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Abstract

Mixed hitting-time models allow the analysis of competing risks through optimal stopping
decisions interpreted as crossing times of latent Lévy processes with heterogeneous thresholds.
In this paper, we consider a bivariate time model with dependent default, where observation
times are subject to censoring and share a common latent process given by a Lévy subordinator.
We establish the identifiability of the model and propose different estimators for the marginal
distributions and the joint survival distribution. We establish their asymptotic properties and
evaluate the finite-sample performance of our results through a simulation study on synthetic
data, followed by an application using real data.

Key Words: dependent risk, mixed hitting-time model, Lévy process.

1 Introduction

Threshold-crossing models for duration analysis have recently received considerable attention in
various fields, including finance, reliability engineering and survival analysis. From a practical per-
spective, these models are especially useful in economics, with real applications such as patent
races [48, 14], technology adoption [47, 28] and smoking cessation among married couples in socio-
economic settings contexts [4]. The fundamental premise of the mixed hitting-time (MHT) models
is to examine the time at which a process crosses a predetermined or random threshold, leading
to significant events such as defaults, failures or other critical occurrences. This approach pro-
vides a flexible description of survival mechanisms [38, 2] in the context of optimal stopping time
problems, where typical solutions are usually defined by threshold-crossing rules [31, 33, 3]. To
some extent, it also includes mixed proportional hazards models [39, 34], which are a well-known
class of competing risk models with proportional hazard rates. In this paper, we consider a bi-
variate competing risks model based on the threshold-crossing duration framework, where the two
durations correspond to the first-passage times of two dependent latent stochastic processes. The
durations T and C are defined as the times when latent processes (M1,t)t≥0 and (M2,t)t≥0 exceed
independent random barriers E1 and E2 respectively. This definition is often referred to as the
canonical construction of default times [9, 51] and describes the standard intensity-based approach
for modeling defaults. Specifically, we consider two proper cumulative hazard functions Λ1 and Λ2,
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that is, positive increasing functions on R+ such that Λ1(0) = Λ2(0) = 0. The default times are
then defined by

T = inf {t ≥ 0; M1,t ≥ E1} , C = inf{t ≥ 0; M2,t(t) ≥ E2} (1.1)

and

M1,t = Λ1(t) + Yt, M2,t = Λ2(t) + Yt (1.2)

where (Yt)t≥0 is a right-continuous and increasing Lévy process, also referred to as a subordina-
tor. The intuition behind the choice in (1.2) is that the term structure of the survival probability
is modeled through an individual deterministic component, represented by the cumulative hazard
functions, and a stochastic component that affects all elements simultaneously. By incorporating
a mutual latent stochastic process, this model captures the possibility of both durations ending
at the same time, as the two dependent processes can simultaneously jump over their respective
thresholds. This property is not common to all competing risk models, but it is also shared with
the bivariate distributions of the Marshall-Olkin type. Under generalized Marshall-Olkin (GMO)
models, the simultaneous termination of both durations is driven by a common independent shock,
as assumed in [46, 43, 27]. GMO models typically assume shocks with immediate effects; however,
practical experience shows that such scenarios do not always occur, as shocks may have delayed ef-
fects. For example, during a financial crisis, weaker institutions may be affected first, while stronger
institutions experience the effects later [see, e.g. 13]. Specific instances of these models originate
from a particular dynamic default model proposed for valuing certain financial products [59]. In
MHT models, the stochastic processes represent the accumulation of implicit shocks which occur
only up to a certain threshold. This means that the observable results of these shocks, particularly
when a failure occurs, are not immediate. Rather, they depend on the progression of (Yt)t≥0, which
allows for a more nuanced view of risk dynamics.
In a dependent and bivariate competing risks framework, individuals experience two types of du-
rations, but only the first to occur is observed. In survival analysis, this issue is referred to as
dependent censoring and occurs when only a lower bound of the event of interest is returned. In
such analyses, either the time to event T or the time to censoring C is observed for each individual
in the sample. For instance, participants in clinical trials often withdraw prematurely if they find
the drug to be ineffective or experience adverse effects [50]. In credit risk analysis, censoring occurs
when a specific loan is being repaid at the moment of data collection [44]. Ignoring this dependence
can lead to biased survival estimations, which explains why most existing statistical survival studies
assume the independence of censoring. However, this assumption is challenging to verify in prac-
tice as the available data typically provide only marginal distributions. Consequently, determining
whether survival is truly independent of censoring remains a challenging task, and non-parametric
identifiability of the joint model is impossible without prior knowledge of the dependence structure
[56]. In this context, adjusting for dependent censoring may require practitioners to have knowledge
of the true dependence structure between T and C [see, e.g. 61, 10, 15, 18, 26]. For most approaches,
the dependence structure is characterized by copula functions, which capture dependencies between
random variables independently of their marginal distributions. However, this requirement presents
significant challenges in practical applications, as specifying the correct copula is often difficult.
In addition, misspecified copulas may exacerbate model bias, leading to incorrect inferences and
misleading results. In survival analysis, several recent advances have addressed the limitation of
assuming a known copula by exploring parametric modeling approaches in [17] and semi-parametric
models in [22]. Identification results for competing risks models have also been studied with several
contributions under different sets of restrictions [see, e.g. 30, 1, 41, 42, 44].
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This study focuses on the analysis of dependent risk models based on the canonical construction of
default models (1.1). It first addresses the issue of non-parametric identification of the dependence
structure as examined in [32]. The identifiability and the estimation of the survival distribution and
dependence structure of the proposed model are indeed challenging problems. Studies on structural
threshold-crossing models driven by latent stochastic processes are relatively limited in the litera-
ture. In [49], the authors examined a competing risk model driven by a latent compound Poisson
process, but no formal identification results exist for such a complex structural model. Without
censoring, the study in [3] derived non-parametric identification results for spectral negative Lévy
processes crossing a heterogeneous threshold. In [44, 27], the non-parametric identifiability of the
models is addressed, although these methods require the information on whether T ≤ C and T ≥ C
for each observation. In this regard, we demonstrate that our model is identified under a stan-
dard censoring model. The main advantage of our approach, compared to existing identifiability
results, is that it avoids functional form restrictions on the marginal distributions, maintaining
their non/semi-parametric nature, while the structure of dependence does not need to be known
or assumed. We show that it is possible to apply commonly used statistical methods from survival
analysis to estimate the marginal distributions of T and C as well as the joint survival distribution
of (T,C). The remainder of the paper is organized as follows. Section 2 presents the model and the
notation. In Section 3, we introduce the main characteristics of the survival copula and its asymp-
totic properties. Section 4 contains the identification result. A non/semi-parametric estimation of
the survival distributions, the joint survival distribution, the Kendall’s tau and their asymptotic
properties are established in Section 5. Section 6 presents simulation results that confirm the the-
oretical findings, first through simulations (Subsection 6.1) and then through the use of a real data
set (Subsection 6.2). Some relevant concluding remarks and potential perspectives are presented in
Section 7, while Section 8 includes the proofs of the theoretical results.

2 Model and notations

A Lévy process is a stochastic process with stationary and independent increments that starts at
zero and has paths that are continuous from the right. Due to these properties, each such process
(Yt)t≥0 is characterized by its marginal Lévy exponent κ, which is related to its Laplace-Stieltjes
transformation ψYt by

ψYt(x) = e−tκ(x), t ≥ 0.

The Lévy exponent κ fully characterizes the process distribution and has the key properties of
being non-decreasing, and for all x ≥ 0, satisfying κ(x) ≤ xκ(1). In this work, we consider that the
lifetimes of interest defined by the random times T and C are affected by the defaults of a Lévy
process as defined in (1.1) where E1 and E2 are independent unit exponential random variables. In
the sequel, we will also use the following equivalent formulation

T = inf{t ≥ 0; e−M1,t ≤ U1} and C = inf{t ≥ 0; e−M2,t ≤ U2},

where U1 = exp(−E1) and U2 = exp(−E2). Note that U1 and U2 are uniformly distributed. Based
on a right-censoring approach, only the smallest default time is observed. Formally, the outcomes
are limited to the couple (Z, δ), defined by

Z = min(T,C) and δ = 1{T≤C}.

The survival functions of the random time Z, T and C are denoted by H, F T and FC respectively.
According to Theorem 2.2 in [32], F T and FC are given, for any t ≥ 0, by

F T (t) = e−Λ1(t)−tκ(1) and FC(t) = e−Λ2(t)−tκ(1).
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To fully characterize the joint distribution of T and C, we apply Sklar’s theorem [54], which asserts
that for any joint distribution function, there exists a unique copula C, defined on FT (R+)×FC(R+),
that captures the dependence between T and C. Specifically, for any t, s ≥ 0, the joint survival
probability P is given by

P (t, s) = P(T ≤ t, C ≤ s) = C (FT (t), FC(s)) .

