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Abstract

Consider a hiring process with candidates coming from different universities. It is
easy to order candidates with the same background, yet it can be challenging to
compare them otherwise. The latter case requires additional costly assessments,
leading to a potentially high total cost for the hiring organization. Given an assigned
budget, what would be an optimal strategy to select the most qualified candidate?
We model the above problem as a multicolor secretary problem, allowing compar-
isons between candidates from distinct groups at a fixed cost. Our study explores
how the allocated budget enhances the success probability in such settings.

1 Introduction

Online selection is among the most fundamental problems in decision-making under uncertainty,
Multiple problems within this framework can be modeled as variants of the secretary problem
[Dynkin, 1963} |Chow et al.||1971]], where the decision-maker has to identify the best candidate among
a pool of totally ordered candidates, observed sequentially in a uniformly random order. When a
new candidate is observed, the decision maker can either select them and halt the process or reject
them irrevocably. The optimal strategy is well known and consists of skipping the first 1 /e fraction
of the candidates and then selecting the first candidate that is better than all previously observed ones.
This strategy yields a probability 1/e of selecting the best candidate. A large body of literature is
dedicated to the secretary problem and its variants, we refer the interested reader to [Chow et al.,
1971}, ILindley} |1961] for a historical overview of this theoretical problem.

In practice, as pointed out by several social studies, the selection processes often do not reflect the
actual relative ranks of the candidates and might be biased with respect to some socioeconomic
attributes [Salem et al.; 2022, Raghavan et al.; 2020]. To tackle this issue, several works have explored
variants of the secretary problem with noisy or biased observations [Salem and Guptal |2019| |Freij and
Waistlund, |2010]]. In particular, (Correa et al.|[2021a] studied the multi-color secretary problem, where
each candidate belongs to one of K distinct groups, and only candidates of the same group can be
compared. This corresponds for example to the case of graduate candidates from different universities,
where the within-group orders are freely observable and can be trusted using a metric such as GPA,
but inter-group order cannot be obtained by the same metric. This model, however, is too pessimistic,
as it overlooks the possibility of obtaining inter-group orders at some cost, through testing and
examination. Taking this into account, we study the multicolor secretary problem with a budget for
comparisons, where comparing candidates from the same group is free, and comparing candidates
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from different groups has a fixed cost of 1. We assume that the decision-maker is allowed at most
B comparisons. This budget B represents the amount of time/money that the hiring organization
is willing to invest to understand the candidate’s “true” performance. As in the classical secretary
problem, an algorithm is said to have succeeded if the selected candidate is the best overall, otherwise,

it has failed. The objective is to design algorithms that maximize the probability of success.

1.1 Contributions

The paper studies an extension of the multi-color secretary problem [Correa et al.| 2021a]], where
comparing candidates from different groups is possible at a cost. This makes the setting more realistic
and paves the way for more practical applications, but also introduces new analytical challenges.

In Section 2] we describe a general class of Dynamic-Threshold (DT) algorithms, defined by distinct
acceptance thresholds for each group, that can change over time depending on the available budget.
First, we examine a particular case where all thresholds are equal, which can be viewed as an
extension of the classical 1/e-strategy. However, the analysis is intricate due to additional factors
such as group memberships, comparison history, and the available budget. By carefully controlling
these parameters, we compute the asymptotic success probability of the algorithm, demonstrating its
extremely rapid convergence to the upper bound of 1/e when the budget increases, hence constituting
a first efficient solution to the problem.

Subsequently, our focus shifts to the case of two groups, where we explore another particular case of
DT algorithms: static double threshold algorithms. These involve different acceptance thresholds
for each group, that depend on the groups’ proportions and the initial budget, but do not vary during
the execution of the algorithm. We prove a recursive formula for computing the resulting success
probability, and we exploit it to establish a closed-form lower bound and compute explicit thresholds.

In the two-group scenario, we also derive the optimal algorithm among those that do not utilize the
history of comparisons, which we refer to as memory-less. We present an efficient implementation
of this algorithm and demonstrate, via numerical simulations, that it belongs to the class of DT
algorithms when the number of candidates is large. Leveraging this insight, we numerically compute
optimal thresholds for the two-group case.

1.2 Related work

The secretary problem The secretary problem was introduced by |Dynkin| [1963, who proposed
the 1/e-threshold algorithm, having a success probability of 1/e, which is the best possible. Since
then, the problem has undergone extensive study and found numerous applications, including in
finance [[Hlynka and Sheahanl [1988]], mechanism design [Kleinberg}, [2005]], Nested Rollout Policy
Adaptation (NRPA) [Dang et al.| 2023]], active learning [Fuji1 and Kashima, 2016], and the design of
interactive algorithms [Sabato and Hess| 2016} |2018]]. Moreover, the secretary problem has multiple
variants [Karlin and Lei, [2015} |Be1 and Zhang, |2022, |Assadi et al.l 2019, [Keller and Geilier}, 2015]],
and has inspired other works, for instance, related to matching [Goyall, [2022] [Dickerson et al., [2019]]
or ranking [Jiang et al., 2021} [El Ferchichi et al.]. A closely related problem is the prophet inequality
[Krengel and Sucheston, |1977, [Samuel-Cahnl [1984], where the decision-maker sequentially observes
values sampled from known distributions, and its reward is the value of the selected item, in opposite
the secretary problem where the reward is binary: 1 if the selected value is the maximum and 0
otherwise. Prophet inequalities also have many applications [Kleinberg and Weinberg, 2012, |(Chawla
et al.} 2010, |Feldman et al., 2014] and have been explored in multiple variants [Kennedyl 1987, |Azar
et al.,[2018} Bubna and Chiplunkar, 2023, [Benomar et al., 2024]).

Different information settings In some practical scenarios, the secretary problem may present a
pessimistic model. Therefore, variants with additional information have been studied. For example,
Gilbert and Mosteller] [2006] explored a scenario where candidates’ values are independently drawn
from a known distribution. Other studies have examined potential improvements with other types of
information, such as samples [[Correa et al.,[2021b]] or machine-learned advice [Antoniadis et al., 2020,
Diitting et al., 2021} [Benomar and Perchet, 2023]]. Conversely, some works more closely aligned
with ours have investigated more constrained settings. Notably, Correa et al.|[2021a] introduced the
multi-color secretary problem, where totally ordered candidates belong to different groups, and only
the partial order within each group, consistent with the total order, can be accessed. Under fairness



constraints, they designed an asymptotically optimal strategy for selecting the best candidate. Other
settings with only partial information have been studied as well. For example, Monahan|[|1980, [1982]
addressed the optimal stopping of a target process when only a related process is observed, and they
designed mechanisms for acquiring information from the target process. However, these works do
not assume a fixed budget and instead consider a penalized version of the problem.

Online algorithms with limited advice This paper also relates to other works on online algorithms,
where the decision-maker is allowed to query a limited number of hints during execution. The
objective of these analyses is to measure how the performance improves with the number of permitted
hints. Such settings have been studied, for example, in online linear optimization [Bhaskara et al.,
2021}, caching, [Im et al.,|2022]], paging [[Antoniadis et al.|[2023]], scheduling [Benomar and Perchet],
metrical task systems [Sadek and Elias, [2024], clustering [Silwal et al.,[2023]], and sorting [Bai and
Coester}, 2024] Benomar and Coester, [2024]. Another related paper by |Drygala et al.| [2023]] studies a
penalized version of the Bahncard problem with costly hints.

2 Formal problem

We consider a strictly totally ordered set of cardinal IV, whose elements will be called candidates. We
assume that these candidates are observed in a uniformly random arrival order (x1, ...z x), and that
they are partitioned into K groups G, ..., G*. For all t € [N], we denote by g; € [K] the group of
ry, i.e. x; € GY, and we assume that {g; },c[n) are mutually independent random variables

P(g = k)= X\i, Vte[N]VkelK],
where A;, > 0 for all k € [K] and Zle A = 1.

We assume that comparing candidates of the same group is free, while comparing two candidates of
different groups is costly. To address the latter case, we consider that a budget B > 0 is given for
comparisons and we propose two models: the algorithm can pay a cost of 1 in order to:

1. compare a two already observed candidates x; and x4 belonging to different group,

2. determine if the current candidate is the best candidate seen so far among all the groups.

For simplicity, we focus on the second model. However, we explain during the paper how our
algorithms adapt to the first model and the cost they incur.

When a new candidate arrives, the algorithm can choose to select them, halting the process, or it
can choose to skip them, moving on to the next one—hoping to find a better candidate in the future.
Once a candidate has been rejected, they cannot be recalled—the decisions are irreversible. Given the
total number of candidates N, the probabilities (Ar.),e[x] characterizing the group membership, and
a budget B, the goal is to derive an algorithm that maximizes the probability of selecting the best
overall candidate. We refer to the problem as the (K, B)-secretary problem

2.1 Additional notation

For all t < s € [N], we denote by z., := {xy,...,x,}, and for all k € [K] we denote by G¥ _ the
set of candidates of group G* observed between steps t and s,

GF.i={z, : t<r<sandg, =k} =z, NG".

If t = 1, then we lighten the notation G := G% . Let A be any algorithm for the (K, B)-secretary
problem, we define its stopping time 7(.A) as the step ¢ when it decides to return the observed
candidate. We will often drop the explicit dependency on A and write 7 when no ambiguity is
involved. We will say that 4 succeeded if the selected candidate x, is the best among all the

candidates {1, ...,z n}. Let us also define, for any step ¢ > 1, the random variables
t t
Ty = le(a:t <xy,9t=gy) and Ry = Z]l(:ct <ap) . (1
t'=1 t'=1

Both random variables have natural interpretations: given a candidate at time ¢, r, is its in-group rank
up to time ¢, while R; is its overall rank up to time t. Note that the actual values of x; do not play a



role in the secretary problem and we can restrict ourselves to the observations 7, g;, R;. While the
first two random variables are always available at the beginning of round ¢, the third one can be only
acquired utilizing the available budget. At each step ¢ € [INV], the decision-maker observes r¢, g; and
can perform one of the following three actions:

1. skip: reject z; and move to the next one;
2. stop: select xy;

3. compare: if the comparison budget is not exhausted, use a comparison to determine if
(R; = 1)—compare the candidate x; to the best already seen candidates in the other groups;

Furthermore, if a comparison has been used at time ¢, the algorithm has to perform stop or skip
afterward. We denote respectively by a; ; and a; » the first and second action made by the algorithm
at step ¢. Let us also define g; the group to which the best candidate observed until step ¢ belongs,

g; = argmax{maxG}} Vt¢€ [N],
ke[K]

and By as the budget available for A at step ¢
By =B and B;=B;_1—1(a;,1 = compare) Vte [N].

In the presence of a non-zero budget, the first time when A decides to make a comparison will be a
key parameter in our analysis of the success probability. We denote it by p; (A),

p1(A) = min{t € [N] : a;1 = compare} .
As with the stopping time, when there is no ambiguity about A, we simply write p;.

Remark 2.1. Although we formalized the problem using the variables r; and Ry, the only information
needed at any step t is 1(ry = 1) and 1(R; = 1), i.e we only need to know if the candidate is the
best seen so far, in its own group and overall. In practice, 1(ry = 1) can be observed by comparing
x4 to the best candidate up to t — 1 belonging to G9, and if this is the case then 1(R; = 1) can be
observed by comparing x. to the best candidate in the other group.

3 Dynamic threshold algorithm for K groups

In this section, we introduce a general family of Dynamic-threshold (DT) algorithms. A DT algorithm
for the (K, B)-secretary problem is defined by a finite doubly-indexed sequence (o »)ke[k],b<B
of real numbers in [0, 1], which determines the acceprance thresholds based on the group of the
observed candidate and the available budget. During a run of the algorithm, the thresholds used for
each group dynamically change depending on the evolution of the available budget. We denote this
algorithm by A® (b)) ke(xp<B)-

Upon the arrival of a new candidate x, the algorithm observes its group g;: = k € [K] and its
in-group rank r, and has an available budget of B, = b > 0. If t/N < ay,p or 7, = 0, the candidate
is immediately rejected. Otherwise, if /N > oyp and 7, = 1, then the candidate is selected if b = 0;
and if the budget is not yet exhausted (b > 0), then the algorithm pays a unit cost to observe the
variable 1(R; = 1). If this variable is 1, indicating a favorable comparison, the candidate is selected;
otherwise, it is rejected. A formal description is given in Algorithm[I] and a visual representation for
the case of three groups is provided in Figure

3.1 Single-threshold algorithm for K groups

In this section, we focus on the single-threshold algorithm, a specific case within the family of DT
algorithms, where all thresholds are identical across groups and budgets. Initially, the algorithm
rejects all candidates until step 7' — 1, where T € [N] is a fixed threshold. Upon encountering
a new candidate that is the best within its group, if no budget remains, the candidate is selected.
Alternatively, if there is still a budget available, the algorithm utilizes it to determine if the current
candidate is the best among all groups. If that is the case, the candidate is then selected. We denote
by AZ the single-threshold algorithm with threshold 7' and budget B. We demonstrate that this
algorithm has an asymptotic success probability converging very rapidly to the upper bound of 1/e.

