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Abstract
Flexibility plays a crucial role in the design and performance of modern rotors. Its impact on rotor performance
and its ability to adapt to external flow disturbances are well-established. In this study, we employ numerical
simulations to explore the behavior of a flexible rotor submerged in a turbulent flow, aiming to forecast the influ-
ence of its flexibility on performance metrics. The rotational motion of the rotor and the forces imposed by the
flow induce deformations in the blades, including bending and twisting. These deformations not only disrupt
the flow patterns (vortices) in the turbulent wake but also modify the aerodynamic profiles, thereby affecting
essential performance aspects such as thrust, drag, and lift. Our objective is to uncover the relationships between
blade deformations, rotation frequencies, and rotor performance in a turbulent flow with a Reynolds number,
Re = O(104), and for a tip speed ratio in the range [0,18]. We demonstrate that the mean blade bending angle
can be effectively expressed using a modified Cauchy number, revealing a scaling law. We also examined how
the aerodynamic performance of the rotor blade is affected by variations in the tip speed ratio, either amplifying
or reducing it. Through this research, we advance our understanding of the interplay between rotor flexibility,
deformation, and performance, contributing to the optimization of rotor design and operational efficiency.
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1 Introduction1

Rotors find extensive applications in both man-made2

propulsion systems and energy conversion and col-3

lection devices. Traditionally, these rotors have been4

rigidly designed to avert potentially destructive defor-5

mations. For instance, in the case of wind turbines,6

it is essential to ensure that the blades do not bend7

and collide with the hub, especially in high winds.8

However, the use of composite materials in various9

modern design applications, coupled with the increas-10

ing global energy demand, has led to a remarkable11

upscaling of wind turbines, making these deforma-12

tions increasingly unavoidable.13
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2 Flexibility and Rotor Performance

The design of rotor blades plays a pivotal role in14

the conversion of flow energy into mechanical energy.15

In general, the rotor design process is centered on16

enhancing their performance, which, in turn, hinges on17

how the rotors are utilized. Some rotor designs aim to18

increase drag and diminish lift, while others strive to19

enhance lift over drag.20

For example, the performance of turbine blades is21

profoundly influenced by rotational forces [1], encom-22

passing lift and drag [2]. The lift force acts perpendic-23

ularly to the fluid flow, propelling the rotation, while24

the drag force is in the direction of flow. Efficiency is25

optimized by maximizing lift and minimizing drag [3],26

which typically occur concurrently. The drag coeffi-27

cient can be used to estimate the frequency of profile28

vortex shedding [4].29

Improving the performance of these rotors pri-30

marily involves the optimization of key aerodynamic31

parameters, notably the airfoil shape and blade geom-32

etry [5]. The growing preference for flexible blades33

is underpinned by their superior wind-capturing abil-34

ity, stress reduction on the turbine, and their positive35

impact on overall performance and longevity [5]. Con-36

sequently, wind turbine manufacturers are placing37

increased emphasis on the development of more flexi-38

ble blade designs, owing to their inherent advantages,39

including reduced weight, enhanced transportability,40

and the potential to curtail both costs and installation41

time.42

In the contemporary rotor design landscape, flexi-43

bility must now be regarded as a paramount consider-44

ation [6, 7]. This paradigm shift extends beyond wind45

turbines, finding relevance in diverse applications such46

as helicopters and micro air vehicles. In these contexts,47

rotors outfitted with highly flexible blades are natu-48

rally integrated to enhance the safety of small drones49

[8, 9]. Moreover, flexible rotor systems are deployed50

in innovative configurations, such as the retractable51

designs exemplified by Sicard and Sirohi [10], where52

the blades can be wound into the hub.53

The utilization of flexible materials in the design54

of rotors or moving bodies presents both advantages55

and drawbacks, as evidenced by numerous instances56

in the natural world. In a fluidic context, flexibility57

offers distinct advantages: for example, plants exhibit58

leaf curvature to mitigate wind-induced drag [11],59

while birds enhance wing-flapping efficiency through60

wing deformability [12]. Nevertheless, it is crucial61

to acknowledge that deformations can also influence62

flow stability [13].63

In a broader context, nature provides a com-64

pelling demonstration of how flexibility augments an65

object’s ability to adapt to variations in external condi-66

tions within fluid flows. A comprehensive examination67

of plant behavior in flowing environments [14–16]68

underscores their capacity to dynamically reconfigure69

in order to minimize their wind-exposed surface area.70

This proactive response not only reduces drag but also71

ensures their survival during extreme events.72

Numerous studies have delved into the impact of73

flexibility in various contexts. For instance, Dai et al.74

[17] conducted research focusing on the assessment of75

structural flexibility and its influence on performance.76

Another relevant investigation is the one carried out77

by Gosselin et al. [11], which introduced an exper-78

imental setup designed to scrutinize the effects of79

flexibility and reconfiguration on drag reduction. A80

pivotal aspect of their work was the determination of81

the Voguel number, a parameter that plays a crucial82

role in the velocity exponent in the drag force expres-83

sion. Specifically, in the case of rigid bodies, the drag84

force increases proportionally to the square of the flow85

velocity, whereas for flexible bodies, flexibility miti-86

gates the rate of change of the drag force with respect87

to velocity. Consequently, the Voguel number mod-88

erates the velocity power coefficient. Additionally,89

Tayyaba et al. [18] utilized fluid-structure interaction90

methods in their research to investigate various aero-91

dynamic parameters for flexible flaps situated within92

the flow.93

For rotating structures, research has demonstrated94

the advantageous impact of flexible deformations on95

performance. In fact, Motley et al. [19] illustrated how96

leveraging the anisotropic characteristics of composite97

materials can enhance the efficiency of marine pro-98

pellers through tailored flexibility adjustments. There99

exists an inherent correlation between the deformation100

of a rotating structure and the distribution of forces on101

a blade. Cognet et al. [20, 21] have established that,102

depending on the wind turbine’s design and the wind103

distribution, it is feasible to identify elastic properties104

that augment the turbine’s performance by expanding105

its operational range.106

Numerous recent studies have proposed the inte-107

gration of deformed wind turbine blades, with one108

noteworthy investigation conducted by Castillo [22].109

Employing an experimental approach, Castillo exam-110

ined the performance of a flexible wind turbine blade111

and its implications for load reduction.112

In a similar vein, Eldemerdash and Leweke [23] con-113

ducted an experiment to delve into the fluid-structure114
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interaction of a flexible blade submerged in a water115