In reliability studies, although this does not change the analysis, it is often more convenient to
express a joint survival function in terms of its marginal survival functions, such that

P̃ (t, s) = P(T > t,C > s) = C̃
(
F T (t), FC(s)

)
, (2.1)

where the function C̃ is called the survival copula. In the sequel, we show that the identifiability and
estimation of the distribution of T and the joint distribution P are feasible for this model. Building
on this, we introduce the generalized inverses of the cumulative distribution functions F T and FC ,
denoted by F

−
T and F

−
C , respectively, which are defined as

F
−
T (t) = inf

{
x ≥ 0, F T (x) ≤ t

}
and F

−
C(t) = inf

{
x ≥ 0, FC(x) ≤ t

}
.

Recall that for any general distribution function F , the corresponding cumulative hazard function
is defined as

Λ(t) =

∫ t

0

F (du)

F (u−)
, t ≥ 0,

where F := 1 − F and F (u−) = lims↓u F (s). Conversely, the relationship between a distribution
function F and its cumulative hazard function Λ can be expressed as

F (t) =: exp
(
−Λ̃(t)

)
= exp

−Λc(t) +
∑
s≤t

log(1−∆Λ(s))

 ,

where Λc and ∆Λ respectively denote the continuous and discontinuous parts of Λ [see p.898 in 52].
Thus, the model can be represented using the survival functions

F T (t) =: exp(−Λ̃T (t)) and FC(t) =: exp(−Λ̃C(t)),

where ΛT and ΛC define the cumulative hazard functions of T and C, respectively.

3 Copulas and dependence properties

In this section, we present several fundamental properties of the proposed model, with a particular
focus on the copula function C̃ and its relationship with the GMO copula function. In [32], a general
form for the survival GMO copula is derived and used to define a large class of copulas. In line
with this work, we derive the joint survival function and the survival copula associated with the
proposed model in the following proposition.

Proposition 1. The joint survival function P̃ of (T,C) defined in (1.1) is given, for any t, s ≥ 0,
by

P̃ (t, s) = FC(s)F T (t)min
(
F T (t)

−α(t), FC(s)
−β(s)

)
,
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where

α(t) =
tξ

Λ1(t) + tκ(1)
, β(s) =

ξs

Λ2(s) + sκ(1)
,

and ξ = 2κ(1)− κ(2). In particular, the survival copula C̃ is given by

C̃(u, v) = uvmin

(
u
−α

(
F

−
T (u)

)
, v

−β
(
F

−
C(v)

))
, (u, v) ∈ F T (R+)× FC(R+). (3.1)

Note that the minimum term in (3.1) represents the deviation of the dependence structure from
the independent scenario, which occurs when ξ = 0, and from the complete dependence case, which
occurs when α ≡ β ≡ 1. In a broader context, constant functions α and β are inherently connected
to the MO model. The sub-density functions and the hazard functions are provided in the following
proposition.

Proposition 2. The survival function H of Z is given by H(t) = e−Λ1(t)−Λ2(t)−tκ(2) for t ≥ 0.
Moreover, the sub-densities fZ,δ=0 and fZ,δ=1 of (Z, δ) are expressed by

fZ,δ=0(t) = H(t)[Λ′
2(t) + κ(2)− κ(1)] and fZ,δ=1(t) = H(t)

[
Λ′
1(t) + κ(1)

]
. (3.2)

In particular, the hazard functions λT and λC respectively associated with the random variables T
and C are given by λT = fZ,δ=1/H and λC = fZ,δ=0/H + ξ.

Notably, the hazard function of T maintains the same form as in the case of independent censoring.
This property ensures that the Nelson-Aalen estimator remains consistent even under the dependent
censoring induced by the model construction. Further details on estimating the survival distribution
function are provided in Section 5. To conclude this section, we present the following statement,
which establishes the connection between the proposed model and the GMO model.

Proposition 3. The model defined by (1.1)-(1.2) is a special case of the GMO model. Specifically,
we have

(T,C)
d
= (min(X1, X3),min(X2, X3))

where
d
= denotes equality in distribution, X1, X2 and X3 are three independent random variables

such that X3 follows an exponential distribution with parameter ξ. Moreover, the cumulative hazard
functions ΛX1 ,ΛX2 of X1 and X2, respectively, are given by:{

ΛX1(t) = Λ1(t) + tκ(1)− ξt
ΛX2(t) = Λ2(t) + tκ(1)− ξt.

It is evident that the simultaneous failure of both T and C arises from the common failure
source X3. Although the proposed model shares the same distribution as a specific case of the
GMO model, it is important to emphasize that our approach introduces key distinctions in modeling
dependent censoring. MHT models offer greater flexibility by capturing more complex, time-varying
dependencies through stochastic processes. This enables alternative interpretations of real-world
censoring mechanisms, such as recurrent events or latent factors. In contrast, GMO models lack a
dynamic temporal component and are typically limited to shock-induced dependencies that occur
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instantaneously, which makes it challenging for them to effectively represent these time-varying
dependencies. Additionally, GMO models are constrained by their rigid assumptions of shared
shocks, which limits their ability to reflect nuanced dependency structures. MHT models also offer
better adaptability in capturing latent factors and unobserved competing risks. Their flexibility
also facilitates model estimation, particularly in settings with latent competing risks, where GMO
models may be too rigid or face identifiability challenges. Finally, it is often more practical to
summarize the complexity of the model using a universal measure of dependence, such as Kendall’s
tau coefficient.

Remark 1. Based on Proposition 2 in [27], if Λ1 and Λ2 are strictly increasing, the Kendall’s tau
corresponding to the proposed model is given by

τ = 2ξ

∫ +∞

0
H(u)2du.

4 Identifiability

In this section, we investigate the model’s identifiablity. Recall that a statistical model P = (Pγ)γ∈Γ
is said to be identifiable if the map γ → Pγ , defined on Γ, is injective. In our context, identifiability
implies that the vector (Λ1,Λ2, κ(1), κ(2)) uniquely specifies the density of the observable random
vector (Z, δ). That is,

if fZ,δ=. ,Γ1 = fZ,δ=. ,Γ2 then Γ1 = Γ2,

where Γi =
(
Λi
1,Λ

i
2, κ(1)

i, κ(2)i
)
, for i = 1, 2. Examining the identifiability with dependent cen-

soring is no simple task, particularly when considering the dependence structure of the survival
copula C̃. This is due to the right censoring mechanism, which prevents the simultaneous obser-
vation of the pair (T,C), making it difficult to directly discern the relationship between T and C
from the observed data. In the following theorem, we prove the identifiability of the proposed model.

Proposition 4. Assuming that Λ′
1(0) = Λ′

2(0) = 0, the model defined by (1.1)–(1.2) is identifiable.

Unlike the identifiability results in semi-parametric models discussed in [17, 21, 22] or in the MHT
models in [3, 44], our approach does not require complex assumptions about the marginal distribu-
tions or the joint model to establish the model identifiability. Furthermore, compared to the model
identification in [27], we do not require any additional information beyond the censoring status
T ≤ C, which is typically available in standard survival analysis. The only necessary assumption
concerns the regularity of the marginal densities Λ1 and Λ2, which is satisfied by a wide range
of cumulative hazard functions. In particular, this preserves the semi-parametric character of the
model and does not impose any functional form restrictions on the marginal distributions. Overall,
the identifiability of our model suggests that we can determine the relationship between T and C,
observing only their minimum through the censored data (Z, δ).

5 Estimation

We now consider the estimation of the survival distributions F T and FC , as well as the joint survival
P̃ of the survival time T and the censoring time C. For this, we assume that we have an independent
and identically distributed (i.i.d.) sample (Zi, δi)1≤i≤n drawn from the observed model (Z, δ).
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5.1 Non-parametric estimation of F T

According to Equation (3.2) in Proposition 2, it turns out that the Nelson-Aalen estimator ΛT,n

of the cumulative hazard function ΛT remains consistent, unlike most dependent censoring models.
The Nelson-Aalen estimator of ΛT is then defined by

ΛT,n(t) =
∑

i:Z(i)≤t

di
n− i+ 1

with di =
n∑

j=1

1{Zj=Z(i),δj=1} and t > 0, (5.1)

where Z(i) is the i-th order statistic among the n survival time observations. According to Lemma 1

of [11], we also conclude that the Kaplan-Meier (KM) estimator F T,n defined by F T,n = exp(−ΛT,n)
provides a consistent estimator of the survival function F T . Note that its asymptotic properties can
then be easily derived from established results on the KM estimator under a survival model with
independent censoring (see e.g. [6, 45]).

5.2 Semi-parametric estimation of FC, P̃ and τ

Since the survival estimation F T can be estimated by the KM estimator, we need to approximate
the survival function FC and the parameter ξ in order to estimate the survival joint distribution. To
this end, we consider a semi-parametric approach based on maximum likelihood (ML) with Bern-
stein polynomial functions. Bernstein polynomials have been used by many authors in smoothing
estimators (see e.g. [58], [35] and [40]) using functions of the form

s ∈ [0, 1] →
m∑
k=0

ϕkbk,m(s), m ∈ N

where m is the degree, bk,m(s) = Ck
ms

k(1 − s)m−k and ϕm = (ϕ0, . . . , ϕm)T ∈ Rm+1. In this
context, we assume that both random times T and C have equal supports. For compact supports
SFC

= SFT
= [a, b], we can transform the data linearly to the interval [0, 1], using

Z̃ = (Z − a)/(b− a) = min (T − a)/(b− a), (C − a)/(b− a)) = min(T̃ , C̃).