In this first lemma, we prove a recursion formula on the success probability of the single-threshold
algorithm, with a threshold T = |aN | for some « € [0, 1].
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Figure 1: Schematic description of a DT algorithm in the case of 3 groups

Algorithm 1: Dynamic-Threshold algorithm A” (k) ke (x),6<5)
Input: Available budget B, thresholds (o p)ke[x],p<B
Initialization: b = B

1 fort=1,...,Ndo

2 Receive new observation: (7, g)

3 ift > |ag, »N]| and r; = 1 then // compare in-group
4 if b > 0 then // check budget
5 Update budget: b+ b —1

6 if R; = 1 then Return: ¢ // compare inter-group
7 else Return: ¢

Lemma 3.1. The success probability of the single threshold algorithm A? with threshold T = |aN |
and budget B > 0 satisfies the recursion formula

K N 1K
T
P (A% succeeds) = aK — 1(B>0)(K-1))_ WP(AEQI succeeds) + O(\/ 1O}ng> :

t=T

The proof hinges on analyzing the behavior of the algorithm following the first comparison. After
that comparison, the algorithm halts if R; = 1, and the success probability can be computed in that
case. Otherwise, if R; # 1, the candidate is rejected, and the algorithm transitions to a new state at
step t + 1, where the available budget reduces to B — 1. Its success probability becomes precisely
that of algorithm Afﬁl, with budget B — 1 and threshold ¢ + 1.

The recursion outlined in Lemm can be used to calculate the asymptotic success probability of
the single-threshold algorithm Aa N as the number of candidates N approaches infinity.

Theorem 3.2. The asymptotic success probability of the single threshold algorithm AZ with threshold
T = |aN| and budget B > 0 is

K B b K—1y¢
_ a 1 log(1/a™ ™)
JVIH)I}X} P(‘ALBOLNJ SuCCeeds) = K—1 z : <aK—1 o Z yal '

£=0

In particular,

lim lim P(AfaNJ succeeds) = alog(l/a) .

B—oco N—oo

Note that, for B = oo, the asymptotic success probability in the previous theorem corresponds to the
success probability of the algorithm with a threshold |« | in the secretary problem. Indeed, with an
unlimited budget, the decision-maker can assess at each step whether the current candidate is the best
so far, and the problem becomes equivalent to the classical secretary problem.



Alternative comparison model. In the alternative comparison model presented in Section 2] the
single threshold algorithm A% can be adapted to guarantee the same success probability at the cost
of K — 1 additional comparisons. After the first 7' candidates are rejected, K — 1 comparisons are
made between the maximums from each group to identify the best candidate so far. The algorithm
then keeps track of the best candidate: whenever a new candidate is the best in their group, they
are compared to the current best candidate using a single comparison, and the latter is updated
accordingly. This approach enjoys the same guarantees as in Theorem [3.2] but with a budget of
K + B — 1 instead of B.

The next corollary measures how the success probability of the single threshold algorithm, in the
setting with K groups, converges to 1/e as the budget increases.

Corollary 3.2.1. The success probability of the single-threshold algorithm with threshold T = | N/e]
and budget B > 0 satisfies

. 1
lim P(.AJLBN/CJ succeeds) > - <1 -

N—o0

(K _ 1)B+1
(B+1)! )

In particular, foralle > 0, if K <1+ %(es)ﬁ, then lim P(AFN/GJ succeeds) > (1 —¢)/e.

This corollary proves that the success probability of AfN /| converges very rapidly to the upper
bound 1/e as B increases. However, the convergence becomes slower when K is larger.

Surprisingly, the asymptotic success probability of AFN /el is not influenced by the proportions
(Ak)ke[x)» but only by the number of groups K. This means that the algorithm does not benefit from

the cases where there is a majority group G* with Ay, very close to 1, which would make the problem
easier. Indeed, it is always possible to achieve a success probability of maxyc (k] Ak /e by rejecting
all the candidates not belonging to the majority group G**, and using the classical 1 /e-rule counting
only elements of G¥*. This algorithm can be combined with ours by always running the one with
the highest success probability, depending on the available budget, the number of groups, and the
group proportions. The resulting algorithm has a success probability that converges to the upper
bound 1/e both when B increases and when maxy A\, converges to 1. Nonetheless, due to the very
fast convergence of the success probability of the single threshold algorithm to 1/e, the improvement
brought by having a majority group is only marginal when the budget is sufficient.

As a consequence, the single threshold algorithm surprisingly constitutes a very efficient solution to
the problem even with moderate values of the budget. Computing the optimal thresholds remains
however an intriguing question, which we explore in the following sections in the case of two groups.

4 The case of two groups

In this section, we delve into the particular case of two groups, and we demonstrate how leveraging
different thresholds for each group can enhance the success probability. Let A € (0, 1) represent
the probability of belonging to group G, and 1 — \ the probability of belonging to group G2. We
examine the success probability of Algorithm A (a, 3), with threshold [N | for group G* and
| BN | for group G2, having a budget of B comparisons. This algorithm is a specific instance of the
DT family, wherein the thresholds depend only on the group, and not on the available budget. We
call it a static double-threshold algorithm.

We assume without loss of generality that « < 3, and we denote by C the event
(Cn): Vt>1:max(||G}] — M|, ||GZ] — (1 = M)t|) < 44/tlog N .

This event provides control over the group sizes at each step. Lemma[A.2] guarantees that Cx holds
true with a probability at least 1 — ﬁ for N > 4. Furthermore, for all ¢ € [N], we denote by

AB(a, B) the algorithm with acceptance thresholds max{ |« |, ¢} and max{|3N|,¢} respectively
for groups G' and G2, and we denote by Uy} , , the probability

uﬁ,t,k = P(Af(a, B) succeeds, g;_; =k | Cn) - @)

Similar to the analysis of the single-threshold algorithm, we establish in Lemma [C.T] a recursion
formula satisfied by (I ]]\5}’ + 1) B,t,k» which we later utilize to derive lower bounds on the asymptotic



success probability of A («, 3). To prove this lemma, we study the probability distribution of the
occurrence time p; of the first comparison made by AP («, 3), and we examine the algorithm’s
success probability following it. Essentially, if p; = s, we can compute the probability of stopping
and the corresponding success probability, and the distribution of the state of the algorithm at step
s + 1, which yields the recursion. Using adequate concentration arguments and Lemma we show
the two following results, giving explicit recursive formulas satisfied by the limit of U/} , , when
N — oo, respectively for k =2 and k = 1.

Lemma 4.1. Forall B > 0 and w € |a, B, the limit oF (a, B;w) = im0 Z/lﬁ w2 €XISLS,
and it satisfies the following recursion

“NBuw? & b 1o ¢
w?(a,ﬁ;w)z—mlog(u—A)g+A)+% ) (1_;1g(2l/5)>

A — 2U} — u
+11(B>0)w2/w (1((1A>A)w+jf\z)223 oy

Moreover, Uy |, x| o = ¢35 (o, Biw) + O(\/@)'

Lemma 4.2. For all B > 0 and w € [a, (), the limit pP (o, B;w) = limy_ o0 Z/l]]\g,) LN |1 €XISTS,
and it satisfies the following recursion

B 1 < log(1/8)!
wf(aaﬂ;w):/\wlog(lf/\+/\§)+(1_)\)—w+w > (Zﬂ

B (u—w 23_1 a, Biu
+]1(B>O)/\2w/w ((<1_)f)w +(Au;32u)

Moreover, U |, x|, = #1 (v, B;w) + O( IOngN)'

We deduce that the asymptotic success probability of Algorithm Aﬁﬂ N conditioned on the event C,

exists and equals 7 (o, B;w) + & (o, B;w). Additionally, by applying LemmalA.3] we eliminate
the conditioning on Cp, thus proving the following theorem.

Theorem 4.3. Forall 0 < o < 8 < 1, The success probability of Algorithm AP (a, B) satisfies

P (AP (,B) succeeds) — O(\/@)

B b . .
)\alog(g)JraﬁZ(;zw) +1(B>0)Q/BW,

il U
b=0 £=0 @

with 8 (v, B; ) defined in Lemma

It is possible to use Theorem andto numerically compute the success probability of AZ (a, 3).
However, this computation is heavy due the recursion defining ¥ (c, 3;w). Moreover, it is difficult
to prove a closed expression, and even more to compute the optimal thresholds.

By disregarding the term containing 2 (a, 3;-) in the theorem, we derive an analytical lower bound
expressed as a function of the parameters \, B, «, and 3, allowing a more effective threshold selection.
In the subsequent discussion, for all w € (0, 1] and B > 0, we denote by S (w) the following sum:

Pw=Y (; B osl/u) W) |
b=0 =0
Corollary 4.3.1. Assume that A\ > 1/2. Let h® : 3 + min {gexp (%) , ﬁ}, and ég, Bg
the thresholds defined as &g = h®(Bg), and B minimizing the mapping
B € [0,1] = A(B) log (5285;) + W (8)BS" (B) ,

then the success probability of AP (&g, Bp) satisfies

. By~ > 1_ : 1 4 _ _
A}gnooP(A (&g, BB) succeeds) > ; mm{e(BJrl)!’(e A1 )\)} .



Therefore, in contrast to the single-threshold algorithm, the asymptotic success probability of
AB(agp, Bp) approaches 1/e both when the budget increases and when \ approaches 0 or 1.

4.1 Optimal memory-less algorithm for two groups

In the following, an algorithm is called memory-less if its actions at any step ¢ € [N] depend only on
the current observations r¢, g¢, 1 (R, = 1), the available budget By, and the cardinals (|G}_;|)re(x)-

We use in this section a dynamic programming approach to determine the optimal memory-less
algorithm, which we denote by A,.

Unlike previous sections, our analysis here is not asymptotic. By meticulously examining how various
variables, including the precise number of candidates observed in each group, influence the success
probability of \A,, we rigorously analyze its state transitions and corresponding success probabilities
to determine optimal actions at each step. A full description and analysis of the optimal memory-less
algorithm can be found in Section D] Here, we illustrate its actions through Figure 2]

B=0 B=1 B=2

— Gll=M
0.8 1 0.8 0.8

Z 06 0.6 4 0.6
=

0.4 0.4+ 0.4+
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=)

Figure 2: Acceptance region of A,

Computing optimal thresholds for the DT algorithm. Upon observing (7, g:), A, makes a
decision to accept or reject, where acceptance means stop if B = 0 and compare otherwise,
depending on t, |G}|, B, g;. Figure shows its acceptance region (dark green), with N = 500,
A= 0.7, for B € {0, 1,2} and for all possible values of ¢ € [N], |G}| < t, and g; € {1,2}. The x-
and y-axes display respectively the step ¢ and possible group cardinal |G} |, which implies |GZ|, up to
time ¢. The latter follows a binomial distribution with parameters (A, t), which tightly concentrates
around its mean |G}| & M (and |G?| = (1 — \)t) even for moderate values of t. Consequently, when
N is large, |G}| &~ Mt, and the acceptance region is solely defined by a threshold at the intersection
of the acceptance region and the line |G}| ~ At. This observation implies that A, behaves as an
instance of DT algorithms when the number of candidates is large. The corresponding thresholds,
which we denote by (o, 8% )s< B, are necessarily optimal, and can be estimated as the intersection of
the acceptance region for G* and the line (¢, \t) for k € {1,2}.

Alternative comparison model. In the particular case of two groups, both comparison models
introduced in Section [2] are equivalent, as freely comparing a candidate with the best in their group
and then making one costly comparison with the best candidate from the other group is sufficient to
determine if they are the best so far. Therefore, all the results of the current section regarding the
static double-threshold algorithm and optimal memory-less algorithm remain true in the alternative
comparison model.



