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Abstract

Knowledge graph embedding (KGE) is a hot topic in the field of Knowl-
edge graphs (KG). It aims to transform KG entities and relations into vector
representations, facilitating their manipulation in various application tasks
and real-world scenarios. So far, numerous models have been developed in
KGE to perform KG embedding. However, several challenges must be ad-
dressed when designing effective KGE models. The most discussed challenges
in the literature include scalability (KGs contain millions of entities and re-
lations), incompleteness (missing links), the complexity of relations (sym-
metries, inversion, composition, etc.), and the sparsity of some entities and
relations. The purpose of this paper is to provide a comprehensive overview
of KGE models. We begin with a theoretical analysis and comparison of
the existing methods proposed so far for generating KGE, which we have
classified into four categories. We then conducted experiments using four
benchmark datasets to compare the efficacy, efficiency, inductiveness, the
electricity and the CO2 emission of five state-of-the-art methods in the link
prediction task, providing a comprehensive analysis of the most commonly
used benchmarks in the literature.
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1. Introduction

In recent years, knowledge graphs (KGs) have become widely used in
the field of artificial intelligence. Their ability to store and represent factual
knowledge has led to successful applications in multiple domains, including
information retrieval [1], natural language processing [2], intelligent question
answering systems [3], recommendation systems [4], and more.

The concept of KGs was first introduced by Google in 2012 [5], defined as
a large-scale knowledge base composed of a large number of entities and the
relations between them. Alongside big data and deep learning, KGs are now
one of the main driving forces behind the development of artificial intelligence
[6]. Although Freebase [7], DBpedia [8], and YAGO [9] are widely used for
large-scale KGs that include millions of entities and relations, many missing
facts and implicit relations between entities remain unexplored, leading to
incomplete structures and content in KGs [10].

The expert system developed in the late 1960s [11] is a precursor to KGs,
which are considered intelligent systems that incorporate knowledge and data
on a large scale. By combining knowledge and data, researchers aim to build
knowledge-based systems. In the early stages of modern KG construction, it
was common to codify the knowledge of experts in a particular field, such as
semantic web and KG classification.

In the literature, KGs are described as multi-relational graphs composed
of entities (or nodes) and relations (or edges). A KG is represented as a set
of triples, also called facts, which are denoted in the form (h, r, t), where h
represents the head entity, r represents the relation, and t represents the tail
entity, indicating that two entities are connected by a specific relation [12].
Currently, the main focus of KG research is on three aspects: knowledge
representation [13], KG construction [14], and KG application [15]. These
aspects combine cognitive computing, knowledge representation and reason-
ing, information retrieval and extraction, natural language processing, data
mining, and other technologies [6].

Although KGs represent structured factual information effectively, but
their large-scale and complicated graph structure make them difficult to
manipulate [16]. Entities have intricate and complex relations that involve
structures such as rings and hierarchies. [16]. Additionally, the complexity
of relations which can be assessed based on criteria such as (1) the types of
relations (e.g., symmetric/antisymmetric, transductive, inverse, and hierar-
chical relations). (2) The cardinality (the number of entities involved in a
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relationship, such as one-to-one or one-to-many), and (3) the interconnect-
edness (the degree to which relations are interrelated or dependent on each
other) requires embeddings that are expressive enough to capture these nu-
ances. Certain entities and relations are also rare [90], presenting further
challenges. Consequently, scalability, incompleteness, complex real-world re-
lations, and sparsity are the most challenging aspects of KGs. Therefore, it
is crucial to effectively and efficiently extract and leverage useful information
from large-scale KGs for downstream machine learning (ML) tasks, such as
node classification [17], community detection [18], and link prediction [19].

To facilitate the learning of KGs in ML downstream tasks, KGE, also
known as Knowledge Representation Learning (KRL), was proposed and
has received significant attention within the ML community. The essential
idea of KGE is to embed entities and relations in a low-dimensional space
while preserving as much of the rich information in KGs as possible [20].
KGE models, using optimization strategies, can generate embeddings (vector
representations) that capture the latent properties of entities and relations in
the graph [21]. The latent properties of entities and relations refer to hidden
characteristics that can be inferred through modeling techniques, capturing
essential information about entity interactions and the semantics of relations.
These properties are typically represented as latent features and help evaluate
the complexity of relations, which includes cardinality types (one-to-one, one-
to-many, many-to-many) and multi-hop connections that require multiple
intermediate steps for interpretation.

The purpose of this paper is to provide an overview of the latest lit-
erature on KGE methods, which enhances graphs with additional context,
intelligence, semantics for knowledge acquisition and knowledge-aware appli-
cations. The contributions of this paper are summarized as follows:

• We present a detailed examination of current KGE methods, which we
categorize into four groups. Following this, we conduct an in-depth the-
oretical analysis of KGE methods based on key metrics such as types
of relations (e.g., symmetric/asymmetric, compositional, or inverse),
training approach (inductive or transductive), and computational com-
plexity.

• We include an overview of real-world applications, commonly used
datasets, and popular application tasks, along with their evaluation
metrics, which are currently used for benchmarking. Additionally, we
highlight widely used open-source libraries in KGE research.
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• We conduct a comparative analysis to assess the effectiveness, efficiency,
and inductive capacity of selected KGE models. The experimental
methodology centers on using link prediction as a downstream task
to evaluate these models. This comparison involves an examination
of each model’s scoring functions, training procedures, and generaliz-
ability across various datasets. The results demonstrate each model’s
strengths and limitations in predicting missing links, computational ef-
ficiency, and inductive capabilities across different scenarios. Further-
more, we assess resource consumption, including CPU, GPU, and RAM
energy and power usage, total electricity consumption, and estimated
CO2 emissions.

The remainder of this paper is structured as follows. In Section 2, we
begin by introducing existing KGE models. We also discuss some real-world
applications, the most used datasets, and the main popular metrics in each
application task in Section 3. In Section 4, we present the experimental
results of these models and a discussion. In Section 5, we present the most
open challenges and future work. Finally, in Section 6, we make concluding
remarks.

2. Related works

In the literature, there is a wide range of KGE methods, which are clas-
sified into different categories. Initially, in [26] KGE methods were classi-
fied into two main categories: distance-based models and semantic matching
models. For other categorization, we have [23] [19] [5] [27], KGE methods
are classified into three main categories: translation-based methods, semantic
matching-based methods, and neural network-based methods. Furthermore,
Ji et al. [25] classify KGE methods into four main families: KGE, knowledge
acquisition, temporal KGs, and knowledge-aware applications.

Table 1 presents a summary of various research studies focusing on KG
tasks, datasets, metrics, and key findings. The primary task across most
studies is link prediction, with one study additionally covering Triple clas-
sification. The datasets frequently used include FB15k, WN18, and their
variations such as FB15k-237 and WN18RR, as well as other datasets like
FB13 and YAGO3-10. Metrics used in these studies include Mean Rank
(MR), Hits@k (for k=1, 3, 10), Mean Reciprocal Rank (MRR), Accuracy,
and Area Under the Precision-Recall Curve (AUC-PR). Discussions in these
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studies typically address challenges in knowledge graph completion [91], in-
cluding data sparsity and incompleteness. The studies explore various KGE
Methods, presenting theoretical analyses, experimental results, and efficiency
comparisons. Additionally, some studies analyze the inductive and transduc-
tive properties of neural network-based models, providing insights into the
strengths and limitations of different KGE methods.

Table 1: Summary of related surveys

Ref Tasks Data Metrics Findings

[23]
Link prediction FB15k

WN18
MR
Hits@10

- Discuss how data sparsity affects large-scale
KG systems
- A description of KGE methods
- The experimentation results are collected
from different papers

Triple classification WN11
FB13

Accuracy

[27] Link prediction FB15k
WN18
FB15k-23
WN18RR
YAGO3-10

Hits@1
Hits@10
MR
MRR

- Discuss the problem of incompleteness in KG.
- Presentation of KGE models
- Analyze the results for efficiency and effective-
ness.

[19] Link prediction FB15k-237
FB15k

Hits@1
Hits@3
Hits@10
MRR

- Discuss the problem of incompleteness in KG.
- Theoretical analysis and comparison of the
current KGE methods
- The experimentation results are collected from
different papers

[105] Link prediction WN18R
FB15k-237

AUC-PR A comparison between the inductive and
transductive properties of neural
networks-based models.

[106] Link prediction WN18RR
FB15k-237

Hits@10
AUC-PR

3. Taxonomy of knowledge graph embedding techniques

KGE aims at embedding and representing entities and relations in a low-
dimensional continuous vector space. This space is designed to preserve as
much graph structure and property information as possible, while also facil-
itating calculations involving entities and relations. Most current methods
use the Triples stored in the KG to perform the embedding task, ensuring
that the embeddings are compatible with these Triples.

