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Abstract—Unsupervised Domain Adaptation (UDA) methods
have emerged as a promising solution to generalize a learning to
close datasets (domains) without the need to produce new ground
truth. Nonetheless in biomedical images, some high domain shifts
between source and target images lead to poor adaptation. To
address this issue, we propose a method relying on two main
ideas. First, we learn the source posterior label distribution with
diffusion models. Assuming the target label distribution is similar,
this learning helps us to guide the diffusion process to generate
relevant segmentation masks on target domain. Alongside this
probabilistic constraint, we propose a reconstruction pretext task
on both source and target domain to extract common images
features. Our approach is compared to the state of the art on
three highly shifted mitochondria segmentation datasets. Our
method ranks among the best in moderately difficult adaptation
cases and succeeds in difficult adaptation cases where all other
tested methods fail. Code will be available.

Index Terms—Unsupervised Domain Adaptation, Biomedical
Image Segmentation, Diffusion Models

I. INTRODUCTION

In electron microscopy, imaging methods produce images
of mitochondria with varying contrast and texture, even when
coming from the same cellular culture. Segmentation methods
are robust and efficient in supervised settings, but they often
fail when dealing with new images. To overcome this bur-
den, commonly named domain shift, Unsupervised Domain
Adaptation (UDA) has emerged as a promising solution. It
consists of learning on a source domain with annotation labels,
and then adapting to a target domain without any labels.
In essence, this topic can be distilled into two distinct sub-
problems. Firstly, there is a shift between source images and
target images. This implies that a network trained on source
data, which has no prior exposure to target images, is unable to
effectively process the unfamiliar features of the target domain.
The underlying challenge is to make the network more familiar
with target images (see Fig. 1). This issue has been addressed
through various techniques [1]–[3].

In this article, we propose to rely on a pretext task, which
involves a separated reconstruction decoder at the output of
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Fig. 1. Our approach for Unsupervised Domain Adaptation is based on the
following ideas: (a) There is a shift in image space, which means that the
segmentation network trained on the source has a narrow knowledge of the
target. (b) This can be mitigated by using a pretext task to extract features
from the target images so that the network can work on an extended domain.
(c) On the other hand, one does not have access to the target labels. (d)
Nevertheless, the covariate shift assumption Ps(Y |X) = Pt(Y |X) allows
us to use a probabilistic constraint to foster a meaningful adaptation.

the segmentation latent space. This decoder will be trained to
reconstruct both source and target images, thereby allowing
a common representation in the latent space. Alongside this
classical step, there is a second one, which is more challeng-
ing since it aims at exploiting the following prior on label
distribution. If the shift in the image is undeniable, the binary
mask distributions of both source and target domains are very
close to each others (see Fig. 1). Indeed, the shape and area of
mitochondria are similar across the different imaging methods
that do not denature geometric aspects of such organelles. Note
that it is also a valid hypothesis in most UDA cases, named the
covariate shift assumption [4], [5]. This assumption allows us
to add a probabilistic constraint on the produced segmentation.
Regarding Deep Learning methods, enforcing this probabilistic
constraint mainly consists of using Adversarial training. Un-
fortunately, these methods often fail due to high domain shifts
and the instability of adversarial training [6]. On the contrary,
we propose to take advantage of recent advances in Diffusion
Models for semantic segmentation. Our idea is to use them
for the segmentation task, but also to learn the source label
distribution thanks to their ability to model data distributions.



Thus, because of the hypothesis on the label Y distributions
Ps(Y |X) = Pt(Y |X) (where X is the image domain, s and t
stand for source and target, see Fig. 1), these models have the
potential to produce high-standard masks in the target domain.
Our contributions can be summarised as follows: (1) A dif-
fusion model is used as a segmentation tool that is able to
learn the source label distribution, and then segment consistent
target masks (that actually resemble mitochondria masks). (2)
This segmentation diffusion model is trained to be familiar
with target features by aggregating a Decoder on it. This
decoder reconstructs both target and source images from the
latent space, allowing a common feature representation.

II. RELATED WORKS

Unsupervised Domain Adaptation (UDA) has many appli-
cations. The predominant use case is for autonomous driving,
in a synthetic to real scenario on the GTA5-Synthia-Cityscapes
datasets [6], [7]. However, it is pointed out in [8] that these
methods do not perform well when applied to biomedical
images. By contrast to the general scenario described above,
UDA for biological images segmentation faces the challenge
of higher domain shifts. Thus, we propose to review existing
methods especially developed in UDA for biomedical images.