5 Numerical experiments

In this section, we confirm our theoretical findings via numerical experiments, and we give further
insight regarding the behavior of the algorithms we presented and how they compare to each other. In
all the empirical experiments of this section, each point is computed over 10° independent trials. The
code used for the experiments is available at github.com/Ziyad-Benomar/Addressing-bias-in-online-
selection-with-limited-budget-of-comparisons.

5.1 Single-threshold algorithm

Using Theorem [3.2] the optimal threshold, for the single-threshold algorithm, can be computed
numerically for fixed K and B. Figure [3]illustrates the optimal threshold and the corresponding
success probability for B € {0,...,30} and K € {2,10,25,50}. For any K > 2, as the budget
grows to infinity, the problem becomes akin to the standard secretary problem, leading the optimal
threshold to converge to 1/e. However, as discussed in Corollary the convergence is slower
when the number of groups K is higher.

Optimal single threshold Success probability
095
1/e 4 - [E——
— k=2 | | =TT e
\\ K=10 s Pt
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Budget of comparisons B Budget of comparisons B

Figure 3: Single threshold algorithm: optimal threshold and corresponding success probability

Moreover, Theorem [3.2]reveals that the asymptotic success probability is independent of the prob-
abilities of belonging to each group, and it is equal to a value smaller than 1/e. This indicates a
discontinuity of the success probability at the extreme points of the polygon defining the possible
values of (Ax)re[x)- Figureillustrates this behavior for the case of two groups, with N = 500
candidates, and B € {0,1,2}. On the other hand, while our theoretical results study asymptotic
success probabilities, they do not comprehend how the performance of the algorithms varies with
the number of candidates. Figure [5|shows that the success probability is better when the number of
candidates is small, and it decreases to match the asymptotic expression when N — oo, represented
with dotted lines, for K € {2,3,4}, with B = 3.

0.3 4

: : : : : :
0.0 0.2 0.4 0.6 0.8 10 P 100 150 200
Probability A € [0, 1] of belonging to group G' Number of candidates N

Figure 4: Single threshold: success probability  Figure 5: Convergence to the asymptotic success
for 2 groups, with N = 500 and A € [0, 1] probability, with A, = 1/K forall k € [K]

5.2 The case of two groups

In the case of two groups, Figure 3|shows that, even with a very limited budget, the single-threshold
algorithm has a success probability almost indistinguishable from the upper bound 1/e. Consequently,
in the remaining experiments in the two-group scenario, we restrict ourselves to small budgets B < 3.


https://github.com/Ziyad-Benomar/Addressing-bias-in-online-selection-with-limited-budget-of-comparisons
https://github.com/Ziyad-Benomar/Addressing-bias-in-online-selection-with-limited-budget-of-comparisons

Theorem [D.4] shows a recursive formula for com- e
puting the success probability of the optimal
memory-less algorithm A, forall N > 1, B >0, **]
and A € (0,1). Figure[f] displays this success
probability, in solid lines, for N = 500 and 03
B € {0,1,2}, along with the success proba-
bility of the static double-threshold algorithm
AB(agp,Bp) in dotted lines, where ag, 3p are : , T , ,
defined in Corollary F.3.1] The figure demon- 00 bty 5 e 0.1]of boonging o G Lo
strates that for B = 0, or A close to 0.5, Algo- '

rithm .AB.(& B, ﬂ B) matches.the performance of Figure 6: Success probability of A., and the
A., despite having a much simpler structure. lower bound of Corollary B3.1]

For A = 0.5, both groups have symmetric roles, and the optimal thresholds &g and Sp to choose
in the static-threshold algorithm are identical. Hence, the success probability of AZ (&g, Bg) for
A = 0.5 is exactly that of the single-threshold algorithm, which is independent of A (Theorem [3.2).
We deduce from this observation and Figure|[6|that having different thresholds for each group yields a
substantial improvement over the single-threshold algorithm when A is close to 0 or 1.

Finally, to emphasize that the dynamic programming algorithm A, is equivalent to an instance of DT
algorithm for large N, Figure[7]compares the empirical success probabilities of A, (dotted lines) and
the DT algorithm (solid lines) with thresholds (o, 5% ) B>0, computed as explained in Section
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0.36 1

0344 0.375 4
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Number of candidates N Number of candidates N Number of candidates N

Figure 7: Empirical success probabilities of .4, and the DT algorithm with optimal thresholds

For A € {0.5,0.7,0.95}, the figure confirms that, despite the intricate structure of the optimal
memory-less algorithm, it does not surpass the performance of the DT algorithm with optimal
thresholds when NN is large. Nonetheless, the analysis of the optimal memory-less algorithm is what
enables the numerical computation of the optimal thresholds, as explained previously. Figure §shows
the optimal thresholds o, 57 for all A € [0.5,1] and B € {0,1,2}.

ay(d) === B .
@t B L7
— &0 0sd —— B -

05 0.6 0.7 08 0.9 1.0 0.5 0.6 0.7 08 0.9 10
Probability A € [2,1] of belonging to G* Probability A € [£. 1] of belonging to G

Figure 8: (o, B;) as functions of \.

These thresholds are continuous functions of A, both converging to 1/e very rapidly as the budget
increases. Indeed, for B > 1, they both become very close to 1/e, as for B = 0, the optimal
thresholds are exactly equal to afj = A exp(% — 2) and 5 = A, which correspond to the optimal
thresholds described in Corollary #.3.1]for B = 0 (See the proof of the corollary).
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6 Conclusion and future work

This paper explores more realistic online selection processes, wherein nuanced factors such as
imperfect comparisons and optimal budget utilization are considered. We studied a partially ordered
secretary problem, wherein a constrained budget of comparisons is allowed. Our findings encompass
both asymptotic and non-asymptotic analyses. Specifically, we explore the asymptotic behavior of the
single threshold algorithm with K groups, demonstrating its high efficiency with a non-zero budget.
Furthermore, in the context of two groups, we study the success probability of static double-threshold
algorithms, and we present a non-asymptotic optimal memoryless algorithm. Through numerical
experimentation, we demonstrate that this algorithm behaves as a DT algorithm, and, leveraging this
insight, we show how to numerically compute the optimal DT thresholds. However, a limitation of
the paper is that optimal thresholds are only computed in the case of two groups. Future investigation
could explore methods for numerically or analytically characterizing optimal DT thresholds with an
arbitrary number of groups K.
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A Preliminaries

With the assumption that the group membership of each candidate is a random variable, to compute
the asymptotic success probabilities of the algorithms presented in the paper, it is necessary to use
concentration inequalities to estimate the number of candidates in each group. We use Lemma 3 from
Jamieson et al.| [2014]] to prove the following.

Lemma A.1 (Jamieson et al.|[2014]). Let (X;)¢>1 be i.i.d. Bernoulli random variables, N a positive

integer, and m > 0 satisfying N™ > 8, then it holds with a probability of at least 1 — ]\,225,,7, that

t
Vt>1:) (X, - E[X,]) <2/(m+ 1)tlog N
s=1

Proof. Bernoulli random variables are sub-Gaussian with scale parameter 1/2, hence Lemma 3 from
Jamieson et al.| [2014] with e = 1 guarantees that, with a probability of at least 1 — 3( @)2, the
following holds

t
vt >1:Y (X, — E[X,)) < 2y/tlog (%) .
s=1

Consider positive integers 77 < N, m > 1 such that N™ > 8, and § = 2/N™. Then for all
te{T,...,N}
log(2t)

— Nmt < Nm+1
5 >

<

>R

and we deduce that

P(Vt >1 :Zt:(xs _E[X,]) < 2y/(m + l)tlogN)

P (w 1Y (X - BIX) < 2\/ﬂg(T’)>

s=1
3(2/1og 2)?2
Z 1= N2m
25
>1- Nom

O

In the context of the K -group secretary problem, adequately using the previous Lemma and using
union bounds yields a concentration inequality on the number of candidates belonging to each group.

Lemma A.2. Let N > max(4, K), and consider the following event
VEk € [K],Vt > 1:||GF| — \t| < 4y/tlog N |
which we denote by Cy. Then it holds that P(Cn) > 1 — .

Proof. The previous Lemma with N > 4, m = 3 and respectively with the Bernoulli random
variables X; , o = 1(g; = k) and Xy 1 = 1 — 1(g: = k), gives forall i € {0,1} and k € [K] that

i 25
P (Vt >1: (1G] = Mit) < 4\/tlogN) >1-+,
and we obtain by a union bound that P(Cy) > 1 — 3% Given that N > max(4, K), it follows that

K 50 1 1
PCN) 21— — > 1= — .
Czl-F wm ymzl-w

O

Lemma A.3. Let € be any event, not necessarily independent of C (defined in LemmalA.2)), then
P |Cy)=P(E) +O(1/N?).
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Proof. We have by Lemma[A.2]that

P(ENCy) P(&) 2 2
PE|CNn) = < <|1+—= |PE)<PE)+ — -
Using the same inequality with the complementary event £¢ of £ gives
. . 2 2
P(E|Cw) = 1-PE" [ 21— (PE) + ) = P(E) - 1
which concludes the proof. O
Lemma A4. For any x > 0 and for any B > 1 we have
B boe B+2
b=0 £=0
Proof. Letx > 0 and B > 1. First, observe that
o) b {L‘Z [e%S) [e%S) l’é oo £—1 LL'Z 9] (Eé [e%S) l’é
I RS I B D D B D B R
b=0 £=0 b=0 £=b+1 £=1b=0 (=1 £=0
therefore
B b x[
3 (-3 o
b=0 £=0
and we have
B b ZL’Z ) [eS) .’EZ [eS) -1 CL’Z [eS) ZL’Z
SR NAED I WL D i oI O R
b=0 £=0 b=B+1£=b+1 ¢=B+2b=B+1 ¢=B+2
) 2t o B2
< — < — <ef—-
<> -1 =7 X 7 =S B
(=B+2 (=B+1
where we used for the last step the classical inequality
0o ig . B x( < xB+1
R o= !
(=B+1 ¢ £=0 (B+1)

B Single-Threshold algorithms for X groups

B.1 Proof of Lemma[3.1]

Proof. We consider that B > 1. The case B = 0 is treated separately at the end of the proof. Let Cy
the event (Vk € [K],Vt > 1: ||GF| — A\xt| < 4y/tlog N). It holds that

N K K

P(AZ succeeds | Ciy) = Z Z ZP(A? succeeds, p1 = t, gt = 4,971 =k | Cn)
t=T k=1 (=1

N K K
= Z ZZP(AE succeeds,Rt = ]-vpl =t,9t = ‘ev g;’fl =k | CN)

3
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In the following, we will estimate the terms in both sums. We recall that we consider & and (A ) e[k

to be constants, and 7' = N + o(1), with « also a constant. All the O terms appearing in the proof
are independent of ¢, as T' < ¢ < N, they only depend on N, T/N = « + o(1), and the constant
parameters.

Fort € {T,...,N},if p; = t and R; = 1, then the Algorithms stops on z;, hence its succeeds if and
only if x; = Zmax. The event £y = xax 1s independent of the group membership of the candidates,
thus independent of C, and its probability is 1/N. The event g; = ¢, however, is not independent
of C, but Lemma [A.3| gives that P(g; = ¢ | Cy) = P(g; = ¢) + O(1/N?) = X\, + O(1/N?).
Therefore, it holds for all k,¢ € [K] and t € {T,..., N} that

P (A7 succeeds, Ry = 1,01 = t,g: = {, g5 = k | Cx)
— P(xt = Tmax; P1 >t gt = gag;’—l =k | CN)
= P(l't - xmaX)P(gt =/ | CN)P(Pl > tag;‘fl =k | CN)
A¢

= (N + 0(1/N3)> P(p1 =2 t, 971 =Fk|Cn).