The literature presents numerous KGEmethods, which can be categorized
into four main groups: translational-based methods, tensor factorization-
based methods (also known as semantic matching-based methods), random-
walk-based methods, and neural network-based methods.
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3.1. Random walk based methods

Many recent methods that belong to the class of direct encoding ap-
proaches [39] learn node embeddings based on random walk statistics [36].
Random Walk (RW) aims to generate random walks for each node in the
graph to capture the graph structure and output similar node embedding
vectors for nodes that occur in the same random walks. A RW describes
a path consisting of a succession of random steps. This strategy includes
various methods that we categorize into the type of graph: homogeneous
graph [37] and heterogeneous graph [37]. The first type of graph is a graph
with a single type of node and single relation for example a social network.
The second type is graphs that have multiple types of connections, multiple
types of nodes, multiple types of links between them and this is the notion of
heterogeneous graphs such as heterogeneous information network (HIN)[37]
and KG.

3.1.1. Homogeneous graphs

In the first category of graphs, we present the most well-known methods
for random walking on this type of graph. Deep walk [40] and node2vec
[41] are two methods that use random walk with skipgram [42]. Deep walk
method differ in that they generate random walks starting at each node in the
graph to create sentences. Using the SkipGram algorithm, node embeddings
are generated for these sentences. But Node2Vec can be viewed as a generic
version of DeepWalk, where Node2Vec’s walks are random, but biased by
two hyperparameters, p and q [38]. When creating walks, these parameters
are employed to increase the likelihood that the path returns to its parent
node or is further away from it.

We can find, also, Large-Scale Information Network Embeddings (LINE)
algorithm [43] where it does not explicitly use random walks, it shares the
same conceptual motivations as DeepWalk and Node2vec. In LINE, the main
idea is to combine two encoders and two decoders. The first objective aims
to encode first-order adjacency information while the second objective has a
more similarity to random walk approaches.

3.1.2. Heterogeneous graphs

For heterogeneous graphs, numerous methods have been proposed. Firstly,
the methods used for HIN where we find Yuxiao Dong et al. [45] which pro-
poses a metapath2vec model. This model is for HIN which learns desirable
node representations where entities of different types are interconnected by
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various types of relations. The idea behind this method is to maximize prob-
ability in consideration of multiple types of node entities and relations. The
metapath2vec model utilizes meta-path-based random walks to create a het-
erogeneous neighborhood for each node and then employs a heterogeneous
skip-gram model to generate node embeddings. Another method we can
mention is HIN2Vec [44], which captures the rich semantics of HINs by using
various types of relations between nodes. HIN2Vec jointly performs multiple
prediction training tasks to learn the latent vectors of nodes and metapaths
in the HIN when given a set of relationships defined as metapaths in the
HIN (which reduces the prediction tasks of the conceptual NN model into
new prediction tasks).

Secondly, we have the following KG methods presented by researchs.
Eneko Agirre et al. [46] present a method for knowledge-based Word Sense
Disambiguation (WSD) based on random walks over relations in a large lex-
ical knowledge base. Zhang Hui et al [47] propose a fast training frame-
work for KGR based on RW strategy based on relationel path and relationel
encodding (RWRel) which unites relation-specific subject embeddings with
relation-specific object embeddings to model the segments of relations in KG.

Due to the fact that RW cannot obtain the syntactic meaning behind the
relations in the KG, embedding is considered the syntactic embedding of the
subject (head) and object relation (tail). This strategy aids in fast training
of KG by RW in relation paths.

Ali Assia and Wajdi Dhifli [48] propose Semantic and Bipartite Graph-
Based Instance Matching (SBIGMat) is an approach to the Instance Match-
ing Problem based on Markov RW. This approach leverages both local and
global information, which is mutually calculated from a pairwise similarity
graph.

SBIGMat can remain fast and scalable by capturing semantic similarity
between source instances and candidate targets from equally ranked nodes
with semantic post-processing. This allows for better instance-matching re-
sults using semantic post-processing.

Qiao Liu et al. [49] propose a hierarchical random walk inference algo-
rithm (HiRi) for relational learning in large-scale graph-structured knowledge
bases, which maintains the computational simplicity of random walk models
and provides better inference accuracy.

To be precise, it explains a two-tier random-walk mechanism for retrieving
relations. The model’s upper tier is associated with the process of recognising
and learning relation sequence patterns from a global perspective. The lower
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tier is to obtain valuable information from the relation-specific subgraphs in
GKBs, as each subgraph only represents one particular type of relationship.

3.2. Fact-based representation learning methods

The facts observed in KG are stored as a collection of triples. Each
triple (h,r,t) is composed of a head entity (h), a tail entity (t), and a re-
lation (r) between them. KGE consists of embedding entities and relations
in a low-dimensional continuous vector space. The embedding task is usu-
ally performed using facts stored in the KG, which require embedding to
be compatible with the facts. Three steps are typically included in typical
KGE methods: the initial step involves representing entities and relations,
which defines the manner in which they are represented using a pointwise
space [28] that includes the tensor, vector and matrix. Entities are typically
represented as vectors and relations are typically treated as operations in
the vector space, which can be represented as tensors, vectors, and matrices,
while other types of space such as Gaussian space [54], complex vector space
[34] and manifold space [50].

The second step aims to compute the scoring function [51]. When a
scoring function fr(h, t) is defined for each fact (h, r, t) to measure its plausi-
bility. The KG tends to assign higher scores to facts that have been observed
compared to those that have not been observed. The last step is to learn
the representations of entities and relations, and to solve an optimization
problem that maximizes the total plausibility of the observed facts.

In recent years, translational and tensor factorization-based methods (se-
mantic matching methods) have become highly popular because they are
simple and can work with the open-world assumption (OWA) [99] in KG.

3.2.1. Translation based methods

Translation-based methods or distance model-based scoring function [52]
in KGC and link prediction is one of the most popular strategies that use
KGE methods to measure the plausibility of facts by calculating the euclidean
distance between entities. The intuition behind this strategy is to learn
embeddings by representing a relation as a translation from h to t, with
the objective of minimizing the distance between h and t after applying the
relational transformation.

To achieve an effective embedding method capable of discerning the au-
thenticity of Triples, TransE (Translating Embeddings) [28] has emerged as
one of the most popular models based on KGE scoring functions. This model
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is introduced to represent entities and relations as translations in the embed-
ding space that is presented in Figure 1 a. TransE is specifically aimed at
minimizing the distance between h and t when connected by a known rela-
tion, where the goal is to predict missing relationships between entities. The
score function of TransE is defined as a distant between h + r and t under
l1-norm or l2-norm constraints. In mathematical expressions, it is shown as
follows:

fr(h, t) = −||h+ r − t||L1/L2 (1)

Despite its significant progress in large-scale KGE, TransE encounters
difficulties when dealing with complex relations where an entity can have
multiple types of relationships. These include one-to-many (1-n) relations,
where a single entity is linked to several entities (e.g., a teacher who teaches
multiple students); many-to-one (n-1) relations, where multiple entities are
connected to a single entity (e.g., several authors writing for the same jour-
nal); and many-to-many (n-n) relations, where multiple entities are related to
multiple others (e.g., students enrolling in various courses). To address these
challenges, numerous variants and extensions of TransE have been proposed,
enhancing its ability to handle such complex relational structures.

TransH (Translating Embeddings in a Hyperplane) [29] extended the orig-
inal TransE model where each entity has different embedding space when the
entity is involved in diverse relations and allows each relation to hold its own
relation-specific hyperplane such as presented in Figure 1 b. The idea of
TransH is to project entities into hyperplanes associated with their relations.
This model is designed to capture the diverse semantics of different rela-
tions, making it suitable for KG with diverse relations. The score function
of this model is presented as follows where wr be the normal vector to a
relation-specific hyperplane

fr(h, t) = −
∥∥(h−w⊤

r hwr) + r− (t−w⊤
r twr)

∥∥2

2
(2)

TransH enables each entity to have a different representation correspond-
ing to its different relations, but the entities and relations are still repre-
sented in the same feature space. An entity might contain various semantic
meanings, while a relation might be able to capture entities’ diverse aspects;
hence, modeling entities and relations in the same semantic space could be
inadequate for graph embedding.

