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Abstract—In this paper, we investigate the impact of speech
temporal dynamics in application to automatic speaker verifica-
tion and speaker voice anonymization tasks. We propose several
metrics to perform automatic speaker verification based only
on phoneme durations. Experimental results demonstrate that
phoneme durations leak some speaker information and can reveal
speaker identity from both original and anonymized speech.
Thus, this work emphasizes the importance of taking into account
the speaker’s speech rate and, more importantly, the speaker’s
phonetic duration characteristics, as well as the need to modify
them in order to develop anonymization systems with strong
privacy protection capacity.

Index Terms—Speech temporal dynamics, speech rate, anony-
mization, automatic speaker verification, phoneme duration char-
acteristics.

I. INTRODUCTION

Speech data carries personal or sensitive information via speaker
traits (e.g., identity, gender, age, ethnicity, accent), and sometimes
via linguistic content (e.g., name, address) and paralinguistic content
(e.g., emotion). Most voice-based human-computer interaction tech-
nologies today rely on cloud-based machine learning systems trained
on speech data collected from the users. This poses serious privacy
risks and requires implementation of privacy-enhancing technologies
to protect users’ sensitive and private information.

One common approach to privacy protection of speech data is
voice anonymization, which aims to suppress personally identifiable
speaker traits, leaving linguistic and paralinguistic content intact
[1]. Voice anonymization methods can be broadly classified into
two categories. Signal processing based methods rely on simple
signal transformations such as spectral warping using the McAdams
coefficient [2], pitch shifting based on time-scale modification [3],
and others [4], [5]. By contrast, neural voice conversion based
methods [6]–[9] rely on disentangling attributes such as content,
speaker, pitch, emotion, etc., anonymizing the selected attributes, and
generating the anonymized speech signal using a speech synthesis
model. Most state-of-the-art voice conversion based anonymization
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methods use large-scale pre-trained models for extracting specific
attributes and provide better content and privacy preservation than
signal processing based methods. The diversity of approaches is
illustrated by the VoicePrivacy 2024 Challenge [10], which provided
six baseline anonymization systems, namely anonymization using x-
vectors and a neural source-filter model [6], [11], signal processing
based anonymization using the McAdams coefficient [2], anonymiza-
tion using phonetic transcription and generation of artificial pseudo-
speaker embeddings by a generative adversarial network (GAN) [12]
anonymization using neural audio codec (NAC) language modeling
[13], and anonymization using acoustic vector quantization bottleneck
(VQ-BN) features from an automatic speech recognition (ASR)
acoustic model.

While specific studies have been dedicated to speaker information
carried by pitch [5], [6], [8], the impact of speech temporal dynamics
on speaker verification and re-identification has been overlooked. As
a result, all the baseline systems of the VoicePrivacy 2024 Challenge
modify various characteristics of the input (original) speech signal
linked with speaker identity but keep speech rate and phoneme dura-
tions unchanged. Most other state-of-the-art anonymization systems
also do not modify phoneme durations [7], [9], [14].

Among the rare exceptions are cascaded ASR and text-to-speech
(TTS) systems where word-level [15] or phoneme-level transcripts
obtained by an ASR system are provided to a TTS system for
synthesis of the given linguistic content with a new target voice.
It can be assumed that these systems do not retain any information
about speaker identity, however they fail to preserve any paralin-
guistic attributes, which are required in real-life voice anonymization
scenarios. The most relevant work for our study is [16] where speed
perturbation with a constant factor was used as an anonymization
method either alone or in combination with anonymization based
on a cycle consistent generative adversarial network (CycleGAN).
The authors showed that speech rate perturbation with a constant
factor degrades the performance of the automatic speaker verification
systems associated with ignorant and lazy-informed attackers [17],
but they did not consider the stronger semi-informed attack model
that is today’s standard [18].

Speed perturbation alone cannot be considered as a strong privacy
protection method since a lot of speaker information remains in the
speech signal after it. Yet we show that it is an essential ingredient in



suppressing speaker information and must be taken into account in
state-of-the-art anonymization systems. Indeed, while state-of-the art
automatic speaker verification (ASV) systems do not explicitly rely
on speaker temporal dynamics [19], a few past studies have shown
the applicability of durational characteristics for this task [20]–[22].
Works [21], [22] propose to use speech rhythm-based emebeddings
for speech synthesis. We also show that more information about the
speaker is contained in the temporal dynamics and the duration of
phonemes than in the speech rate.

