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LIMIT DISTRIBUTIONS FOR POLYNOMIALS WITH INDEPENDENT AND
IDENTICALLY DISTRIBUTED ENTRIES

RONAN HERRY, DOMINIQUE MALICET, AND GUILLAUME POLY

Abstract. We characterize the limiting distributions of random variables of the form 𝑃𝑛
(
(𝑋𝑖)𝑖≥1

)
, where:

(i) (𝑃𝑛)𝑛≥1 is a sequence of multivariate polynomials, each potentially involving countably many variables;
(ii) there exists a constant 𝐷 ≥ 1 such that for all 𝑛 ≥ 1, the degree of 𝑃𝑛 is bounded above by 𝐷; (iii) (𝑋𝑖)𝑖≥1
is a sequence of independent and identically distributed random variables, each with zero mean, unit
variance, and finite moments of all orders. More specifically, we prove that the limiting distributions of
these random variables can always be represented as the law of 𝑃∞

(
(𝑋𝑖 , 𝐺𝑖)𝑖≥1

)
, where 𝑃∞ is a polynomial of

degree at most𝐷 (potentially involving countably many variables), and (𝐺𝑖)𝑖≥1 is a sequence of independent
standard Gaussian random variables, which is independent of (𝑋𝑖)𝑖≥1.

The characterization of all possible limiting laws of polynomials in independent and identically dis-
tributed variables is a long-standing problem, that we trace back at least to Kolmogorov’s influential school
in Probability in the 1960s. The seminal work [Sev62] is the first to solve this problem for 𝐷 = 2 and when
the (𝑋𝑖) are Gaussian. There, a diagonalization argument serves as the main analytical tool. In contrast,
the case of non-Gaussian inputs has been solved only recently: [BDMM24; BMM21] propose a solution for
non-Gaussian quadratic polynomials,

∑

𝑖,𝑗≤𝑁𝑛
𝛼𝑛(𝑖, 𝑗)𝑋𝑖𝑋𝑗 , where the common law of the (𝑋𝑖) is generic

but the coefficients (𝛼𝑛(𝑖, 𝑗))𝑖,𝑗≤𝑁𝑛 form an adjacency matrix. This extra assumption enables combinatorial
arguments grounded in graph-theoretic techniques.

We solve this problem in full generality, addressing both Gaussian and non-Gaussian inputs, and with
no extra assumption on the coefficients of the polynomials. In the Gaussian case, our proof builds upon
several original tools of independent interest, including a new criterion for central convergence based
on the concept of maximal directional influence. Beyond asymptotic normality, this novel notion also
enables us to derive quantitative bounds on the degree of the polynomial representing the limiting law. We
further develop techniques regarding asymptotic independence and dimensional reduction. To conclude
for polynomials with non-Gaussian inputs, we combine our findings in the Gaussian case with invariance
principles from [MOO10].
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1. Introduction

1.1. Main results. We establish a complete characterization of the closure, for the topology of conver-
gence in law, of polynomials in independent random variables that are centered, have unit variance,
and possess finite moments of all orders.

1.1.1. Stability in law of polynomials chaoses. We present below our main result, restricted to the
univariate setting.

Theorem 1.1 (Stability of polynomial chaoses). Let 𝑑 ≥ 1, and let (𝑃𝑛) be a sequence of multivariate real
polynomials of degree at most 𝑑 ∈ ℕ. Consider �⃗� = (𝑋𝑖)𝑖≥1, a sequence of independent and identically
distributed random variables satisfying 𝐄[𝑋1] = 0, 𝐄[𝑋2

1
] = 1, and 𝐄[|𝑋1|𝑝] <∞ for all 𝑝 ∈ ℕ. Assume

that 𝑃𝑛(�⃗�) converges in law to a limit 𝜇. Then, there exist:
∙ �⃗� = (𝐺𝑖)𝑖≥1, a sequence of independent standard Gaussian random variables, also independent of �⃗�;
∙ 𝑃∞, a multivariate polynomial of degree at most 𝑑, possibly involving countably many variables,
such that:

𝐥𝐚𝐰
[
𝑃∞(�⃗�, �⃗�)

]
= 𝜇.

As a special case, we investigate polynomials in Gaussian variables, that is 𝐥𝐚𝐰[𝑋1] = 𝛾. In this setting,
we derive the following result, which extends a prior result known only for 𝑑 ≤ 2 (see [Sev62]).

