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Digital twins for chronic lung diseases 

 

Abstract 

Digital twins have recently emerged in healthcare. They combine advances in cyber-physical 
systems, modelling and computation techniques, and enable a bidirectional flow of information 
between the physical and virtual entities. In respiratory medicine, progress in connected devices 
and artificial intelligence make it technically possible to obtain digital twins that allow real-
time visualisation of a patient's respiratory health. Advances in respiratory system modelling 
also enable the development of digital twins that could be used to predict the effectiveness of 
different therapeutic approaches for a patient. For researchers, digital twins could lead to a 
better understanding of the gene-environment-time interactions involved in the development of 
chronic respiratory diseases. For clinicians and patients, they could facilitate personalised and 
timely medicine, by enabling therapeutic adaptations specific to each patient, and early 
detection of disease progression. The objective of this review is to allow the reader to explore 
the concept of digital twins, their feasibility in respiratory medicine, their potential benefits, 
and the challenges to their implementation. 

Take home message 

Digital twins, integrating cyber-physical systems and simulation, are becoming technically 
feasible in respiratory medicine. They could improve understanding of chronic diseases, 
enable personalised and timely interventions, and support patient-centred care. 

 

Points for clinical practice: 

• Digital twins combining real-time monitoring and simulation have the potential to enable 
personalised and timely interventions for patients with chronic respiratory diseases. 

• Involving patients in the development of their digital twins and setting shared goals between 
patients, parents, and clinicians will be key for patient-centred care. 

• Integrating digital twins into clinical workflows will require addressing issues of data 
privacy, algorithm bias, and liability for automated recommendations. 

 

Questions for future research: 

• How can monitoring and simulation digital twins be optimally combined to leverage their 
complementary strengths for respiratory medicine applications? 

• What are the most meaningful and engaging ways to visually represent a patient's 
respiratory health status through their digital twin? 

• How can the risk of exacerbating health inequities with digital twin technologies be 
mitigated, particularly for disadvantaged and elderly populations? 

• What study designs and endpoints should be used to rigorously evaluate the clinical 
efficacy, safety, cost-effectiveness and environmental impact of digital twins? 



Digital twins for chronic lung diseases 

 

The term 'digital twin' has recently emerged in the healthcare field. Although this term may 

initially be perceived as a mere buzzword, it actually refers to an innovative technological 

product that integrates technical advances from various domains. This technology could offer 

significant benefits for patients with respiratory diseases. The objective of this review is to 

allow the reader to explore, first, the concept of digital twins and its origins; second, the 

feasibility of digital twins in respiratory medicine; third, their potential benefits for patients, 

healthcare professionals, and researchers; and finally, the current challenges and future 

directions for the development and implementation of digital twins in respiratory care. 

1. The concept of digital twins 

1.1 From engineering and industry… 

The digital twin concept was first introduced at the University of Michigan in 2002 during a 

product lifecycle management course[1]. On one of his slides, Michael Grieves laid out the 

notions of real space, virtual space, and a bidirectional flow of information between the two 

spaces. The first use of the term "digital twin" dates back to 2012 in a report by the National 

Aeronautics and Space Administration (NASA)[2]. The digital twin was defined as "an 

integrated multiphysics, multiscale, probabilistic simulation of an as-built vehicle or system 

that uses the best available physical models, sensor updates, fleet history, etc., to mirror the life 

of its corresponding flying twin". 

While M. Grieves' concept emphasises the three elements of the system - the physical twin, the 

digital twin, and the bidirectional flow between the two, NASA's approach focuses on the digital 

twin itself as a highly advanced simulation system. This is related to the fact that the concept 

of digital twins integrates advances in two different fields: cyber-physical systems and 

simulation.  