tank. Their objective was to assess the influence of116

hydrodynamic properties on blade elasticity and to117

elucidate how flexibility impacts the wake generated118

behind the blades.119

Furthermore, Hörner et al. [24] conducted compre-120

hensive experimental research on the fluid-structure121

interaction of Darrieus water turbines with highly122

flexible blades, uncovering a plethora of intriguing123

findings. Their primary objective was to ascertain the124

optimal blade flexibility, underpinned by an analysis125

of vibration frequency and tip speed ratio across vary-126

ing stiffness levels, thereby validating the turbine’s127

design for both rigid and flexible configurations.128

In a similar vein, Gao et al. [25] undertook a com-129

bined experimental and numerical analysis of the aero-130

dynamic performance of vertical axis wind turbines131

employing flexible drag-lift hybrid structures based on132

a symmetrical aerodynamic profile, NACA0018. Their133

findings demonstrated that the drag-lift hybrid design134

significantly enhances wind energy utilization com-135

pared to traditional lifting blades.136

Additionally, Oukasso et al. [26] explored the opti-137

mal angle of attack for NACA0012 and NACA2412138

airfoils to maximize lift and drag ratios, employ-139

ing the Computational Fluid Dynamics method. Their140

research underscored the substantial impact of airfoil141

choice on turbine efficiency, with the NACA2412 air-142

foil outperforming the NACA0012 variant in terms of143

efficiency and maximum power output.144

Eldemerdash and Leweke [23] conducted a recent145

investigation involving a rotor consisting of slen-146

der plastic blades immersed in water. Their research147

encompassed the measurement of the flow field sur-148

rounding these blades, as well as the assessment of149

deformations. The study’s findings revealed that sub-150

stantial bending is noticeable during forward motion151

and that large-amplitude oscillations occur during152

reverse motion. Although the study provides thrust153

estimations for specific parameters utilizing the flow154

field data, it’s worth noting that no direct measure-155

ments were executed.156

As mentioned earlier, research on flexible rotors,157

and aeroelasticity in general, often relies on exper-158

imental investigations. While numerical simulations159

can be employed to address such challenges, they offer160

advantages beyond optimizing blade performance,161

including the potential to save time and money by162

assessing blade functionality prior to fabrication.163

In our prior research [27], we conducted a numerical164

analysis rooted in fluid-structure interaction to explore165

the aerodynamic behavior of a rotor with flexible166

blades submerged in water. This study involved char-167

acterizing blade deformations based on blade geom-168

etry and flow conditions. Our findings demonstrated169

that the blades exhibit downstream deformations with170

varying amplitudes contingent upon the rotation fre-171

quency. In specific configurations with certain pitch172

angles and rotation frequencies, the blades deform in173

the opposite direction. Furthermore, we presented and174

discussed the flow wake patterns trailing the blades175

and the occurrence of the vortex ring state.176

In the present study, we develop a numerical177

investigation based on fluid-structure interaction to178

examine the impact of blade flexibility on rotor perfor-179

mance. We elucidate the performance exhibited by a180

one blade rotor, operating within a water environment,181

and delve into how this performance is altered by the182

blade deformation.183

2 Numerical simulation of184

fluid-structure interaction185

problem186

The investigation of aeroelastic behavior in rotors187

with flexible blades and the prediction of their per-188

formance necessitate a study and solution of the189

fluid-structure interaction problem. Such problems190

can be approached experimentally, mathematically, or191

through numerical methods. The simultaneous solu-192

tion of both the structural and fluid equations, while193

adhering to coupling and interaction conditions, is194

paramount.195

There are two primary methods for addressing the196

fluid-structure interaction problem: one-way fluid-197

structure interaction and two-way fluid-structure inter-198

action. In this paper, we employ the two-way fluid-199

structure interaction method due to its superior accu-200

racy, particularly in handling substantial structural201

deformations [28]. This method combines a fluid202

dynamics solver based on the finite volume method203

for solving fluid equations and a transient structural204

dynamics solver based on the finite element method205

to address the motion equations within the struc-206

tural domain. The coupling between the two domains207

is facilitated through an interface coupling system,208

which sequentially transfers data from the fluid to the209

structure and vice versa, ensuring compliance with210

coupling conditions.211

As a result of these interactions, the fluid domain is212
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updated whenever mesh interlocks occur due to struc-213

tural deformation, and the structure undergoes defor-214

mation due to pressures present in the fluid domain.215

It is worth noting that simulating such a complex216

problem is time-intensive.217

2.1 Governing equations:218

To explore the intricacies of fluid-structure interac-219

tion (FSI), we employ the governing equations repre-220

sented by the incompressible Navier-Stokes equations,221

for the fluid flow, coupled with the linear elastic222

equations, for the solid motion. The model equations223

are:224

ρ f
∂u f

∂ t
+ρ f (u f ·▽)u f =−▽ p+µ f ▽·(▽u f )+Fv,

(1)

▽.u f = 0, (2)

ρs
∂ 2xs

∂ t2 −∇ ·σsolid = Fs. (3)

In the context of these equations, where u f represents
the incompressible fluid velocity field, xs corresponds
to the displacement of the solid blade, t denotes time,
p represents the pressure field , µ f stands for the
dynamic viscosity, Fv signifies the body force acting
on the fluid (in this case, gravitational acceleration
multiplied by ρ f ), and Fs characterizes the force per
unit volume acting on the blade. The densities of
the fluid and solid, ρ f and ρs, respectively, are also
accounted for.
The stress field within the fluid, denoted as σ f luid , is
described by the subsequent equation:

σ f luid =−pI +µ f ∇u f . (4)

Furthermore, the Hooke’s law is used:

σsolid = 2µsϵ+λstr(ϵ)I, (5)

µs =
E

2(1+υ)
, λs =

Eυ

(1+υ)(1−2υ)
(6)

where σsolid is the stress field, ϵ is the solid defor-
mation, E is the Young’s modulus, υ is the Poisson
coefficient, tr() is the trace and I is the identity tensor.
The coupling equations are modeled by two condi-
tions:

- a kinematic condition given by:

u f (x, t) =
∂xs

∂ t
, on the blade, (7)