Our contributions build upon [20]–[22] and include: phoneme
duration features and distance metrics for ASV based on phoneme
durations (Section II); and experimental evaluation and analysis of the
resulting ASV performance on original data and data anonymized
using two state-of-the-art anonymization systems with and without
temporal dynamics modification (Section III). To our best knowledge,
this is the first work that performs such analysis and evaluation of the
impact of speaker temporal dynamics on the anonymization task and
demonstrates its importance for the design of voice anonymization
systems.

II. SPEAKER VERIFICATION USING PHONEME DURATION

DYNAMICS

A. Metrics

We define two metrics to quantify the distance between speakers’
temporal dynamics in the context of speaker verification. Let us
denote by N the number of phoneme classes ph1, . . . , phN , and for
two speakers si and sj in the dataset by u1

i . . . u
Mi
i the utterances

of speaker si and u1
j . . . u

Mj

j the utterances of speaker sj .
The first metric is based on the cosine distance between two vectors

of mean phoneme durations:

ρ1(si, sj) = 1− cos(µi,µj), (1)

where µi, µj are N -dimensional vectors composed of the aver-
age lengths of phonemes ph1, . . . , phN computed over utterances
u1
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M
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i ] ) and u1
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(N)
j ]), respectively. In case phoneme phk is missing in

the considered utterances or has less then a given number of instances
(considered as a threshold parameter), its mean values in µi or µj

are replaced by the global mean duration of all phonemes in the
considered utterances for a given speaker. Before computing metric
ρ1, mean normalization is applied to all µi and µj .

We also propose a second metric that is defined as follows:
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N

N∑
k=1

min

{
µ
(k)
i

µ
(k)
j

,
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j
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}
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Based on the proposed metrics we can perform ASV and compute
an equal error rate (EER). Such ASV systems can also be considered
as attackers for the anonymization task.

B. Phoneme sets

We experimented with two sets of phonetic classes: (1) N = 39

phonemes based on the ARPAbet symbol set corresponding to the
Carnegie Mellon University pronunciation dictionary1, not counting
variations due to lexical stress; and (2) N = 336 phoneme classes
that take into account position in the word and stress.

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict

III. EXPERIMENTAL RESULTS

A. Data

Experiments were conducted on the LibriSpeech2 [23] corpus
of read English audiobooks, which was used in all VoicePrivacy
Challenge editions. It contains approximately 1,000 hours of speech
from 2,484 speakers sampled at 16 kHz. We conducted the first series
of experiments and analyses on the full LibriSpeech-train-960 dataset
that contains data from 2,338 speakers. In the second series of exper-
iments, we used the LibriSpeech-train-clean-360 subset anonymized
by the two different speaker voice anonymization systems denoted
SAS-1 and SAS-2 described in Section III-B. To perform phoneme
segmentation, four triphone Gaussian mixture model - hidden Markov
model (GMM-HMM) acoustic models were trained using the Kaldi
speech recognition toolkit [24] on the following training data:
(1) original LibriSpeech-train-960; (2) original LibriSpeech-train-
clean-360; (3) LibriSpeech-train-clean-360 anonymized by SAS-1;
and (4) LibriSpeech-train-clean-360 anonymized by SAS-2. Statistics
for the number of trials used in ASV evaluation are given in Table I.

TABLE I
STATISTICS FOR TRIALS.

LibriSpeech-train-960 LibriSpeech-train-clean-360
Average # utter.

per trial
Same

speaker
Different
speaker

Same
speaker

Different
speaker

1 17,527,076

233,800

5,944,163

92,100

3 1,816,610 716,384
5 644,790 253,935

10 154,308 60,786
20 35,070 13,815
40 7,014 2,763
60 2,338 921

B. Anonymization systems

To investigate the impact of speaker voice anonymization, we
consider two different state-of-the-art speaker voice anonymization
systems (SASs):

• SAS-1 keeps the original temporal phoneme dynamics, but
changes the other speaker characteristics (speaker identity and
some prosodical characteristics such as pitch and energy).

• SAS-2 is a cascaded ASR-TTS system that changes phoneme
durations.

Below we briefly describe these systems.
1) SAS-1: SAS-1, proposed in [12] and used as baseline B3

in the VoicePrivacy 2024 Challenge [10], is a system based on
anonymization using phonetic transcription and a GAN that generates
artificial pseudo-speaker embeddings. Anonymization is performed
in three steps: (1) extraction of the speaker embedding, phonetic
transcription, pitch, energy, and phone duration from the original
audio waveform; (2) speaker embedding anonymization, pitch and
energy modification; and (3) synthesis of an anonymized speech
waveform from the anonymized speaker embedding, modified pitch
and energy features, original phonetic transcripts and original phone
durations.