Cyber-physical systems are systems where computational elements collaborate for the control 

and command of physical entities[3]. They represent a new stage in the industrial revolution: 

after the first industrial revolution and the steam engine, the second industrial revolution and 

the machine tool, the third (digital) industrial revolution and the automated machine, some 

authors consider that we have entered the fourth industrial revolution of the intelligent 

machine[4, 5]. This "intelligence" is made possible thanks to (i) the numerous sensors integrated 

into machines that allow a real-time representation of its state; (ii) networks that can integrate 

data from multiple sensors and multiple machines; (iii) machine learning techniques that enable 

the processing of this data; (iv) actuators that implement changes to the physical system based 

on insights derived from machine learning algorithms. A typical example of a cyber-physical 

system is the autonomous car[6]: based on data collected by multiple sensors, transmitted via 

different networks and processed via various algorithms, the direction and speed of the car is 

modified in real-time. The concept of digital twins was born partly from the developments of 

these cyber-physical systems, i.e., from these bi-directional information exchanges between 

physical entities and virtual entities. 

Simulation is one of the major technologies in aerospace. Physical simulators were used very 

early on by NASA, notably participating in the rescue of the crew of the Apollo 13 mission by 

allowing different strategies to be tested on the ground[7]. With the digital revolution, these 

physical simulators gradually evolved into virtual simulators that became increasingly realistic 

as modelling techniques improved. The next step was to develop a digital replica of each aircraft 

in the fleet that follows its evolution from construction to destruction. This digital replica makes 

it possible to monitor the "health" of the aircraft as it is used in order to reduce costs by 

optimising its maintenance operations[2, 8]. The concept of digital twins was born partly from 

this evolution of modelling, which has become high-fidelity and system-specific. 



As a result of advances in cyber-physical systems and modelling, the concept of digital twins 

has attracted interest in many fields. Beyond the manufacturing[9] and aerospace industries[10], 

digital twins are currently being developed for the management of cities[11, 12], transport[13], 

agriculture[14], hospital management design and care coordination[15]. 

This growing interest in the concept of digital twins has led the National Academies of Sciences, 

Engineering and Medicine in the United States to appoint a committee to identify needs and 

opportunities to advance the mathematical, statistical, and computational foundations of digital 

twins in applications across science, medicine, engineering, and society. The report of this work, 

published in 2024, defined a digital twin as "a set of virtual information constructs that mimics 

the structure, context, and behaviour of a natural, engineered, or social system (or system-of-

systems), is dynamically updated with data from its physical twin, has a predictive capability, 

and informs decisions that realise value. The bidirectional interaction between the virtual and 

the physical is central to the digital twin"[16]. This definition extends the concept of digital 

twins to "natural systems", and thus paves the way for digital twins of patients. 

1.2 …To patients 

The concept of a patient digital twin is quite intuitive. Most people are familiar with the term 

"twins" to refer to two siblings born on the same day, and "avatar" for a virtual representation. 

Thus, the idea of a patient digital twin, corresponding to a digital avatar allowing the 

visualisation and monitoring of a person's health status, predicting its evolution, and helping to 

adapt and personalise their care, should be comprehensible and accessible to both patients and 

healthcare professionals (Figure 1). 

However, a real question arises as to the transferability of the concept of the digital twin, born 

in an engineering context, to healthcare and in particular to the patient. Indeed, there are several 

difficulties in developing patient digital twins compared to digital twins of engineered systems 



such as an aircraft. First, while an aircraft is created from parts whose nature and mechanical, 

thermal, chemical, and electrical properties are known, physical and biological processes that 

underline the functioning of different parts of the human body remain incompletely 

understood[17]. Second, while humans design the assembly plan for aircraft and thus have a 

multi-scale view of the aircraft from the smallest electrical unit to the entire apparatus, the same 

cannot be said of cell-tissue, tissue-organ, and organ-organ interactions which remain 

incompletely elucidated. Third, while it is easy to integrate a growing number of sensors into 

an aircraft to obtain an increasingly faithful digital replica, obtaining a data flow from the 

human body requires the implantation or wearing of sensors with their attendant technical, 

medical and ethical problems[18]. Fourth, while modifications to the aircraft are easy 

implemented through actuators, having a human factor in the loop, whether a patient or a 

healthcare professional, adds a degree of uncertainty to the system. Fifth, unlike aircraft, whose 

"health" depends solely on mechanical and physical factors, patients' health also includes 

emotional and spiritual dimensions that must be taken into account[19]. 