- a dynamic condition represented by the following
equation:

n.σsolid
inter f ace = n.σ f luid

inter f ace, (8)

where n is the unit vector normal to the interface (i.e.,225

the blade).226

The kinematic condition entails an equating of the227

fluid and solid velocities, fostering a synchronized228

mesh movement for both domains. Consequently, dur-229

ing the mesh position updates, the solid displacement230

velocity is transferred to the fluid. In contrast, the231

dynamic condition aligns with the interaction of fluid232

forces exerted on the solid interface.233

2.2 Computational Fluid Dynamics234

Model235

The time-dependent fluid dynamics aspect of our236

fluid-structure interaction problem is developed using237

Ansys Fluent software. The transient fluid domain is238

discretized into a finite number of control volumes,239

following which the governing momentum conserva-240

tion and general continuity equations are numerically241

resolved.242

The computational fluid component is partitioned into243

two distinct regions: a stationary rectangular domain,244

representing the flow channel, featuring dimensions of245

38 cm in width (2.16D, D being the rotor diameter),246

52.8 cm in height (3D), and 176 cm in length (10D).247

Additionally, there is a cylindrical domain encom-248

passing the rotor, blade, and hub, which undergoes249

rotation through a sliding mesh approach, exhibiting250

a diameter of 27 cm (1.53D) and a length of 50 cm251

(1.53D). This rotation simulates the motion of the tur-252

bine around its principal axis. The reference point (x,253

y, z) = (0, 0, 0) is established at the center of the tur-254

bine hub, as depicted in Figure 1. Rotor blade and255

hub’s dimensions are depicted in Figure 2.256

The Navier-Stokes equations are extended by257

incorporating the conventional k − ε turbulence258

model. The rationale for selecting this turbulence259

model has been elucidated in our prior work [27]. In260

specifying the inlet boundary conditions for the chan-261

nel, we set an inflow velocity of 0.18 m/s, with a262

turbulence intensity less than 1% based on reference263
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D

Fig. 1 Dimensions of fluid domains.

[23]. For the outlet, a pressure outlet boundary con-264

dition is imposed with a pressure value of 0 Pa. The265

channel walls and the CFD-coupled interface, com-266

prising the hub, blade, and shaft, are treated as no-slip267

walls, indicating that the fluid adjacent to the wall268

assumes the same velocity as the wall itself.269

The rotational behavior is defined by an angular veloc-270

ity, ω = 2π f , where f signifies the rotor’s frequency.271

2.3 Transient structure Model272

The dynamic structural segment of our fluid-structure273

interaction problem is represented within the transient274

structure component system in ANSYS Workbench.275

This segment is primarily founded on Finite Ele-276

ment (FE) analysis techniques employed to address277

the elastic motion of the rotor blade. The geometric278

configuration of the rotor used in the CFD analysis279

has been seamlessly shared between the CFD and FE280

modules. The rotor has been endowed with angular281

velocity for z-axis rotation to account for the influence282

of centrifugal forces and align with the prescribed283

rotational speed within the CFD cylindrical domain. A284

displacement boundary condition at a specific distance285

is applied to the rotor, permitting rotation to manifest286

at any spatial location. To facilitate the exchange of287

data between the CFD and FE modules, the blade sur-288

faces are treated as fluid-structure coupling interfaces.289

For comprehensive insights into the rotor’s geometry290

and its aerodynamic attributes, please refer to Table 1291

and Figure 2.292

The blade is made of low-density polyethylene293

(LDPE), whose properties are shown in Table 2. The294

carbon material is assigned to the hub and the nylon295

to the shaft.296

297

2.4 Coupled Fluid Structure Interaction298

Model299

The coupling system was implemented in Ansys300

Workbench to facilitate the two-way connection301

between the fluid dynamics and structural analysis302

Fig. 2 Rotor, blade and hub’s dimensions. Initially, there is no twist
(or torsion) γ and β is the pitch angle. The frequency of the rotor is
f and the uniform inlet (free stream) velocity is U0.

Table 1 Blade and rotor parameters

parameter value
Blade profile Rectangular

Number of blades 1
Rotor Radius (R) [mm] 88
Blades Chord (C) [mm] 20
Blade thickness [mm] 0.7 (3.5 %C)

Shaft axis [mm] 15

Table 2 Blade material Property

Property value
Density [Kg/m3 ] 1070

Young’s modulus [GPa] 3.5
Shear modulus [GPa] 1.7

systems. To better understand the behavior of the303

structural domain in response to the fluid domain,304

information is exchanged between the structural305

solver and the fluid solver at the interface, forming306

the foundation of the fluid-structure interaction (FSI)307

model [29].308

2.5 Meshing309

The meshing of the fluid domain was executed310

using Ansys Workbench. Multiple mesh configura-311

tions, encompassing both structured and unstructured312

meshes, were rigorously evaluated to ascertain the313

optimal mesh setup that would yield accurate results314

while maintaining computational efficiency. Tetrahe-315

dral cells were employed within the cylindrical and316

solid domains, while a hexahedral mesh was imple-317

mented for the remaining sections of the fluid domain.318

As a 3D dynamic mesh is incompatible with a struc-319

tured mesh, as noted in prior studies [22, 28, 30],320

an unstructured mesh was adopted around the blade,321
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Fig. 3 Grid and sectional view of the computational domain.

specifically within the rotating domain. Conversely,322

a structured mesh was utilized in the stationary fluid323

domain, as illustrated in Figure 3. A well-balanced324

compromise was achieved, resulting in a total mesh325

size consisting of 454,188 nodes and 235,001 ele-326

ments.327

To accurately capture the blade’s geometry, a328

finer mesh size of 0.001m, corresponding to 20 ele-329

ments along the chord, was employed at the fluid-330

structure coupling interfaces, particularly at the wall-331

CFD interface. For the two-way fluid-structure inter-332

action, a dynamic mesh with remeshing, superposi-333

tion, and smoothing options was implemented to facil-334

itate seamless coupling and data exchange between335

the fluid dynamics solver and the transient structural336

solver.337

Table 3 Structural Mesh sensibility : it is observed that when the
element size decreases, there is a convergence of the drag force,
FD, towards a given value and the relative error decreases (relative
error = |FD(large mesh)−FD(small mesh)|/FD(large mesh)).