If F
C̃,m

and g
C̃,m

denote estimates of the distribution and the density functions of C̃, respectively,
then estimators of the function FC and fC can be obtained using the following relations:

FC,m(t) = F
C̃,m

(
t− a

b− a

)
and fC,m(t) =

1

b− a
f
C̃,m

(
t− a

b− a

)
,

for t ∈ [a, b]. Transformations such as Z̃ = Z/(1 + Z) and Z̃ = (1/2) + (π/2) tan−1(Z) can be used
also to handle the cases of random variables with support R+ and R, respectively, with the proper
change of variables to recover FC,m and fC,m. In the following, we consider that SFC

= SFT
= [0, 1].

Based on Proposition 2, the log-likelihood is given by

L(ξ, FC , fC) =
n∑

i=1

δi log{fZ,δ=1(Zi)}+ (1− δi) log{fZ,δ=0(Zi)}

=
n∑

i=1

δi log{fZ(Zi)− fZ,δ=0(Zi)}+ (1− δi) log{fZ,δ=0(Zi)},

where fZ,δ=0(t) = F T (t)e
tξ
[
fC(t)− ξFC(t)

]
and fZ is the density of Z. The direct maximization

of this likelihood can be challenging, since it depends on an unknown functions fZ and F T . The
idea is now to consider an approximation of the log-likelihood L through the following steps:
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(i) we approximate fZ using a non-parametric kernel method

fZ,n(t) =
1

nh

n∑
i=1

K

(
t− Zi

hn

)
, (5.2)

where K represents a kernel function and hn > 0 is a bandwidth parameter.

(ii) the function F T is estimated using the KM estimator F T,n.

(iii) the functions FC and fC are approximated using the Bernstein polynomials. The estimators
for the distribution function and the density function are then given by

FC,m(t|ϕm) =

m∑
k=0

ϕkbk,m(t) and fC,m(t) =

m∑
k=0

ϕkb
′
k,m(t), (5.3)

where the coefficients ϕm are replaced by estimates obtained from the ML approach.

Therefore, we approximate and parameterize the distribution FC using a mixture of beta distri-
butions, and we estimate ϕm as parameters of the log-likelihood function L. This approximation
is motivated by the uniform convergence of FC,m as provided in Theorem 2.1 of [8], as well as by,
common results on Bernstein polynomial estimation, which ensure that the best convergence rate
of FC,m(t) to FC(t) is of order m

−1.

In summary, let Lm(ξ, ϕm) denote the approximate log-likelihood obtained by replacing F T ,
fZ , FC and fC with F T,n, fZ,n, FC,m and fC,m respectively. We consider the parameter vector
θ = (ϕm, ξ) and define the ML estimator

θn = argmax
θ∈Rm+2

Lm(θ).

Based on the estimator θn =
(
ϕn,m, ξn

)
, we obtain the estimators of the survival function FC and

the joint law P̃ namely

FC,m,n(t) = 1−
m∑
k=0

ϕk,nbk,m(t),

P̃m,n(t, s) = FC,m,n(s)F T,n(t)min
(
F T,n(t)

−αn(t), FC,m,n(s)
−βm,n(s)

)
,

where

αn(t) =
ξnt

− ln(F T,n(t))
and βm,n(t) =

ξnt

− ln(FC,m,n(t))
.

Finally, we propose an estimator for the Kendall’s tau coefficient based on the above expression.
Conveniently, this coefficient depends only on the survival function of the random variable Z and
the stochastic process parameter ξ. Using the ML estimate of the former parameter, we obtain the
estimator

τn = 2ξn

∫ +∞

0
Hn(u)

2du.
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5.3 Asymptotic properties

This section presents the consistency and asymptotic normality of the estimators defined in Sub-
section 5.2, along with the set of assumptions required to prove these results. To establish the
asymptotic normality of θn, we rely on the framework provided by [60] which develops sufficient
conditions for the asymptotic normality of the maximum likelihood estimators under misspecified
models. To do so, we consider the optimization problem based on the minimization of the Kullback-
Leibler information criterion given by I(g, h; θ) = E (log [g(Z, δ; ξ)/h(Z, δ; θ)]) with densities

g(t, b; ξ) =
[
fZ(t)− F T (t)e

tξ
(
fC(t)− ξFC(t)

)]b [
F T (t)e

tξ
(
fC(t)− ξFC(t)

)]1−b
,

and

h(t, b; θ)

=
[
fZ,n(t)− F T,n(t)e

tξ
(
fC,m,n(t|ϕm)− ξFC,m,n(t|ϕm)

)]b [
F T,n(t)e

tξ
(
fC,m,n(t|ϕm)− ξFC,m,n(t|ϕm)

)]1−b
,

with F T,n, fZ,n, FC,m,n and fC,m,n the estimators defined in the previous section. Let us introduce
the following matrices

A (θ) =

(
E
[
∂2 log h(Z, δ; θ)

∂θi∂θj

])
1≤i,j≤m+2

and B (θ) =

(
E
[
∂ log h(Z, δ; θ)

∂θi

∂ log h(Z, δ; θ)

∂θj

])
1≤i,j≤m+2

.

We need the following regularity conditions to establish asymptotic properties of our estimators:

(H1): Λ
′
2e

−Λ2 and Λ
′
1e

−Λ1 are element of L2(0,∞).

(H2): The kernel K is bounded up by a positive constant Kmax.

(H3): I has unique minimum at θ⋆.

(H4): (a) θ⋆ is interior to Rm+2
+ .

(b) B(θ⋆) is non singular.

(c) θ⋆ is a regular point of A(θ).

Remark 2. Assumption (H1) is essential for establishing the bounded expectation result in Propo-
sition 5. Assumption (H2) is a technical requirement ensuring that condition (5) of [60] is satisfied.
Assumptions (H3) and (H4) serve as regularity conditions commonly adopted in maximum likelihood
analysis to demonstrate asymptotic properties.

One requirement in the study of the asymptotic of the estimators is to ensure that the the random
time Z admit finite moments for any order. This results is stated in the following proposition.

Proposition 5. Suppose that Λ1 and Λ2 satisfy (H1). Then, all moments of order k for Z exist,
that is

E(Zk) <∞.

This allows us, in the next proposition, to show the asymptotic normality for the parameter vector
θn.
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Proposition 6. Under assumptions (H1)− (H4), θ is identifiable and

√
n (θn − θ)

L−→
n→+∞

N (0, C (θ)) ,

where C (θ) = A (θ)−1B (θ)A (θ)−1 .

The proof of Proposition 6 is done by verifying the conditions of Theorem 3.2 in [60]. In the next
proposition, we finally establish the simple convergence for the joint distribution estimator and the
Kendall’s tau coefficient.

Proposition 7. Under assumptions (H1)− (H4),

lim
n,m→∞

P̃n,m(t, s) = P̃ (t, s) and lim
n→∞

τn = τ.

6 Simulation and real data analysis

6.1 Simulation study

In this subsection, we evaluate the performance of the survival distribution estimators and the
survival copula estimator. We considered N = 100 samples of sizes n = 30, 50, 100 under the
following models:

a) Λ1(t) = 0.01t and Λ2(t) = 0.02t defined on [0, 100], and (Yt)0<t≤100 is a Poisson process with
intensity λ = 2.

b) Λ1(t) = − ln(1 − It(2.5, 6)) − 0.4t and Λ2(t) = − ln(1 − It(3, 2)) − 0.4t defined on [0, 100], and
(Yt)0<t≤100 is a Poisson process with intensity λ = 2, where It is the incomplete beta function.

The selection of the Bernstein polynomial degree m is determined by the available data based on
the Akaike information criterion (AIC)

AIC(m) = 2(m+ 2)− 2Lm(ξ, ϕm).

The AIC is calculated to fit models across a grid of degree m, with the default upper bound set
to n, so that the selected Bernstein degree minimizes the AIC. As a measure of performance, we
evaluate the Mean Integrated Squared Error (MISE) of the mentioned estimators. Specifically, for
a function F and its estimator F̂ , let

ISE(F̂ ) =

∫ b

a

[
F̂ (x)− F (x)

]2
dx, (6.1)

where a = min
1≤i≤n

(Zi), b = max
1≤i≤n

(Zi). Then for N sample of size n the MISE of F̂ is given by the

Monte Carlo approximation:

MISE(F̂ ) =
1

N

N∑
i=1

ISEi(F̂ ),

where ISEi(F̂ ) denotes the value of the Integrated Squared Error (ISE) calculated on the i-th ran-
domly generated sample.