With this in mind, our team conducted a systematic literature review including all peer-reviewed 

articles that claimed to have developed a digital twin of a patient or part of a patient to provide 

an overview of what authors claimed as “patient digital twin”[20]. Eighty-six studies 

corresponding to 80 unique "claimed digital twins" were included up to 2023. Many "claimed 

digital twins" identified in the scoping review had in fact no characteristics that could made 

them relate to a digital twin. We therefore proposed that a patient digital twin be defined as "a 

viewable digital replica of a patient, organ, or biological system that contains multidimensional, 

patient-specific information and informs decisions". This definition therefore excludes: (i) non-

patient-specific systems, such as generic organ and biological system modelling used for drug 

development[21, 22], or virtual patients generated for in silico trials not linked to a real 

patient[23, 24]; (ii) purely cyber-physical systems, without patient visualisation such as 



artificial pancreas [25]; (iii) models created from a single data source such as images from a 

scanner[26]. Next, we identified two major trends through an unsupervised analysis of the 

characteristics of the claimed digital twins using the partitioning around medoids method, 

guided by silhouette width analysis [20] (Figure 2):  

- Digital twins relying mainly on cyber-physical systems, named "monitoring patient digital 

twins". This type of digital twin is based on a data-driven approach, allowing the representation 

of all or part of the patients from data collected via connected objects, and informing decisions 

thanks to analyses carried out by machine learning techniques. These are dynamic systems that 

allow the patient to be followed over time, sometimes in real-time. To be differentiated from a 

telemonitoring system, this type of digital twin must rely on multiple data sources, allow 

visualisation of the patient's organ, system, or body, and integrate data analysis systems that 

inform decision-making. None of the articles included in this review met all of these 

requirements, but some advanced systems suggested that this type of digital twin should quickly 

emerge. 

- Patient digital twins relying mainly on simulation, named "simulation patient digital twins". 

This type of digital twin is based on a mechanistic approach, allowing the representation of all 

or part of the patients from anatomical (3D) and/or physiological modelling of their organ or 

biological system. These models allow simulations to be carried out to predict the evolution of 

the disease or the effectiveness of different therapeutic approaches. These are generally static 

systems, for one-time assessments, due to the need to acquire data in-hospital (CT scan, MRI). 

An emblematic example is that of digital twins of the heart, which start from the patient's 

imaging data to obtain a 3D model of their heart, and integrate electrophysiology models and 

the patient's specific electrocardiograms[27]. Such digital twins allow, for example, the 

prediction of the effectiveness of different ablation strategies in patients with atrial 

fibrillation[28]. 



 

2. Towards digital twins in respiratory medicine 

Among the 80 claimed digital twins identified in the systematic review, only six (8%) claimed 

digital twins were related to respiratory medicine compared to 20 (25%) and 10 (13%) related 

to cardiovascular and musculoskeletal systems, respectively[20]. Among these six claimed 

digital twins, three did not meet the definition of a patient digital twin because they were limited 

to personalised prediction models without a viewable representation of the patient or their lungs. 

The other three corresponded to "simulation patient digital twins". This small number of digital 

twins in respiratory medicine raises the question of their feasibility, whether for monitoring or 

simulation digital twins. 

2.1 From sensors to monitoring digital twins in respiratory medicine 

Monitoring digital twins rely on the combination of multiple sensors, visualisation and decision 

systems, and actuators (Figure 2). In respiratory medicine, each of these elements has 

undergone technical advances over the past ten years. 

First, sensors are becoming more numerous, reliable, and acceptable[29–31]. The first types of 

monitoring were "active", meaning that the sensors required the active participation of the 

patient. A typical example is connected spirometers, used at home by patients. Whether in 

asthma, chronic obstructive pulmonary disease (COPD), interstitial lung disease (ILD), cystic 

fibrosis, or lung transplantation, home spirometry gives reliable results, with values often 

slightly below those collected in pulmonary function testing laboratories, but allowing 

longitudinal monitoring of patients at home[32–35]. Less well validated, the numerous 

commercially available oximeters are also widely used by patients with chronic respiratory 

diseases[36]. More recently, wearable stethoscopes associated with artificial intelligence 

algorithms can be used by patients to monitor their lung sounds[37, 38]. The major limitation 



of this type of sensor for a digital twin is that they require the active participation of the patient. 