Note that, for the single-threshold algorithm, we have the equivalence p; =t <= p; > tandr; =
1. The event p; > ¢ happens if and only if no candidate z, for s € {T,...,t — 1} in any group
m € [K] exceeds the best candidate seen up to time 7" — 1 in the same group:

Vi>T:(pp >1t) < (Ym e [K]: maxGp,_; < maxGp_q),

with the convention max ) = —oo. Consequently, if p; > t, then 97—, = k means that the best
candidate in all groups until time ¢ — 1 belongs to group G?p_l. Using that T' = ©(NV), this yields

P (AL succeeds, Ry = 1,p1 = t,9: = £, g5_, = k | Cn)

A
= <]\1; —|—O(1/N3)> P(p; > tand maxzi; 1 € GE_, | Cn)

—+ O(l/N3)) P(maxz. 1 € Gh_ | | CN)P(p1 >t | maxz 1 € G|, Cy)

a O(l/N3)> (A’CET;” + 0(1/N2)> P(p1 >t | maxzra_1 € GE_L, Cx)

+ O(l/N3)> P(Vm € [K]\ {k} : max G, 1 < maxG7}_; | Cy)
) [T e[ o
> B [)\mTJrO(\/NlogN) ’CN:|

#k

Amt + O(v/Nlog N)
A@,;T +O(1/N?) I;Ik (f + 0(@))
M]i\;];T +0(1/N3)> <1;:_11 Jro( 101gVN>>

T/t + o( log NV ) . @

On the other hand, regarding the terms of the second sum in (@), if p; = ¢ but R; # 1, the Algorithm
uses a comparison to observe R; but then skips to the next step ¢ + 1. The budget at step ¢ + 1 is
thus B — 1 and the group of the best candidate seen so far remains unchanged. Given that the single
threshold algorithm is memory-less, its state at time ¢ + 1 is fully determined by B — 1, g/ and the
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number of candidates seen in each group so far, which is controlled by C. We deduce that

P (A% succeeds, Ry # 1,p1 = t,9: = £, g5_1 = k | Cn)
= P(AL succeeds | Ry # 1,p1 =t,g: = £, g%, = k,Cn) 5)
xP(R:#1,p1 =t,g:=40,97_1 =k |Cn)
= P(At+1 succeeds | gf = k,CN)P(R; #1,p1 =t,g: =L, 971 =k |Cn), (6)

where P(Aﬁ;ll succeeds) = 0. For ¢ = k, the probability P(R; # 1,p1 =t,9: = £, 95_1 =k |
Cn) is zero, because if g5, = k, p1 > ¢ and g, = £, then the best candidate up to step T — 1
belongs to group G*, and no candidate z, for s € {T,...,t — 1} is better than the maximum in its
group seen before step 7' — 1, thus if 2; belongs to G* and r; = 1 then necessarily R; = 1.

For ¢ # k, it holds that

PR, #1p1=t,g. =097, =k|Cn)
=P(p1 =t, g =, maxz, € GE_ | | Cw)
= P(max x4 € Gifp_l | CN)P(p1 =t,g: = £ | max x4 € G’%_DCN)

- (“T‘” " 0<1/N2>) P(p = t,gi = £ | maxare € Gh_y,Cx)

M T
— kT (1/]\72)) P(g; = (| Cy)P(max G4, | < maxGh | <z
and Vm € [K]\ {k, ¢} : maxGT,_; < maxG7_; | Cn)
MT GL. 1| 1G4
- (1/N2)) (e + O /NNE [y =l Lew] T B[S | o]
mé {k.0}
5 IGL_| 1G4 |
7 TOW/NTE [lcf_lllﬂ e ’CN} II E [\Gm ‘CN]

mé{k,l}

o) 1 (7+o(/5)

me{k,(}

<
(o) (i ()

where we used in the last equations the event Cy and the assumption 7' = ©(N). Therefore,
substituting into (6) gives forall £,k € [K]andt € {T,..., N} that

P(Ag succeeds,R; # 1,p1 =t, gt =4, g7_1 =k | Cn)

M TE
= (tl;_H (\/ logN)) 1(k # ¢) P(AZS" succeeds | g; = k,Cy)

_ /\kTK ( 13%31\1) 1(k # 0) At[ll succeeds, g; =k | Cn)
Caa P(g; =k |[Cn)

B )\kTK log. P(A2 " succeeds, g; = k | Cw)

= ( e T (F 1k #) N + O(1/N?)

= TK 10gN> 1(k # €) P(AP7! succeeds, g = k | Cw) @)

- tK+l t+1 y 9t = N) -
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Finally, substituting (@) and (7)) into (3), and recalling that all the previous O terms are independent
of ¢, gives that

P(AZ succeeds | Cy) :iiZ<AFAk(T/t)K+O(\/I‘}QT§V>>

t= ! 1K 1 i
+ZZZ (tK+1 —1—0( lo]\g]?{\/)> (,AtJrl succeeds, gf = k | Cw)
t=T k=1 l£k
log N S o A K
(1+O< o8 ))(ZZZ e
t=T k=1 (=1
N K TK
+ Z Z tKHP(AE:ll succeeds, g; =k | CN))
t=T k=1 0k
0 TK N 1 N TK B
= (1 + O(\/ 1%’1\/)) (N;t + (K — 1);725K+1P(Ag11 succeeds | CN)) .

Using Riemann sum properties, we obtain

T« L1 (T/NHEK 1 K (1 du a—ak
N = e = | e Oum) = G o

and by LemmalA.3|we have forall ¢t € {T),..., N} and b > 0 that
P(A? succeeds | Cv) = P(A? succeeds) + O(1/N?) ,

with the O(1/N?) independent of . Observing that 31 . % = 1_I?K + 0(1) = O(1), it follows
that

oK N K
P (A% succeeds) = (1 + O(\/ logN)) (aK :11 + (K —1) Z %P(Afﬁl succeeds) + O(%))

t=T
K N TK
= aK —al + (K -1) Z WP(A&? succeeds) + O( IO%N) .
t=T

This concludes the proof for B > 1.

For B = 0, P(AY, , succeeds | Cy) can be decomposed as in (3). However, the terms of the second
sum are all zero, because if p; = t then the algorithm stops at ¢, but since R; # 1, the selected
candidate is not the best one, and thus the succeeding probability is 0. All the computations regarding
the first sum stay the same, and we obtain

P(AY succeeds) = aK—_af + O(\/@) .

B.2 Proof of Theorem 3.2]

Proof. Let a € (0,1] a constant. For all w € [a,1] and B > 0, we denote by »? (w) the limit
lim 00 P(AP succeeds) for t = [wN |. We will prove by induction over B that this limit exists
for all w € [, 1], is equal to the expression stated in the theorem, with w instead of «, and satisfies

P (AP succeeds) = P (w) + O(y/ % log N ), with the O term only depending on « and the other

constants of the problem. In particular, the O term is independent of ¢. For B = 0, Lemma [3.1] gives
immediately for any w € [, 1] and t = |wN | that

P et = S+ 0(5) = 255 (1) o/
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The O term depends on ¢, but using the inequalities o + o(1) < t/N < 1, it can be made only
dependent on «. Let B > 1 and assume the result is true for B — 1. Lemma[3.1]and the induction
hypothesis give for all w € [, 1] and t = |[wN |, that

B w—wh 5Ltk B-1 [log N
P (A, succeeds) = "1 +(K-1) sKﬁP(.ASJrl succeeds) + O( gT)
s=t
K N UK
w—w t B—1(s+1 log N log N
S DY e (0 ) o (VBE) ) + o)
s=t
N —1(s
:ﬂ+(K_1)(t/N)K e JJ\r/1)+O( 10gN>
K-1 N — (s/N)E+1 N )
where we used that the O term in the induction hypothesis is independent of s and that
N K N K N
t B—1(s+1 N 1 1
K1l . < 7 < = ——— =0(1).

Finally, t/N = w+O(1/N), and ¢~ is, by the induction hypothesis, a continuously differentiable
function on [« 1], therefore, it holds by convergence properties of Riemann sums that

P (AP succeeds) = % + (K - D™ +0($)) </w1 ('DzK:_(fL)dquO(J%,)) + O(\/@)

K 1 B-1
7’(11*’[0 K 4 (u) log N
= ek [ o ()

where the O term depends on ¢ and the constant parameters. Using that T = |aN| < t < N,
the O can be made dependent only on « and the other constant parameters. The limit ¢ (w) =
Iimpy oo P(Afw N succeeds) therefore exists, and is equal to
K 1 B-1
By W W Kk [ ¢ (u)

The induction hypothesis gives for all u € [«, 1] that
1

K B- b K—1\¢
Bo1/\_ U 1 log(1/u™ 1)
Ol o <uK1 -2 0 ’

b=0 =0
hence
1, B-1 1B-1 K—1)\¢
k[0 (W), 1 log(1/u™"")
(K = Dw / N Es du = Z <uK - Z M du
v b=0 =0
U du 11 [ log(1/uk 1)
— K K
= Bw KW Z Z E/ " du
w b=0 ¢=0 w
B-1 b _ 1
Cper [ L] ey y L[ les/ur
(K — 1)uk-1 0 (K-1)(t+1)
w b=0 ¢=0 w
B—1 b _
_ Buw* 1 1) Wk le log(1/wk—1)¢+1
K—1\wk-1 = (K= 1)(+1)!
B b _
_ Buw 1 1 _U’Kz log(1/wk—1)*
K—1\wkK-1 (K —1)0!
b=1¢=1
Kk B b K—1)¢
w 1 log(1/w® 1)
_K—lz wK—l_l_ 4
b=1 =1
owk & 1 b log(1/w®—1)*
_K—1bZ wK—l_; 0 ’
—1 =0



and it follows that

wk B b o wK—1)¢
o8 (w) = T (wfil -1 +Z <w;1 B Zl g(l/g! ) ))

£=0

wk & 1 b log(1/wi—1)¢
T K-1 Z wk-1 Z 0 :
b=0 =0
In particular, this identity is true for w = «, which gives the wanted result.

Infinite budget Taking the limit for B — co, we obtain that
lim lim P(AFQNJ succeeds) = BliﬁmC>O P (w)

B—oco N—oo

b=0 £=0
B > log(1/a®—1)

b=0 f=b+1
B > X log 1/a

871 b=0

K i log 1/aK 1)(
K -—1 (¢ —1)!
—1

ok log(l/o/{’l) Z log(1/a—1)*
N K—-1 ~ 2

1
o log(1/a) - =1

= alog(l/a) .
O
B.3 Proof of Corollary
Proof. Leta € (0,1) and T' = |aN |. Lemma A 4] gives for all z > 0 that
B by B+1
x x
S (-5 2o (- )
| |
b=0 < £=0 ¢ ) (B+1)!
in particular, we obtain for z = log(1/a® 1) that
ot & 1 ° log(1/af—1)*
A}gnooP(AT succeeds) = %1 ; <0/<—1 - ; —
o log(1/aX—1) L log(1/af—1)B+1
~K-1 ak-1 (B+1)!
(K —1)%*log(1/a)"*!
= alog(1 1-— .
o log /a)< (B+1)!
Taking a threshold T = | N/e] gives
1 (K _ 1)B+1
. B
Ix}gnooP(ALN/eJ succeeds) > - <1 — W
To achieve an asymptotic success probability of at least < for some € > 0, using the inequality
(K-1)P*
m! > e(;) , it suffices that K and B satisfy e(%ﬁ S e, which is equivalent to

B+1
K <1420 (ee) .
e
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C Static Double-threshold algorithm for two groups

C.1 Recursion lemma

We first prove a recursion satisfied by /% , . (2), which we use to prove the subsequent results in this
section.