2LibriSpeech: http://www.openslr.org/12



2) SAS-2: SAS-2, proposed in [25], is one of the best systems
developed by the VoicePrivacy 2024 Challenge participants in terms
of linguistic content and privacy preservation. It is a cascaded ASR-
TTS system, where first the text transcripts are obtained from the
source audio and then a TTS system is used to generate correspond-
ing anonymized speech from the obtained transcripts with a new
anonymized speaker voice. The ASR model is the medium English
Whisper model [26]. The TTS model is VITS (variational inference
with adversarial learning for end-to-end text-to-speech, [27]), trained
on the LibriTTS dataset [28].

3) Automatic speaker verification and speech recognition results
for SAS systems: The ASV results in terms of equal error rate (EER)
and the automatic speech recognition (ASR) results in terms of word
error rate (WER) are shown in Table II on the LibriSpeech test set
for original and anonymized data. The trial lists for ASV evaluation
in the LibriSpeech test data are taken from the VoicePrivacy 2024
Challenge [10] setup. ASV evaluation for original and anonymized
data was performed with the same ASV model architecture and
training setup as proposed in the VoicePrivacy 2024 Challenge. For
anonymized data, the strongest semi-informed attack models, trained
on the utterance-level anonymized data were used in evaluation.

TABLE II
EER (%) AND WER (%) ON ORIGINAL AND ANONYMIZED DATA FROM

THE LibriSpeech test DATASET.

System EER,% female EER,% male WER,%
Original 8.8 0.4 1.85
SAS-1 27.9 26.7 4.35
SAS-2 47.5 48.8 3.76

C. Results

To analyse speech temporal dynamics we performed several series
of experiments dedicated to (1) impact of the speaker’s phoneme
durations on the ASV performance and metric comparison for ASV;
(2) impact of the phoneme set on the ASV performance with the
proposed models; (3) impact of the speech rate on the ASV perfor-
mance of the proposed attack models and the effect of normalizing
all speakers to the same speech rate; and (4) effect of different
anonymization strategies on the ASV performance of the proposed
systems.

1) Speaker verification using phoneme durations and metric
choice: The ASV results obtained using metric ρ1 and 38 phonemes
are given in Table III in terms of EER. Each line corresponds
to the EERs obtained when the average number of utterances per
speaker used to compute metric ρ1 equals to the value in the first
column (”Average # utter. per trial”). Different columns (1,3,. . . , 20 –
minimum number of phoneme instances for averaging) correspond to
different values of the threshold parameter as defined in Section II-A.
Increasing the number of utterances used to compute the speaker
similarity metric allows us to significantly reduce the EER down to
9.2% with 60 utterances per speaker.

The results reported in Table IV for metric ρ2 on the same data
show similar trends. Also we can see that this metric is more efficient
than ρ1 when more utterances are used. Thus we use ρ2 in the
following experiments.

2) Selecting a set of acoustic units: Table V reports results with
the increased number of phoneme classes: N = 336. Comparing

TABLE III
EER (%) ON ORIGINAL DATA FROM THE LibriSpeech-train-960 DATASET

OBTAINED USING METRIC ρ1 AND N = 38 PHONEMES.

Average # utter.
per trial

Minimum # phoneme instances for aver.
1 3 5 10 20

1 39.9 38.5 38.7 39.8 40.3
3 34.9 32.4 32.0 32.2 34.9
5 31.9 28.4 27.8 27.9 29.3

10 28.2 23.1 22.3 22.3 23.4
20 22.4 23.4 18.1 16.7 17.1
40 16.0 17.7 21.0 12.8 12.3
60 12.8 13.2 16.8 15.4 9.2

TABLE IV
EER (%) ON ORIGINAL DATA FROM THE LibriSpeech-train-960 DATASET

OBTAINED USING METRIC ρ2 AND N = 38 PHONEMES.

Average # utter.
per trial

Minimum # phoneme instances for aver.
1 3 5 10 20

1 40.3 38.9 39.4 39.9 39.9
3 33.0 29.6 29.8 31.8 33.4
5 26.8 23.8 22.6 23.8 27.3

10 17.6 16.5 15.1 13.6 14.9
20 10.2 9.1 9.3 7.7 6.9
40 5.1 4.7 4.3 4.2 3.2
60 3.3 3.1 2.7 2.7 2.5

them with Table IV, we can see that increasing the number of
phoneme classes does not provide improvement in EER.

