proof of Lemma 2.6. We prove the equivalent statement Qy0 ∈ RN

+ . First, note
that

Qy0 = µQdiag(x)−11 = µQdiag(x)−1Q−1Q1 = µwQdiag(x)−1Q−1eN .

Recall that in linear algebra, an M-matrix is a square matrix with non-
positive off-diagonal entries and with eigenvalues whose real parts are non-
negative. Clearly, the matrix Qdiag(x)Q−1 is an M-matrix: The non-positivity
of the off-diagonal entries holds by assumption, and its eigenvalues are (real
and) positive, since it is just the matrix diag(x) written in a different basis.
Now it is well-known that the inverse of an M-matrix has non-negative entries
(in fact, this property characterizes M-matrices). Therefore,(

Qdiag(x)Q−1
)−1

= Qdiag(x)−1Q−1

has only non-negative entries. In particular,

Qy0 = µwQdiag(x)−1Q−1eN ∈ RN
+ ,

proving the lemma.
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