In most pathologies, daily recording of spirometry or SpO2 increases the burden of care without 

changing medical outcomes, resulting in a rapid decrease in compliance[39]. Passive 

monitoring, on the other hand, uses sensors that require very little investment from the patient 

and are better suited to a continuous or near-continuous flow of data to the digital twin. Smart 

inhalers and nebulisers that record patients' use of treatments, and sometimes their inhalation 

technique, provide information on adherence to inhaled treatments and/or deterioration of 

asthma in the event of recourse to emergency treatment[40, 41]; smart watches or bracelets 

provide data on patients' level of physical activity, heart rate and SpO2 values[42, 43]; passive 

recording of cough using smartphone-based acoustic artificial intelligence software is also 

promising with applications in all respiratory diseases[44, 45]; finally, as respiratory diseases 

are strongly impacted by air quality, geolocation associated with environmental databases and 

wearable air quality sensors represent an indispensable data source for most digital twins[46].  

Data from different sensors can be integrated into a single database. To meet the sus-mentioned 

definition of a digital twin, this data must be presented in a meaningful way with a visible 

representation of the patient. At a time when it is possible to create one's avatar from a picture 

on the internet[47], the problem lies less in technical feasibility but in finding a consensual 

definition of what meaningful representations is in respiratory medicine between healthcare 

professionals, patients, and engineers. 

The data must also give rise to automated processing by algorithms to inform decision-making. 

Advances in machine learning, both supervised and unsupervised, are becoming increasingly 

effective in predicting patient trajectories and risks of exacerbation, with several examples in 

asthma and COPD [48–51]. Rather, the challenge is to address the ethical and legal implications 

of using these algorithms for clinical decision-making, as well as the practical barriers to 



seamlessly integrating these advanced tools into everyday clinical workflows and decision-

making processes[18]. 

Finally, actuators allowing feedback to the patient can be in automated form or in the form of 

recommendations. Automated feedback concerns feedback that passes through machines such 

as automated adjustments of oxygen flow by the concentrator[52]. Recommendation feedback 

can be made directly to the patient, or via the healthcare professional. Large language models 

could here directly transform an algorithm output into an understandable and justified 

recommendation to the patient. 

Thus, progress in digital health makes possible monitoring digital twins in respiratory medicine 

that would allow real-time monitoring of reliable virtual representations of the health status of 

patients with respiratory diseases. 

2.2 From models to simulation digital twins in respiratory medicine  

Simulation digital twins are based on a mechanistic approach, primarily focused on physics in 

the context of respiratory care.  

2.2.1 General considerations on physical modelling toward digital twins 

Many models have been proposed for the lungs, and it is important to recall the famous 

aphorism “all models are wrong, but some are useful”—in that sense, models should not be 

compared in terms of “which one best describes the lungs?”, but instead in terms of “which one 

best addresses the investigated question?”. 

In the following sections, we chose to classify the different models based on the physical 

processes they represent in the pulmonary context, such as airflow and ventilation, blood flow, 

gas exchange, tissue motion and deformation, and tissue remodelling (Figure 3). However, this 

choice is somewhat arbitrary; we could have alternatively classified these models based on 



spatial scales, ranging from molecular and cellular to organ levels, or based on temporal scales, 

such as the short timescales of chemical reactions to the longer timescales of tissue remodelling.  

An aspect to consider is the data that the model can assimilate. Some data (that correspond to 

model input or output, e.g., pressure-volume curves) can be used directly for model 

personalisation (i.e., adapting model parameters using optimisation techniques to minimise the 

distance between observed data and model predictions),, while other data require data 

processing steps. This is especially true for images, which might require segmentation to extract 

geometries [53, 54], registration to extract motion [55, 56], etc. 

Another aspect to consider when comparing models is the associated computational cost. 