TABLE V
EER (%) ON ORIGINAL DATA FROM THE LibriSpeech-train-960 DATASET

OBTAINED USING METRIC ρ2 AND N = 336 PHONEME CLASSES.

Average # utter.
per trial

Minimum # phoneme instances for aver.
1 3 5 10 20

1 39.3 39.7 39.9 39.8 39.9
3 31.8 32.5 32.9 33.1 33.4
5 26.3 27.0 27.6 28.3 28.8

10 18.7 19.5 20.0 21.1 22.3
20 12.0 12.5 13.1 14.0 15.5
40 6.5 6.6 6.5 7.7 8.7
60 4.4 3.6 4.0 4.5 5.6

3) Speech rate as a discriminative feature and normalization of
speech temporal dynamics to speech rate: Table VI shows ASV
performance based on speaker’s speech rate. The speech rate was
calculated as

∑K
k=1 l̄k∑K
k=1

lk
, where K is the number of phones in the

utterance, lk is the actual duration of phone k in the utterance,
l̄k is the expected mean duration of the corresponding phoneme k

estimated from the training corpus. We can see that speech rate allows
us to successfully perform ASV although, when the average number
of utterances is larger than 3, the EER is higher in comparison with
the cases when we use phoneme-based temporal characteristics.

Tables VII and VIII show the ASV results after performing global
speech rate normalization. In these experiments, we first computed
phoneme duration statistics over the full LibriSpeech-train-960 corpus
and then the speech rate of each utterance was adjusted with a
constant factor to match the average speech rate. As expected,
such normalization degrades the performance of the ASV systems
compared to the results without normalization in Tables IV and V
in most cases. However, interestingly, normalization achieves lower



TABLE VI
EER (%) ON ORIGINAL DATA FROM THE LibriSpeech-train-960 DATASET

OBTAINED USING METRIC ρ2 AND SPEECH RATE.

Average # utter.
per trial

1 38.6
3 31.9
5 27.4

10 22.1
20 17.8
40 13.9
60 11.8

EER results (2%) when using a large number of utterances (60) and
N = 336.

TABLE VII
EER (%) ON ORIGINAL DATA FROM THE LibriSpeech-train-960 DATASET

OBTAINED USING METRIC ρ2 WITH GLOBAL SPEECH RATE
NORMALIZATION AND N = 38 PHONEMES.

Average # utter.
per trial

Minimum # phoneme instances for aver.
1 3 5 10 20

1 45.1 45.5 46.7 48.3 49.0
3 38.8 36.5 37.6 41.0 44.0
5 33.3 30.6 29.8 32.0 37.2

10 24.0 22.8 21.0 19.9 21.8
20 14.6 13.7 13.6 11.5 10.9
40 7.3 7.2 6.7 6.5 4.8
60 4.7 4.4 4.7 4.2 3.8

TABLE VIII
EER (%) ON ORIGINAL DATA FROM THE LibriSpeech-train-960 DATASET

OBTAINED USING METRIC ρ2 WITH GLOBAL SPEECH RATE
NORMALIZATION AND N = 336 PHONEME CLASSES.

Average # utter.
per trial

Minimum # phoneme instances for aver.
1 3 5 10 20

1 46.7 47.8 48.0 48.1 48.2
3 40.2 42.6 44.0 45.1 45.7
5 33.7 35.7 38.0 41.0 42.6

10 23.9 22.9 24.1 28.7 34.2
20 15.4 12.4 12.3 13.3 18.1
40 8.6 5.2 4.9 4.8 5.4
60 5.6 3.1 2.4 2.5 2.0

TABLE IX
EER (%) ON ORIGINAL DATA FROM THE LibriSpeech-train-clean-360

DATASET OBTAINED USING METRIC ρ2 AND N = 38 PHONEMES.

Average # utter.
per trial

Minimum # phoneme instances for aver.
1 3 5 10 20

1 40.4 39.2 39.6 40.1 40.1
3 34.7 31.7 31.7 33.4 34.3
5 28.1 25.6 24.7 26.0 28.9

10 18.5 17.6 16.1 15.5 16.9
20 10.4 9.6 9.7 8.2 8.0
40 4.9 4.6 4.1 3.9 3.7
60 2.7 2.9 3.0 2.5 2.5

4) Experiments on anonymized data: Experiments on anonymized
LibriSpeech-train-clean-360 data for the two anonymization systems
SAS-1 and SAS-2 are reported in Tables X and XI, respectively.
For comparison purposes, we also added results on the original

data for the same dataset in Table IX. SAS-1 does not change
phoneme durations and we can see despite some degradation of
results (in Table X vs. IX) that the preserved speech dynamics still
allow us to retrieve speaker information (the lowest EER is 7%).
SAS-2 changes phoneme durations and as expected provides much
higher privacy protection (Table XI). However, surprisingly, for a
large number of utterances (60), the EER is still low (26.3%). One
possible explanation might be that, in read speech, the book content
may impact the speaking style and thus temporal dynamic statistics.