Chord/Element size Drag Forces [N] Relative
Error(%)

7 0,147 –
10 0.1585 8
20 0.168 6
40 0.1639 2.5

The transient structural domain was meshed338

using an unstructured tetrahedral method, resulting in339

13,795 elements and 27,707 nodes. The mesh size was340

specified as 0.001m, corresponding 20 element along341

the chord at the blade level, consistent with the fluid342

domain, and 0.003m at the hub and shaft levels equiv-343

alent to 7 element along the chord, as illustrated in344

Figure 4.345

The selection of this mesh size was made after346

careful consideration and was subsequently validated347

through simulations as part of a mesh sensitivity study348

conducted at the blade level. The results of this study349

can be found in Table 3.350

Fig. 4 Structure of the mesh.

3 Results and discussions351

To establish an efficient numerical model for bidirec-352

tional data transfer, initial solution data was omitted353

for the first rotation [30, 31]. In this study, our primary354

focus is on the blade’s behavior immediately follow-355

ing the transient phase, aimed at reducing simulation356

time. To achieve this, we selected a time frame of357

3 seconds, equivalent to over 6 revolutions at a fre-358

quency of 2Hz. To ensure solution convergence and359

accurate data transfer at the coupling level, a time step360

of 1ms was utilized for frequencies below 5 Hz, with a361

smaller time step implemented for higher frequencies.362

Drawing upon the numerical results obtained from363

simulating the fluid-structure interaction problem, this364

paper delves into the impact of blade elasticity on365

rotor performance, encompassing factors like drag and366

lift. We examine two distinct scenarios: one involving367

a non-rotating structure and another with a rotating368

structure, allowing us to highlight the influence of369

rotation frequency on blade deformations and, subse-370

quently, rotor performance.371

In the following sections, we will examine var-372

ious inlet velocities denoted by U , corresponding to373

Reynolds numbers, Re = 2π f Rc/ν , on the order of374

104. Additionally, we will explore the tip speed ratio375

λ , defined as ωR/U , which ranges from 0 to 18. Here,376

R represents the radius of the blade, ν signifies the377

kinematic viscosity of the surrounding fluid, and ω378

denotes the angular velocity of the rotating blade.379

3.1 Non-rotating blade380

In this section, we investigate the impact of input
velocity on the drag force for a non-rotating blade
in both rigid and flexible configurations, assuming a
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pitch angle of β = 0◦.
In the rigid case, the blade maintains a straight
and unaltered shape, experiencing a drag force that
changes in magnitude depending on the linear inlet
velocity of the flow. (see Figure 5 and Figure 10).
More precisely, the drag force is proportional to the
square of the velocity, as illustrated in Figure 5 (a),
where the drag coefficient is derived from the axial
drag force FD as depicted by the following equation:

CD =
FD

1
2 ρAU2

i
(9)

The rotor’s swept area is denoted as A, ρ repre-
sents the fluid density, and Ui stands for a reference
velocity.
The existing literature utilizes various reference
velocities to define coefficients such as CD, CL (lift
coefficient), and Cm (moment coefficient). These ref-
erence velocities can include the linear flow velocity,
as suggested by [20, 32], or the addition of the angular
rotational speed, as indicated by [33].
In this study, in order to account for the influence of
rotation frequency, we determine the reference veloc-
ity as follows:

Ui =
√

U2 +(Rω)2 (10)

The calculated drag coefficient is approximately381

CD ≈ 1.22, which aligns closely with the established382

value for a thin rectangular blade having an aspect383

ratio of R/c = 4.4 and at Reynolds numbers exceed-384

ing 1000 [34]. This alignment serves as a validation385

of both the mesh quality and the accuracy of turbulent386

flow and drag force computations in the current study.387

The flexible blade, constructed from an elastic388

material, deforms in response to the pressure induced389

by the flow velocity. These deformations, relatively390

modest when compared to the rotating blade, amplify391

in accordance with the flow velocity (refer to the392

images in Figure 6 and the curves in Figure 7). It is393

worth mentioning that the tip displacements closely394

align with those derived for a cantilever beam uni-395

formly charged with a linear distributed load, defined396

as q = FD/R (Figure 7b). In this case, the tip displace-397

ment can be expressed as zb = qR4/(8EI). Further-398

more, these deformations are directly related to the399

flow pressure, and their magnitudes follow a propor-400

tionality to the square of the velocity, as evidenced in401

Figure 8.402

a)

0 10 20 30 40 50

Ut/R

0

0.5

1

1.5

2

2.5

F
D

r[N
]

U=0.18 ms
-1

U=0.36 ms
-1

U=0.54 ms
-1

U=0.72 ms
-1

U=0.9 ms
-1

U=1.26 ms
-1

b)
0 10 20 30 40 50
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-0.5

0
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1

1.5

2

2.5

3

3.5

4

4.5
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D

U=0.18 ms-1

U=0.36 ms-1

U=0.54 ms-1
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U=1.26 ms-1

Fig. 5 a) Time evolution of drag forces for various inlet veloci-
ties in both rigid and non-rotating conditions. Nondimensional time,
Ut/R, is used. b) Drag coefficients against nondimensional time.
(For color, the reader is referred to the web version of this article).

In the case of a flexible blade, the drag force (FD f )403

exhibits relatively modest values compared to the404

rigid case (FDr) (Figure 9). Specifically, at low inlet405

velocities, deformations are minimal, resulting in406

comparable values for FD f and FDr (FD f /FDr ≃ 1). As407

inlet velocities increase, deformations become more408

pronounced, leading to blade reconfiguration and a409

consequent reduction in drag. The maximum drag410

reduction observed is approximately 35%, occurring411

at the highest utilized inlet velocity (Figure 9 (b)).412

This moderation can be attributed to several factors.413

Firstly, the bending deformation of the blade reduces414

the projected surface area, resulting in a decrease415

in the drag force. Additionally, blade deformations416

introduce disturbances in the flow, which, in turn, can417

reduce the pressure on the blades and, consequently,418

the drag force.419

To effectively demonstrate the impact of elasticity420

on drag force in the context of a stationary rotor, we421
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U = 0.09ms−1 U = 0.36ms−1 U = 0.72ms−1 U = 1.26ms−1

Deformation
Fig. 6 Maximum flapwise displacement distribution of the blade with β = 0◦, as function of the inlet velocity U . (For color, the reader is
referred to the web version of this article).