Indeed, if some of the models discussed later can be solved in real time on a standard computer, 

other require dedicated computer codes and hours of computing time on super computers. The 

development of digital twins can make this computational cost issue especially critical. 

In summary, the art of modelling in the context of digital twins consists in finding the “right” 

(with respect to the question to address) trade-off between physiology, modelling complexity, 

computational cost and available data. 

2.2.2 Reduced respiratory models 

Global respiratory models, often called "reduced" or "lumped", aim to represent the lungs' main 

functions (ventilation and gas exchange) by modelling relationships between global variables 

rather than explicitly representing each mechanism. The simplest “single-compartment” models 

basically represent the global pressure-volume relationship of the lung together with some basic 

O2/CO2 diffusion models [57, 58], while the most complex models can have hundreds of 

compartments that can exchange air and diffuse O2/CO2 [59–61], some even including blood 

“compartments” to take into account hemodynamics [62, 63]. 



Such models can integrate breathing and air/blood composition data, such as inspired/expired 

oxygen fraction, blood partial pressure of O2/CO2 and pH, cardiac output, etc. They have 

already been applied to various clinically relevant questions, including better understand how 

COPD [64] or Covid [65] affect breathing, how various manoeuvres affect alveoli recruitment 

[66, 67], the role of PEEP in ARDS patients [68], etc. Interesting reviews can be found in [69, 

70]. 

If these models are good at representing the global function of the lungs, they are intrinsically 

limited at representing finer or more complex phenomena. That is why refined models of 

specific phenomena have been developed. Depending on the objective, these fine models can 

be designed autonomously, or in interaction with a reduced model of the rest of the system [71, 

72]. 

2.2.3 Refined air flow models 

To better represent the complex flow of air within the airway tree, 3D flow models have been 

developed [73–75]. Since only the larger airways can be represented while keeping a reasonable 

computational cost, one very important question is the coupling with the smaller airways 

represented in a lumped manner [76, 77]. Another distinction between approaches comes from 

the airway walls, which can be fixed [78] or moving [73, 79] to represent the breathing motion. 

Such models can be based on idealised [80] or personalised [81] geometries, which are then 

extracted from clinical images through segmentation. Once personalised, such digital twins can 

notably be used to study aerosols penetration and drug deposition [82, 83]. 

2.2.4 Refined gas exchange models 

Gas exchanges in the lungs have been the subject of an extensive literature since a long time 

[84, 85]. However, well established models are still being debated, and novel relations proposed 

[86, 87]. 3D models of blood perfusion and gas exchanges within alveolar walls have been 



proposed [88, 89], though such detailed models have not yet been coupled to global respiratory 

models. 

2.2.5 Refined tissue motion/deformation models 

The lung parenchyma has also attracted many contributions from the solid mechanics 

community. If original work aimed at describing how the alveolar structure generates the tissue-

scale mechanical properties (i.e., stiffness/compliance) based on idealised microstructures [90–

92], more recent work used realistic acinar microstructures (obtained from micro-CT images 

though image segmentation, cf. [93, 94] for instance) to study the complex deformation patterns 

of such structures [95, 96], potentially including surface tensions at the air-wall interface and 

the effect of surfactant [82, 97, 98]. 

At the organ scale, the lung has been modelled as a compressible solid [99], or as a poroelastic 

solid (i.e., a mixture of solid, which can deform, and fluid, which can flow in, out & within the 

solid) [100–102]. In terms of boundary conditions (i.e., forces and pressures applied onto the 

lung body and boundary that drive the deformation), many proposals have been made, including 

simple pressure fields representing the pleural pressure [99, 102], complex pressure fields that 

depend on gravity and the lung shape [103], contact conditions with the thoracic cage [101], 

etc. 