Figures 1 and 2 display the survival estimators of F T and FC , respectively, under the two models
a) and b). Figure 3 shows the estimation results of the functions α and β, while Figure 4 displays the
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results of the survival copula estimation. Figure 1 and 2 show that the survival estimators converge
toward the true marginal survival functions. This is again a attractive feature of the proposed
model since the dependency between T and C does not affect the KM estimator in this scenario.
Figure 3 shows that the estimators of α and β are constants under model a). This can be attributed
to the fact that model a) is equivalent to a MO exponential distribution. As expected from the
consistency result in Proposition 7, the discrepancy between P̃n,m and P̃ decreases, as indicated by
the plots in Figure 4. We observe that, in all cases presented in Table 1, the value of the MISE
decrease along with the sample size n, for appropriate choices of the degree m.
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Figure 1: Kaplan Meier estimator of F T (t) with N = 100 iterations, for a size n = 100 for the
model a) (left panel) and the model b) (right panel).
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Figure 2: Bernstein estimators of FC(t) with N = 100 iterations, for a size n = 100 for the model
a) (left panel) and the model b) (right panel).
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Figure 3: Estimators of α(t) and β(t) with N = 100 iterations, for a size n = 100 for the model a)
(up) and the model b) (down).
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Figure 4: Survival estimator of the joint law with N = 100 iterations, for a size n = 100 for the
model a) (up) and the model b) (down).

n F T,n FC,n,m P̃n,m

Model a) 30 0.004518 0.015534 0.005218
50 0.001618 0.001471 0.004331
100 0.000278 0.000117 0.001298

Model b) 30 0.003696 0.003161 0.003198
50 0.001418 0.000227 0.000573
100 0.000180 0.000201 0.000289

Table 1: Results for MISE for N = 100 trials of the proposed estimators F T,n, FC,m,n and P̃n,m,
for n = 30, n = 50 and n = 100.
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6.2 Real data application

In this subsection, we apply the proposed estimation procedure to the joint retirement problem of
married couples, using data from [34] and [44] drawn from eight waves of the Health and Retirement
Study (every 2 years from 1992 to 2006). The duration variables (T,C) represent the retirement
dates of the wife and the husband, respectively. The duration Z = min(T,C) represents the first
entry into retirement for the corresponding member of the household and δ = 1{T≤C} indicates
whether the wife retires first or the husband does. The latent stochastic processes (Yt)t≥0 charac-
terize the aging processes for the elderly. The sample consists of 821 households. We note that the
supports are ST = SC = [1, 176]. Figure 5 depicts the KM survival estimator and the Bernstein
estimator of F T and FC , respectively. Moreover, the results seem to contradict the assumption that
the data come from the model proposed in [44]. In particular, with the estimation of the functions
α and β, Figure 6 shows that the results are not constant and do not always reach the expected
values for [44]’s model, where Λ1(t) = Λ2(s) = 0. Figure 7 display the joint survival estimator of
P̃ (t, s).
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Figure 5: Results for the survival distribution estimators of F T (t) and FC(t) with the real data.
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Figure 7: Results for the estimators of P̃ (t, s) with the real data.

7 Conclusion

This paper presents a dependent censoring model for analyzing survival times, based on the canon-
ical default model. We establish the identifiability of this model given censored data. Several
theoretical results related to the model’s functions, specifically the survival copula and cumulative
hazard functions, are analyzed. A flexible non-/semi-parametric estimation method is proposed
and illustrated through the analysis of synthetic and real datasets. This work can be considered
a preliminary study for further investigations into the survival copula based on threshold-crossing
models. Indeed, our study provides a theoretical foundation for characterizing the survival copula
in the context of the canonical model, based on a latent non-homogeneous process.
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8 Proofs

Proof of Proposition 1:

Let t, s ≥ 0. According to Theorem 2.2 in [32], we have

P̃ (t, s) = P(T > t,C > s) = F T (t)FC(s)
ψYt+Ys(1)

ψYt(1)ψYs(1)
.

Suppose that t < s. Using the fact that (Yt)t≥0 has independent and stationary increments, and
that

Yt + Ys = 2(Yt − Y0) + (Ys − Yt),

we obtain

P̃ (t, s) = F T (t)FC(s)
ψ2(Yt−Y0)+(Ys−Yt)(1)

ψYt(1)ψYs(1)

= F T (t)FC(s)
ψYt(2)ψYs−t(1)

ψYt(1)ψYs(1)

= F T (t)FC(s)
e−tκ(2)e−(s−t)κ(1)

e−tκ(1)e−sκ(1)

= F T (t)FC(s)e
−tκ(2)e−(s−t)κ(1)etκ(1)esκ(1)

= F T (t)FC(s)e
−tκ(2)e−sκ(1)+tκ(1)etκ(1)esκ(1)

= F T (t)FC(s)e
tξ

= F T (t)FC(s)e
tξ.

Similarly, in the case where s < t, we obtain

P̃ (t, s) = F T (t)FC(s)e
sξ.

Therefore,

P̃ (t, s) = F T (t)FC(s)e
ξmin(t,s) = F T (t)FC(s)min(eξt, eξs).

In other hand, according to Theorem 2.2 in [32], we have

F T (t) = e−Λ1(t)−κ(1)t and FC(t) = e−Λ2(t)−κ(1)t.

Hence,

eξt = F T (t)
−α(t) = FC(t)

−β(t), ∀ t ≥ 0,

where

α(t) =
ξt

Λ1(t) + tκ(1)
and β(t) =

ξt

Λ2(t) + tκ(1)
.

It implies that

P̃ (t, s) = C̃(F T (t), FC(s)) = FC(s)F T (t)min
(
F T (t)

−α(t), FC(s)
−β(s)

)
,

and therefore the survival copula is given by

C̃(u, v) = vumin

(
u
−α

(
F

−
T (u)

)
, v

−β
(
F

−
C(v)

))
.
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Proof of Proposition 2:

Let t ≥ 0. Then, we have,

H(t) = P(Z > t)

= E [P(Z > t|Yt)]
= E [P (T > t,C > t|Yt)]
= E

[
P
(
inf{x ≥ 0, e−M1,x ≤ U1} > t, inf{x ≥ 0, e−M2,x ≤ U2} > t|Yt

)]
= E

[
P
(
U1 < e−M1,t , U2 < e−M2,t |Yt

)]
= E

[
P
(
U1 < e−M1,t |Yt

)
P
(
U2 < e−M1,t |Yt

)]
= E

[
e−M1,te−M2,t

]
= e−Λ1(t)e−Λ2(t)e−tκ(2).

Let s < t, we have
P(T > t,C > s) = F T (t)FC(s)e

sξ. (8.1)

Therefore, according to Theorem 1 of [7], we obtain

fZ,δ=0(t) = − lim
y→t

∂P(T > t,C > y)

∂y
.

Using Equation (8.1), we obtain

∂P(T > t,C > y)

∂y
=

∂
[
F T (t)FC(y)e

yξ
]

∂y
= F T (t)

[
−fC(y)eyξ + ξFC(y)e

yξ
]
.

Hence,

fZ,δ=0(t) = − lim
y→t

F T (t)
[
−fC(y)eyξ + ξFC(y)e

yξ
]

= −F T (t)
[
F

′

C(t)e
tξ + ξFC(t)e

tξ
]

= F T (t)e
tξ
[
−F

′

C(t)− ξFC(t)
]

= F T (t)e
tξ
[
(Λ

′
2(t) + κ(1))FC(t)− ξFC(t)

]
= FC(t)F T (t)e

tξ
[
Λ

′
2(t) + κ(1)− ξ

]
= H(t)[Λ

′
2(t) + κ(1)− ξ].

Moreover,

fZ(t) = −H
′
(t)

=
[
Λ

′
1(t) + Λ

′
2(t) + κ(2)

]
e−Λ1(t)−Λ2(t)−tκ(2)

=
[
Λ

′
1(t) + Λ

′
2(t) + κ(2)

]
H(t).

Consequently,

fZ,δ=1(t) = fZ(t)− fZ,δ=0(t)

=
[
Λ′
1(t) + Λ′

2(t) + κ(2)
]
H(t)−H(t)[Λ′

2(t) + κ(1)− ξ]

= H(t)
[
Λ′
1(t) + Λ′

2(t) + κ(2)− Λ′
2(t)− κ(1) + 2κ(1)− κ(2)

]
= H(t)

[
Λ′
1(t) + κ(1)

]
,
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which implies that

fZ,δ=1(t)

H(t)
= Λ′

1(t) + κ(1).

On the other hand, we have

fT (t)

F T (t)
=

−F
′

T (t)

FT (t)

=
(Λ

′
1(t) + κ(1))e−Λ1(t)−tκ(1)

e−Λ1(t)−tκ(1)

= Λ
′
1(t) + κ(1).

Then
fZ,δ=1(t)

H(t)
=

fT (t)

F T (t)
.

Similarly, we have
fZ,δ=0(t)

H(t)
=

fC(t)

FC(t)
− ξ.

Proof of Proposition 3:

Consider the model defined in (1.1)-(1.2). Let X1, X2, and X3 be three independent random vari-
ables with cumulative Hazard functions ΛX1 ,ΛX2 , and ΛX3 , respectively. Suppose that, for t ≥ 0

ΛX1(t) = Λ1(t) + tκ(1)− ξt
ΛX2(t) = Λ2(t) + tκ(1)− ξt
ΛX3(t) = ξt.

(8.2)

Define the random variables X and Y as follows

X = min(X1, X3), and Y = min(X2, X3).