Other models were developed to address the limitations of TransE, par-
ticularly its difficulty in modeling complex relations with varying semantics.
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TransR (Translating Embeddings for Relationships) [30] builds upon the
TransE model by extending the concept of relation-specific hyperplanes in-
troduced by TransH to relation spaces. In an entity vector space, h and t are
the representations of each Triples (h, r, t), and the relations are represented
by a translation vector r in a relation-specific space. The scoring function of
this model as presented as follows where Mr present a projection matrix to
transform thr entity vectors into the relation-specific space:

fr(h, t) = −∥Mrh+ r −Mrt∥22 (3)

In particular, TransR creates a projection matrix for each relation r to
transform the entity vectors into the relation space as presented in Figure 1
c. Nonetheless there are some drawbacks, such as the fact that the h and t
entities have the same projection matrix for a relation, it is understandable
that there may be fundamental differences in their types or attributes. In
addition, entities and relations are involved in an interactive process when
projecting from the entity space to the relation space. Integrated informa-
tion cannot be captured, also, when the projection matrix is only related to
relations. Finally, due to the use of the projection matrix, TransR requires a
large amount of computing resources. To address these shortcomings, TransD
[31] was proposed as an optimization of TransR. It uses two vectors for each
entity-relation pair to construct a dynamic mapping matrix, serving as a sub-
stitute for the projection matrix presented in Figure 1 d. TransD actually
introduces the concept of translation matrices that are specific to relations.
Each relation has its own translation matrix, which is used to transform the
entity vectors in different ways for each relation. This allows TransD to cap-
ture more complex patterns in the data compared to TransE (such as the
difficulty modeling the 1-N and N-1 relations). The score function of TransD
is defined as follows:

fr(h, t) = −
∥∥(wrw

⊤
h + I

)
h+ r−

(
wrw

⊤
t + I

)
t
∥∥2

2
(4)

Where wh, wt and wr are a mapping vectors along with the entity/relation
presentations and I is an identity matrix.

The TransD model constructs a dynamic mapping matrix with two pro-
jection vectors, which effectively reduces computational complexity. To over-
come some drawbacks of the indicated methods, such as the heterogeneity of
the relations (which leads to underfitting in complex relations or overfitting
in simple relations) and the imbalance (the quantities in the relation differ
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between head and tail), TranSparse [53] was proposed. This model requires
that the transformation matrix be sparse. The score function of this model
is presented as follows:

fr(h, t) = −∥Mr(θr)h+ r−Mr(θr)t∥21/2 (5)

where Mr(θr) are a sparse matrices to replace dense projection matrices for
each relation r and the sparse degree θr is linked to the number of entities
connected with relation r.

RotatE [58] introduces the rotational Hadamard product, treating the
relation as a rotation between the h and t entities in a complex space. The
score function is defined as follows:

fr(h, t) = ∥h ◦ r− t∥ (6)

Figure 1: Illustration of such a translation methods

KG embedding Translation-based methods usually consider entities and
relations as vectors embedded in low-dimensional semantic spaces. However,
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the entities and relations in the KGs are various with different granularities.
Therefore, the margin in the margin-based score function that is used to
distinguish positive triples from negative triples should be more flexible due
to diversity, and the uncertainties of entities and relations should be taken
into account.

To address the above shortcoming, KG2E [54] was proposed, introduc-
ing multidimensional gaussian distributions to the KG representations [55].
KG2E represents each entity and relation with a random vector. The scoring
function proposed in TransE is extended in KG2E to learn Gaussian distri-
butions for entities and relations instead of fixed points, thereby capturing
uncertainty and variability.

Another notable model is TransG [56], which is based on Gaussian dis-
tribution. TransG addresses the situation of multiple relation semantics,
where a single relation associated with different entity pairs may encompass
multiple meanings.

3.2.2. Tensor factorization-based methods

. Translation-based methods such as TransE and its extensions are sim-
ple but efficient for many types of relations, which can be used for various
tasks such as KGC, triple classification, and link prediction. However, there
are also some other embedding methods that are tensor factorization-based
methods that perform well on KG representations. The main idea behind
these methods is as follows: The process begins with transforming the facts
represented in a KG into a three-dimensional binary tensor, which effec-
tively structures the data for further analysis by capturing the relationships
between entities and their attributes. Next, embedding matrices correspond-
ing to the embedding vectors of both entities and relations are computed.
These matrices play a crucial role in representing the tensor through a pro-
cess known as factorization, simplifying the complex relationships inherent
in the data. Finally, these embedding matrices are utilized to generate low-
dimensional representations for each entity and relation. This dimensionality
reduction is essential for making the data more manageable and suitable for
various machine learning algorithms, ultimately enhancing both computa-
tional efficiency and performance in downstream tasks. By following these
steps, we can effectively leverage KGs for advanced analytics and machine
learning applications.

RESCAL [57] (see Figure 2 a) assigns a vector to every entity to capture
its latent semantics. A matrix Mr is used to model pairwise interactions
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between latent factors for each relation. The RESCAL scoring function can
be defined as:

fr(h, t) = hTMrt (7)

DistMult [32] (see Figure 2 b) uses a bilinear model to simplify relations
representation by assuming that interactions between entities are symmetric.
Entities and relations are represented as vectors in this model, and the dot
product is utilized to score the plausibility of triples. Although DistMult is
easy to use, its symmetry assumption can cause problems with asymmetric
relations. The DistMult scoring function can be written as:

fr(h, t) = hTdiagrt (8)

where diagr s the diagonal matrix constructed from r.
Holographic Embedding (HolE) [33] (see Figure 2 c) merges RESCAL

expressive power with DistMult efficiency and simplicity. It is a model that
combines circular correlation with entity embeddings to capture rich inter-
actions while still being efficient than RESCAL. HolE’s use of holographic
principles enables it to model both symmetric and asymmetric relations and
capture complex patterns within the KG, while maintaining low computa-
tional requirements. The scoring function of this model can be written as:

fr(h, t) = hT (h ∗ t) (9)

Figure 2: Illustration of such tensor factorization-based methods

Complex Embedding (ComplEx) [34] extends DistMult by introducing
complex-valued embeddings to improve the model of asymmetric relations.
The embeddings of the entity and the relation h, r, and t in ComplEx are
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no longer located in a real space but in a complex space Cd. The ComplEx
scoring function can be presented as:

fr(h, t) = Re(hTdiagr t̃) (10)

where t̃ denote the complex conjugate of the t
ANALOGY [35] expands RESCAL in order to further model the analog-

ical properties of entities and relations. To model analogical structures, it is
necessary to have relations and linear maps that are normal and mutually
commutative. ANALOGY uses matrices Mr to represent relations, but they
can also be blocked diagonalized into a set of sparse almost-diagonal matrices
that contain only O(d). The ANALOGY scoring function can be defined as:

fr(h, t) = hTMrt (11)

Finally, the geometric algebra-based KG embedding framework (GeomE)
[59] employs multivector representations and the geometric product to cre-
ate models of entities and relationships. The model consists of multiple
advanced KG embedding approaches and is advantageous in its capacity to
model various key relation patterns, including anti-symmetry, inversion, and
composition. It also exhibits rich expressiveness with a high degree of free-
dom and good generalizability. The score function of GeomE is defined as the
scalar of the product of the embeddings of h, r and t by using the geometric
product and the Clifford conjugation:

ϕGeomE(h, r, t) = ⟨Sc(Mh ⊗n Mr ⊗n Mt),1⟩ (12)

where n = 2 for GeomE2D and n = 3 for GeomE3D,⊗n denotes element-wise
Geometric Product between two k dimensional n-grade multivectors (e.g.
Mh ⊗n Mr = [Mh1 ⊗n Mr1, ,Mhk ⊗n Mrk]), Sc denotes the scalar component
of a multivector, 1 denotes a k1 vector having all k elements equal to one, M
denotes the element-wise conjugation of multivectors i.e. M = [M1, ...,Mk].

3.3. Neural network based methods

In many different fields, deep learning is one of the most popular and
widely used models. These models possess strong representation and gener-
alization capabilities that enable them to express complex nonlinear projec-
tions. In recent years, the use of a neural network to embed a KG into a
continuous feature space has become a hot topic. Semantic Matching Energy
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model (SME) [60] uses the neural network architecture to achieve semantic
matching, which aims to learn continuous vector representations for entities
and relations that capture semantic relations and similarities within the KG.
The SME can be defined as the distance or energy between the embeddings
of entities involved in a relations where the goal is to minimize this energy
for correct triples (h, r, t) and maximize it for incorrect ones. The scoring
function is defined with two versions of matching blocks: linear and bilinear
block:

fr(h, t) = gl(h, r)
Tgr(r, t) (13)

Where gl(h, r) the combination of r with h and gr(r, t) the combination of r
with h.

The neural tensor network (NTN) [61] was introduced to address the
limitations of simpler models (i.e TransE, Rescal, HolE, etc.) in capturing
nonlinear relations and representing the rich structure of KG. The scoring
function of this model is:

fr(h, t) = rT tanh(hTMrt+M1
r t+M2

r t+ br) (14)

where Mr is the combination of handt by a relation -specific tensor and
M1

r ,M
2
r and br are relation-specific weight matrices and bias vectors.