Lemma C.1. Forall B> 0,t € {|aN],...,|BN] -1}, and k € {1,2}, U, , satisfies

A [BN]-1
U 1 = N P(p1 > s,9;_1 =k |Cn)
s=t
[BN]-1
1(B > 0) . _
D ; P(gf , =k,p1=s R, #1|CNUS L1,

+ P(AB(a, B) succeeds, g; | = k,p1 > BN | Cx) + O(+) -

Assuming that p; = s € {t,...,|SN] — 1}, the first sum corresponds to the success probability if
Rs = 1 and the algorithm selects the candidate x ;. The terms of the second sum represent the success
probability after using a comparison at step s but observing R, # 1, resulting in the rejection of the
candidate. Therefore, the available budget at step s 4+ 1 is B — 1, and necessarily g; = 2, because a
comparison at step s can only occur if g = 1 by definition of the algorithm. Hence, only the term

Uﬁ;}rl 5 appears in the recursion, not I ﬁ;h ;- Finally, the last term represents the probability of
success if no comparison has been made before step | SN |

Proof. Let B> 0. Forallt € {{aN|,...,|BN] —1)and k € {1, 2}, it holds that

uﬁ,t,k = P(.A?(a, B) succeeds, g;_; = k | Cn)
[BN]-1
= Y P(AP(a,B) succeeds, g_y =k, p1 = 5| Cw)
s=t

+ P(AP(a, B) succeeds, g; , = k, p1 > BN | Cx)

[BN]-1
= Z P (AP (a, B) succeeds, g | = k,p1 = s, Rs = 1| Cn) (8)
s=t
[BN]-1
+ 3 P(AP(a, B) succeeds, gi_y = k,py = 5, Ry £ 1| Cw) ©)
s=t
+ P(AP(a, B) succeeds, g | = k,p1 > BN | Cx) . (10)

Forall s € {t,...,|BN] — 1}, by definition of Algorithm AP (c, ), if p1 = s and R, = 1 then
the candidate x; is selected, and the algorithm succeeds if only if £, = znax. Moreover, the event
{p1 = s} isequivalent to {p; > s,9s = 1,75 = 1}, hence the terms in (§)) can be written as
P(AP(a, B) succeeds, g | = k,p1 =s,Rs =1|Cy)
= P(xs = $maxagz<71 = kapl = S:Rs =1 | CN)
= P(ﬂ:s = xmaxag:—l =k,p12>238,95s=1 | CN)

P(g, — 1
_ PO =N ) s s g =k C)
N
A
_ (N +0(Nla)> P(p1 > s,9{ 1 =k|Cn),
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where used for that the event {zs = Z .y } is independent of the group memberships, thus indepen-
dent of Cyy, and that it is also independent of {p; > s, g;_; = k}, because a realization of the latter
event is determined only by the groups and relative ranks of the candidates {x1,...,2s_1}. For the
last equality, we used Lemmal[A.3]

Secondly, in the case where p; = s and Ry # 1, if B = 0 then the algorithm selects candidate x4
which is not the best overall, hence its probability of succeeding is zero. If B > 1, the algorithm
makes a comparison but then rejects the candidate. Moreover, for s € [t,BN], if py = s then

necessarily g; = 1, and having R, # 1 implies that g* = 2. The success probability of AP (a, 3)

given that p; = s, R, # 1 is the same as the success probability of .A” ;11 (a, B) given that g¥ = 2.

Therefore, the terms of (9) satisfy

P (AP (a, B) succeeds, g | = k,p1 = s, Rs # 1 | Cn)
=1(B>0)P(g;_, =k,p1 =5, R, # 1| Cn)P(AP(c, B) succeeds | g7 | = k,p1 = s, R, # 1,Cn)
=1(B>0)P(g;_, =k,p1 = s,Rs # 1| Cn)P(AZ5 (a, B) succeeds | g7 = 2,Cy)
P(./élh,\,,BJl1 (a, B) succeeds, g =2 | Cn)
P(gt =2[Cn)

— 1B > 0)P(g;_, = k,p1 = 5, Ry # 1| Cy)

u157112
=1(B>0)P(g =k,pr=sRs#1]|Cy)——tb2
( ) (gtfl pl S # | N)l—A‘FO(ﬁ)

where we used again Lemmal[A.3] Given that the O terms are independent of s, We deduce that

\ 18N -1
UN 1k = (N + O(le)) Y Plpizs.gi,=k[Cn)

s=t
[BN]-1

1
+ Il(B > 0) (ﬁ + O(ﬁ)) g P(!]le = k"pl =5, R, 7é 1 | CN)“]\?;—%—I,Q
s=t

+ P (AP (a, B) succeeds, g; | = k, p1 > BN | Cy)
\ [BN]-1

- N Z P(p1 = s,9;1=k|[Cn)

s=t

[BN] -1

1(B > 0) . )
oA ; P(giy =h,pr =5 R # 1| CNUN 115

+P(A7 (@, B) succeeds, g;_y = k, p1 > BN | Cx) + O(%) -

C.2 Additional lemmas

In the following two lemmas, we compute the probabilities appearing in Lemma [C.1] for all s €
{t,...,|BN| —1land k € {1,2}

Lemma C.2. Let |aN| <t < s < |BN], and consider a run of Algorithm AP (v, 3), then it holds

that
. At o
P(n 2 5,90 = 1100) = iy +O(VFY)

P(pr 2 5,9/ 1 =2[Cn) = MS"‘O(\/MJ%N) :

Proof. Since there are only 2 groups, the event g7 _; = 1 is equivalent to max G?_; < maxG}_,.

For s € {t,...,|BN]}, Algorithm AZ(«, 3) only makes a comparison (or stops in the case of
B = 0) at step s only if g; = 1 and r; = 1. Therefore, p; > s if and only if no candidate belonging
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to G.,_, surpasses the maximum value observed in G}_;
P(pr > 5,60, = 1| Cn) = P(maxGl,_, < Gl max G2, < maxGL_, | Cx)
= P(max(Gr,,_; UGE_ ;) < Gy_1 | Cn)
[ Gil ’ CN:|
Gial+ |G| +1GE
G| }
~E|— 2 —|c
L — 1[G T
B At + O(v/NlogN)
 t+Ms—1t)+O(/NlogN)

:(1_)\)‘;+/\S+O( 1°§VN>.

For the case g; = 2, we obtain
P(p1 > s,9; 1, =2|Cy) =P(maxG}, , <G ,,maxG}_; < maxG? | | Cyn)

=max G}, ; <G}, <maxG? | | Cy)

_ G7_4] G}
=E 1 1 2 R 1 Cn
IGia| +1Ghsa | HIGEA] [Grgoal + 1G]
G714 [y ]
=E . C
L—1+|G;Sl G| |

_ (1-NMt+O(/NIgN) X +O(/NlogN)
T i+ As—1)+O(/NlogN) As+O(V/NIogN)

=m+o(vw).

Lemma C.3. Let [aN| <t < s < |3N|, and consider a run of Algorithm AP («, 3), then
A2(1—=N)(s—1t)t [ox N
P — X l.gf . =1 — 08 IV
(pr1=sRs #1,9/_4 | CN) (1= Nt + As)2s + O( N3 )

(1=X) (A= X2 t+ 2= N)s) ¢? o
(1= N 1 s)2s2 +o(y5)

P(pl ZS,R375179;1 :2‘CN):

Proof. For Algorithm AP (a, 8) and s € {¢,..., B3N] — 1}, p1 = s if and only if z; is the first
element in G since step t for which 4 = 1, thus

pr=5 < g, =1and maxG}, ; <maxG}_, <z, .

Furthermore, Lemma [A.3] gives that P(g, = 1 | Cy) = P(g, = 1) + O(1/N) = A + O(1/N).
Therefore, it holds that

P(p1=sRs#1,9;_1 =1|Cn)
=P(g, =1, maxG}, ; <maxG} ; <z, s <maxG2_ |, maxG? | <maxG}_, | Cy)
=P(g,=1|Cy)P(max G}, ; <maxG} ;| <z, < maxGz, ;,maxG? , <maxG_, | Cy)
=P(g, =1|Cy)P(max(Gl., ; UG? |) <maxG} ; <z, <maxG?Z, | |Cn)

_ 1 |G12,:571‘ . 1 . |G%—1| :|
= O+ 0GB o rier it rier]  Ter S IoT Ao [ mer | On
(e 1 |G|
= (A +O(L)E | Fhemtl : ‘c
SO O BT N R wa T

(1-N(s—1)+O(/NgN)  M+O(/NlogN)
s(t+A(s—1t)+O(/NlogN)) t+As—t)+ O(/NlogN)
(1= N)(s—t)t s

T =N+ hs)%s o).

=\ +0(%))

24



On the other hand, in the case where g;_; = 2, we obtain

P(pr =5,Rs #1,9f 1 =2|Cn)

P(gs =1, maxG}, | <maxGj_, <y, v, <maxG>_, , maxG}_, < maxG?_, | Cy)

=P(g,=1|Cy)P(max G}, ; <maxG} ; <z, <maxG2 |, maxG}_; < maxG? | | Cy)
=P(gs=1|Cn)P(a <b< x5 <max(c,d), b<c|Cn),

where @ = maxG}.,_,, b = maxG}_, c = maxG?_; and d = max G7,_,. Let us denote by £
the event {a < b < z; < max(c,d)} N {b < c}. It holds that

En{c<d} ={a<b<z,; <max(c,d)}N{b<ctn{c<d}
={a<b<c<azs<dlU{a<b<z;<c<d}
={a<b<c<zs<diU({a<b<a,<ctn{c<d}),

EN{d<cl={a<b<z, <max(c,d)}N{b<ctn{d<c}
={a<b<z,<cin{d<c},

which yields

E=(Enfc<d})(En{d<c})
={a<b<c<z,<d}U({a<b<az,<cinfc<d)U({a<b<zs<ctn{d<c})
={a<b<c<azs<diU{a<b<uzs<c}.

The two events above are disjoint, and we have

Pla<b<e<uzs<d|Cy)
= P(max G}, ; <maxG} ; <maxG? | <z, < G2, ,|Cn)

2 2 1
=E |: |Gis—1l A 1 A |Gi_1l . |G¢_1] . | C :|
G G G FIH1GE 1 G G G 1 T G G HIGE ] T Ta G ] N
2 2 1
_E l:th:sl| . 1 ) G| G ‘ CN:|
- 1 1 1
$ t+ ‘Gt:571| t—1+ ‘Gt:571| |G571|

C (1-N(s—-)+O0(/NlogN) (1-Nt+0(/NlogN) A +0(/NlogN)

s(t+As—1t)+O(/NlogN)) t+As—t)+O(NlogN) s+ O(/NlogN)
(=N s—o)t? og
REER S +O(V'5%)

The probability of the second event is

Pla<b<z,<c|Cy)=PmaxG, ; <maxG} ; <z, <maxG? | | Cx)

_ E |: |G?71| . 1 3 |G}—1| C :|
T G G G ] T TG L FIG L T G G | 7N
_ [ G7 ) 1 ) |Gl ‘CN:|
t+|G%:s—l‘ |Gi—1| +1 |Gi—1|
(I1-=XMNt+O(/NlogN) 1 A+ O(v/Nlog N)

T t+As—t)+O(NlogN) As+O(/NlogN) s+ O(v/NlogN)

(1 B )‘)tz og
M = Vi + hs)s? +O(y5%5) -
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Finally, Lemmashows that P(gs = 1| Cn) = A + O(1/N?), and we deduce

P(p1=s,Rs # 1,97, =2|Cn) = AP(£|Cn) + O(5z)
:)\P(a<b<c<xs<d|CN)+)\P(a<b<:rs<c|CN)+O($)

AL =N (s - 1)t AL = M)t O( logN)
(1= N+ 1s8)2s2  A((1— Nt + As)s2 N
N Y (1= (s = 1) + (1= N+ 2s) + O/ %2
((1 =Nt + Xs)2s? ne
(1— )2

= T (- VA =29 + 015

Lemma C.4. Let [aN| <t < |3N]|, and consider a run of Algorithm AE (a, B), then

P(AP(a, B) succeeds, py > BN, g;_, =1|Cn)

_t B A(BN —t)t B log N

- ﬁNuN’WNJ*l At )\ﬁN)BNuNWNJvz * O( N ) ’
P(AP(«, B) succeeds, py > BN, g;_, =2 | Cn)

t? Nog N
T (= Mt+ ABN)ﬁNuﬁ»WNJ»Z * O( %) '

Proof. Since Algorithm AP (o, 3) is memoryless, if it does not stop before step | 3V ], then its
success probability is the same as that of Af"ﬁ v (o B) = AP (B, B), which has the same threshold

3 for both groups, if it is in the same state (gf/aNJ—p |G15NJ [). In all the proof, p; is relative to
Algorithm AP (a, 8), not AF (B, 8). It holds that

P(AtB(a,,B) succeeds, p1 > SN, g;_; =1|Cn)

= Z P (A (a, B) succeeds, p1 > AN, g;_; = 1agr[3Nj—1 ={|Cn)
te{1,2}

= Z P(p1 =2 BN, g/, = 179f51\u_1 ={|Cn))
Le{1,2}
x P(AP (o, B) succeeds | p1 > BN, g;_y = 1,9]3n, -1 = £,CN)
= > P(p1 = BN, g =1,g{sn_1 =L | Cn)P(AF (B, B) succeeds | g7y, 1 = £,Cn)
(e{1,2}

P(AF(B,B) succeeds, g 5n 14 =L | CN)
= Z P(p1 2 BN,g{_1 =1,9{an)-1 =] CnN) s

te{1,2} P(gngj_l =/ I CN)
= Z P(p1 > BN, g{_1 =1.g{gn)-1 = | CnN) . uﬁuﬂw .
re{1,2} P(gLﬁNJfl =)+ O(W)
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where we used Lemmaand the definition ) of U 5737 ;- Let us now compute the probability of
the event {p1 > BN, g;_y = 1,9]gy,_ = ¢} conditional to Cy. For £ = 1, we have

P(p1 > BN,g;_4 = 1agrBNJ71 =1|Cn)
= P(maXG;LﬁNJf1 <maxG}_,, maxG? | <maxG}_,, maXGfﬂNkl < maXGiﬁNkl | Cn)

= P(max 1. |BN|—1 € G%q | Cn)

G
:E{WN —I‘CN]
:At+52(ﬁ) :%jLO(\/@).