Such organ-scale models can be personalised to a given patient by extracting geometry (cf. [53, 

104] for instance), texture (as in [105]) and motion (at least two images, e.g., end-expiration 

and end-inspiration, are necessary for this) and identifying model parameters that make the 

model as close as possible to the data.. For instance, in the case of pulmonary fibrosis, it was 

hypothesised that regional compliance estimated through such digital twins could represent 

objective and quantitative biomarkers for early diagnosis and treatment monitoring [106, 107] 

2.2.6 Tissue remodelling modelling 



All models discussed until now are located at the breathing temporal scale. However, taking 

into account in the models the long-term remodelling mechanisms that take place in health and 

disease could help better understand disease evolution, and allow digital twins to make 

prognosis—maybe someday treatment optimisation. If general continuum models of 

remodelling have been proposed for living tissues [108, 109], discrete models are usually easier 

to formulate and implement. Various remodelling models have been proposed specifically for 

the lungs, notably continuum models of inflammation [110] and of growth-induced obstruction 

[111] in airways, as well as discrete models of fibrosis in the alveolar wall [112, 113]. 

In summary, significant progress has been made in the last few decades to develop physics-

based modelling of the respiratory system that could be used for the development of multi-

physics, multi-scale digital twins of patient lungs.  

3. Expected benefits of digital twins in chronic respiratory diseases 

Advances in cyber-physical systems and modelling have brought the development of digital 

twins for chronic respiratory diseases closer to technical feasibility. Future investments in 

research and development to further refine and implement this technology are justified in view 

of the expected benefits for the population, the three main ones being a better understanding of 

the development of chronic respiratory diseases, personalised and timely medicine, and patient-

centred medicine (Figure 4). 

3.1 A better understanding of the development of chronic respiratory diseases 

The most common respiratory diseases in children and adults, i.e., asthma and COPD, are not 

monogenic diseases, but syndromes that cover different pathophysiology[114]. While some 

susceptibility genes have been identified, many environmental factors are also involved, 

making these diseases examples of gene (G)-environment (E) interaction. As the impact of these 

environmental factors is not the same depending on the time of the individual's life, Augusti et 



al. proposed the principle of G x E x T (time) and thus of GETomics to better understand and 

act on the development of chronic respiratory diseases[115, 116]. It should be noted that the 

time dimension includes the age of the individual at which a GxE interaction takes place, but 

also the cumulative history of all previous interactions resulting in the current state of the lung. 

This is particularly important for the evolution of FEV1 over the course of life, which in 

adulthood is a predictor of all-cause mortality[117]. 

Digital twins embody this principle of GETomics: they integrate data from multiple sources, 

whether the patient's genomic data (G), data from their environment collected via multiple 

sensors (E), and the time factor by being dynamic representations of these patients over time 

(T). Thus, this type of information system could allow a better understanding of the 

development of the main chronic respiratory diseases through the ages. 

3.2 Personalised and timely respiratory medicine 

Digital twins allow us to take a further step towards personalised medicine. Simulation digital 

twins, by combining anatomical and physiological approaches make therapeutic adaptations 

specific to each patient possible. In radiology, Zhu et al. developed a personalised and dynamic 

3D digital model of a patient's lungs, created from their CT scan images and electrical 

impedance tomography (EIT) measurements, thus integrating the patient's lung mechanical and 

electrical properties with anatomical data[118]. In intensive care, Förster et al. presented a high-

resolution, patient-specific digital lung model of a premature newborn, based on their imaging 

and functional tests, allowing simulation and 3D visualisation of the regional distribution of 

oxygen in the patient's lung and optimisation of their high-frequency ventilation settings[119]. 

Finally, in surgery, Tai et al. developed a personalised and dynamic 3D digital model of the 

lungs of 90 patients based on their imaging and clinical data. These virtual lungs were viewable 

via a mixed reality system allowing the surgeon to visualise, interact, and thus test different 

surgical procedures[120]. These examples of patient simulation digital twins were the only three 



identified in the systematic review presented above but already show the potential applications 

of simulation digital twins. 

Digital monitoring twins have the potential to add personalisation to the timing of diagnosis 

and management. Chronic respiratory diseases alternate between periods of stability, 

progressive worsening, and exacerbations. The current system of scheduled consultations at 

fixed intervals has the consequence that the doctor is faced with a fait accompli when they find 

that a child with asthma has experienced multiple severe attacks requiring oral corticosteroid 

therapy since the last visit, or that an adult with ILD has had a substantial decline in their FEV1. 