Neural Association Model (NAM) [62] is a nonlinear model for proba-
bilistic reasoning which aims to use neural networks to model the association
probability for any two events. The scoring function of this model is:

fr(h, t) = tT z(l) (15)

z(l) = [h; r] the vector embeddings of h and r in the input layer.
In recent years, due to their great ability to represent graph structures,

graph neural networks (GNNs) have become more popular. Among recent
methods based on GNN [63] we mentioned Relational Graph Convolutional
Network (R-GCN) [64] for heterogeneous graphs such as KG which is an
application of the GCN [65] framework which applies a nonlinear multilayer
convolution model to graph. R-GCN can capture the rich relational structure
of KG. By aggregating information from its neighbors and considering the
types of relations connecting them, it updates the embedding of each entity.
This makes it possible for RGCNs to capture complex relations patterns and
interactions in the graph. The forward propagation is formulated as follows:

x
(l+1)
i = σ

∑
r∈R

∑
j∈Nr

i
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ci,r
W (l)

r x
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where x
(l)
i signifies the hidden state of the entity i in l − thlayer, N r

i in-

dicates a neighbor collection where it connects to entity i with r andW
(l)
o

are the weight matrices, and ci,r denotes the normalization process. The
purpose of Knowledge Graph Attention Network (KGAT) [66] is to create
neural network architecture for recommendation systems that utilize KGs.
The model is meant to tackle issues in recommendation scenarios where a
bipartite graph is a natural representation of user-item interactions, and a
KG contains additional semantic information. KGAT improves entity and
relations representation by concentrating on the most relevant parts of the
KG, which leads to more precise and context-aware embeddings. The scoring
function of this model is:

f(h, r, t) = ∥Wreh + er −Wret∥22 (17)

where Wr is the transformation matrix of r , which projects entities from the
d dimension entity space into the k dimension relation space. eh, et and er
are the embedding for h, t , and r.

ConvE [67] is a convolutional network that uses 2D convolutional and
multiple non-linear features to model KG, which involves reshaping h and
t into 2D matrix. It was introduced to capture complex relations between
entities in KGs by capturing local patterns and features, leading to more
expressive and accurate embeddings and enhancing the ability to reason and
infer over large and complex KGs.The scoring function of this model is:

fr(h, t) = f(vec (M(h, r))W)t (18)

where (M(h, r) are the 2D reshapings of the head embedding and relation
embedding and w is a matrix which is the responsible for the linear trans-
formation that vectorizes and projects the tensor into k-dimensional space.

3.4. Summary

KGE is crucial to the research community that is focused on KG. This
section reviews four folds of KGE with several modern methods summarized
in Figure 4 which represents the methods with their taxonomy. Table 3
represents a comparison between methods depending the type of relation
(syemmetric (Sym) / antisymmetric (Antisym), the composition and the
inversion), the type of training (inductive (Ind) or transductive (Trans)),
the types of learning (supervised (Super), semi-supervised (Semi) or unsu-
pervised (Unsuper)) and the temporal complexity (Comlx) of each models.
Specific notations and their descriptions are listed in Table 2.
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Table 2: Notations and descriptions

Notation Description

h Head entity

t Tail entity

r Relation

V Number of nodes

K Number of walks

N Number of edges

d Dimensional of entity

k Dimensional of relation

l Number of hidden layers in the network

G All the graph

• Symmetric [68]: The relation between two entities holds true in both
direction (Anna Friend of Lisa): r(h, t) = r(t, h) where h represent
the head, t represent the tail and r represent the relation between two
entities like presented in Figure 3 (a).

• Anti-symmetric [68]: The relation between two entities holds true in
one direction, but not in the opposite direction( hypernym):
r(h, t) = ¬r(t, h) like presented in Figure 3 (b).

• Composition [70]: The relation holds true if there is a chain of interme-
diate entities that connect them (my mother’s husband is my father):
r1(x, y) ∧ r2(y, z) ⇒ r3(x, z) like presented in Figure 3 (c).

• Inversion [70]: The relation holds true in both directions, but with the
head and tail entities reversed (Advisor, advisee):
h+ r2 = t & t− r1 = h ⇒ r1 = −r2 like presented in Figure 3 (d).

• Transductive [71]: The input graph can be observed over all the datasets
splits (the dataset consists of one connected graph). The entire graph
can be observed in all dataset splits, we only split the nodes (some
labels are observed other labels are unobserved). Essentially, we will
utilize the same graph structure for training, validation, and test set,
and we will retain the same graph structure. We will only split node
labels, which means we will keep the graph structure as is, but we
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will add some nodes to the training, validation, and test sets. Dur-
ing training, we calculate the embeddings of nodes like A, B, and C, as
demonstrated in Figure 3 (e), as they form the training set that utilizes
the entire graph but only includes the nodes A, B, and C. During val-
idation, we compute the embeddings for the entire graph and evaluate
it on nodes E and D because we have data for these nodes.

• Inductive [71]: The input graph is divided into multiple subgraphs
across splits (the dataset consists of multiple graphs that are inde-
pendent of each other). The graph structure can only be observed by
splitting it into its own parts, which allows the test to be performed and
generalized to unseen graphs. By removing the dotted links in Figure
3 (f), we can see three distinct graphs: one for training, one for valida-
tion, and one for testing. As a result, when we make a prediction for a
test set node F, we are no longer impacted by the structure information
from other nodes. During training, we compute embeddings only using
the nodes A, B, and C in the graph. During validation, we use the
graph over nodes E and D to calculate the embeddings and evaluate
the model on those nodes. However, the drawback of this approach is
that splitting the original graph into many different small pieces results
in the loss of some graph information.

• Scalability [72]: refers to the ability of models to efficiently and ef-
fectively handle the complexity of large-scale KGs, enabling efficient
representation learning, semantic reasoning, and downstream applica-
tions such as link prediction, entity classification. The key aspects of
scalability in KGE include:

– Managing and processing a large amount of data that includes
entities, relationships, and associated attributes.

– Training on large datasets within a reasonable time frame, which
involves enhancing training models, parallelizing computations,
and utilizing distributed computing resources if necessary.

– Efficiently handling large graphs by using sampling strategies such
as random sampling, negative sampling, or neighborhood sam-
pling techniques.

– Employing model compression, quantization, or low-rank factor-
ization to reduce the memory footprint of embedding models with-

18



out sacrificing their representational power to enhance scalability.

– Managing computational resources such as the CPU and GPU is
crucial for enhancing performance and scalability.

Figure 3: Presentation of different aspect of connection between entities

Developing a novel KGE model involves four essential steps. First, the
representation space [69] must be defined, determining how entities and re-
lations are represented. Second, a scoring function needs to be established
to measure the plausibility of factual triples. Third, encoding models must
be designed to represent and learn relational interactions effectively. Finally,
auxiliary information, such as textual descriptions, relation/entity types, and
entity images, should be incorporated into the proposed embedding methods
to enhance the model’s accuracy and comprehensiveness.

The Euclidean point-wise space is the most widely used representation
space [23], where entities are embedded in a vector space and interactions are
modeled using vectors, matrices, or tensors (e.g., TransE, TransH, TransR,
TransD, NTN, HolE, Analogy). Other representation spaces, such as complex
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vector spaces, Gaussian distributions, and manifold spaces, are also explored
[24].

In manifold space, point-wise embedding is relaxed, providing an advan-
tage over Euclidean space. Gaussian embeddings can capture uncertainties
in entities and relations, as well as multiple relation semantics (e.g., KG2E
and TransG). Complex vector space embeddings are effective for modeling
different relational connectivity patterns, especially symmetry/antisymmetry
(e.g., ComplEx, RotatE).

Selecting the appropriate representation space is crucial for encoding the
semantic information of entities and capturing their relational properties.
When developing a representation learning model, it is important to choose
and design the representation space carefully to match the nature of the
encoding methods while balancing expressiveness and computational com-
plexity.

Current research focuses on coding models, such as linear/bilinear models
[70], factorization, and neural networks. Additionally, auxiliary information,
including textual, visual, and typed information, plays a significant role.

Linear/bilinear models represent interactions between entities and rela-
tions using linear operations, such as SME, DistMult, ComplEx, and Anal-
ogy. Factorization methods formulate KGE models as three-way tensor de-
compositions, such as Rescal. Recent studies have shown that neural net-
works for encoding semantic matching have achieved remarkable predictive
performance. Neural networks such as NTN, NAM, SME, ConvE, R-GCN,
and KGAT offer alternative methods to encode models by incorporating lin-
ear/bilinear blocks.

4. Real world applications, datasets and evaluation metrics

4.1. Real-word applications

Knowledge Graphs (KGs) have received significant research attention in
recent years. Depending on the focus, KG can be classified into two cate-
gories: KG construction techniques and KG applications.