depict in Figure 10 the drag force’s evolution as a422

function of inlet velocity for both rigid and flexible423

blades.424

From this figure, it is evident that the drag force’s425

variation concerning inlet velocity follows a power426

law of order 2, indicating that the drag force is pro-427

portional to the square of velocity (FD ∝ U2). This428

aligns with the theory describing drag force on a body429

in high Reynolds number flow. However, in the case430

of a flexible blade, the exponent of the power law is431

attenuated. This attenuation validates Vogel’s law,432

which characterizes the variation of drag force with433

velocity for flexible bodies in flow. According to this434

law, the drag force follows a power law with an expo-435

nent of 2, moderated by a parameter V known as the436

Vogel number (FD ∝ U2+V ) [11]. The Vogel number437

is material-dependent, and in our case, the exponent is438

1.83, corresponding to a Vogel number of V =−0.17.439

440

To gain a deeper understanding of drag reduc-
tion in the flexible rotor through reconfiguration, we
examine the reconfiguration number as proposed by
Gosselin (2010) [35]. The reconfiguration number R
emphasizes the effect of flexibility on the drag by
comparing the drag of the flexible plate to that of a
rigid one of same geometry. According to [35], the
reconfiguration number should only be a function of
the scaled Cauchy number, i.e., R = R(C̃y) where:

R =
FD

(1/2)ρU2ARCD
, C̃y =CyCD, Cy =

1/2(ρR3)U2

(EI/R)
,

(11)
where, AR is the blade area Cy is the Cauchy number441

and CD is the drag coefficient (equation 9). For C̃y >442

10, R ∝ C̃y
−α and V = −2α with α > 0 [35]. The443

reconfiguration numbers are presented in figure 10 (b).444

It is clear that for speeds up to 0.72 m/s (C̃y < 10), the445

flexible blades exhibit drag values similar to the rigid446

blades (R ≃ 1). These low drag values are a result of447

the blades experiencing minimal deformation at lower448

speeds. Beyond this threshold (C̃y > 10, corresponding449

to R<1), the influence of flexibility and blade defor-450

mation on drag becomes more pronounced, further451

diminishing the drag force. As flow velocity increases,452

the pressure on the blades rises, and blade deforma-453

tion becomes more significant, leading to a reduction454

in the projected surface area in the flow and, conse-455

quently, a decrease in drag. We can say that the drag456

force decreases due to the reconfiguration effect. Note457

that at a velocity of U = 0.18m/s, the Cauchy number458

is sufficiently small for the asymptotics R ∝ C̃y
−α to459

be applicable.460

3.2 Rotating blade461

In this section, we investigate the impact of rotation on462

rotor performance parameters. As per our prior studies463

[27], we have demonstrated that the blade under-464

goes deformation in the opposite direction beyond a465

specific rotation frequency. In the current study, our466

focus centers on the frequency range where the blade467

deforms downstream. To achieve this objective and468

facilitate subsequent analysis, we maintain the free-469

stream velocity constant at U = 0.18m/s and consider470

a frequency range spanning from 0 to 6 Hz for perfor-471

mance evaluation, corresponding to λ ∈ [0,18].472

Figure 11 presents the drag force ratio between the473

flexible and rigid cases. It illustrates the influence of474

rotational velocity on the drag force for both flexible475

and rigid blade configurations. Notably, flexible-blade476

rotors display more pronounced fluctuations in the477

drag force compared to the non-rotating scenario. This478

observation can be explained by the fact that, for479

the rotating case, deformations are more significant,480

thus creating disturbances in the flow and notably481

remarkable instabilities, which account for the more482
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Fig. 7 Time evolution of the tip displacement, in the flexible non-
rotating case, for different inlet velocities (β = 0◦): a) normalized
using the rotor radius; b) normalized using the tip displacement of
a uniformly charged cantilever-beam with a linear distributed load,
q = FD/R, for which the tip displacement is zb = qR4/(8EI). (For
color, the reader is referred to the web version of this article).
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Fig. 9 (a) Drag force versus time for various inlet velocities in the
flexible non-rotating blade scenario, denoted as FD f , normalized by
the drag force observed in the rigid non-rotating case, represented
as FDr . (b) The ratio FD f /FDr plotted against the inlet velocity
post the transient phase. Inlet velocity is normalized using its
minimum value utilized in this study, denoted as Umin. The solid
line is the polynomial FD f /FDr=a4(U/Umin)
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3 +
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2 + a1(U/Umin) + a0, with (a4,a3,a2,a1,a0) =

(0.00049332,−0.008408,0.03578,−0.060982,1.0231). The root-
mean-square error of this polynomial fit is of the order of 10−5.
(For color, the reader is referred to the web version of this article.)

pronounced fluctuations in the drag force of the rotat-483

ing blade. Figure 11 further illustrates that a critical484

tip speed ratio, λ , exists. Beyond this threshold, the485

drag force exerted by the flexible blade surpasses that486

of its rigid counterpart. Indeed, As the tip speed ratio487

increases, the flexible blade deforms due to centrifugal488

and aerodynamic forces. The flexible blade under-489

goes oscillations which can increase the drag due to490

unsteady aerodynamic effects and periodic changes in491

angle of attack. Furthermore, the flexible blade might492

experience dynamic stall at higher λ , where the flow493

separates from the blade surface, causing a significant494
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Fig. 10 (a) Variation of the drag force as a function of inflow velocity for the flexible and rigid cases (non-rotating case). (b) The reconfiguration
number against nondimensional time. (For color, the reader is referred to the web version of this article).
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Fig. 11 The evolution of the drag force of the flexible rotor, FD f ,
normalized against its rigid counterpart, FDr , for various tip speed
ratios (or frequencies). (For color, the reader is referred to the web
version of this article).

increase in drag. This is more pronounced in flexible495

blades due to their tendency to bend and change their496

angle of attack. Note that flexible blades can induce497

greater vortices at their tips due to changes in shape498

and twist along the span, increasing induced drag.499

These tip vortices are more pronounced at higher tip500

speed ratios when the blade flexibility becomes signif-501

icant. Nevertheless, it should be noted that, overall, the502

mean values of these two forces exhibit a tendency to503

become equal, at least for the range of tip speed ratios504

0 ≤ λ ≤ 18, studied here.505

To demonstrate the influence of rotation frequen-506

cies on drag force, Figure 12 depicts the variation of507

drag force with the tip speed ratio (λ ) for both rigid508

and flexible blade cases, with an inlet flow velocity509

of U = 0.18 m/s. These curves vividly illustrate that,510

in the rigid case, drag force increases continuously511

with rotation frequency, and consequently with the tip512
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Fig. 12 Evolution of the drag force against the tip speed ratio for
both the flexible and rigid cases. The forces are normalized relative
to the force value at λ = 0, denoted as FD0, U = 0.18m/s and β = 0◦.
(For color, the reader is referred to the web version of this article).