Early detection of progression and worsening is a major challenge that digital twins could 

contribute to not only through connected sensors but also through their integration of the 

patient's cumulative history. For example, the detection of an abnormally high level of pollen 

and pollution in the environment of a patient who has already had an asthma attack under these 

conditions could lead the digital twin to recommend that the patient not engage in outdoor sports 

and/or wear a mask. 

3.3 A patient-centred approach to respiratory medicine 

In addition to its personalised nature, the viewable aspect of the digital twin is a central element 

for patient-centred medicine[121]. The ability for the patient to visualise the state of their lungs 

and environment in real-time at any moment should allow them to better understand their 

disease and the interaction of environmental factors on their respiratory system, and encourage 

them to take care of their digital twin and thus their respiratory health. This is particularly 

important in diseases such as asthma where patients may stop their maintenance treatment, 

thinking they are "cured" in the absence of symptoms, while their bronchial inflammation 

persists and puts them at risk of a severe attack. The digital twin should also enrich discussions 

between doctor and patient and lead to a more collaborative approach around optimising the 

health of the digital twin.  



On the clinician side, visualisation of the digital twin is also crucial. Just as the first computer 

systems only displayed lines of code before being replaced by graphical interfaces, digital twins 

must replace dashboards and allow the patient's state of health to be visualised at a glance to 

facilitate decision-making or the interpretation of the digital twin's recommendations. This is 

all the more necessary as the amount of data relating to a patient has only grown exponentially 

over the last hundred years. In anaesthesia and intensive care, presenting the different data from 

the monitor in the form of an avatar helps to reduce the perceived workload of clinicians[122]. 

Finally, the fact that the digital twin is an avatar of the patient is important for quality care, 

firstly because the clinician can immediately see which patient it is and relate their previous 

knowledge of the patient to the current problem of their digital twin, and secondly because it 

adds a human dimension to the care by reminding the doctor that they are treating patients and 

not numbers, which could reduce the risk of burnout. 

4. Challenges and future research directions 

Digital twins share the technical issues related to all systems using artificial intelligence, 

whether they concern the quality of the data collected, their transfer speed, their integration, 

their security, the risk of bias in algorithms, and the liability issues of the recommendations 

made [123].  

Data quality and accuracy are crucial for reliable digital twins. Inaccurate or incomplete data 

can result in flawed representations and unreliable insights. Digital twins also require 

longitudinal data, which increases the risk of incomplete datasets and presents significant 

challenges to model accuracy. Maintaining data integrity across different sources over time 

necessitates robust data management, interoperability standards, and continuous quality 

validation to ensure the safe and effective use of digital twins in healthcare[124]. 



Data interoperability is a key challenge for digital twins in managing chronic lung diseases. 

Healthcare data comes from diverse sources such as electronic health records, laboratory 

results, and wearable devices, each using different formats and terminologies. This creates 

significant barriers to data integration, which is essential for constructing accurate and 

functional digital twins. Common data models (CDMs), like the Observational Medical 

Outcomes Partnership, are crucial in addressing these challenges by standardising data across 

different sources[125]. By harmonising data structures and vocabularies, CDMs enable the 

integration of complex datasets, making them more useful for digital twin applications[126]. In 

addition, Health Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR) is a widely 

adopted standard specifically designed to enable the seamless exchange of healthcare 

information across different systems in real time. FHIR ensures that data from various 

sources—whether electronic health records, wearable devices, or monitoring systems—can be 

integrated and communicated efficiently[127]. Within the European Respiratory Society, the 

CRC (clinical research collaboration) CONNECT (Moving multiple digital innovations 

towards connected respiratory care: Addressing the over-arching challenges of whole systems 

implementation) launched in 2023 is advancing the field towards an interoperable connected 

digital ecosystem that should help to achieve digital twins for patients with respiratory 

disease[128].  