Then, according to Proposition 1 in [27], the survival copula of (X,Y ) is given by

C̃(X,Y )(u, v) = uvmin
(
u−α1(F

−
X(u)), v−α2(F

−
Y (v))

)
,

where

α1(t) =
ΛX3(t)

ΛX3(t) + ΛX1(t)
=

ξt

Λ1(t) + tκ(1)
,

and

α2(t) =
ΛX3(t)

ΛX3(t) + ΛX2(t)
=

ξt

Λ2(t) + tκ(1)
.

Therefore (X,Y ) has the same copula as (T,C). In the other hand,

FX(t) = FX1(t)FX3(t) = e−Λ1(t)−Λ3(t) = e−Λ1(t)−tκ(1) = F T (t).

Similarly, we have

F Y (t) = FX2(t)FX3(t) = e−Λ2(t)−Λ3(t) = e−Λ2(t)−tκ(1) = FC(t).

Then, (X,Y ) has the same distribution as (T,C). Moreover,

T
d
= min (X1, X3) and C

d
= min (X2, X3) .
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Proof of Proposition 4:

Suppose that
fZ,δ=1,Γ1(t) = fZ,δ=1,Γ2(t) and fZ,δ=0,Γ1(t) = fZ,δ=1,Γ2(t),

where Γi =
(
Λi
1,Λ

i
2, κ(1)

i, κ(2)i
)
for i = 1, 2. Then, for t ∈ [0,∞[, we have

e−Λ1
1(t)−Λ1

2(t)−tκ(2)1(Λ1
1(t)

′ + κ(1)1) = e−Λ2
1(t)−Λ2

2(t)−tκ(2)2(Λ2
1(t)

′ + κ(1)2), (8.3)

and

e−Λ1
1(t)−Λ1

2(t)−tκ(2)1
(
Λ1
2(t)

′ + κ(2)1 − κ(1)1
)

(8.4)

= e−Λ2
1(t)−Λ2

2(t)−tκ(2)2
(
Λ2
2(t)

′ + κ(2)2 − κ(1)2
)
.

Since Λ′
1(0) = Λ′

2(0) = 0, then for t = 0, Equation (8.3) implies that κ(1)1 = κ(1)2. Moreover, for
t = 0, Equation (8.4) implies that κ(2)1 = κ(2)2. By summing Equations (8.3) and (8.4), we obtain

e−E1(t)(E1(t)′) = e−E2(t)(E2(t)′),

where Ei(t) = Λi
1(t) + Λi

2(t) + κ(2)i. Then
[
e−E1(t)

]′
=

[
e−E2(t)

]′
. It implied that, for x ∈ [0,∞[,∫ x

0

[
e−E1(t)

]′
dt =

∫ x

0

[
e−E2(t)

]′
dt,

and therefore e−E1(x) = e−E2(x), since Λ1
1(0) = Λ2

1(0) = Λ1
2(0) = Λ2

2(0) = 0. Substituting this result
into Equation (8.3), we obtain Λ1

1(t)
′ = Λ2

1(t)
′. Then∫ x

0
Λ1
1(t)

′dt =

∫ x

0
Λ2
1(t)

′dt,

and therefore Λ1
1(x) = Λ2

1(x), since Λ1
1(0) = Λ2

1(0) = 0. Substituting this result into Equation (8.4),
we obtain Λ1

2(t)
′ = Λ2

2(t)
′. Then ∫ x

0
Λ1
2(t)

′dt =

∫ x

0
Λ2
2(t)

′dt,

and therefore Λ1
2(x) = Λ2

2(x), since Λ1
2(0) = Λ2

2(0) = 0. Finally, we conclude that Γ1 = Γ2.

Proof of Proposition 5:

Suppose that Λ1 and Λ2 satisfy (H1). Let k ∈ N. We have

E(Zk) =

∫ ∞

0
tk
(
Λ

′
1(t) + Λ

′
2(t) + κ(2)

)
e−Λ1(t)−Λ2(t)−tκ(2)dt

=

∫ ∞

0
tk
(
Λ

′
1(t) + Λ

′
2(t) + κ(2)

)
e−Λ1(t)−Λ2(t)−t

κ(2)
2

−t
κ(2)
2 dt

≤
(∫ ∞

0
t2ke−tκ(2)dt

)1/2

×
(∫ ∞

0

(
Λ

′
1(t) + Λ

′
2(t) + κ(2)

)2
e−2Λ1(t)−2Λ2(t)−tκ(2)dt

)1/2

=

(
(2k)!

κ(2)2k+1

)1/2

× I1/2,
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where

I =

∫ ∞

0

(
Λ

′
1(t) + Λ

′
2(t) + κ(2)

)2
e−2Λ1(t)−2Λ2(t)−tκ(2)dt

=

∫ ∞

0
Λ

′
1(t)

2e−2Λ1(t)−2Λ2(t)−tκ(2)dt+

∫ ∞

0
Λ

′
2(t)

2e−2Λ1(t)−2Λ2(t)−2tκ(2)dt

+ κ(2)2
∫ ∞

0
e−2Λ1(t)−2Λ2(t)−tκ(2)dt+ 2

∫ ∞

0
Λ

′
1(t)Λ

′
2(t)e

−2Λ1(t)−2Λ2(t)−tκ(2)dt

+ 2κ(2)

∫ ∞

0
Λ

′
1(t)e

−2Λ1(t)−2Λ2(t)−tκ(2)dt+ 2κ(2)

∫ ∞

0
Λ

′
2(t)e

−2Λ1(t)−2Λ2(t)−tκ(2)dt

≤
∫ ∞

0
Λ

′
1(t)

2e−2Λ1(t)dt+

∫ ∞

0
Λ

′
2(t)

2e−2Λ2(t)dt+ κ(2)2
∫ ∞

0
e−tκ(2)dt

+ 2

∫ ∞

0
Λ

′
1(t)Λ

′
2(t)e

−Λ1(t)−Λ2(t)dt+ 2κ(2)

∫ ∞

0
Λ

′
1(t)e

−Λ1(t)dt+ 2κ(2)

∫ ∞

0
Λ

′
2(t)e

−Λ2(t)dt

=

∫ ∞

0
Λ

′
1(t)

2e−2Λ1(t)dt+

∫ ∞

0
Λ

′
2(t)

2e−2Λ2(t)dt+ 2

∫ ∞

0
Λ

′
1(t)Λ

′
2(t)e

−Λ1(t)−Λ2(t)dt+ 5κ(2).

Using Hölder’s inequality we obtain∫ ∞

0
Λ

′
2(t)Λ

′
1(t)e

−Λ1(t)−Λ2(t)dt ≤
(∫ ∞

0
Λ

′
1(t)

2e−2Λ1(t)dt

)1/2

×
(∫ ∞

0
Λ

′
2(t)

2e−2Λ2(t)dt

)1/2

<∞,

which implies that I exists and then E(Zk) <∞.

Proof of Proposition 6:

In order to prove this proposition, we propose to verify the conditions (1)− (6) of [60].

The independent random vector (Zi, δi) for i = 1 . . . n have a common joint distribution G on
[0, 1]2 with measurable Radon-Nikodym density given by

g(t, b; ξ) = fZ,δ=b(t)

= [fZ,δ=1(t)]
b [fZ,δ=0(t)]

1−b

=
[
fZ(t)− F T (t)e

tξ
(
fC(t)− ξFC(t)

)]b [
F T (t)e

tξ
(
fC(t)− ξFC(t)

)]1−b
.

The Radon-Nykodym density function h defined by

h(t, b; θ) = h(t, b; ξ, ϕ̄m)

=
[
fZ,n(t)− F T,n(t)e

tξ
(
fC,m(t|ϕm)− ξFC,m(t|ϕm)

)]b
×
[
F T,n(t)e

tξ
(
fC,m(t|ϕm)− ξFC,m(t|ϕm)

)]1−b
,

is measurable on (t, b) for every θ ∈ Rm+2
+ and continuous on θ of every (t, b) ∈ [0, 1]2. Then condi-

tions (1) and (2) of [60] are verified.

In order to show condition (3)a) of [60], we need first to show that E (log g(Z, δ; ξ)) exist.
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⋆ Suppose that δ = 0. Based on assumption (H1), we have Λ
′
2(t)e

−Λ2(t) and Λ
′
1(t)e

−Λ1(t) are
element of L2(0,∞). Since F T (Z) ≤ 1 and fC(Z)− ξFC(Z) ≤ fC(Z), then

E (log g(Z, δ; ξ)) = E
[
log

(
F T (Z)e

Zξ
(
fC(Z)− ξFC(Z)

))]
≤ E [log (fC(Z))] + E(log(eZξ))

≤ E (fC(Z)) + ξE(Z)

≤
∫ ∞

0
fC(t)fZ(t)dt+ ξE(Z)

=

∫ ∞

0

(
Λ

′
2(t) + κ(1)

)(
Λ

′
1(t) + Λ

′
2(t) + κ(2)

)
e−Λ1(t)−2Λ2(t)−tκ(2)−tκ(1)dt

+ ξE(Z)
= I1 + I2 + (κ(2) + κ(1))I3 + κ(1)I4 + κ(1)κ(2)I5 + ξE(Z)

where,

I1 =

∫ ∞

0
Λ

′
2(t)Λ

′
1(t)e

−Λ1(t)−2Λ2(t)−tκ(2)−tκ(1)dt

I2 =

∫ ∞

0
Λ

′
2(t)

2e−Λ1(t)−2Λ2(t)−tκ(2)−tκ(1)dt

I3 =

∫ ∞

0
Λ

′
2(t)e

−Λ1(t)−2Λ2(t)−tκ(2)−tκ(1)dt

I4 =

∫ ∞

0
Λ

′
1(t)e

−Λ1(t)−2Λ2(t)−tκ(2)−tκ(1)dt

I5 =

∫ ∞

0
e−Λ1(t)−2Λ2(t)−tκ(2)−tκ(1)dt.

