

Low-cost sensors for particulate matter measurement

Marie-Laure Aix, Bertrand Baudeur, Gilles Mertens, Dominique J Bicout, Didier Donsez

▶ To cite this version:

Marie-Laure Aix, Bertrand Baudeur, Gilles Mertens, Dominique J Bicout, Didier Donsez. Low-cost sensors for particulate matter measurement. Workshop IoT platforms for indoor air quality, May 2023, Paris, France. hal-04852581

HAL Id: hal-04852581 https://hal.science/hal-04852581v1

Submitted on 20 Dec 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NoDerivatives 4.0 International License

Low-cost sensors for particulate matter

measurement

Marie-Laure Aix¹, Bertrand Baudeur², Gilles Mertens², Dominique J. Bicout¹, Didier Donsez³ ¹ Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France ² École Polytechnique (Polytech Grenoble), Univ. Grenoble Alpes, 38000, Grenoble, France ³ Univ. Grenoble Alpes, Laboratoire Informatique de Grenoble, 38000, Grenoble, France

INTRODUCTION

Particulate matter (PM) is a global threat to human health, associated with respiratory, cardiovascular, and neurological diseases, as well as premature mortality. PM toxicity depends on several factors, size being a crucial determinant. PM_{10} (<10µm), typically remains in the upper tract and is less hazardous than $PM_{2.5}$, which can penetrate deeper into the lungs and PM_1 , which can enter the bloodstream. Accurate measurement of fine PM is critical, and low-cost sensors (LCS) represent a cost-effective complement to official monitoring networks. This feasibility study aims to compare the performance of a Wi-Fi and two LoRaWAN air quality stations (AQ stations) using LCS to measure PM, with the goal of determining whether the LoRa AQ stations can deliver accurate measurements.

PM_{2.5}

PM₁

84.9

X

RESULTS

1. LoRaWAN performance vs. Wi-Fi AQ station $R^2 = 0.99, y = 0.31 + x$ $R^2 = 0.99, y = 0.42 + 1.1$ $R^{2} = 0.99$, $y = -0.0023 + 0.98 \times$ --- LoRa 1

MATERIAL & METHODS

1. Prototyping

A first Wi-Fi AQ station was designed and calibrated with a reference monitor (REF) from Atmo Auvergne Rhône-Alpes. This Wi-Fi AQ station performed well in measuring fine PM^[1]. Then a LoRaWAN AQ station was developed to eliminate the dependence on Wi-Fi and allow broader deployment. Both stations were equipped with different temperature (T) and relative humidity (RH) sensors. BME280 should perform better than DHT 22 in high-humidity situations. The firmware used for the Wi-Fi AQ station was developed by sensor.community (https://firmware.sensor.community/airrohr/flashingtool/) and enabled reporting of PM_1 , $PM_{2.5}$, PM_{10} , T, and RH. For the LoRaWAN AQ stations, a novel firmware using RIOT OS (https://github.com/RIOT-OS/RIOT) was developed (https://github.com/airqualitystation/firmware_for_bmx280_pms7003), allowing the extraction of additional parameters, particularly PM counts within different size ranges.

Wi-Fi AQ station								
6	Variables : Component		Price (€)					
	PM ₁₀ , PM _{2.5} , PM ₁ , RH, T	PMS7003 (PM sensor)	23,8					
		DHT22 (RH & T sensor)	10,9					
	Frequency :	NodeMCU ESP8266 microcontroller	12,3					
	Every 150 s	Polycarbonate IP66 outer case	15,9					
		Euromas II wall brackets	3,2					
		USB / USB-A 2m flat cable	11,9					
		5V USB power supply	6,9					

\mathbb{R}^2 , slope & intercept conform to EPA standards \checkmark

Additional		NRMSE (%)	SD (µg/m ³)	CV (%)	LoRaWAN AQ stations : sensor -
memes.	PM ₁	9	0,7	6,6	sensor precision
	PM _{2.5}	11	0,6	4,2	SD: standard deviation
	EPA	< 30	< 5	≤ 30	CV: coefficient of
+ NRMSE Wi-Fi / REF (refer part 2.a)		$PM_1: NRMSE = 23 \%$ $PM_{2.5}: NRMSE = 21 \%$		LoRaWAN AQ stations : sensors accuracy vs REF	
2. Particle	COUI	nts			
2.5 - 10 μm	1 - 2.5 µ			8	1 - 2.5 μm

LoRaWAN AQ station

	Variables :	Component	Price (€)
	PM ₁₀ , PM _{2.5} , PM ₁ ,	PMS7003 (PM sensor)	23,8
	RH, T, pressure,	BME280 (RH & T sensor)	19,9
	particles count	LoRa-E5 mini board	27,9
	(>0.3µm, >0.5µm,	Polycarbonate IP66 outer case	15,9
	>1µm, >2.5µm, >10µm)	Euromas II wall brackets	3,2
	Frequency :	USB-C / USB-A 3m flat cable	14,9
	8 s median (99,4 % of	5V USB power supply	6,9
	time intervals < 150 s) *		112,5

* According to ESTI regulation, the measurement period is adapted to the datarate depending on the range between the LoRaWAN AQ station & the gateways (5 to 160 s).

2. Calibration

LoRa 2 PM_{2.5} concentrations (μ g/m³)

CONCLUSION

while that of larger PM increases

- LORAWAN AQ stations performance metrics conform to EPA standards.
- LORAWAN AQ stations deliver precise & reliable particulate matter measurements.
- The firmware allows particles counts extraction, which will be useful for further research.

REFERENCES

*EPA = US Environmental Protection Agency standards for LCS calibration^[3]. NRMSE = Normalized Root Mean Square Error, reflects the accuracy as the closeness between REF and Wi-Fi AQ station PM values.

b. LoRaWAN (LoRa) vs Wi-Fi AQ station

1. Aix ML, et al. (2023). Calibration Methodology of Low-Cost Sensors for High-Quality Monitoring of Fine Particulate Matter [Manuscript under revision]. 2023.

2. Schmitz S, et al. (2021). Unravelling a black box: An open-source methodology for the field calibration of small air quality sensors. Atmos. Meas. Tech. 4:7221-41.

3. Duvall R, et al. (2021). Performance Testing Protocols, Metrics, and Target Values for Fine Particulate Matter Air Sensors: Use in Ambient, Outdoor, Fixed Site, Non-Regulatory Supplemental and Informational Monitoring Applications. EPA/600/R-20/280. US Environmental Protection Agency, Office of Research and Development.