speed ratio. However, in the flexible case, the evolu-513

tion of drag force with rotation frequency exhibits a514

more irregular pattern, which is primarily governed by515

blade deformation.516

As the blade flexes, the projected surface area rela-517

tive to the flow diminishes, thus moderating the drag518

force. In our earlier work [27], we elucidated that the519

bending deformation of the blade flexion for this con-520

figuration increases up to a frequency of 5 Hz; beyond521

this frequency, deformation amplitude commences to522

decrease. This phenomenon accounts for the inflection523

point in the drag force curve around f = 5 Hz (λ ≃524

15). This is confirmed in figure 13b. The deformation525

results are well validated by comparisons with Elde-526

merdash and Leweke’s experimental findings [23],527

and these comparisions are done in our previous work528
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Fig. 13 (a) Evolution of the tip displacement (normalized by the
rotor radius) for different tip speed ratios λ = ωR/U : the flexible
and rotating case. Note that for λ = 0, U/R is used for time nor-
malisation instead of ω . (b) Evolution of the corresponding mean
tip displacement against the tip speed ratio. (For color, the reader is
referred to the web version of this article).

[27]. Figure 12 also highlights that with a sixfold529

increase in λ (with respect to its value at λ = 3), drag530

forces experience an approximate fourfold amplifica-531

tion for both flexible and rigid cases. Consequently,532

this amplification cannot be solely attributed to ener-533

getic considerations since the drag amplification is not534

equal to the square of that of λ .535

The impact of rotation on tip displacement is536

illustrated in Figure 13 for various tip speed ratios537

λ . The displacement comprises two distinct compo-538

nents: a mean value and low-amplitude oscillations.539

As depicted in Figure 13a, the oscillations pulsate at540

the rotor’s angular speeds ω . The mean tip displace-541

ment is shown in Figure 13b. It exhibits an increase542

with the tip speed ratio, reaching a peak at approx-543

imately half the blade radius for λ = 15, followed544

by a subsequent decrease. In comparison to the non-545

rotating scenario (λ = 0), the presence of rotation546

can amplify the displacement by a factor of up to547

50. The maximum oscillations’ small amplitudes are548

approximately 6/100 of the blade radius.549

3.3 The impact of pitch and rotation on550

aerodynamic performance551

The pitch angle has a significant effect on blade defor-552

mation and, consequently, on its aerodynamic perfor-553

mance. In this section, we will examine the impact of554

this angle on drag, lift, and moment. Figure 14 illus-555

trates the variation of drag force with tip speed ratio556

for different pitch angle configurations, both for the557

rigid case (a) and the flexible case (b). In (c), the558

figure presents the ratio between drag forces in the559

flexible (FD f ) and rigid (FDr) cases. For a given tip560

speed ratio, in the rigid case, drag decreases as the561

pitch angle increases, which is attributed to the blade’s562

orientation relative to the flow. The same behavior is563

observed with the flexible blade, meaning that drag564

reduces with an increase in the pitch angle, for the con-565

sidered rotor blade. For a constant pitch angle, the drag566

force may either exhibit a monotonically increasing567

relationship with the tip speed ratio or not, depending568

on the pitch value. In cases where it is not monotonic,569

the drag force attains a maximum before decreasing,570

particularly at the highest pitch. In instances where the571

blade is flexible, an inflection point is observed in the572

absence of pitch, indicating a significant tip displace-573

ment. Figure 14 also highlights that with a sixfold574

increase in λ (with respect to its value at λ = 3), drag575

forces experience, at most, an approximate fourfold576

amplification for both flexible and rigid cases, even577

when the pitch is varied. In Figure 14 (c), it is evi-578

dent that, for a specific pitch, the drag of the flexible579

blade may be either higher or lower than that of its580

rigid counterpart, contingent upon the tip speed ratio.581

Notably, at the maximum pitch, the drag of the flexi-582

ble blade undergoes a maximum reduction by a factor583

of approximately three for the highest tip speed ratio,584

in comparison to its rigid counterpart.585

586

To conduct a more comprehensive comparison of587

the drag generated by different rotor pitches, we intro-588

duce the normalized drag coefficient CD, as depicted589

in equation 9.590

591

The variation of the drag coefficient versus the tip592

speed ratio, as depicted in Figure 15, demonstrates593

notable similarities across different pitch angle con-594

figurations and for both flexible and rigid rotor cases.595

The drag coefficient exhibits a consistently decreasing596
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Fig. 14 Evolution of drag force against the tip speed ratio for both rigid (a) and flexible (b) cases, featuring various pitch angles. In (a) and
(b), the forces are normalized with respect to the force value at λ = 0, identified as FD0r and FD0 f for the rigid and flexible cases, respectively.
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trend as a function of the tip speed ratio, irrespective597

of the pitch angle. When the pitch angle is elevated,598

for both flexible and rigid scenarios, the drag coef-599

ficient (CD) experiences a reduction, holding the tip600

speed ratio constant.601

The examination of aerodynamic performance602

extends beyond the scope of drag force alone, encom-603

passing lift force and moment as well. As with the604

drag coefficient, the lift coefficient CL is determined605

by the following equation:606

607

CL =
FL

1
2 ρAU2

i
(12)

Figure 16 presents the dynamic changes in lift608

coefficient over time at various rotation frequencies,609

offering a comparison between the rigid and flexible610

cases (with a pitch angle of β = 0◦ and U = 0.18m/s).611

In the rigid case, the oscillations in lift coefficient612

maintain a consistent pattern, whereas in the flexible613

case, these oscillations stabilize after a certain num-614

ber of periods. This phenomenon is a direct result of615

the oscillations induced by blade deformation. More-616

over, these oscillations share the same period as that617

of the rotating blade. After a transitory period, in the618

rigid scenario, the lift coefficient (CL) oscillates within619

the range of 0.019 to −0.019. However, in the flex-620

ible case, the oscillations extend between 0.075 and621

−0.053, indicating that flexibility enhances the lift of622

the rotor blade under consideration and introduces a623

dissymmetry between positive and negative values of624

the lift.625

To examine the impact of flexibility on lift, we con-626

ducted an analysis of lift force variation with respect627

to tip speed ratio for both rigid and flexible cases,628

using a rotor with a pitch angle of 0° as an illustrative629

example (Figure 17). The maximum value of the lift630

force, after the transitory period, is used. The findings631
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Fig. 15 The evolution of the drag coefficient as a function of tip
speed ratio for different pitch angles, for both rigid (R) and flexible
(F) cases. (For color, the reader is referred to the web version of this
article).