In other hand, from Holder inequality we have

I1 ≤
[∫ ∞

0
Λ

′
2(t)

2e−4Λ2(t)−2κ(2)t−2κ(1)tdt

]1/2
×
[∫ ∞

0
Λ

′
1(t)

2e−2Λ1(t)dt

]1/2
≤

[∫ ∞

0
Λ

′
2(t)

2e−2Λ2(t)dt

]1/2
×
[∫ ∞

0
Λ

′
1(t)

2e−2Λ1(t)dt

]1/2
<∞,

I2 ≤
∫ ∞

0
Λ

′
2(t)

2e−2Λ2(t)dt <∞,

I3 ≤
∫ ∞

0
Λ

′
2(t)e

−Λ2(t)dt

= −
∫ ∞

0

(
e−Λ2(t)

)′

dt

= 1.
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Similarly to I3, we have I4 <∞. In addition, we have

I5 ≤
∫ ∞

0
e−t(κ(2)+κ(1))dt

=
1

κ(2) + κ(1)
<∞.

Based on Theorem 5, E(Z) <∞, we conclude that E (log g(Z, δ; ξ)) <∞.

⋆ Now, suppose that δ = 1, then

E (log g(Z, δ; ξ))

= E
[
log

(
fZ(Z)− F T (Z)e

Zξ
(
fC(Z)− ξFC(Z)

))]
≤ E

[
log

(
fZ(Z) + F T (Z)e

ZξξFC(Z)
)]

≤ E
[
log

(
fZ(Z) + ξeZξ

)]
≤ E

(
fZ(Z) + ξeZξ

)
= E (fZ(Z)) + ξE(eZξ)

=

∫ ∞

0

(
Λ

′
1(t) + Λ

′
2(t) + κ(2)

)2
e−2Λ1(t)−2Λ2(t)−2tκ(2)dt

+ ξE(eZξ)

=

∫ ∞

0
Λ

′
1(t)

2e−2Λ1(t)−2Λ2(t)−2tκ(2)dt+

∫ ∞

0
Λ

′
2(t)

2e−2Λ1(t)−2Λ2(t)−2tκ(2)dt

+ κ(2)2
∫ ∞

0
e−2Λ1(t)−2Λ2(t)−2tκ(2)dt+ 2

∫ ∞

0
Λ

′
1(t)Λ

′
2(t)e

−2Λ1(t)−2Λ2(t)−2tκ(2)dt

+ 2κ(2)

∫ ∞

0
Λ

′
1(t)e

−2Λ1(t)−2Λ2(t)−2tκ(2)dt+ 2κ(2)

∫ ∞

0
Λ

′
2(t)e

−2Λ1(t)−2Λ2(t)−2tκ(2)dt

+ ξE(eZξ)

= J1 + J2 + κ(2)2J3 + 2J4 + 2κ(2)J5 + 2κ(2)J6 + ξJ7.

We have

J1 =

∫ ∞

0
Λ

′
1(t)

2e−2Λ1(t)−2Λ2(t)−2κ(2)tdt

≤
∫ ∞

0
Λ

′
1(t)

2e−2Λ1(t)dt <∞.

Similarly to J1, we have J2 <∞.

J3 =

∫ ∞

0
e−2Λ1(t)−2Λ2(t)−2κ(2)tdt

≤
∫ ∞

0
e−2κ(2)tdt

=
1

2κ(2)
<∞.
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Based on Hölder’s inequality, we have

J4 =

∫ ∞

0
Λ

′
1(t)Λ

′
2(t)e

−2Λ1(t)−2Λ2(t)−2κ(2)tdt

≤
∫ ∞

0
Λ

′
1(t)Λ

′
2(t)e

−Λ1(t)−Λ2(t)dt

≤
[∫ ∞

0
Λ′
1(t)

2e−2Λ1(t)dt

]1/2 [∫ ∞

0
Λ′
2(t)

2e−2Λ2(t)dt

]1/2
<∞,

and

J5 =

∫ ∞

0
Λ

′
1(t)e

−2Λ1(t)−2Λ2(t)−2κ(2)tdt

≤
∫ ∞

0
Λ′
1(t)e

−Λ1(t)dt

= −
∫ ∞

0

(
e−Λ1(t)

)′
dt

= 1.

Similarly to J5, we have J6 < 1. In addition, we have

J7 = E(eZξ)

=

∫ ∞

0

(
Λ

′
1(t) + Λ

′
2(t) + κ(2)

)
e−Λ1(t)−Λ2(t)−tκ(2)+tξdt

=

∫ ∞

0

(
Λ

′
1(t) + Λ

′
2(t) + κ(2)

)
e−Λ1(t)−Λ2(t)−2t(κ(2)−κ(1))dt

≤
∫ ∞

0
Λ

′
1(t)e

−Λ1(t)dt+

∫ ∞

0
Λ

′
2(t)e

−Λ2(t)dt+ κ(2)

∫ ∞

0
e−2t(κ(2)−κ(1))dt

= −
∫ ∞

0

(
e−Λ1(t)

)′
dt−

∫ ∞

0

(
e−Λ2(t)

)′
dt+

κ(2)

2(κ(2)− κ(1))

= 2 +
κ(2)

2(κ(2)− κ(1))
<∞.

We conclude that E (log g(Z, δ; ξ)) <∞.

Second, we need to show that |log (h(t, b; θ))| ≤ m(t, b), where is integrable with respect to g, for all
θ. To do this, let t ∈ [0, 1]. Assume that, there exist k > 0, such that

κ(2)− κ(1) ≥ k. (8.5)

Since Λ1 and Λ2 are continuous differentiable functions, then there exist ρ > 0 such that

Λ1(t) ≤ ρ, and Λ2(t) ≤ ρ, 0 ≤ t ≤ 1. (8.6)

• If b = 0, then we have

|log (h(t, b; θ))| =
∣∣∣log (F T,n(t)e

tξ
(
fC,m(t|ϕm)− ξFC,m(t|ϕm)

))∣∣∣ .
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Case 1: If F T,n(t)e
tξ
(
fC,m(t|ϕm)− ξFC,m(t|ϕm)

)
≤ 1, then we have

|log (h(t, b; θ))| =
∣∣∣log (F T,n(t)e

tξ
(
fC,m(t|ϕm)− ξFC,m(t|ϕm)

))∣∣∣
= − log

(
F T,n(t)e

tξ
(
fC,m(t|ϕm)− ξFC,m(t|ϕm)

))
.

In other hand, we have

F T (t)e
tξ
(
fC(t)− ξFC(t)

)
= (Λ

′
2(t) + κ(2)− κ(1))e−Λ1(t)−Λ2(t)−κ(2)t

≥ (Λ
′
2(t) + κ(2)− κ(1))e−2ρ−κ(3)

≥ (κ(2)− κ(1))e−2ρ−κ(3)

≥ ke−2ρ−κ(3).

Thus,

− log
(
F T,n(t)e

tξ
(
fC,m(t|ϕm)− ξFC,m(t|ϕm)

))
≤ − log(k),

which is integrable with respect to the density g.

Case 2: If F T,n(t)e
tξ
(
fC,m(t|ϕm)− ξFC,m(t|ϕm)

)
≥ 1, then we have

|log (h(t, b; θ))| =
∣∣∣log (F T,n(t)e

tξ
(
fC,m(t|ϕm)− ξFC,m(t|ϕm)

))∣∣∣
= log

(
F T,n(t)e

tξ
(
fC,m(t|ϕm)− ξFC,m(t|ϕm)

))
≤ log

(
F T,n(t)e

tξfC,m(t|ϕm)
)

≤ log(fC,m(t|ϕm))

≤ log(κ(3)).

In fact,

fC(t) =
(
Λ2(t)

′
+ κ(1)

)
e−Λ2(t)−κ(1)t

≤ κ(1)e−Λ2(t)−κ(1)t

≤ κ(3),

which is integrable with respect to the density g.