1) Unsupervised Domain Adaptation for biomedical image
segmentation: Techniques designed for biomedical images can
be divided in three categories. The methods of the first cate-
gory are based on images: they use the information contained
in the target image and try to expand the knowledge of the
segmentation network on the whole image space (see Fig. 1).
In the case of YNet [9], the reconstruction of both source
and target images allows a common feature representation
in latent space. An adaptation based on recomputing batch
normalization layers is proposed in [10]. The second category
is the label-based adaptation. The idea is to enforce target
segmentation to be as close as possible to the source one
by constraining the segmentation network. In [11], adversar-
ial training is considered: a discriminator has to distinguish
which segmentation comes from the source and which from
the target domain, encouraging a cross-domain consistency.
Finally, other methods make use of both image and label based
adaptation. The method CellSegUDA [12] typically crosses
Adversarial training with a reconstruction network, while in
[2] the same basis as CellSegUDA is used in conjunction with
Self-ensembling.

2) Diffusion Models for Semantic Segmentation: Over the
last few years, Score-based models got significant interest.
From DDPM [13]–[15] to DDIM [16] and lastly Consistency
models [17], various sampling techniques have emerged to
overcome challenges such as computation time and images
generation quality. In this article, we will use a DDIM basis
since it allows a greater flexibility than DDPM. A diffusion
model is a purely generative process, nonetheless, the commu-
nity showed that it can also be used in a decisional purpose.
Both [18] and [19], alongside other papers [20], [21], propose
a diffusion model trained to sample masks constrained by
the image to segment in a supervised way, introducing the

possibility to use Diffusion models as segmentation networks.
When it comes to UDA, most existing methods using diffusion
models consist of classical style transfer [22], or generation
of image-mask pairs [23] which has already been done using
GAN or Cycle-GAN [24]. On the contrary, we believe that it
is relevant to build upon the segmentation diffusion framework
presented above, because of the inherent ability of Diffusion
model to learn a probabilistic distribution, which could help to
consider the equality in the label space Ps(Y |X) = Pt(Y |X).
In the next section, we present our method built upon the
former explanation.

III. METHOD

A. Context
1) Notations: We consider a domain D = {X , P}, struc-

tured by a probability distribution P and a feature space X
such that the image set is a subset of X sampled from P .
In the context of supervised learning, we have a training set
{(Xi, Yi)}ni=1 with an image set X = {Xi}ni=1 ⊆ X and
a label set Y = {Yi}ni=1, knowing that Xi, Yi ∈ Rh×w. In
domain adaptation, there are a source domain Ds = {Xs, Ps}
and a target domain Dt = {Xt, Pt} associated to (Xs,Ys) and
(Xt,Yt), respectively. When it comes to the UDA setting, one
does not have access to the target labels Yt.

2) Generative Diffusion Models: Let a data distribution
be of the form x0 ∼ q(x0). Diffusion models aim to learn
this true data distribution q(x0) so it is possible to generate
new samples following q(x0). We call pθ(x0) the learnt
approximation of q(x0). Diffusion models learn pθ by a two-
step training stage. First, a sample x0 ∼ q(x0) is gradually
noised with a noising scheme ϵ(t), from t = 0 to t = T .
Then xT ∼ q(xT ) can be approximated as a nearly isotropic
Gaussian noise. The second step consists of denoising x̂T .
Formally, we sample x̂T ∼ pθ(xT ) ∼ N (0, I) where I denotes
the identity matrix, and gradually denoise it from t = T to
t = 0. This is done in practice by introducing a denoising
U-Net ϵθ which predicts the noise to remove from x̂t at time
t. This is trained with the following objective:

Lθgenerative = Ex0∼q(x0),ϵ∼N (0,I)[∥ϵ(xt, t)− ϵθ(x̂t, t)∥2] (1)

with ϵ(xt, t) being the noise added at time t during the noising
process and ϵθ(x̂t, t) the prediction of the noise to remove.
In the following, we present how this training procedure was
modified to propose segmentation diffusion-models [18].

3) Segmentation Diffusion Models: The goal is to predict
a segmentation mask Ŷi related to the image to segment Xi.
In that way, early papers propose to noise a training label Yi

(from the label Yi,0 to the nearly Gaussian noise Yi,T ) and
then to denoise it conditioned by the image to segment Xi. It
denoises from Ŷi,T to Ŷi,0, such that Ŷi,0 is the final proposed
segmentation. The loss used for training is then the following:

Lθseg supervised = Eϵ∼N (0,I)[∥ϵ(Yi,t, t)− ϵθ(Ŷi,t, Xi, t)∥2] (2)

In the next section, we see how to take advantage of this
existing supervised-segmentation framework with diffusion
models to perform Unsupervised Domain Adaptation.



B. Proposed method
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Fig. 2. Overview of our method. We base our segmentation network on
the diffusion segmentation. By contrast to its supervised use [18], we use it
to enforce relevant segmentation on target domain thanks to its generative
learning of source label distribution. Along this probabilistic constraint, we
propose a feature extraction module on both domains through a decoder
plugged in the latent space of our segmentation diffusion-network.