unequivocally reveal that flexibility exerts a substan-632

tial influence on lift force.633

In the case of a rigid structure, the lift force exhibits634

a monotonically increasing trend with the tip speed635

ratio. When the tip speed ratio is multiplied by a fac-636

tor of six (with respect to its value at λ = 3), the lift637

force undergoes a fiftyfold increase, demonstrating an638

amplification exceeding a squared effect. Conversely,639

in the flexible case, the lift force, influenced by blade640

deformation, does not follow a monotonous pattern641

with respect to the tip speed ratio. It exhibits oscilla-642

tions and may be lower than its rigid counterpart for a643

given tip speed ratio.644

Figure 18 depicts the variation of lift force concern-645

ing the tip speed ratio for different pitch angles. In the646

context of rigid-blade rotors, the lift force behaves as a647

monotonically increasing function with respect to the648

tip speed ratio at various pitch angles. At a constant tip649

speed ratio, the lift force diminishes with an increase650

in the pitch angle. Consequently, when the tip speed651

ratio is multiplied by a factor of 6, the amplification652

of the lift force (with respect to its value at λ = 3) is653

50 times for a pitch of 0◦, 25 times for a pitch of 2.5◦,654

and 19 times for a pitch of 5◦.655

In contrast, the behavior in the flexible case (Figure656

18b) exhibits pitch-dependent characteristics regard-657

ing monotony. For β = 0◦, the lift force displays658

oscillations. However, for β = 2.5◦ and β = 5◦, the lift659

force regains monotonicity. This observation clearly660

highlights a significant influence of flexibility on the661

lift force, leading to a distinct profile. Nevertheless,662

the maximum amplification shows similar values com-663

pared to the rigid case.664

The variation of this coefficient with respect to665

the tip speed ratio, for different configurations, is666

presented in Figure 19.667

668

Figure 19 shows that for the rigid blade, the lift669

coefficient remains relatively low and stable across670

the entire range of tip speed ratios. There is a slight671

increase in CL as the pitch angle increases from 0°672

to 5°, indicating that increasing the pitch angle has673

a modest effect on increasing the lift for the rigid674

blade. For the flexible blade, the lift coefficient shows675

much greater variability compared to the rigid blade.676

At β = 0◦, there are significant oscillations in CL with677

peaks around λ = 5, 8, 13, and 15. This indicates678

that the flexible blade at zero pitch is experiencing679

periodic increases and decreases in lift, likely due to680

dynamic effects such as flutter or aerodynamic insta-681

bilities. As the pitch angle increases these oscillations682

become less pronounced, and the lift coefficient sta-683

bilizes somewhat, although it remains higher than for684

the corresponding rigid blade.685

The recovered torque, or required torque, is a cru-
cial parameter for characterizing rotor performance.
Figure 20 displays the temporal variations of the
z−moment, M, for different rotation frequencies in
both the rigid and flexible cases. The moment is nor-
malised using its value at λ = 3, denoted M3. After a
transitional period, the moments stabilize at constant
values. These stable values indicate the magnification
of the moment as λ increases. The magnification
is of the order of 60 times when λ is multiplied
by 6, observed in both rigid and flexible cases. To
effectively depict the influence of flexibility on the
moment, Figure 21 presents the variation of the nor-
malised moment against the tip speed ratio for a pitch
angle of β = 0◦. This figure highlights how flexibility
leads to a decrease in the moment amplification for
high values of λ .
This reduction can be ascribed to the enhanced
adaptability of the blade facilitated by its flexibility,
enabling it to better respond to the variable aerody-
namic loads induced by the flow. As a consequence,
this improved accommodation of forces leads to a
decrease in the moment amplification generated by
the blade. For low values of λ , the moment ampli-
fication is almost identical for both the flexible and
rigid blade. Figure 22 showcases the progression of
the moment concerning the tip speed ratio for vari-
ous pitch angles, as demonstrated in both the rigid
case (a) and the flexible case (b). In the rigid case,
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Fig. 16 Evolution of the lift coefficient, CL, according to the number of rotor’s revolutions for different tip speed ratios: a) rigid case, b) flexible
case (U = 0.18m/s and β = 0◦). (For color, the reader is referred to the web version of this article).
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Fig. 17 Evolution of lift force with respect to tip speed ratio (U =
0.18m/s and β = 0◦). The lift force is normalized by its value at
λ = 3, denoted as FL3. (For color, the reader is referred to the web
version of this article).

at a pitch angle of β = 2.5◦, the moment amplifica-
tion is heightened compared to the scenario without
pitch as the tip speed ratio increases. However, this
enhancement does not follow a monotonic trend, as
the amplification diminishes with further increases
in pitch (β = 5◦). In the flexible case, the situation
contrasts sharply, as the highest amplification occurs
in the scenario without pitch, followed by the cases
with β = 2.5◦ and β = 5◦, respectively.
The evolution of the moment coefficient is presented
in Figure 23 (top), where the coefficient is defined by
the following equation:

Cm =
M

1
2 ρAU2

i R
(13)

Depending on the pitch value, the moment coef-686

ficient can be a monotonic or nonmonotonic function687

of λ . Further insights are gained by dividing it by688

its value at λ = 3, Figure 23 (bottom). It becomes689

evident that the amplification of Cm in the rigid case690

is consistently higher than in its flexible counterpart.691

Additionally, Cm may be amplified or reduced depend-692

ing on the pitch. When λ is multiplied by a factor of693

6, the maximum amplification does not exceed 2.5,694

for the considered blade and pitch values. It’s worth695

noting that the reduction factor could reach 0.8 in the696

flexible case, and it is the higher z−moment reduction697

obtained for the considered blade configurations.698

Another crucial parameter for studying rotor per-
formance is the power coefficient. This fundamental
coefficient provides an important insight into the over-
all efficiency of the rotor system. It is defined as the
ratio between the power recovered by the rotor and the
power available in the flow. The power coefficient is
expressed by the following equation:

Cp =
M.ω

1
2 ρAU3

i
(14)

where M is the rotor moment, ω is the rotation speed
and Ui is the reference velocity defined by the relation
10. It is then easy to show that:

Cp

Cp3
=

Cm

Cm3

λ

3

√
10√

1+λ 2
. (15)

Hence, an increase in the tip speed ratio could be699

inferred to affect the amplification of the power coeffi-700

cient by examining those of the z-moment coefficient701
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Fig. 18 Evolution of lift force as a function of tip speed ratio for different pitch angles and two distinct scenarios: a) the rigid case, and b)
the flexible case. The forces are normalized using their respective values at λ = 3, identified as FL3r and FL3 f for the rigid and flexible cases,
respectively. (For color, the reader is referred to the web version of this article).
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Fig. 19 Evolution of lift coefficient as a function of tip speed ratio
for various pitch angles in both rigid and flexible cases. (For color,
the reader is referred to the web version of this article).