TABLE X
EER (%) ON DATA ANONYMIZED BY SAS-1 FROM THE

LibriSpeech-train-clean-360 DATASET OBTAINED USING METRIC ρ2 AND
N = 38 PHONEMES.

Average # utter.
per trial

Minimum # phoneme instances for aver.
1 3 5 10 20

1 42.3 40.2 40.2 40.4 40.3
3 37.9 35.1 34.2 34.3 34.7
5 33.2 30.5 29.3 28.9 29.8

10 25.4 24.1 23.1 21.3 21.3
20 17.7 16.7 16.6 15.4 13.9
40 10.4 10.2 9.8 9.6 8.5
60 7.4 7.3 7.2 7.0 7.1

TABLE XI
EER (%) ON DATA ANONYMIZED BY SAS-2 FROM THE

LibriSpeech-train-clean-360 DATASET OBTAINED USING METRIC ρ2 AND
N = 38 PHONEMES.

Average # utter.
per trial

Minimum # phoneme instances for aver.
1 3 5 10 20

1 49.0 49.4 49.4 49.3 49.7
3 47.7 47.4 47.5 48.4 48.7
5 46.3 45.6 45.6 46.0 47.8

10 43.4 43.1 42.1 41.8 41.9
20 39.1 38.6 38.7 36.2 36.8
40 32.1 32.0 31.4 31.5 28.0
60 27.6 27.0 26.3 27.5 26.3

IV. CONCLUSIONS

In this study, we demonstrated the importance of speech tem-
poral dynamics analysis which has been under-explored in voice
anonymization research to date. Using the proposed metrics and
sufficient amount of data per speaker, we achieve an EER as
low as 7% on the anonymized data obtained by a speaker voice
anonymization system that does not modify phoneme durations. In
future work, we plan to verify the observed phenomena on other
types of speech data, in particular on spontaneous speech, and
to improve state-of-the-art anonymization techniques by integrating
temporal dynamics normalization. The proposed simple approach to
analyze temporal dynamics shows the potential for more advanced
analysis by means of machine learning (ML) models that will allow
integrating multiple discovered discriminative factors into ML models
and performing more fine-grained and efficient analysis, e.g., using
attention mechanisms.
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Evans, Junichi Yamagishi, et al., “The VoicePrivacy 2020 Challenge:
Results and findings,” Computer Speech and Language, vol. 74, pp.
101362, 2022.

[18] Natalia Tomashenko, Xiaoxiao Miao, Emmanuel Vincent, and Junichi
Yamagishi, “The first VoicePrivacy Attacker Challenge evaluation plan,”
arXiv preprint arXiv:2410.07428, 2024.

[19] Brecht Desplanques, Jenthe Thienpondt, and Kris Demuynck, “ECAPA-
TDNN: Emphasized channel attention, propagation and aggregation in
TDNN based speaker verification,” in Interspeech, 2020, pp. 3830–3834.

[20] Elena Bulgakova, Aleksei Sholohov, Natalia Tomashenko, and Yuri
Matveev, “Speaker verification using spectral and durational segmental
characteristics,” in 17th International Conference on Speech and
Computer, 2015, pp. 397–404.

[21] Kenichi Fujita, Atsushi Ando, and Yusuke Ijima, “Phoneme duration
modeling using speech rhythm-based speaker embeddings for multi-
speaker speech synthesis,” in Interspeech, 2021, pp. 3141–3145.

[22] Kenichi Fujita, Atsushi Ando, and Yusuke Ijima, “Speech rhythm-based
speaker embeddings extraction from phonemes and phoneme duration
for multi-speaker speech synthesis,” IEICE Transcations on Information
and Systems, vol. 107, no. 1, pp. 93–104, 2024.

[23] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur,
“LibriSpeech: an ASR corpus based on public domain audio books,”
in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2015, pp. 5206–5210.

[24] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej
Glembek, Nagendra Goel, Mirko Hannemann, Petr Motlı́ček, et al.,
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