• If b = 1, we obtain

|log (h(t, b; θ))| =
∣∣∣log (fZ,n(t)− F T,n(t)e

tξ
(
fC,m(t|ϕm)− ξFC,m(t|ϕm)

))∣∣∣ .
Case 1: If fZ,n(t)− F T,n(t)e

tξ
(
fC,m(t|ϕm)− ξFC,m(t|ϕm)

)
≤ 1, then

|log (h(t, b; θ))| = − log
(
fZ,n(t)− F T,n(t)e

tξ
(
fC,m(t|ϕm)− ξFC,m(t|ϕm)

))
≤ − log

(
fZ,n(t)− F T,n(t)e

tξfC,m(t|ϕm)
)
.
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In other hand, we have

fZ(t)− F T (t)e
tξfC(t) =

(
Λ1(t)

′
+ Λ2(t)

′
+ κ(2)

)
e−Λ1(t)−Λ2(t)−κ(2)t

− (Λ2(t)
′
+ κ(1))e−Λ1(t)−Λ2(t)−κ(2)t

=
(
Λ1(t)

′
+ κ(2)− κ(1)

)
e−Λ1(t)−Λ2(t)−κ(2)t

≥ (κ(2)− κ(1))e−2ρ−κ(3)

≥ ke−2ρ−κ(3). (8.7)

Then
fZ,n(t)− F T,n(t)e

tξfC,m(t|ϕm) ≥ ke−2ρ−κ(3),

and
|log(h(t, b; θ))| ≤ − log

(
ke−2ρ−κ(3)

)
,

which is integrable with respect to the density g.

Case 2: If fZ,n(t)− F T,n(t)e
tξ
(
fC,m(t|ϕm)− ξFC,m(t|ϕm)

)
≥ 1, then

|log (h(t, b; θ))| = log
(
fZ,n(t)− F T,n(t)e

tξ
(
fC,m(t|ϕm)− ξFC,m(t|ϕm)

))
≤ log (fZ,n(t)) .

In other hand, we have

fZ(t) =
(
Λ1(t)

′
+ Λ2(t)

′
+ κ(2)

)
e−Λ1(t)−Λ2(t)−κ(2)t

≤ κ(2) ≤ κ(3).

Then,

|log (h(t, b; θ))| ≤ log(κ(3)),

which is integrable with respect to the density g.

Then, condition (3)a) is satisfied. Based on Assumption (H3), I has unique minimum at θ⋆, and
then condition (3)b) is verified.

In order to prove condition (4), we note first that,

log(h(t, b; θ)) = b log
[
fZ,n(t)− F T,n(t)e

tξ
(
fC,m(t|ϕm)− ξFC,m(t|ϕm)

)]
×(1− b) log

[
F T,n(t)e

tξ
(
fC,m(t|ϕm)− ξFC,m(t|ϕm)

)]
.

h1(t, b; θ) =
∂ log(h(t, b; θ))

∂ξ

= −
bF T,n(t)

[
ξetξfC,m(t|ϕm)− FC,m(t|ϕm)(etξ + ξ2etξ)

]
fZ,n(t)− F T,n(t)etξ

(
fC,m(t|ϕm)− ξFC,m(t|ϕm)

)
+

(1− b)
[
ξfC,m(t|ϕm)− FC,m(t|ϕm)(1 + ξ2)

](
fC,m(t|ϕm)− ξFC,m(t|ϕm)

) .

25



For k = 0, . . . ,m

h2,k(t, b; θ) =
∂ log(h(t, b; θ))

∂ϕk

= −
bF T,n(t)e

tξ (Rm(t)− ξ)

fZ,n(t)− F T,n(t)etξ
(
fC,m(t|ϕm)− ξFC,m(t|ϕm)

)
+

(1− b) (Rm(t)− ξ)(
fC,m(t|ϕm)− ξFC,m(t|ϕm)

) ,
where Rm(t) =

m∑
k=0

b′k,m(t). Then, the functions h1 and h2,k for k = 0, . . .m are measurable func-

tions of (t, b) for each θ ∈ Rm+2 and continuously differentiable functions of θ for each
(t, b) ∈ R+ × [0, 1]. Then condition (4) is satisfied.

In order to show condition (5), we note that

• If fZ,n(t) − F T,n(t)e
tξ
(
fC,m(t|ϕm)− ξFC,m(t|ϕm)

)
≥ 1 and fC,m(t|ϕm) − ξFC,m(t|ϕm) ≥ 1,

then

1

fZ,n(t)− F T,n(t)etξ
(
fC,m(t|ϕm)− ξFC,m(t|ϕm)

) ≤ 1 and
1

fC,m(t|ϕm)− ξFC,m(t|ϕm)
≤ 1.

• If fZ,n(t) − F T,n(t)e
tξ
(
fC,m(t|ϕm)− ξFC,m(t|ϕm)

)
≤ 1 and fC,m(t|ϕm) − ξFC,m(t|ϕm) ≤ 1,

then based on Equations (8.5), (8.6) and (8.7), we have

1

fZ,n(t)− F T,n(t)etξ
(
fC,m(t|ϕm)− ξFC,m(t|ϕm)

) ≤ 1

ke−2ρ−κ(3)
.

Also, we have
1

fC,m(t|ϕm)− ξFC,m(t|ϕm)
≤ 1

keρ−κ(3)
.

In fact

fC(t)− ξFC(t) = e−Λ2(t)−tκ(1)(Λ′
2(t) + κ(1)− ξ)

≥ ke−ρ−κ(3).

Then, in general, there exist a constants µ, ν > 0 such that,

1

fZ,n(t)− F T,n(t)etξ
(
fC,m(t|ϕm)− ξFC,m(t|ϕm)

) ≤ µ and
1

fC,m(t|ϕm)− ξFC,m(t|ϕm)
≤ ν.
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(i)

U1(t, b; θ) =

∣∣∣∣∂2 log(h(t, b; θ))∂2ξ

∣∣∣∣
=

∣∣∣∣∂h1(t, b; θ)∂ξ

∣∣∣∣
≤ µ2

∣∣∣etξfC,m(t|ϕm)(1 + ξ2)− etξFC,m(t|ϕm)(3ξ + ξ3)
∣∣∣

×
∣∣∣fZ,n(t)− etξF T,n(t)fC,m(t|ϕm) + ξetξF T,n(t)FC,m(t|ϕm)

∣∣∣
+ µ2

∣∣∣ξetξfC,m(t|ϕm)− etξFC,m(t|ϕm)(1 + ξ2)
∣∣∣

×
∣∣∣F T,n(t)e

tξ(ξfC,m(t|ϕm)− FC,m(t|ϕm)(1 + ξ2))
∣∣∣

+ ν2
∣∣[fC,m(t|ϕm)− 2ξFC,m(t|ϕm)

] [
fC,m(t|ϕm)− ξFC,m(t|ϕm)

]∣∣
+ ν2

∣∣FC,m(t|ϕm)(ξfC,m(t|ϕm)− FC,m(t|ϕm)(1 + ξ2))
∣∣

≤ µ2
[
etξRm(t)(1 + ξ2) + etξ(3ξ + ξ3)

]
×
[
Kmax

h
+ etξRm(t) + ξetξ

]
+ ν2

([
ξetξRm(t) + etξ(1 + ξ2)

]2
+ [Rm(t) + 2ξ]× [Rm(t) + ξ] + [ξRm(t) + 1 + ξ]

)
:= S1(t).

Since the function S1 is continuous on the compact interval [0, 1], then it has a maximum ψ1.
Then

U1(t, b; θ) ≤ ψ1.

Then U1 is dominated by an integrable function with respect to the density g for all (t, b) ∈
[0, 1]2 and for all θ ∈ Rm+2.

(ii) For k = 0, . . .m,

U2,k(t, b; θ) =

∣∣∣∣∂2 log(h(t, b; θ))∂2ϕk

∣∣∣∣
=

∣∣∣∣∂h2,k(t, b; θ)∂ϕk

∣∣∣∣
≤

∣∣∣∣∣ b
[
F T,n(t)e

tξ(Rm(t)− ξ)
]2[

fZ,n(t)− F T,n(t)etξ(fC,m(t|ϕm)− ξFC,m(t|ϕm))
]2
∣∣∣∣∣

+

∣∣∣∣∣ (1− b) [Rm(t)− ξ]2

(fC,m(t|ϕm)− ξFC,m(t|ϕm))2

∣∣∣∣∣
≤ µ2

∣∣∣∣b [F T,n(t)e
tξ(Rm(t)− ξ)

]2∣∣∣∣+ ν2
∣∣∣(1− b) [Rm(t)− ξ]2

∣∣∣
≤ (µ2etξ + ν2)(Rm(t)− ξ)2 := S2(t).

Since the function S2 is continuous on the compact interval [0, 1], then it has a maximum ψ2.
Then

U2,k(t, b; θ) ≤ ψ2.