From a legislative perspective, current regulations such as the Health Insurance Portability and 

Accountability Act (HIPAA), the General Data Protection Regulation (GDPR), and the 

European Union Artificial Intelligence Act (EU AI Act) provide effective frameworks for 

ensuring data privacy, security, and algorithmic transparency. This is particularly important for 

digital twins, which rely on the aggregation of extensive personal health information and the 

generation of automated recommendations. Such sensitive data makes digital twins especially 

vulnerable to misuse if accessed by unauthorised parties. 



 

However, despite these regulations, digital twins present unique challenges that extend beyond 

the scope of current legislative frameworks. Indeed, unlike traditional medical data collection, 

digital twins require an ongoing data stream to maintain an accurate virtual representation of a 

patient's condition. This need for constant updates raises significant regulatory concerns, 

particularly regarding how and when patient consent should be renewed or updated. The 

continuous nature of these updates also impacts decision-making authority, as digital twins may 

support or even drive clinical decisions based on dynamic, evolving data. Current regulations 

do not adequately address how such ongoing data collection, consent renewal, or automated 

decision-making processes should be managed, underscoring the need for specific regulatory 

frameworks tailored to the complexities of digital twins in healthcare[129]. 

The concept of a patient digital twin integrating patients and doctors as "humans in the loop" 

means that human factors must also be taken into account. First, the acceptability of such a 

system deserves to be studied. Two studies conducted in France revealed that among 295 

parents of children with asthma surveyed in 2019 before the Covid pandemic, 55% would agree 

to use such a digital twin system combining sensors and automated recommendations[130], 

while among 95 parents surveyed in 2022 after the pandemic, 69% were ready to use the same 

type of system for managing their child's asthma[131]. The two factors associated with refusal 

of the system were, on the one hand, the importance attached to the human doctor-patient 

relationship and, on the other hand, a disadvantaged socio-economic level. 

Concerning the doctor-patient relationship, it is common to anticipate that digital twins will 

reduce interactions. However, a systematic literature review led by the CRC CONNECT and 

the DRAGON project[132] on the impact of digital health interventions on the patient-provider 

relationship in respiratory medicine showed that telemonitoring systems were associated with 

easier patient access to their healthcare professional and a pleasant feeling of being cared for 



constantly, or a "guardian angel" effect. Moreover, creating a patient's digital twin requires 

working with the patient on the goals that the digital twin's algorithms should seek to achieve. 

In paediatric asthma, a study revealed that children attach the most importance to reducing their 

symptoms during exercise, their parents to preserving their child's respiratory function, and 

their doctors to avoiding severe asthma attacks[133]. Within the same triad, correlations were 

very low, and only in-depth discussions between the three parties would allow coordination of 

the digital twin's objectives. Thus, this study supported the idea that the more digital there is, 

the more humanity is needed.  

Finally, the risk of exacerbating inequalities is a genuine concern due to the cost of the system 

and the lower digital literacy among certain populations, particularly those from disadvantaged 

socioeconomic backgrounds and the elderly[134]. Mitigating this risk will depend on the 

industrialisation of digital twins, which could significantly reduce costs, and on integrating 

these systems from childhood, ensuring familiarity and acceptance throughout the 

lifespan[135]. 

The next steps from a technological perspective are to obtain digital twins that combine 

simulation and monitoring patient digital twins, i.e., digital twins based on both mechanistic 

and data-driven approaches, as is already emerging in cardiology[136]. From a medical 

perspective, digital twins in respiratory medicine will only truly be established once clinical 

research studies have demonstrated their clinical efficacy, safety, cost-effectiveness, and 

environmental impact. 

In conclusion, while the term 'digital twin' may appear to be a buzzword, it actually covers the 

evolution and integration of two technologies: cyber-physical systems and simulation. Although 

many challenges remain, digital twins represent a real opportunity to improve the management 

of patients with chronic respiratory diseases. 
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Figure legends 

Figure 1: Components a patient digital twin system for respiratory diseases. 

Figure 2: Comparison of monitoring and simulation digital twins for chronic lung diseases. 

Figure 3: Multi-physics and multi-scale aspects of lung modelling for simulation digital twins 

Figure 4: Expected benefits and main challenges of patient digital twins in chronic lung diseases 
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