(Figure 23).702

703

4 A Scaling law for tip deformation704

The forces acting on a blade from its environ-
ment encompass hydrodynamic forces (including lift
and drag) as well as the centrifugal force. As evident
from the discussed results, the lift force is notably
smaller than the drag force (Data available, not shown)
and plays a minor role in the flexing of the blade
under consideration. In contrast, hydrodynamic forces
significantly contribute to the bending deformation
compared to the centrifugal force. Given these con-
siderations and assumptions, we can safely neglect
the influence of the centrifugal force and focus on

the interaction between elasticity and fluid loading.
Thus, the equation describing the bending of the blade
during rotation is as follows [33]:

EI
∂ 3θ

∂ s3 =
FD

R
cos(β ) =

1
2

ρU2
i

A
R

CD cos(β ), (16)

where ρ is the fluid density, Ui is the local appar-
ent velocity (equation (10)). As previously stated,
to characterize the interaction between elasticity and
aerodynamic forces, we utilize the Cauchy (or elasto-
hydrodynamical) number. This dimensionless number
compares the intensity of hydrodynamic forces to the
elastic modulus and is defined, in this section, by the
following expression,

CB
Y =

ρSb(R2ω2)R2

2EI
. (17)

Taking this number into account, the elasticity
equation (16) can be written in its dimensionless form
as follows,

1
CB

Y

∂ 3θ

∂ s3 =
AU2

p

Sb
CD cos(β ), (18)

where Sb is the bending area of the blade (the planar705

surface of the blade) and U2
p = (Ui/Rω)2 = 1+1/λ 2.706

Note that in transitioning from Eq. (16) to Eq. (18),707

the curvilinear abscissa has been converted from a708

dimensional variable to its dimensionless counterpart709

s/R (referred to as s for convenience). The simpli-710

fied model, which yields Equation (18), indicates that711

at any specific blade position, the deflection angle712
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Fig. 20 Time evolution of the z−moment, M, for different tip speed ratios for a) the rigid case and b) the flexible case. The moment is made
nondimensional using its value at λ = 3, denoted M3. (For color, the reader is referred to the web version of this article).
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Fig. 21 Evolution of the z−moment, M, as a function of the tip speed ratio (U = 0.18m/s and β = 0◦). The moment is made nondimensional
using its value at λ = 3, denoted M3. (For color, the reader is referred to the web version of this article).
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Fig. 22 Evolution of the z−moment, M, is depicted as a function of tip speed ratio, considering various pitch angles, β , in both (a) the rigid
case and (b) the flexible case. The moment is made nondimensional using its value at λ = 3, denoted M3. (For color, the reader is referred to
the web version of this article).
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tion of the tip speed ratio for different pitch angles, for the rigid case
(R) and the flexible case (F). Bottom: the same, but Cm is devided
by its value at λ = 3, Cm3. (For color, the reader is referred to the
web version of this article).

divided by CB
Y CD cos(β ) should solely depend on the713

tip speed ratio, denoted as λ . This assertion is substan-714

tiated through numerical simulations employing the715

complete model under investigation herein (Navier-716

Stokes equations, for the fluid flow, coupled with the717

linear elastic equations, for the solid motion). This718

phenomenon is depicted in Figure 24, wherein all719

deflection curves, corresponding to various pitches,720

converge when scaled by θM/(CB
Y CD cos(β )).721

5 Conclusions722

In this study, we conducted a numerical investiga-723

tion into the fluid-structure interaction of a flexible724

rotor immersed in a turbulent water flow. Our objec-725

tive was to gain insights into how flexibility influences726

the aerodynamic performance of rotors with flexible727
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Fig. 24 The bending angle at the tip, denoted as θM and normalized
by the drag coefficient CD and the Cauchy number CB

Y , is plotted as a
function of the tip speed ratio for all flexible blades examined, with
a speed of 0.18m/s (U = 0.18m/s). (For color, the reader is referred
to the web version of this article).

blades. Traditionally, rotor performance is primarily728

controlled by blade geometry and aerodynamic flow729

parameters. However, when flexibility is introduced,730

the original blade geometry is no longer maintained731

due to the deformations experienced during opera-732

tion. Furthermore, the flow structure is altered by733

turbulence and blade vibrations, in contrast to rigid734

rotor configurations. Our prior study [27] aimed to735

comprehend and characterize these deformations in736

relation to elasticity and flow parameters. Our find-737

ings, here, reveal that flexibility exerts a substantial738

influence on rotor performance. Specifically, in the739

non-rotating case, the flexibility effect results in a740

reduction of the drag force. By allowing blade bend-741

ing, the cross-sectional area exposed to the flow is742

diminished, thereby decreasing drag. We also exam-743

ined how the aerodynamic performance of the rotor744

blade is affected by variations in the tip speed ratio,745

either amplifying or reducing it. Additionally, we dis-746

covered a scaling law governing the tip deformation747

angle when utilizing a modified Cauchy number. Fur-748

thermore, blade torsion contributes to rotor lift and749

torque, although further investigation is needed to750

fully understand its effect. Twisting is also a blade751

deformation, and any deformation induces a change752

in flow, which leads to a change in pressure and fric-753

tion, consequently affecting lift and drag. Through754

this research, we have advanced our understanding755

of the interplay between rotor flexibility, deformation,756

and performance, contributing to the optimization of757
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rotor design and operational efficiency. However, fur-758

ther investigation is needed to elucidate the connection759

between elasticity, induced torsion, and the perfor-760

mance of rotors featuring flexible blades. Overall, our761

study highlights the importance of considering flex-762

ibility in rotor design and provides valuable insights763

into the complex fluid-structure interaction of flexible764

rotors in turbulent flow environments.765
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