Then U2,k is dominated by an integrable function with respect to the density g for all (t, b) ∈
[0, 1]2 and for all θ ∈ Rm+2.
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(iii) For k = 0, . . .m,

U3,k(t, b; θ) =

∣∣∣∣∂2 log(h(t, b; θ))∂ξ∂ϕk

∣∣∣∣
=

∣∣∣∣∂h2,k(t, b; θ)∂ξ

∣∣∣∣
≤ µ2

∣∣∣[etξ(ξRm(t)− 1− ξ2)
] [
fZ,n(t)− F T,n(t)e

tξ(fC,m(t|ϕm)− ξFC,m(t|ϕm))
]∣∣∣

+ µ2
∣∣∣[−F T,n(t)fC,m(t|ϕm)ξetξ + F T,n(t)FC,m(t|ϕm)(etξ + ξ2etξ)

] [
etξRm(t)− ξetξ

]∣∣∣
+ ν2

∣∣fC,m(t|ϕm)− ξFC,m(t|ϕm)
∣∣+ ν2

∣∣FC,m(t|ϕm)(Rm(t)− ξ)
∣∣

≤ µ2
[
etξ(ξRm(t) + 1 + ξ2)

]
×
[
Kmax

h
+ etξRm(t) + ξetξ

]
+ µ2

[
etξ(ξRm(t) + 1 + ξ2)

] [
etξRm(t) + ξetξ

]
+ ν2 [Rm(t) + ξ]2 := S3(t).

Since the function S3 is continuous on the compact interval [0, 1], then it has a maximum ψ3.
Then

U3,k(t, b; θ) ≤ ψ3.

Then U3,k is dominated by an integrable function with respect to the density g for all (t, b) ∈
[0, 1]2 and for all θ ∈ Rm+2.

(iv) For k, j = 0, . . .m such that k ̸= j,

U4,j,k(t, b; θ) =

∣∣∣∣∂2 log(h(t, b; θ))∂ϕj∂ϕk

∣∣∣∣
=

∣∣∣∣∂h2,k(t, b; θ)∂ϕj

∣∣∣∣ .
Similarly to U2,k, U4,k is dominated by an integrable function with respect to the density g for
all (t, b) ∈ [0, 1]2 and for all θ ∈ Rm+2.

(v) For k, . . .m,

U5,k(t, b; θ) =

∣∣∣∣∂ log(h(t, b; θ))∂ξ

∂ log(h(t, b; θ))

∂ϕk

∣∣∣∣
=

∣∣∣∣∂ log(h(t, b; θ))∂ξ

∣∣∣∣ ∣∣∣∣∂ log(h(t, b; θ))∂ϕk

∣∣∣∣
= |h1(t, b; θ)| |h2;k(t, b; θ)| .

Or

|h1(t, b; θ)| ≤

∣∣∣∣∣−bF T,n(t)
[
ξetξfC,m(t|ϕm)− FC,m(t|ϕm)(etξ + ξ2etξ)

]
fZ,n(t)− F T,n(t)etξ

(
fC,m(t|ϕm)− ξFC,m(t|ϕm)

) ∣∣∣∣∣
+

∣∣∣∣∣(1− b)
[
ξfC,m(t|ϕm)− FC,m(t|ϕm)(1 + ξ2)

](
fC,m(t|ϕm)− ξFC,m(t|ϕm)

) ∣∣∣∣∣ .
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It follows that

|h1(t, b; θ)| ≤ µ
∣∣∣ξetξfC,m(t|ϕm)− FC,m(t|ϕm)(etξ + ξ2etξ)

∣∣∣
+ ν

∣∣ξfC,m(t|ϕm)− FC,m(t|ϕm)(1 + ξ2)
∣∣

≤ µ
[
ξetξfC,m(t|ϕm) + (etξ + ξ2etξ)

]
+ ν

[
ξfC,m(t,ϕm) + (1 + ξ2)

]
= µ

[
ξetξRm(t) + (etξ + ξ2etξ)

]
+ ν

[
ξRm(t) + (1 + ξ2)

]
:= S5,1(t).

Since the function S5,1 is continuous on the compact interval [0, 1], then it has a maximum
ψ5,1. Then

|h1(t, b; θ)| ≤ ψ5,1 (8.8)

On the other hand, we have

|h2,k(t, b; θ)| ≤

∣∣∣∣∣− bF T,n(t)e
tξ (Rm(t)− ξ)

fZ,n(t)− F T,n(t)etξ
(
fC,m(t|ϕm)− ξFC,m(t|ϕm)

)∣∣∣∣∣
+

∣∣∣∣∣ (1− b) (Rm(t)− ξ)(
fC,m(t|ϕm)− ξFC,m(t|ϕm)

)∣∣∣∣∣
≤ µetξ |Rm(t)− ξ|+ ν |Rm(t)− ξ| := S5,2(t).

Since the function S5,2 is continuous on the compact interval [0, 1], then it has a maximum
ψ5,2. Then

|h2,k(t, b; θ)| ≤ ψ5,2. (8.9)

It follows frome Equations (8.8) and (8.9) that

U5,k(t, b; θ) ≤ ψ5,1ψ5,2.

Then U5,k is dominated by an integrable function with respect to the density g for all (t, b) ∈
[0, 1]2 and for all θ ∈ Rm+2.

(vi) For k = 0, . . .m,

U6,k(t, b; θ) =

∣∣∣∣∣
[
∂ log(h(t, b; θ))

∂ϕk

]2∣∣∣∣∣
=

∣∣∣∣∂ log(h(t, b; θ))∂ϕk

∣∣∣∣ ∣∣∣∣∂ log(h(t, b; θ))∂ϕk

∣∣∣∣
= |h2,k(t, b; θ)|2 .

It follows from Equation (8.9) that U6,k is dominated by an integrable function with respect
to the density g for all (t, b) ∈ [0, 1]2 and for all θ ∈ Rm+2.

(vii) For k, j = 0, . . .m such that k ̸= j,

U7,k,j(t, b; θ) =

∣∣∣∣∂ log(h(t, b; θ))∂ϕj

∂ log(h(t, b; θ))

∂ϕk

∣∣∣∣
=

∣∣∣∣∂ log(h(t, b; θ))∂ϕj

∣∣∣∣ ∣∣∣∣∂ log(h(t, b; θ))∂ϕk

∣∣∣∣
= |h2,j(t, b; θ)| |h2,k(t, b; θ)|

≤
[
(etξ + 1)Rm(t) + 2ξ

]2
.

29



Similarly to U6,k, U7,j,k is dominated by an integrable function with respect to the density g
for all (t, b) ∈ [0, 1]2 and for all θ ∈ Rm+2.

(viii)

U8(t, b; θ) =

∣∣∣∣∣
[
∂ log(h(t, b; θ))

∂ξ

]2∣∣∣∣∣
=

∣∣∣∣∂ log(h(t, b; θ))∂ξ

∣∣∣∣ ∣∣∣∣∂ log(h(t, b; θ))∂ξ

∣∣∣∣
= |h1(t, b; θ)|2 .

It follows from Equation (8.8) that U8 is dominated by an integrable function with respect to
the density g for all (t, b) ∈ [0, 1]2 and for all θ ∈ Rm+2.

Then condition (5) is satisfied.

Base on assumption (H4), condition (6) of [60] is satisfied. Then the conditions (1)-(6) of The-
orem 3.2 of [60] are verified, and the proof is complete.

Proof of Proposition 7:

Recall that
θ = (θ1, θ2, . . . , θm+1, θm+2) = (ϕ0, . . . , ϕm, ξ),

θn = (θ1,n, θ2,n, . . . , θm+1,n, θm+2,n) = (ϕ0,n, . . . , ϕm,n, ξn),

and

P̃n,m(t, s) =

FC,n,m(s)F T,n(t)
1−αn(t) if F T (t)

α(t) < FC(s)
β(s)

F T,n(t)FC,n,m(s)1−βn,m(s) if F T (t)
α(t) > FC(s)

β(s).

Based on Theorem 2.2 of [60], θn
a.s−→

n→+∞
θ, then

(ϕ0,n, . . . , ϕm,n)
a.s−→

n→+∞
(ϕ0, . . . , ϕm) (8.10)

and

ξn
a.s−→

n→+∞
ξ. (8.11)

Based on Equation (8.10), we have

FC,n,m(s)
a.s−→

n→+∞
FC,m(s) and βn,m(s)

a.s−→
n→+∞

βm(s). (8.12)

On the other hand, we have∣∣FC,n,m(s)− F (s)
∣∣ ≤ ∣∣FC,n,m(s)− Fm(s)

∣∣+ ∣∣Fm(s)− F (s)
∣∣ ,

and

|βn,m(s)− β(s)| ≤ |βn,m(s)− βm(s)|+ |βm(s)− β(s)| .
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Next, based on Theorem 1.1 in [8] and Theorem 1 in [29] in Section VII.2, we note that for m large
enough, lim

m→∞
FC,m(s) = FC(s) and lim

m→∞
βm(s) = β(s). Then based on Equation (8.12),

FC,n,m(s)
a.s−→

n,m→+∞
FC(s) and βn,m(s)

a.s−→
n,m→+∞

β(s). (8.13)

According to Lemma 2 of [12], we have

F T,n(t)
a.s−→

n→+∞
F T (t) and αn(t)

a.s−→
n→+∞

α(t). (8.14)

Then based on Equations (8.13) and (8.14), we obtain lim
n,m→∞

P̃n,m(t, s) = P̃ (t, s).

On the other hand, based on Glivenko-Cantelli Theorem, we have

Hn(t)
unif−→

n→+∞
H(t). (8.15)

Then based on Equations (8.11) and (8.15), we have lim
n→∞

τn = τ.
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