Let X
(s)
i ∈ Xs be images to segment on source domain

alongside their corresponding binary masks Y
(s)
i ∈ Ys. Let

X
(t)
i ∈ Xt be images to segment on target domain, without

any available labels on target. The only information on tar-
get labels is that Ps(Y|X) = Pt(Y|X). By contrast to the
supervised setting, diffusion models are here employed to
learn the probability density function Ps(Y|X). Thus, at the
inference time, the segmentation diffusion-model will follow
Ps(Y|X) = Pt(Y|X) when segmenting a new image. This
is the first component of our adaptation strategy: we encour-
age the segmentation framework to produce consistent labels
across domain by learning this probabilistic constraint. The
following objective is then a classical segmentation loss, but
we also believe that this allows to learn the above constraint:

Lθseg = Eϵ∼N (0,I)[∥ϵ(Y
(s)
i,t )− ϵθ(Ŷ

(s)
i,t , X

(s)
i , t)∥2] (3)

Along this segmentation loss that permits to work on the
label-space, it is necessary for the segmentation network to
be able to extract features from the target image domain (see
Fig. 1). That is why we propose here to introduce a Decoder
that will reconstruct the input of our denoising U-Net ϵθ from
its latent space. We note this decoder D, and the encoder of
the denoising U-Net ϵEθ .

We propose to reconstruct from both domains diffusion
latent spaces by introducing the same loss on source (Lθrs )
and target (Lθrt ):

Lθr s/t = E[∥X(s/t)
i −D(ϵEθ (Ŷ

(s/t)
i,t , X

(s/t)
i , t))∥2] (4)

This should allow the encoder of our diffusion model to
create a common latent space between source and target
image domains, and thus the segmentation decoder will be

TABLE I
RESULTS FOR THE DIFFERENT METHODS. “NO ADA” MEANS THAT NO

ADAPTATION IS PROCEEDED (SOURCE TRAINED)

Methods
Settings

W → FS1 FS1 → W FS2 → 1 FS2 → W FS1 → 2 W → FS2

No Ada. UNet 0.01 0.02 0.01 0.10 0.57 0.70
No Ada. SegFormer 0.01 0.10 0.01 0.20 0.45 0.50
No Ada. Att.UNet 0.02 0.06 0.15 0.11 0.18 0.40

BN [10] 0.14 0.08 0.14 0.30 0.74 0.67
Adv. [11] 0.17 0.08 0.19 0.46 0.43 0.62

CellSeg. [12] 0.13 0.05 0.13 0.18 0.36 0.17
YNet [9] 0.27 0.12 0.15 0.32 0.72 0.65

SelfEns. [2] 0.12 0.11 0.13 0.14 0.28 0.39

Ours 0.29 0.17 0.25 0.49 0.68 0.70
±.007 ±.007 ±.005 ±.005 ±.011 ±.007

Target Supervised 0.84 0.81 0.84 0.81 0.92 0.92

able to take advantage of this common representation. Finally,
the global loss of our framework is a combination of the
segmentation loss on source and both reconstruction losses
weighted by λ:

Lθglobal = Lθseg + λ(Lθrs + Lθrt) (5)

A graphical explanation of our method is proposed in Fig. 2.
Finally, as this remains a generative process, segmentation
mask could exhibit undesired artefacts. This is why we pro-
pose a classical post-processing strategy [18] by gathering 10
prediction and thresholding over this mean prediction, with a
value of 0.5.

IV. EXPERIMENTS

A. Experimental settings and Results

We utilize three distinct publicly available datasets for
mitochondria segmentation, denoted as FS1 [25], FS2 [26]
and WeiH [27]. These datasets enable us to explore six distinct
adaptation scenarios. In each scenario, one dataset serves as
the source domain, while another is considered as a target
domain. We use the notation Source dataset → Target dataset
to indicate an adaptation scenario (for instance W → FS1 de-
notes WeiH as source and FS1 as target). The core of diffusion
model relies on the Denoising U-Net. Its input image size was
chosen 1282 with a batch size of 10. The number of channels
at the first layer is 128 with 4 layers in the down size and 4
layers in the upper side. This U-Net contains attention layers.
The learning rate is set to 10−4 with an Adam optimiser. The
weight λ in the loss was experimentally found to be optimal at
10−3. For training, we proceed to 50 000 iterations. Finally, we
use a DDIM sampling scheme trained on 1 000 noising steps,
and for the upcoming experiment, the number of sampling
steps is 100.