For ¢ = 2, we first compute the following

P(py > BN,g; 1 =1|Cn) = P(maXG%:LﬁNJq <maxGl ,, maxG? | <maxG} ;| Cy)
= P(maX(G%ZW\,Jf1 UG? ) <maxGl_, | Cn)
‘G%71| ‘C ]
IGLisn |1l TG 1+ 1G] o
A+ O(/NTog N)
" UHABN ) + O(/N1og )

T = A);: NN O(\/@) ’

=E

and it follows that

P(p1 > BN, g;_1 = 1ag>[ﬂNJ71 =2|Cn)
= P(Pl Z BN,g;k71 =1 | CN) _P(pl Z ﬁng;‘fl = 17g>[BNJ71 =1 | CN)

= ﬂ—))\t—:)\ﬂl\f v o)

_ AL =N(BN =)t o
= (1= Nt + ABN)BN ro(yegr)-

All in all, we deduce that

P(A7 (@, ) succeeds, p1 > N, g;_; = 1| Cn)

: UY sn1a _ ” UL on.
- G oV ) 536+ (@ oo o0 5o

(5—N+o< lova))uﬁ,LgNj,lJr(((l_ ()i]‘i;ﬂtN +O(\/ % ))UN 5N].2

A(BN —t)t log N
_ _" 4B B og
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On the other hand, if g;_; = 2 and p; > BN, then necessarily g*[ﬁ Nj-1 = 2, because no candidate
in G! up to step | 3N | — 1 surpasses max G_;, which is less than max G7_,. Therefore

P(AB (o, B) succeeds, p1 > BN, g, =2|Cn)

=P(p1 2 BN, g1 = 2| CN)P(A7 (@, B) | p1 = BN, 97—y = 2,CN)

= P(max G}, gy < maxGy_; <maxG;_; | Cy)P (AE(3,8) | 9isn)—1 = 2,CnN)
|G?_4] |G| “40 (8,8), 9N |—1 = 2 |Cn)

E=1+(GLy) ol 1Glangil e P(glsny-1=21Cn)
_ (1-Nt+O(W/NlogN)  X+O0(/NlogN)  Ux snjs
[T ABN )+ O(YNogN) ABN + O(/NIosN) 1T A+ 0(%)

2

= i AﬁN)BNuﬁMNM + O( 1ngVN) .

O

In the following lemma, we compute the exact limit of ¢/ ﬁ LAN |k when the number of candidates
goes to infinity.
Lemma C.5. Forall B> 0and k € {1,2},

B b
1 log(1/8)"
B _ 2 log N
i~ 3 (5322 o).
b=0 £=0
Proof. By definition @) of U , ;.. we have
UR g = P(A]LBBNJ (o, B) succeeds, g;_; =k |Cn) ,

and Afﬁ N (a, B) is simply the single-threshold algorithm with threshold SN and budget B. Let

?H: |BN]. As in the proof of Lemma we decompose the success probability of Aﬁ; N s
ollows

Z/{{\%T,k = P(A?(a B) succeeds, g7_1 =k | Cn)

—Z Z (A% (a, B) succeeds, py = t,g: = £, g%_1 =k | Cn)
t=T¢e{1,2}

N
= Z Z <P(A$(O‘7ﬂ) Succeed&l)l = tht = lagt = 67 g;—l =k | CN)

t=T ¢e{1,2}
P(A?(a,ﬁ) succeeds7p1 = tht 7é 1agt = f, g;"fl =k | CN)) .

The terms appearing in the sums above were computed in the proof of Lemma [3.1] It follows
respectively from (@) and (7), with K = 2, that
AeA
P(A7 (0 B) succeeds, pi = t, By = 1,g¢ = g7y = k | Cn) = S (1/0) + O/ 355 ) |

P(AZ(a, B) succeeds, p1 = t, Ry # 1,9: = £, g7, = k | Cn)

(T2 N O(W)) 1B >0,k £ OUELL,

where the O terms are independent of ¢, they only depend on 3. Therefore,

UB 1 = <1+0(\/@)>Z 3 (M’“ ?+ a0 kﬂ)uﬁtilk>

t=Tre{1,2}

_ (1 + 0(\/@)) i (?@(T/t)2 + %211(3 > 0) Uﬁ;h,k) :
t=T
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The first sum can easily be computed

N N

T/N2
>y D1 t/N

t=T t=T

>

Therefore,

N
. T2
UR 1y = (1 +0(\/@)> (Akﬁ(l )+ (B >0)Y] UEL, +0(}v))
t=T

N
T2
= MB(L=B) +1(B>0) Y UT L +0(/ %2 -
t=T

Dividing by Ay yields

N
T2
(A UK 2p) = A= B) + 1B >0) Y 5 (UG i) + oy %5Y) .
t=T

thus the double-indexed sequence (A;lujl(,’t & )b,¢ satisfies the same recursion and initial condition as

(P(A%(0,0) succeeds))s ¢ (see proof of Lemma with 3 instead of w and K = 2. Therefore, we
deduce immediately that:

B b
NUR gk =5 (; -2 Lg%/ - y) +o(y/5Y).

b=0 £=0

C.3 Proof of Lemma 4.1l

Proof. Using Lemmas|C.1}[C.2}[C.3]and[C.4|for k = 2, we obtain forall t € {|aN],...,[BN]|—1}

|BN|—1

e 2 ( tAFAs) +O(\/@))

U S (LN 0 o ) g,

11— (1= At + Xs)2s? ne

s=t
t2 B log N
+ ((1—/\)t+/\ﬁN)ﬁNUN¢5NJv2+O( N )

The O terms inside the sums depend on the ratios ¢/N and s/N, but using that o < t/N < s/N < 1,
it can be made only dependent on « and the other constants of the problem. Moreover, Thus we can
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write

A1 — a2 P 1

U= "5 (L= Nt +A
— — s)s

o) -1 2
2 (A=X*t+A2=Ns), py
FUB>0F D, Sy aeEE YN

s=t
t2 B log N
* ((1—A)t+AﬁN)BNuN>LBNJ>2+O(V N )
1 [BN]-1 1
:A(l_k)(i)27 s\ .8
NN SZ:; (T=NF+rA%)%

[BN]|-1 2t s

1 (1=A2L4+X2-N)<S .
132 }( N NyB-1

+]1(B>O)(N) N ((1_)\)%_’_)\%)2(%)20&\7@-&-1,2

s=t

(t/N)? B log N
u O\ 5~) .
+((1—/\)%+)\5)5 N,18N)2 T N
Taking t = [wN | = wN + O(1) and using Riemann sum convergence properties yields

[BN]-1 w? [BN]-1

. 2i 1 _wo 1 1
(%) N ; (1-NL+r5)s N s-%l\/'j (T=Nw+ A3+ +0(%)
2 B du 1
—o* | G O)
w 8 du A du 1
=H(/w vl (1/A—1>w+u>+O(N)
= (~log(w/B) — log(1 = A+ AB/w)) + O(4)
—wlog ((1 =A% + A
- el o) a
On the other hand,
/N w +0(%)

(1= N% 208 (T—Nw+ BB
and Lemma gives for k = 2 that % («, 3; 3) exists, its expression is

B b
1 log(1/83)*
PB(0,5:6) = (1 - N8 Y <ﬁ - W) , (12)
b=0 =0 ’
and it satisfies L{ﬁ’ BN]2 = 0P (a, B; 8) + O( IOJgVN) Consequently,
UR Lwn )2 = —Awlog (1= A)% +X)
o BN]-1 2 s
w I=XNw+AX2-N%. 51
+1(B>0)— s Un
N N (1= Nw+ A$)2(5)2 NVstt2
2
w B . log N

Using this equality, we will prove by induction over B > 0 that, for all w € [«, ], the limit
B (a, Biw) == limy 0o UL Lwn | 2 EXIsts, is continuous, and satisfies

UR Lwn)2 = #5 (o, B;w) + O(\/@) .
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Initialization. For B = 0 and w € [o, 3], (I3) gives immediately

w w2 O
uﬁ,LwNm = —Awlog (1 -N)F +A) + ((1_/\)w+/\ﬂ)ﬁ oF (o, B; 6)+O(\/m) . (14)

Induction. Let B > 1, w € [a, 5], and assume that L[ﬁ inNJ , = PP, Bu) + O(1 /logN)
for all u € [«, 8], where the O does not depend on w. Using this hypothesis for u = Sj\', , with

se{t,...,|BN] — 1}, along with te continuity of 5! (a, §;-) and Riemann sums convergence
properties, yields

BN]-1 .
2 LBN] (1_/\)2w+)\(2_)\)ﬁu3—1
(1= Nw + A5)2(5)2 Nostl2

2 [BN]— 2 s
w (1—)\) wH+A2-N)<F 5_ 1 o8
V2 W meagrg s o)

_ PA-N2w+A2-Nu g, —
B A (e e v G udu+ 0 (/1Y)

l(Oé,

Therefore, we deduce by (13)) that

UR Lun) 2 = —Awlog (1= A)% + )

s [P (1=N2w+A2-MNu
+“’/w (1= Nw + )2a? ey (o fiu)du

B (S TESV o)+ 0(y/5Y)

ThlsprovesthatZ/lN LN |2 = o8B (a, B;w) + (\/M‘TN),where

o8, B;w) = —Awlog (1 — A% + \)
2 5(1—)\)2w+)\(2_)\)u B .
SR R e et e S A 0L

w?

(T=Xw+AB)B

U

+ o (o, B; B)

where the expression of o2 (a, 8; 3) is given in (12). O
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C.4 Proof of Lemma4.2]
Proof. Using Lemmas|C.1} and[C.4]for k = 2, we obtain forall t € {[aN], ..

LBNJ 1
N,t,1 N Z (t—&—)\s+0( IOJgVN)>

[BN]-1
M N1 =N (s—t)t +O< logN) yB-1
1=A (T =Nt + Xs)?s N3 N,s+1,2

ABN=Dt___ 5 +O(\/@)

l B
T ANYN BN LY (T A T ABN) NN V) 2

BN =1}

XN IR
N — 1=N%F+A%
LBNJ_l S t
A(t/N) NN B-1

t/N A(B — %)% B log N
+ Uy + u +0(\/ 25~ ) -
B N,|fN],1 ((1 _ )\)% + )\5)5 N,|BN],2 ( N )

Consider in the following ¢ = [wN | = wN + O(1). Using Riemann sums convergence properties

we have

UL S SR LR :
VX amwpeg L oo oW
= M [log((1 — Nw + M)l + O(%)

—/\wlog(l—/\+/\ﬁ)+0(%)

Since Uy, ., < 1forallb, s, k, and t = wN + O(1), as in the proof of Lemma we obtain

UR (w2 = Mwlog (1= X+ A2) +0(F)

2w [BN]-1 5w
N B-1 1
E R P PN (e TR e R
2 A(B — ww B log N
—Uub U o -
+ FUR NI T e g e T (v/'=2)
z)\wlog(l—)\—i—)\%)
[BN]-1
)\Q’LU S w
(B —_— N B-1
B0 & TR e
w MB-ww g —
3 BiB)+O0(\ )
ger @B I e app? (8 h) (Ve52)

@kB(avﬁ;ﬁ) +

where we used Lemmain the last inequality, which guarantees that /5 BNk

O( lo]ng) for k € {1, 2}, with
B b ¢
oF (0, B; 8) = B2y (; = bg(;@) .

b=0 £=0
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Denoting by ¢ (a, 8; 8) = oP(a, B;8) + ¢8(a, B; B), ie. ©B(a,B;B) = )\i B(a, B; B), we

have

w . A(B —w)w Aw A1 =) (8 —w)w .
Bl si8) + o a0 = (4 s ) ¢ (a5
_Aw (1-NB-w) ,
=5 <1 + (1—>\)w+)\/3> (e, B; B)
_Aw 8 ’
=5 ((1—)w+)\ﬁ> o (a, B; B)
Aw
= (1_)\)—w+)\5<ﬂ3(a75;ﬁ) -
Thus
A
UR Lwn) 1 = Awlog (1= A+ AD)+ (1—)\)—1:)-5-)\&@3(0"5;5)
Nw & Now B-1 log N
FUB>0 X —A)w+A%)2%uN»s+L2+O(‘/T) . s)

s=|wN |

Now, we will prove by induction over B that uﬁ»LwNLl = oB(a, B;w) + O(\/l(”gTN) for all
w € [a, B], with P (a, B;-) a continuous function satisfying the recursion stated in the Lemma.