KG construction technique research focuses on the representation, rea-
soning, and extraction of KGs, while application research aims to apply KGs
to specific systems or domains. Based on the current survey, popular ap-
plications dedicated to applying KGs in specific areas include question an-
swering systems (QA), recommender systems [82], and information retrieval
systems. Additionally, KGs have wide applications in specific domains such

20



Figure 4: KGE taxonomy of methods

as medicine, finance, cybersecurity, news, and education. The taxonomy of
KG application areas is shown in Figure 5.

4.1.1. Question answering systems

In computer science, question answering is a traditional research topic
that aims to find direct and precise answers from databases by analyzing
users’ intentions through their queries. Today, natural language questions
(NLQ) are answered with facts from KGs by the current KG-based question
answering system [75]. In fact, the research results in semantic aware QA
services are enhanced by the semantic information from KGs.

Among QA systems, Watson, developed by IBM to defeat human ex-
perts in the Jeopardy program, uses several knowledge bases, such as YAGO
and DBpedia, as its data source. Social chatbots and digital assistants like
XiaoIce, Cortana, and Siri also rely on structured knowledge as a key com-
ponent. Freebase is the most well-known knowledge source used by many
research QA systems, which often test their systems on WebQuestions.

Traditional QA systems over KGs [73] can be grouped into three cat-
egories: semantic parsing, information retrieval, and embedding. First ,
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Table 3: Comparative table of KGE methods

Model Sym Antisym Ind Trans Super Semi Unsup Inv Comp Comlx

DeepWalk [40] O(V log V )

Node2vec [41] O(V log V )

LINE [43] O(K ∗N)

Hint2vec [44] O(K ∗N)

Metapath2vec [45] O(K ∗N)

WSD [46] -

HiRi [49] -

RWRel [47] -

SBigMat [48] -

TransE [28] O(d)

TransH [29] O(d)

TransR [30] O(dk)

TransD [31] O(max(d, k))

Transparse [53] O(dk)

RotatE [58] O(d)

KGE [54] O(d)

TransG [56] O(dc)

Rescale [57] O(d2)

DistMult [32] O(d)

ComplEx [34] O(d)

HolE [33] O(d log d)

Analogy [35] O(d)

GeomE [59] O(d)

NAM [62] O(Ld2)

SME [60] O(d2)

NTN [61] O(d2k)

R-GCN [64] O((n− 1)K2)

ConvE [67] O(d)

KGAT [66] O(|G|d2)

semantic parsing work transforms NLQs into logic forms that express the
semantics of the entire query. The parsed results are then used to generate
structured queries to search knowledge bases and obtain answers. Second,
information retrieval consist to automatically translate NLQ into structured
queries and retrieve a set of candidate answers from the kB. Features and
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Figure 5: KG Applications taxonomy

candidates are extracted to rank these candidates, proposing the most likely
correct answer. Finally, Embedding learns low-dimensional vector embed-
dings of given question and candidate answers. Then, the candidates with
the highest similarity score will be considered as the final answers. Further-
more, in recent years, with the rapid growth of DL in the field of NLP, the
performance of KG-based QA systems [76] has improved by combining deep
learning methods with traditional methods.

4.1.2. Recommender systems

The purpose of RSs [82] is to filter vital information fragments from a
vast amount of dynamically generated data according to user preferences,
interests, and behaviors. RSs gather information on a set of items (such as
movies, songs, books, applications, and websites) and predict which item the
user will prefer.

RSs have been successful implemented in many fields, including e-commerce
websites and streaming services such as Netflix, as well as movie, music,
and social networking sites. A wide variety of traditional approaches have
been developed for building recommendation systems, including collabora-
tive filtering, content-based filtering, and hybrid filtering. One of the most
commonly used and mature filtering techniques is collaborative filtering [84].

Recently, studies have started to consider KGs as a source of side in-
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formation. The relationships between different types in a KG help improve
the precision of the recommender and increase the variety of recommended
items [83]. The majority of methods used to construct KG-based recom-
mender systems can be categorized into two approaches: embedding-based
and path-based. The embedding-based approach preprocesses the KG using
KGE methods and applies the learned entity embeddings to a recommen-
dation framework. The path-based approach aims to create a graph model
directly to explore various patterns of connections among nodes in the KG,
providing additional information for recommendations.

4.1.3. Information retrieval

In a KG, retrieving relevant information is done by retrieving it from a
structured and interconnected collection of data, where entities and their re-
lationships are explicitly defined. KGs often contain a wealth of information,
and effective information retrieval [85] is essential to extract valuable insights.
The emergence of KGs has led to the incorporation of entity data from KGs
by more and more commercial web-based search engines to improve their
search results. For instance, Google uses data from Google Plus and Google
KG , while Facebook uses Graph Search to search for entities. The prop-
erty of KGs that contains human knowledge about real-word entities helps
search systems improve their ability to understand queries and documents
[86]. KGs’ semantics can be utilized in various components, including query
representation, document representation, and search system ranking.

4.1.4. Domain-specific

Among the new application domains in KGs, we discuss their use in the
medical domain and the cybersecurity domain.

The development and application of KGs in the medical domain hold
great promise in advancing healthcare [74], improving patient outcomes [77],
and driving innovation in medical research and treatment. These KGs rep-
resent entities such as diseases, drugs, genes, and medical procedures, and
their relationships in a structured format. The use of KGs in the medical do-
main offers numerous benefits, such as enabling advanced query capabilities,
facilitating the integration of diverse data sources, and promoting personal-
ized medicine. Applications of medical KGs include clinical decision support,
drug discovery and development [89], disease profiling and stratification [88],
patient cohort identification [87], and biomedical research.
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The application of KGs in the cybersecurity domain [73] has gained signif-
icant attention due to the complex nature of cyber threats and the increasing
need for efficient, accurate, and actionable intelligence. By using these KGs,
security professionals can gain insights, detect patterns, and make informed
decisions to improve overall security posture. A well-designed and maintained
cybersecurity KG provides security teams with a holistic and contextualized
view of their cybersecurity environment, empowering them to make informed
decisions and respond effectively to cyber threats.

4.2. Open access datasets

The main goal in this section is to present available open access datasets
for the scientific community. Table 4 presents a compilation of publicly ac-
cessible KGs, detailing their scale and composition. Notably, WordNet [90],
established in the 1980s, serves as a comprehensive lexical database for En-
glish words. It features semantic connections such as synonymy, antonymy,
hyponymy, meronymy, troponomy, and entailment, encompassing 155,000
entities and 207,000 facts. WordNet has two extensions: WN18 [91] and
WN18RR [91].

In 2007, Freebase [92, 93] appeared as a large collaborative general knowl-
edge base. It contains 44M entities and 2.4B facts. In Freebase, 71% of 3
million person entities miss a place of birth [104], 75% do not have a national-
ity, and 94% have no facts about their parents (West et al., 2014). FB15k and
FB15k-237 are two subsets of Freebase. FB15k [94] is a large-scale KG con-
taining general knowledge facts, mainly about movies, actors, awards, sports,
and sports teams. FB15k-237 [94] is a subset of FB15k where the inverse re-
lations are removed. Among these datasets, FB15k-237 and WN18RR are
widely adopted for performance benchmarking, as they have removed the
inverse relations to mitigate the issue of test leakage.

For example, both DBpedia [95] and YAGO [96, 97] are derived from
information in Wikipedia infoboxes. In particular, English DBpedia 2014
contains 4.3M entities and 70M Triples, with 60% of person entities missing
a place of birth and 58% of scientists lacking a fact about what they are known
for. However, in 2008, YAGO also included information from GeoNames,
which contains spatial information.

4.3. Application tasks and evaluation metrics

After introducing the existing KGE methods, real-world applications, and
datasets, we explore various evaluation metrics that we classified according
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Table 4: Open benchmarks datasets

Dataset Description Subset #Ent #Rel

WordNet
(1980) [90]

Lexical database of semantic
relations between words that
contain 155 k of entities and 207 k
of facts.

WN11 38,696 11

WN18 40.943 18

WN18RR 40.943 11

Freebase
(2007) [92]

Large collaborative knowledge
base for persons entities the
birthplace that contains 44 M of
entities and 2.4b of facts.

FB13K 75,043 13

FB15K 14.951 1.345

FB15K-
237

14.951 237

DBpedia
(2007) [95]

Automatically extracted structured
data from Wikipedia that contain
3.4 M of entities and 70 M of facts

DB100K 99.604 470

YAGO
(2008) [96]

An ontology and knowledge base
that extends beyond Freebase in-
cludes information from GeoNames
that contain 10 M of entities and
120 M of facts

YAGO3-10 123.182 37

to the application tasks. There are multiple types of application tasks em-
ployed to evaluate the performance of embedding models, with the most
common methods including link prediction, Triple classification, and entity
classification.