We compared our method with state-of-the-art methods
in UDA for biological segmentation, that we abbreviated
the following way: YNet [9], BN [10], Adv. [11], CellSeg
[12], SelfEns [2]. To evaluate performance without adaptation,
we also provide results from three state-of-the-art supervised
segmentation methods trained on the source domain but not
adapted to the target domain: U-Net [28], Attention-U-Net
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Fig. 3. Visual comparison of UDA methods. The column “Image” stands for
the target domain image to segment. “No Ada(pt)” means the target domain
U-Net mask prediction, U-Net being trained on the source domain (without
adaptation). Then, column 3 to 8 depict different UDA methods, ours included.
“GT” stands for Ground Truth segmentation mask. We divide the observed
results in two categories: high and low domain shift (detailed in Section IV-A).

[29], and SegFormer [30]. In Tab. I, quantitative results verify
that, for all metrics and cases taken together, our method is
better or equivalent in 5 cases over 6, showing its robustness to
a great variety of domain shifts. We precise that we computed
the standard deviation only for our method because of its non-
deterministic aspect as inference time. We run 10 inferences
and set different seeds in the code to verify its robustness.
The very low standard deviation in each case indicates the
that results do not depend on random aspects. More generally,
we depict two behaviours of the methods regarding the type of
shift they are facing: a first case when without adaptation the
segmentation network generalises well (Low Domain Shift),
and another one where the network without adaptation is
unable to segment anything (High Domain Shift).
High domain shift Over the three scenarios with the higher
domain shifts (FS1 → W, W → FS1, FS2 → 1), our method
performs better than any other. The main visual observation
is that our method, in each of those cases, is the only one
to provide a segmentation which is really resembling a mito-
chondria mask, which validates our hypothesis regarding the
ability of Diffusion Models to apply the desired probabilistic
constraint Ps(Y|X) = Pt(Y|X). Especially, in those scenarios,
methods based on Adversarial training (Adv., CellSeg. and
SelfEns.) fail due to the Discriminator that is impossible to
be fooled such that it rapidly collapses during training (this is
comprehensible with the visual aspects of the results without
adaptation, which are mainly empty due to the too high domain
shift). For BN and YNet, they are not powerful enough to
guide the U-Net with the additional target image information
they add, which is pictured in visual results by an adaptation
that segment objects not related to mitochondria, with shape

TABLE II
ABLATION STUDY (SEE SECTION IV-B).

Configuration
Modules W → FS1 FS1 → W FS2 → 1 FS2 → W FS1 → 2 W → FS2

Diff. Recons. IoU IoU IoU IoU IoU IoU

Diffusion ✓ × 0.17 0.16 0.11 0.16 0.45 0.36
YNet × ✓ 0.27 0.12 0.15 0.32 0.72 0.65
Ours ✓ ✓ 0.29 0.17 0.25 0.49 0.68 0.70

very far from a mitochondria one. Finally, quantitative results
in Tab. I confirm those visual considerations.
Low domain shift: On less shifted scenarios, each method
has a different behaviour. For instance, Adversarial Methods
(Adv., CellSeg. and SelfEns.) that failed previously are
now able to stabilize the Discriminator so it can play its
adaptability role. Our method is still working very well, but
as the Analytical findings in Tab. I point out, BN and YNet
can perform better in those cases (especially FS1 → 2). This
discussion led us to the fact that our method is way better on
high domain shift thanks to its probabilistic constraint that
forces to generate meaningful segmentation masks. For low
domain shift, we still rank among the top, even if it could be
more suitable to use other methods.

B. Ablation study

1) The role of the diffusion process: Instead of having a
diffusion model as a segmentation backbone, we propose a
classical U-Net. This setting corresponds to the YNet method
[9] discussed in previous sections. Results on Tab. II confirm
already former observations: the diffusion backbone allows
better segmentation in highly shifted cases. Although its non-
deterministic behaviour is detrimental for less shifted case, it
still achieves convenient results. Those observations lead to
the conclusion that the diffusion process effectively aids in
bridging the domain gap by leveraging its ability to generate
domain-agnostic representations.

2) The role of the reconstruction module: The other ques-
tion is to know if the Diffusion process alone would not be
powerful enough to overcome the domain shift. In Tab. II,
we observe clearly its inability to significantly improve per-
formance when applied in isolation. This suggests that while
the diffusion process is a crucial component, it requires the
synergy of a pretext task such as the reconstruction we
proposed in order to proceed a quality adaptation.

V. CONCLUSION

We propose a method that utilises diffusion models to
learn source posterior label distributions, alongside a more
classical reconstruction task to extract both source and target
features. Ablation studies show the usefulness of both tasks
to provide accurate segmentations on the target images. Even
though quantitative results are modest in high-shift cases, its
segmentation results are visually consistent with ground truth
where other methods fail. Our results demonstrate that gen-
erative processes can successfully be applied to unsupervised
segmentation tasks to overcome the shift-related challenges.
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