Initialization For B = 0, (T3) yields immediately for all w € [a, ]

Aw Iog X

Induction Let B > 1, and assume thatZ/lNL N1 = ?_1(a,ﬂ;u)+0<\/ logN) forall u € [a, 3],

and that o (o, 3;-) is continuous. Consequently, using Riemann sums convergence properties, it
holds for all w € [«, (] that

1BN]-1 s

Aw N
— Nw

w

1
s=|wN | ((

- v — B s log N
- 2 Tmera (e o(/5)

050l )
s=|wN]

B B-1 .
_ (u_w)@ (avﬁvu) log N

thus, we have by substituting into (T3]

A
u_)—w+>\5¢3(0¢,5; B)

B «
w/ w—&-()\u)ﬁ, )d +O(\/@>

w

= of (a,ﬁ;w>+0(\/@).

UR wn )1 = Mwlog (1—A+A2) +
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C.5 Proof of Corollary[d.3.1]

Proof. Assume that A > 1/2. For any thresholds 0 < o < 5 < 1 Theoremyields

lim P(A®(q, B) succeeds) > Aalog (£) + aBSE(B) .

N—o00 o

We will now determine thresholds maximizing this lower bound. For a fixed /3, we have

%(Aalog(g) +aBSP(8)) >0 < Alog
<= Mlog

This proves that, for fixed 3 the lower bound Aalog ( g) + aBSE(B) is maximized on [0, 3] for

a = min(S, % exp(gSB(ﬁ))) = hB(3). With this choice of «, the optimal choice of /3 is the one
maximizing the mapping 3 + AhZ(3) log (hBL(m) + hB(B)BSE(B).

In particular, for B = 0, we obtain &g = Aexp(% —2)and Bo = A They guarantee an asymptotic

success probability of at least A? exp(5 — 2). Given that the sequence (S?(w)) is non-decreasing
for all w € (0, 1], it holds for all B > 0 that

=l

v

Nlim P(AB(dB,BB) succeeds) > Aa g log ( i) + dBBBSB(BB)
— 00 )
- log (2 B }
glﬁﬁ%( {/\a og (£) +aBS”(B)
B 0
> max {)\a log (£) + aBS (6)}
= AQg log (%) + CNY()BQSO(B())
=N exp(3 —2)
> 1o (- DA1- ).
On the other hand, taking equal thresholds a = 3 = < then using Corollary with K = 2 gives

lim P(A®(ap,Bp) succeeds) > max {)\a log (2) + aﬂSB(B)}

N—o00

Thus, we deduce that

. B/~ 2 1_ : 1 1 _ _
ngnooP(A (aB,ﬂB)succeeds)Ze mln{e(B+1)!,(€ A1 )\)}
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C.6 Proof of Theorem

Proof. By Lemmas and The success probability of Algorithm A(c, 3)F can be written
as

P(A®(a, B) succeeds) = P(Afaw (v, B) succeeds | Cn) + O(xz)
= P(Afam (o, B) succeeds,g*[a]\uf1 =1]|Cn)
+ P(A@NJ (a, B) succeeds, g7, -1 =2 | Cn) + O(x>)
= uﬁ,LaNJ,l +u}€,[aNj,2 +O0(5=)

= P (e B;0) + ¢f (o, Bi0) + O/ 1%
) gy e (1 R les(1/B)
= Aalog (1 >\+/\a)+(1_)\)a+/\ﬁz B 2 o

0
s U — Bila U
+1(B > 0) /\2a/ (((1 _)f;a +()\1;)52’u)du

2 B b
—Aalog((l—A)ngA)Jr(l_)‘)ﬁo‘Z(l _Zbg(l/ﬁ)e>

A (1-N)2a - Nu
+]l(B>0)a2/a (1((1A_)A)a+ﬁgi)2;) 8 o Brw)du + O/ 52 )

then, regrouping the terms yields

P(A®(a, 3) succeeds)
= Xalog (1 — A+ A2) — halog ((1 - NERDY

af 5 (1 "o 1/B)*

b=0 £=0

B B=l(a, B;u)du
F1B>0a [ (1= 2+ 2= A5 + A2 - V) S oY)

Finally, observing that

(1= 222 4 A2 = N) = (1= A\)22 +2X(1 - \)2 + A

u?
= #((1 - Na+ /\u)2 ,
we deduce the result

P (AP (a, B) succeeds)
b

B : — .
= Aalog (g) +aﬂz (; _Zlog(é!/ﬁ)/> + 1(B > O)Q/ﬁW'i‘O(V %) )
b=0

=0 o u

O

D Optimal memory-less algorithm for two groups

In this section, we derive an optimal memoryless algorithm employing a dynamic programming
approach. We analyze the state transitions depending on the algorithm’s actions and the associated
success probabilities for each state. Unlike previous sections, our study here is not asymptotic.
Therefore, we do not rely on estimating the number of candidates in each group using concentration
inequalities. Instead, we consider the exact number of candidates in each group as a parameter for
decision-making at each step.
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D.1 Memoryless algorithms

One distinctive feature of Dynamic Threshold algorithms is their decision-making process, which
solely depends on the observations at each step and the available budget, without recourse to past
comparison history. We designate algorithms exhibiting this characteristic as memory-less algorithms.

Definition D.1. An algorithm A for the (K, B)-secretary problem is memory-less if its actions at
any step t € [N] depend only on the current observations 1, g;, 1(R; = 1), the available budget By,
the cardinals (|G} _1|)ke(r)-

We assume that a memory-less algorithm is aware of the current step ¢ at any time, and knows the
proportions of each group (\r.)re[x]. However, in our analysis, the knowledge of group proportions
is dispensable since we investigate the asymptotic success probabilities of DT algorithms. Indeed,
for setting thresholds that depend on group proportions, if the smallest threshold is at least € > 0,
regardless of group proportions, it suffices to observe the first |[eN| candidates, then estimate

A = [eN] 7! Zti]}” 1(g; = k) for all k € [K]. The algorithm can choose the thresholds using
(Ak)ke(k) instead of (A )ge(x]. As the number of candidates tends to infinity, A, becomes arbitrarily
close to A\ with high probability, and so do the thresholds, assuming they are continuous functions of
the group proportions. Though this introduces additional intricacies to the proofs, the fundamental
proof arguments and the results remain the same. While Definition only includes deterministic
algorithms, it can be easily extended to randomized algorithms, by considering the distributions of
the actions instead of the actions themselves.

In the following lemma, we establish that the success probability of a memory-less algorithm, given
the history up to step ¢ — 1, is contingent upon only a few parameters, which are the available
budget B;, the group to which the best-observed candidate belongs g*t, and the sizes of the groups
(|G¥))k € [K]. Collectively, these parameters define the state of a memory-less algorithm at step ¢,
which entirely determines the success probability of the algorithm starting from that state.

Lemma D.1. For any memory-less algorithm A and t € [N], denoting by T the stopping time of A
and by F;_1 is the history of the algorithm up to step t — 1, i.e. the set of all the observations and
actions taken by the algorithm until step t — 1, then

P (A succeeds | T > t, gf, Fr—1) = P(A succeeds | T > t, g}, B, (|Gf|)ke[K]) )

Proof. Let A be a memory-less algorithm, and let us denote by 7 its stopping time. Conditionally to
the history of the algorithm until step ¢ — 1 and to the event {7 > t}, the success probability of A
depends on the future observations and the future actions of the algorithm.

Given that the algorithm is memory-less, at any step s > ¢, its actions a1, as,2 depend on the
observations ry, g;, Ry, the budget B, and (|G¥_,|)e(x)-

Conditionally to the cardinals of the groups at step ¢ — 1, the cardinals (|G*_;|)xc (k] are independent
of the history F;_; because

s—1
G| =G| +Z]l(gu =k) Vkel[K],
u=t

Moreover, since the candidates are observed in a uniformly random order, and the group memberships
are also i.i.d random variables, then for all s > 2 distributions of r,, R, depend only on the cardinals
of each group at step s — 1, on g5 and ¢g¥_;. Also g¥ is a function of g%_,, gs and 1(Rs; = 1):

g: = ]l(Rs 7é 1) 9271 + ]l(Rs 7& 1) 9s 5
and the budget B; satisfies

Bs = Bs_1 — 1(as—1,2 = compare) .

Therefore, Conditionally to the By, (|Gf_;|)ke[x], 971 the distributions of the observations and of
the algorithm’s actions at any step s > ¢ are independent of the history before step ¢. O

At any given step ¢, a memory-less algorithm has access to the available budget B, and the number of
previous candidates belonging to each group. In the case of two groups, this information reduces to
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(t, By, |Gt_4|), since |G?_;| =t — 1 —|G}+_,|. The state of the algorithm, which fully determines its
success probability, is given by the tuple (¢, By, |G{_1|, 97—, ). However, g;_; is not known to the
algorithm, hence it must make decisions relying on the limited information it has, to maximize the
expected success probability, where the expectation is taken over g;_;.

D.2 State transitions

For any memory-less algorithm .4, we denote by S;(.A) its state at step ¢, which is a tuple (¢, b, m, £).
Here, t — 1 represents the count of previously rejected candidates, b > 0 denotes the available
budget, m < t indicates the number of prior candidates from group G*, and ¢ € {1, 2} is the group
containing the best-seen candidate so far.

To examine the state transitions of the algorithm, it is imperative to first understand the distribution of
the new observations at any given step ¢, depending on S;(.A). While the group membership g; of
candidate x; is independent of S;(.A), both ; and R; are contingent on it.

Lemma D.2. For any memory-less algorithm A and state (t,m,b, (), denoting by k = 3 — { the
group index different from ¢, it holds that

1

P('f‘t =1 | St(.A) = (t7m7b7€)7gt :f) = ;
[EAER
P(ry=1|S,(A) = ({t,mbl),qs=k)= ——
(re = HESAN = me 0,090 =0 = Far 1)

P(Rt =1 | St(A) = (t7m,b,€)7gt :E,'f’t = ].) =1
G +1

P(thl|St(A):(t7m7b7£)7gt:ka7ﬁt:1)_ ‘Gk |+t 3
t—1

where

Gl =1 i m fhTs.

Proof. If S;(A) = (t,m, b, £), then in particular g}, = ¢, i.e. maxG%_; > maxGF_,, thus

P(r; = 1| Si(A) = (t,m,b,0),9; = £) = P(x; > max Gt_, | Sy(A) = (t,m,b,£),g; = £)
= P(x; > max w41 | Si(A) = (¢, m,b,0),g: = 0)
_ 1
Tt

)

because the rank of z; among previous candidates is independent of their relative ranks and groups,
thus independent of the state of the algorithm. Moreover, if r, = 1, g, = 1 and ¢g;_; = ¢, then z; is

the better than the maximum of fol, which is the maximum of x;.;_1, thus necessarily R; = 1,

P(Rt =1 | St(.A) = (t,m,b,é),gt :é,Tt = 1) =1.