4.3.1. Link Prediction

Link prediction [101] aims to predict missing relations and new links
between entities in a KG given the existing links among entities. Several
methods are used for link prediction in KGs, including translation-based
methods (e.g., TransE, TransR, TransD, TransH), semantic matching-based
methods (e.g., Rescal, ComplEx, DistMult), random walk-based methods,
and neural network models (e.g., GNN and DNN). The performance of KGE
methods can be quantified using standard evaluation metrics such as mean
rank (MR), mean reciprocal rank (MRR), and hit-at-k.

• Mean rank (MR): A metric for evaluating the performance of a ranking
algorithm or system, measuring the average position at which relevant
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items appear in a ranked list.

• Mean Reciprocal Rank (MRR) [99] : Considers the rank of the first
correct prediction. It is the reciprocal of the rank of the first correctly
predicted positive example, giving higher scores for correct predictions
that appear earlier in the ranked list.

• Area Under the Precision-Recall curve (AUC-PR) [100]: is applied as
a performance metric to evaluate the effectiveness of binary classifiers,
particularly in scenarios where class distributions are imbalanced. The
AUC-PR provides a scalar value that summarizes the performance of
a model by integrating the precision-recall curve, which plots precision
against recall at various threshold settings.

• Hits@k [99] : The percentage of test triples where the ground truth
entity ranks within the top K candidates.

4.3.2. Triple classification

. Triple classification [103] in a KG involves predicting the correctness or
validity of a triple (subject, predicate, object) within the graph. In a KG,
triples represent relations between entities, and Triple classification aims to
determine whether a given triple is true or false. Triples are labeled as
positive (true) or negative (false) based on their correctness. Positive triples
reflect real relationships in the underlying domain, while negative triples are
incorrect or not present in the domain. Embedding models, such as TransE,
TransH, or ComplEx, are used to learn vector representations of entities and
relations. These embeddings capture semantic information about entities and
relationships in the KG, and classification can be performed using machine
learning models on top of these embeddings.

The evaluation metrics used in Triple classification are as follows:

• Precision at k (P@k) [102] : Measures the proportion of correctly pre-
dicted positive examples in the top k rankings. This metric is useful
when only the top-ranked predictions matter.

• Recall at k (R@k) [102] : Measures the proportion of true positive
examples in the top k predictions relative to all positive examples in
the dataset. This metric is useful when identifying as many positive
examples as possible is important.
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• Accuracy [98] : Measured by the ratio of correctly predicted links to
the total of non-existent links (only two-hop distances).

• Precision [102] : The percentage of true positive predictions out of all
positive predictions. Precision values range from 0 to 1.

• Recall : Measures the proportion of total positives that were predicted
to be positive.

• F1-Score [102] : Represents the harmonic mean between precision and
recall. Both false positives and false negatives are taken into account
in the F1 score.

• Area Under the Receiver Operating Characteristic curve (AUC-ROC)
[98] : Measures the overall performance of a binary classification model.
The AUC is calculated by adding the area under the ROC curve, and
the larger the area, the more accurate the predictor. AUC-ROC is
often used in binary classification problems.

4.3.3. Entity classification

. Entity classification [103] involves assigning predefined classes or cate-
gories to entities based on their attributes, relations, or other relevant in-
formation within the graph. Entity classification uses supervised machine
learning algorithms to learn a model that can predict entity classes based on
input features. Common algorithms include decision trees, random forests,
support vector machines, and neural networks. To evaluate the performance
of this task, we use the same metrics as in Triple classification, which are
precision, accuracy, recall, F1-score, and ROC-AUC.

4.4. Source codes and libraries

There are several libraries and frameworks available for processing KG
and KNN, each offering unique features and capabilities. AmpliGraph fo-
cuses on KGE, providing tools for link prediction, node classification, and
clustering. One popular library is NetworkX, a Python package for the cre-
ation, manipulation, and study of the structure, dynamics, and functions of
complex networks. For more advanced tasks such as embedding and link
prediction, PyTorch Geometric (PyG) which is is a scalable GNN library,
that offer a variety of graph operations and utilities and DGL (Deep Graph
Library) supports multiple backends (PyTorch, MXNet, TensorFlow) and is
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designed for scalable GNNs with an extensive API. These libraries provide ef-
ficient and scalable implementations of various graph neural network (GNN)
models and can leverage GPU acceleration. StellarGraph is another useful
library specifically designed for ML on graph-structured data, providing im-
plementations of popular algorithms like GraphSAGE, GCN, and HinSAGE.
PyKEEN (Python KnowlEdge EmbeddiNgs) is a Python library designed to
train and evaluate KGE models that can incorporate multi-modal informa-
tion. Graph-tool is a Python library that offers efficient algorithms for graph
analysis and manipulation, known for its performance and ability to handle
large-scale graphs. DGL-KE is a high performance, easy-to-use, and scalable
package for learning large-scale KGE. The package is implemented on the top
of DGL and developers can run DGL-KE on CPU machine, GPU machine,
as well as clusters with a set of popular models. Collectively, these libraries
provide a robust toolkit for researchers and practitioners working with KGs,
enabling efficient processing, analysis, and application of graph-based data.
Table 5 provides a summary of the creation dates, creators, build type and
the link of the specified libraries.

Table 5: Open-source libraries

Library Creation Creator Build Link

NetworkX 2002 Aric Hagberg, Dan
Schult, and Pieter
Swart

Python https://networkx.github.io/

Graph-tool 2006 Tiago de Paula
Peixoto

C++ with a
Python

https://graph-tool.skewed.de/

AmpliGraph 2018 Accenture Labs TensorFlow https://github.com/Accenture/AmpliGraph

PyG 2018 TU Dortmund Uni-
versity

PyTorch https://github.com/pyg-team/pytorch geometric

DGL 2019 NYU, AWS, and
others

PyTorch/ MXNet/
TensorFlow

https://www.dgl.ai/

StellarGraph 2019 CSIRO’s Data61 TensorFlow /
Keras

https://stellargraph.readthedocs.io/

PyKEEN 2020 University of Bonn
and Fraunhofer
IAIS

PyTorch https://github.com/pykeen/pykeen

DGL-KE 2020 AWS AI PyTorch/ MXNet/
TensorFlow

https://github.com/awslabs/dgl-ke
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5. Experimentation

5.1. Methodology

In this section, we provide a comprehensive report on the experiments
and comparisons conducted in our work. Our experiment focuses on link
prediction as a downstream task. The main objectives of this experimental
methodology are to investigate whether different KGE models can predict
missing links within a KG effectively, efficiently, and inductively, and to as-
sess their effectiveness across different metrics. We aim to explain the com-
parative analysis of selected KGE models, detailing their underlying scoring
functions, training procedures, and the specific datasets used in the experi-
ments. Understanding the strengths and weaknesses of various KGE models
is crucial for advancing KG research. By identifying the best models for dif-
ferent scenarios, researchers and practitioners can make informed decisions
about which models to use in experimentation, thereby enhancing the accu-
racy and efficiency of KG applications.

5.1.1. Experimental set-up

Our analysis begins with a concise overview of the environment we use
for our analysis, as well as the methods we employ to train and evaluate the
selected KGE models.

Our experiments, training, and evaluation of each model are conducted
on the Grid5000 1 server environment using a cluster with 3 nodes, 6 AMD
EPYC 7352 (Zen 2) CPUs, x86 64 architecture, 2 CPUs per node, 24 cores
per CPU, 256 GB RAM, and 2 Nvidia A40 GPUs (45 GiB). The operating
system is Ubuntu 20.04. The implementation of the model architectures is
based on the PyTorch framework.

We train and evaluate some selected models introduced in Section 2. From
the family of translation methods, we chose TransE and RotatE. From the
family of tensor factorization methods, we selected DistMult and ComplEx.
From the last family, we selected the R-GCN model. To ensure our results
are reproducible, we use publicly available DGL implementations 2 whenever
possible.

We adopt four widely used KG datasets to evaluate performance, which
can be classified into four categories: FB15k, FB15-237, WN18, andWN18RR.

1https://www.grid5000.fr/w/Grid5000:Home
2https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding
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These datasets allow for a comprehensive evaluation of the models’ perfor-
mance. The details of these four datasets are shown in Section 3.1. Table
6 summarizes their full statistical information on data splitting, including
training, test, and validation.

Table 6: Data Description

Dataset #Train #Test #Val

FB15K 483142 59071 50000

WN18 141442 5000 5000

FB15K-237 272115 20466 17535

WN18RR 86835 3134 3034

To assess the performance of the indicated methods, we report global
results for each model using the five most popular metrics for link prediction,
which we present in Section 3.3: H@1, H@3, H@10 and MRR

5.1.2. Baseline analyses

In this section, we conduct a set of experiments. First, we present our
results on the predictive performance of KGE models in link prediction task.
The goal of these experiments is to analyze how predictive performance varies
when considering the type of relations: symmetric/anti-symmetric, inversion,
composition, and whether the model can handle one-to-many (1-n) or many-
to-many (n-n) relations. Additionally, we consider the size of the dataset
(number of entities and relations).

In the second part, we evaluate the efficiency of KGE models in link pre-
diction task in terms of training and prediction time, and assess the scalability
of the best models in each category.We evaluate each model’s efficiency based
on two primary factors:

• Training time: the time needed to train and optimize embeddings for
relationships and entities.

• Prediction time: the time needed to produce comprehensive rankings
for a single test fact, encompassing both head and tail predictions.

In the third part, we discuss the inductivity of the tested models and we
present the categories that has the best inductivity performance. The main
focus of inductive representation is on how well the model represents unseen
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entities. The evaluation ability of the model increases with the number of
unseen entities in the evaluation dataset. As a result, the experiment uses
the GraiL dataset division method3 to divide the dataset. Root nodes are
randomly chosen from the KG, and the training graph is composed of K-
hop neighborhood nodes around the root node. Following the removal of the
training graph from the KG, the test graph is generated similarly, where each
dataset is divided into four parts: 1, 2, 3, and 4. The corresponding test sets
are ind1, ind2, ind3, and ind4. The model’s inductive characteristics can be
verified by ensuring that there are no duplicate entities in both training and
test sets, and by comparing the relations in the test graph to those in the
training graph.

Finally, we present the CPU, GPU and RAM energy and power con-
sumption, then total electricity consumption, and CO2 emissions that we
described in details:

• CPU Energy and Power Consumption 4 [78]: the energy consumption of
a CPU varies based on its usage, clock speed, and architecture. Modern
CPUs can consume anywhere from a few watts (idle) to over 200 watts
(under heavy load).

• GPU Energy and Power Consumption 5 [78]: GPUs typically consume
more power than CPUs due to their parallel processing capabilities.
Power consumption ranges from tens of watts for low-end models to
over 300 watts for high-end models.

• RAM Energy and Power Consumption [79]: RAM power consumption
varies with the type (DDR3, DDR4, etc.), size, and number of modules.
It generally ranges from 1.5 to 5 watts per module.

• Total Electricity Consumption [80]: total electricity consumption of a
computer system is the sum of the power consumed by the CPU, GPU,
RAM, and other components (motherboard, storage, peripherals).

• CO2 Emissions [81]: CO2 emissions are calculated based on the elec-
tricity consumption and the carbon intensity of the electricity source.

3https://github.com/kkteru/grail/tree/master/data
4https://gamersnexus.net/cpus/intel-problem-cpu-efficiency-power-consumption
5https://www.nvidia.com/en-us/glossary/power-efficiency/
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5.2. Experimental Results

5.2.1. Effectiveness

In this section, we report the results regarding the effectiveness of KGE
models in the link prediction task in terms of time and predictive perfor-
mance. Our objective for this experiment is to examine the variations in
predictive performance when considering the size of the dataset, the com-
plexity, and the type of relations. We present our results in Figures 6 (a),
6 (b), 6 (c), and 6 (d). We use MRR, Hits@1, Hits@3, and Hits@10 for
measuring effectiveness.

Table 7: The performance results of KGE models

Dataset FB15K WN18

Metric MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE 0.2759 0.1593 0.3127 0.5277 0.418 0.1805 0.602 0.814

RotatE 0.2798 0.1642 0.3166 0.5285 0.6043 0.483 0.6826 0.8311

ComplEx 0.2252 0.1168 0.2557 0.4568 0.030 0.011 0.013 0.050

DistMult 0.0983 0.0399 0.1004 0.2112 0.032 0.013 0.012 0.005

R-GCN 0.1002 0.0666 0.0958 0.1571 0.0469 0.0247 0.0441 0.0851

Dataset FB15K-237 WN18RR

TransE 0.1698 0.1001 0.1730 0.3181 0.1429 0.0015 0.2268 0.4430

RotatE 0.1766 0.1061 0.1820 0.3255 0.3059 0.01940 0.3814 0.5036

ComplEx 0.0814 0.0281 0.0820 0.1881 0.060 0.010 0.019 0.006

DistMult 0.0216 0.0098 0.0265 0.0401 0.061 0.010 0.020 0.062

R-GCN 0.1064 0.0686 0.1049 0.1715 0.0405 0.0202 0.0352 0.0789

Based on Figure 6 and Table 7, RotatE achieves the best performance in
all benchmark datasets. This results are due to that the RotatE can capture
the different type of relations like the inversion, the composition, the symme-
try and anti-symmetry relations that we indicate in Table 3. This model can,
also, easily calculate and generalize a large different type of relation which we
have FB15K has 1345 types of relations compared to other datasets which
have few relation types that we present in Table 4. In contrast, R-GCN,
on the other hand, ranks third with WN18, FB15K-237 and WN18RR, but
not with FB15K. This is because R-GCN must gather all information about
neighbors that have one or more relations. However, the performance of
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FB15K has declined due to the exponential increase in computational com-
plexity for R-GCN, which has 1345 types of relations. The second best rank
is for TransE, we can explain that with TransE can’t resolve the symmetric
relation (Table 3) and the as trouble coping with complex relations that an
entity can have multi-relations (Section 2.2.1). To better compare the perfor-
mance of different models on each evaluation metrics, Figure 6 displays the
curves drawn for every model in relation to each benchmarks with diverse
metrics.

Figure 6: Performance variation of different models.

For the other models, ComplEx and DistMult exhibit minimal perfor-
mance. This can be attributed to the fact that DistMult can only capture
symmetric relations, whereas ComplEx is more effective than DistMult as it
can capture both composed and symmetric/anti-symmetric relations (details
in Table 3 in Section 2.4).

We can also observe that the performance of the models decreases with
the datasets FB15K-237 and WN18RR compared to FB15K and WN18.
This can be explained by the size of the data and the types of relations
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having a significant impact on performance. Additionally, this result can
be attributed to the removal of inverse relations, which leads to the loss of
important information. Therefore, based on these results, we can conclude
that the literature and experimental analyses are well aligned.

5.2.2. Efficiency

In this section, we present our findings on the efficiency of KGE models
in the link prediction task in terms of training and prediction time. In Figure
7 and Table 8, we illustrate the training time in seconds for each model on
each dataset. We observed that training times vary from a few seconds for R-
GCN to about 3 hours for other models. Compared to the embedding-based
models, the R-GCN model is strikingly fast. R-GCN considers the training
time as a configuration parameter and achieves optimal performance within
14 to 15s for FB15k and WN18, and 16 seconds for FB15k-237 and WN18RR.
To explain this results, the R-GCN model requires a high amount of memory,
which is preserved by the Grid5000 server’s high performance, which enables
faster training and prediction time.

In Figure 8 and Table 8, we depict the prediction time for each model,
which refers to the duration needed to generate complete rankings for both
h and t predictions of a single fact. These scores are primarily influenced by
the dimensions of the embeddings and the size of the evaluation batch. In
our experiments with these models, we used a maximum evaluation batch
size of 1024, which is the maximum allowed in the setting. We observed
that the R-GCN model has the best training and prediction times with all
benchmark datasets compared to the other models, where ComplEx ranks
second and DistMult ranks third.

Training and prediction times are influenced by several factors, including
the model architecture, with deep neural networks such as R-GCN typically
requiring longer computations. Additionally, model hyperparameters, such
as embedding size and the number of negative samples per positive instance,
play a crucial role. The size of the dataset, encompassing the number of
entities, relations, and training triples to process, also significantly impacts
these times. For example, Freebase has a wide variety of relations and a
large volume of facts and entities compared to other datasets, resulting in
longer training and prediction times. Additionally, the type of relations
influences the time required; datasets like FB15K-237 and WN18RR, which
have removed inverse relations, experience faster training and prediction.
We further investigate how the training times of the best-performing models
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within each family scale as the volume of data increases.

Table 8: Training and prediction time results

Dataset FB15K WN18 FB15K-237 WN18RR

Train Pred Train Pred Train Pred Train Pred

TransE 9393.68 62.9726 2773 18.55 5384.39 35.18 1698.38 11.27

RotatE 7708.13 51.19 2598.76 17.31 4309.52 28.69 1593.61 10.62

ComplEx 6177.28 41.13 1704.46 11.21 3944.04 26.04 1051.78 7.01

DistMult 7141.95 47.63 2056.67 13.66 3983.088 28.11 1230.62 8.099

R-GCN 14.49 0.065 15.24 0.0956 16.39 0.0924 16.18 0.10
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Figure 7: Training time

5.2.3. Inductivity

Our goal in this section is to test and evaluate the tested model by com-
pleting link prediction tasks and adopting Hits@10 as the evaluation metric
to evaluate the inductivity performance of each models. To run experiments
on the GraIL method, we used the code 6 described in the ICML’20 paper
[105].