On the other hand, if g; = k # ¢ = g;_,, assume that |G{_,| > 0. It holds that

P(’I"t =1 ‘ St(A) = (tamab7£)agt = k) = P(Tt =1 | g:—l = E,gt = k7 |G%—1| = m)
P(ri=1,9/1 =09 =k |Gi_1| =m)
P(gi_y =L1Gi_y| =m)

We have immediately that

_ 164
t—1"7

P(g;_ ,=1]|G{_1| =m) = P(mafo_l > mafo_l |G} _1| =m)
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and the numerator can be computed as
P(ry =1,/ =0] g = k,|Gi_1| = m) (16)
=P(a, > max Gy, g7 =L | |G{_4]| =m)
= P(2; > maxGY_|,max Gt | > maxGF | | |G}_| =m)
=P(z; > max G| > maxGF | | |G| =m)

+P(maxG¢ | >z, > maxGF | | |GL || =m)

1G] Gt
t t—1 t|GF | +1
G| 1 1
_ , 17
t t—1+|Gf_1\+1 1n
which yields
t—1 |Gf_1< 1 1 >
PT:1 SA:t,m,b,E, :k: . +
( t | t( ) ( ) gt ) ‘Gf71| t t_l |G§71|+1
1 t—1
t( IGf_lH)
_ IGEAl+t
t(IGEl+1)

Finally,

P(Rt =lLr=1,9{ =14 | gt =k, ‘th—1|)

P(Rt =1 | St(A) = (tvmvbaé)vgt:karrt: 1) = P(?"t -1 g* _€|gt =k |G1 D
- S Jdt—-1 T — v t—1

We computed the denominator term in (I7), and the numerator satisfies
PR, =1 =1,9;1 =] g = k,|G{_1|) =P(Re = 1,9/ 1 = | g: = k,|G}_4))
= P(z; > maxG*GY_; > maxGF | | |G}_,])

_ 1 |G
t t—1"
hence
[
P(R, = 1] Si(A) = (t.mb.0), g0 = kyre = 1) = 15— (1)
= (& + et
_ 1
L+ G
. IGF_ | +1
GRS

This concludes the proof when |GY_;| > 0. If |G{_, | = 0, then the same identities remain trivially
true. O

Using the previous Lemma, we can fully characterize the possible state transitions of a memory-less
algorithm. First, the values of the parameters |G} | and B are trivially determined based on the
state S, at the beginning of step ¢, the observations r; and g;, and the actions of the algorithm:

|Gyl =G| +1(gs =1) , Biy1 =By — 1(as,; = compare) ,

where a1 is the action taken by the algorithm, which only depends on the state .S; since the algorithm
is memory-less.
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Regarding gf, if g+ = g;_;, then g/ = g; ; remains unchanged with probability 1. However, if
gt # g;_1 and r; = 1, and if the algorithm skips the candidate without making a comparison, then g;
is not deterministic based on the history alone. The probability that g; = g; in this case is precisely
the probability that R, = 1, computed in Lemma[D.2]

B GF | +1

P(g::gt|St(A):(t7m7b7£)7gt:k77ﬁt:1)_ ‘Gk |+t .
t—1

D.3 Expected action rewards

In the following, we denote by 4. the optimal memory-less algorithm for two groups, and for all
B >0,t€[N],m < tand/ € {1,2}, we denote by

me’é = P(A* succeeds | 7 > t, S (Ax) = (t7B7m,£)) )
which is its success probability starting from state (¢, B, m, £).

We analyze the expected rewards and state transitions of algorithm 4, given its limited information
access. When the algorithm receives a new observation (7, g;):

o If r, # 1, the optimal action is to skip the candidate (skip).
e If r, = 1 and B; = 0, the algorithm either stops or skips the candidate. However, if there is

a positive budget B, stopping is suboptimal: it is always better to make a comparison first.

* If the algorithm chooses to make a comparison and observes R;:

- If R; # 1, the optimal action is to skip the candidate.

— If R; = 1, the algorithm must decide whether to skip or stop. However, skipping after
observing R; = 1 is suboptimal compared to skipping immediately after observing
r: = 1, as the latter conserves the budget.

In summary, any rational algorithm follows these decision rules:

e If (r; # 1) or (r; = 1 and R; # 1), then skip the candidate.
e If (r, = 1 and R; = 1), select the candidate.

Therefore, the main non-trivial decision to make is whether to reject or accept a candidate after
observing r; = 1. Consider an algorithm .4 following these rules. At time ¢ with budget B, = b and
|G{_,| = m,if gy = k and r;, = 1, choosing an action a € {skip, stop, compare} based on these
rules leads to a new state S;+1(A) = F(t,b, m, k, a), which is a random variable depending on g;_,
and R;. If a € {stop, compare} and R; = 1, then Sy, (A) is a final state: success or failure.

With this notation, we define Rfm(a) as the reward that A, expects to gain by playing action a after
observing = 1 and g; = k in a state S;(A.) = (¢,b, m, -), where it ignores g;_;
Rfmk(a) = E[P (A, succeeds | Sy11(A.) = F(t,B,m,k,a)) | Si(As) = (¢, B,m, ), r =1, g

where the expectation is taken over g;_; and R;. The optimal memory-less action at any state
(t, B,m,!), knowing that s = 1, g; = k, is the one maximizing R?  , (a).

Lemma D.3. Consider a state Sy = (t, B,m, ), and let {k,¢} = {1,2}, M, = m+ 1(k = 1), then

Gy
Rfm,k(Stop) = ]\; )
. G| G|
Rfm,k(SknP) = tt Vg—l,Mk,l + tt VEH,M,z )
IGF| 1G] (|Gl +1 ¢ t—1 B-1
RE compare) = —— + —4 [ —/————— . — V ’
t,m,k( P ) N t |G§_1| S+t N ‘Gf_1| +t t+1,My £

Observe that, conditionally to g, and |G;_,|, the cardinals of G}_,,G?_;, G}, G? are all known:

Gl =G+ g =1) , [GHl=t—|Gil, |Gi|=t-1-|Gi|.
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D.4 Optimal actions and success probability

Using Lemma|[D.3]and considering the potential state transitions based on the actions, we establish a
recursion satisfied by (Vth Z)t, B,m,¢- We present the result without distinction between the cases

¢ =1and ¢ = 2. For simplicity, let A\, = P(g; = k) for k = 1,2, and define M, = m + 1(k =1)
for all m > 0. Additionally, for all (B, t,m, k), define

(5,? = H(Rfmk(accept) > Rfm,k(skip)) ,

where the action accept corresponds to compare for B > 0 and stop for B = 0.

Theorem D.4. Forallt € [N], m < t and {k,{} = {1,2}, the success probability of A, with zero
budget satisfies the recursion

60
ng,e =N (W[ + ( *> Vt+1 M,,e)
59 1 5
+ Ak ( Vt+1 mer+ (1—1) (2 — 0 — m) V19+1,Mk,£> )

and for B > 1 it satisfies

Vtme e ( ( 7)Vt+1 M(/,Z)

o (4 (1= LB 4 B + (1= 2 )VB
N [GF_|+1 t+1,My 0 t+1, My, k t |GF_[+1/ Vt+1, Myt |

where Vg | . =0forall B>0m < N and k € {1,2}.

Proof. Using the results from Section[D.2]and[D.3] the actions of A, and the resulting state transitions
are as follows. If the state of A, at step t is S;(A.) = (¢, B, m,{) for some B > 1, m < t and
¢ e {1,2}: If g = ¢, denoting by My = m + 1(£ = 1), we have

* with probability 1 — 1/¢: r, = 0, and the algorithm rejects the candidate, transitioning to
the state (t + 1, B, My, £).
* with probability 1/¢: r, = 1, and necessarily R; = 1, because g; = g;_; = ¢.

- If Rf,, ,(compare) > Rf . (skip), then the algorithm uses a comparison and

observes R, = 1, hence accepts the candidate. The success probability in that case is
t/N.
— Otherwise, the candidate is rejected and the algorithm goes to state (¢ + 1, B, My, {)

On the other hand, if g; = k # g;_, then denoting by M}, = m + 1(k = 1), we have

GE_ |(t+1 . . . e
%: ry = 0, and the algorithm rejects the candidate, transitioning
t—1

to the state (¢ + 1, B, My, {).

 with probability

|Gy |+t .

HGF_, |+ "t T =1

* with probability
- If Rt . (compare) > Rt .1 (Skip), then the algorithm uses a comparison

IGF_y1+1,

* with probability GE [t

ist/N
* with probability | Gk

R; = 1 and the algorithm stops, its success probability

| : R, = 0, the candidate is rejected, and the algorithm
1

goes to state (t + 1, B — 1 , My, £)
— Otherwise, the candidate is rejected and

IGE_ +1,
IG" |+t

* with probability EEs G

* with probability : the algorithm goes to state (¢t + 1, B, My, k)

|+t : the algorithm goes to state (¢ + 1, B, My, £)
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In the case of a zero budget, the algorithm compares Rf”m’ ;(skip) to REW . (compare) instead
of Rfm’ . (compare). If the algorithm decides to reject the candidate then the same state transition
occurs. However, if the candidate is selected and if ¢, = g;_; = ¢ then the success probability is
t/N. If On the other hand, if it is selected and g; = k # g;_; = ¢ then the probability that the
Gt |41

7 X
Gy [+t

current candidate is the best overall is %
All in all, for B = 0, then
0 Lot 017,0 1 0
Ve lge=10) = n 54N + (=0 Vet )+ 1— 7 Vi1, my.0
59 59
= (1 - 7’) Vi + %

0 _ oy - Gt (g0 t(IGE [+ 0y (1GEal+1550 t=1__1,0
Veme L 90 =k) = i Ok vgarmo T (= 0%) (T e Vit + 1@t e Ve, v,

|GF_ |+t
+ t(|GF_, \+1)Vt+17Mk7£

_8 1 5 0 1 0
=+ Vt+1 ek +(1— 1) (2 — 0 — m) Vi1, My 0 5

and we deduce that
59 59
Vto,m,z =N ((1 - *ﬂ) Vt0+1 Moo T sz)

+)\(k 15kvt+1jwkk+(1 1)(2—52 ﬁ)VH»lel)‘

For B > 1, we obtain

t
(5eBN (1-67 )Vt+1 M, z) + ( ) Vt+1 Mo 0

572
) Vt+1 Mot T N

(me,z | gt = g) =

I
h | =
\w

B gy lGE |t |GF_y|+1
(Vt,m,e ‘ gt = k') — t(IGF_,]+1) 61« |GF_ [+t Vt+1 My, k + mvt+1 My, 0
By (1Gi_11+1 |GF_y |+t
+(1=0y) (|Gk T Vi + |Gk |+tVt+1 M) |+ mvtﬂ Myt
_ % Sk B-1
=N T (1= DV e+ Vt+1 Mok (1 =7) (1 7| |+1)Vt+1 Mt >

hence
VB = 1 2ypp
tm,l — M ( t ) t4+1, Myt
s 5e B-1
+ A (Wk e (1= PVt + - Vt+1 ekt (1= 1) (1 - IGF_ |+1)Vt+1 My, z) ;

which concludes the proof. O

Implementing the optimal memory-less algorithm A, with budget B requires knowing the

(Rf,m,k(a))t,b,m,k for a € {skip,stop, compare}, which depend themselves on the table

(Ve k)t b Using Lemma|D.3|and Theorem these tables can be computed in a O(BN?)
time as described in Algorithm 2]

After computing these tables, the optimal memory-less algorithm A, can be implemented by following
the rational decision rules outlined in Section[D.3] and when encountering r, = 1 and needing to
choose between accepting or rejecting the candidate, A, selects the action that maximizes its expected
reward given the information it has about the current state. A detailed description is provided in
Algorithm[3]
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Algorithm 2: (V) )¢ b.mk and (R}, 1 (a))t.b.m.k for a € {skip, stop, compare}

Input: Number of candidates IV, available budget B, probability distribution of g;: A1, Ao
Initialization: V}, | . < Oforallb < B,m < N,k € {1,2}

1forb=1,...,Bdo

2 fort=N,N—1,...,1do

3 form=20,...,tdo
4 Compute R, ., (a) for k € {1,2} and a € {skip, stop, compare} using Lemma
5 Compute V¢, . for k € {1,2} using Theorem

6 Return: (th,m7k)t7bam>k’ (ng,m,k(a))t7b;m7k

Algorithm 3: Optimal memory-less algorithm A,

Input: Number of candidates IV, available budget B, probability distribution of g;: A1, Aa
Initialization: b < B, m < 0
1 Compute (Vf,m,k)tbﬂmk and (Rgm,k(a))t,b,m,k,a using Algorithm
2fort=1,...,Ndo
3 Receive new observation (7, ;)
if ; = 1 then
ifb=0and R, ., (stop) > R{,, , (skip)then
| Return: ¢

ifb > 0and RY,, , (compare) > R, . (skip) then
b+—b-1
if R; = 1 then

10 | Return: t

1 m < m+1(g, = 1)

e e X a un B
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