6https://github.com/kkteru/grail
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Figure 8: Prediction time

Table 9 demonstrates the experimental results of Hits@10 on datasets 1,
2, 3, and 4 of WN18RR and FB15K-237. According to the results presented
in Table 9 and Figure 9, we observe that R-GCN achieves the best results
with the two benchmarks across all four test sets. This can be explained
by the fact that the R-GCN model is naturally inductive. For the other
models, we observe that RotatE, ComplEx, and DistMult have acceptable
results due to their ability to capture complex interactions between entities
and relations and their capacity to model intricate relationships. TransE
shows lower inductivity compared to models like ComplEx or RotatE due
to its simplistic modeling of relations, which may limit its ability to handle
nuanced reasoning tasks.

Table 9: Inductivity results

Dataset FB15K-237 WN18RR

TransE RotatE Complex DistMult R-GCN TransE RotatE Complex DistMult R-GCN

1 0.09 0.35 0.23 0.20 0.59 0.05 0.23 0.21 0.18 0.80

2 0.082 0.27 0.18 0.19 0.55 0.04 0.21 0.19 0.17 0.76

3 0.03 0.21 0.15 0.15 0.52 0.01 0.17 0.17 0.14 0.70

4 0.01 0.17 0.145 0.10 0.45 0.01 0.16 0.14 0.11 0.48
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Figure 9: Inductivity results

5.2.4. CO2 Emissions

Green computing plays a critical role in reducing the environmental im-
pact of information technology (IT) and computing. The aim of this field is
to design, manufacture, use and dispose of computers, servers, and associated
subsystems efficiently and effectively without causing any environmental im-
pact. IT and computers, including data centers, communication networks,
and user devices, account for an estimated 4-6% [107] of global electricity
consumption. Data centers alone consume about 1-1.5% [107] of global elec-
tricity. Although the energy consumption of IT and computers is substantial
but not as high as 11% [108] compared to airplanes and cars, it contributes
significantly to climate change due to the CO2 emissions generated by en-
ergy consumption. In terms of CO2 emissions, the ICT sector contributes
around 2-3% of global greenhouse gas (GHG) emissions [109]. The energy
required to train complex models in data centers leads to substantial carbon
footprints, exacerbating pollution, and global warming.

In this section, we tested the effect of the tested models in terms of power
and energy consumption, electricity, and CO2 emissions. Based on Figure
10, the analysis reveals that DistMult and R-GCN consistently demonstrate
superior efficiency across all metrics, including RAM power consumption,
GPU energy and power consumption, CPU power and energy consumption,
total electricity consumption, and CO2 emissions. TransE, on the other
hand, exhibits the highest consumption and emissions in these categories.
The characteristics of each model can explain these results. TransE, being a
translational distance model, requires more computational resources due to
its simplicity and the need for extensive parameter tuning to achieve compet-
itive performance. RotatE and ComplEx, which are more complex models
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Figure 10: CPU, GPU, RAM, electricity estimation and emission of CO2
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involving rotation and complex number embeddings, respectively, offer mod-
erate efficiency. DistMult, a bilinear model, is computationally efficient due
to its simplicity and effective handling of multirelational data without ex-
tensive parameterization. R-GCN, a graph convolutional network model,
leverages graph structures to efficiently process relational data, resulting in
lower power and energy consumption and reduced CO2 emissions. Conse-
quently, the inherent simplicity and structural advantages of DistMult and
R-GCN make them the most efficient models in terms of computational and
environmental metrics.

6. Future directions

There are several interestings research directions to explore in future stud-
ies related to KG. In this section, we highlight some future directions that is
based on the literature.

6.1. Explainable recommendation for knowledge graph

Despite the use of unstructured data, explainable recommendations [110]
are mostly based on text, images, audio, video stills, and so on. However,
if the RS possesses knowledge about the recommendation domain, it can
generate personalized recommendations and explanations.

The advancement of KGE has enabled the integration of graph embedding
learning with recommendation techniques, enhancing the explainability of
recommendations. Consequently, the system can recommend items based on
domain knowledge and provide users with understandable explanations for
their recommendations. For example, in [111], a recommendation method
was developed that predicts interactions between users and items using a
KG and review text. In this instance, explanations are generated based on
the paths between a user and an item. Similarly, in [112], a KG is used to
explain recommendations to users through unstructured textual descriptions
of items.

Future research in intelligent systems should focus on developing KG-
based models for explainable recommendations. These models can provide
personalized recommendations in various fields, including medical care, on-
line education, and conversational systems, thereby increasing trust, trans-
parency, and user acceptance in KG-based recommendation system responses.
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6.2. Multi-task learning

G-based RS can be understood as link prediction in graphs. By consid-
ering the nature of the knowledge graph (KG), it is possible to enhance the
performance of graph-based recommendations. For instance, missing facts in
the KG can lead to missing relations or entities. If these facts are missing, the
user’s preferences may be overlooked, negatively impacting the recommen-
dation results. Studies such as [113], [114] have demonstrated that training
both the KGC module and the recommendation module jointly can result
in better recommendations. Other experiments have employed multi-task
learning [72] by involving the recommendation module in the KGE task and
the item relation regulation task [115], [116].

6.3. Large language models

Large Language Models (LLMs) [117], like GPT variants, present signifi-
cant breakthroughs in Natural Language Processing (NLP) due to their sub-
stantial capacity for creation and generalization. Despite this, they are often
considered black boxes, containing implicit knowledge within their parame-
ters and exhibiting limitations in factual understanding and interpretation.
On the other hand, KGs, as traditional knowledge models, offer explicit data
storage but face shortcomings in construction, implicit relationship inference,
and dynamic programming for incomplete data.

By combining their strengths[118], LLMs and KGs can enhance each
other in AI applications. While KGs are efficient in managing and retriev-
ing structured information, LLMs are highly skilled in comprehending and
creating natural language, managing unstructured data. Integrating KGs
allows LLMs to have access to accurate and structured data, which can en-
hance contextual understanding and relevance for tasks such as QE. KG can
be built and enriched by LLMs by extracting information from large text
corpora [119]. Together, they allow for more robust AI systems that can
understand complex language and reason logically.

6.4. Dynamic knowledge graphs

Traditional KGs are often static and updated periodically. In the fu-
ture, KGs will become dynamic, evolving continuously to incorporate real-
time data and changes. By including temporal aspects, Dynamic Knowledge
Graphs (DKGs) [120] extend traditional static KGs. They gather information
about entities, relations, and events that change over time. Characteristics of
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DKGs include temporal annotations on graph elements, versioning or Hitsory
tracking, and support for querying and reasoning with temporal constraints.

However, Dynamic Knowledge bases face challenges related to the scala-
bility and efficiency of temporal query processing, the management of Hitsor-
ical data through versioning strategies, the maintenance of consistency in dis-
tributed or federated databases, and the handling of uncertainty in temporal
knowledge. In this sense, research efforts are focused on developing efficient
temporal reasoning algorithms, distributed temporal graph databases, and
incorporating machine learning techniques for temporal pattern recognition
in DKGs.

6.5. Multi-modal knowledge graphs

Multi-modal KG (MMKG) [121] integrate various types of data, such as
text, images, audio, and video, to provide a more comprehensive and en-
riched representation of knowledge. Unlike traditional KG, which typically
rely solely on textual information, MMKG incorporate diverse data sources
to capture the complexity and richness of real-world information. This in-
tegration enhances the ability to perform tasks like entity recognition, rela-
tion extraction, and RS by leveraging the complementary nature of different
data modalities. The multi-modal [122] approach allows for a deeper un-
derstanding of entities and their relations, facilitating more accurate and
context-aware applications. For instance, by combining textual descriptions
with visual data, a MMKG can improve image captioning and visual ques-
tion answering tasks. Such advancements open new avenues for research and
practical applications, making MMKG a promising area of study in AI and
data science.

7. Conclusion

This paper has provided a comprehensive overview of KGE methods.
Through detailed comparative analysis, we have summarized the existing
mainstream KGE, highlighting their strengths and weaknesses as discussed
in the literature. We classified these methods into four families: random
walk-based methods, translation-based methods, tensor factorization-based
methods, and deep neural network-based methods.

Our experimental evaluations demonstrated the performance of selected
KGE methods across various use cases, focusing on their effectiveness, ef-
ficiency, and inductive performance. Furthermore, the experiments under-
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scored the importance of the characteristics of the dataset and the hyperpa-
rameters of the model in influencing the effectiveness of KGE methods and
training and prediction times.

Looking ahead, we have identified several promising research directions
in the field of KGE. These include the development of dynamic Kgs, the
integration of large language models with KGs, and the enhancement of
explainability in recommendation systems using KGs. Addressing the chal-
lenges associated with scalability, data sparsity, incompleteness, and missing
links will be crucial to advancing the capabilities of KGE.
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