Theorem 1.2 (Stability ofWiener chaoses). Let �⃗� = (𝐺𝑖) be a sequence of independent standard Gaussian
random variables. The set

{
𝑃(�⃗�) ∶ 𝑃 is a polynomial of degree at most 𝑑

}

is closed for the topology of convergence in distribution.

In Theorem 4.1, we actually derive a stronger result than Theorem 1.1 in two ways:
(i) we obtain a multivariate version of the theorem, that is we can consider polynomial random

vectors (𝑃𝑗(�⃗�))𝑗∈ℕ where each 𝑃𝑗 is a polynomial of degree at most 𝑑;
(ii) the 𝑋𝑖’s are not necessarily identically distributed, we only need to assume that they have finite

moments and that {𝐥𝐚𝐰[𝑋𝑖] ∶ 𝑖 ∈ ℕ} is finite.
Similarly, in Theorem 3.1, we state the multivariate counterpart of Theorem 1.2.

1.1.2. Directional influences. To prove these two results, we introduce a novel quantity, the directional
influence of order 𝑘. For simplicity, in this introduction, we restrict the presentation of this object
to homogeneous polynomials without diagonal terms with Gaussian entries, and involving finitely
many variables, which suffices to illustrate the essence of our results. Namely, for 𝐹, a homogeneous
polynomial of degree 𝑑 of the form

𝐹 =
∑

𝑖1<⋯<𝑖𝑑≤𝐾

𝑎𝑖1,…,𝑖𝑑𝐺𝑖1 ⋯𝐺𝑖𝑑 ,

writing 𝜕𝐺𝑖 for the partial derivate with respect to 𝐺𝑖, we define the semi-norms:

�̃�𝑘(𝐹) ≔ sup

⎧

⎨

⎩

‖‖‖‖‖‖‖‖‖‖

∑

𝑖≥1

𝜕𝐺𝑖𝐹 𝜕𝐺𝑖𝑋

‖‖‖‖‖‖‖‖‖‖𝐿2

∶ 𝑋 =
∑

𝑖1<⋯<𝑖𝑑≤𝐾

𝑏𝑖1,…,𝑖𝑑𝐺𝑖1 ⋯𝐺𝑖𝑑 , ‖𝑋‖𝐿2 ≤ 1

⎫

⎬

⎭

, 𝑘 ∈ ℕ.

Using this new framework, we establish a necessary and sufficient criterion for central convergence,
which plays a pivotal role in our analysis.

Theorem 1.3 (Asymptotic normality from directional influences). Let 𝑑 ≥ 1 and consider a sequence

𝐹𝑛 ≔
∑

𝑖1<⋯<𝑖𝑑

𝑎𝑛(𝑖1,… , 𝑖𝑑)𝐺𝑖1 ⋯𝐺𝑖𝑑 , 𝑛 ∈ ℕ.

Then, the following are equivalent:
(i) (𝐹𝑛) is asymptotically normal.
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(ii) For some 𝑘 ∈
{⌊
𝑑

2

⌋
,… , 𝑑 − 1

}
, we have

�̃�𝑘(𝐹𝑛)→ 0.

See Theorem 3.9 for a precise statement. With respect to the problem of characterizing all the distribu-
tional limits, this criterion enables, starting from a non asymptotically Gaussian polynomials, to factor
out polynomials of smaller degrees, allowing for an inductive argument. Numerous alternative criteria
for central convergence exist, most notably:

(i) the celebrated Fourth-Moment Theorem of Nualart & Peccati [NP05];
(ii) a criterion based Malliavin calculus by Nualart & Ortiz-Latorre [NO08];
(iii) the Second Order Poincaré inequalities developed by Chatterjee [Cha09], and Nourdin, Peccati

& Reinert [NPR09].
All the results above give necessary and sufficient conditions for asymptotic normality of homogeneous
polynomials without diagonal terms. Arguably, our criterion is a new contribution in the vast literature
of central limit criteria for Gaussian polynomials. However, directional influences offer new insights in
two directions.

(i) For Gaussian limits, we obtain the criterion from Theorem 1.3. This plays a crucial role in our
proof, we do not know how to derive from the classical criteria.

(ii) Beyond Gaussian limits, the semi-norms �̃�𝑘 encode precise information about the distributional
convergence of a sequence of polynomials (𝐹𝑛)𝑛≥1, as demonstrated by the following result.

Theorem 1.4. With (𝐹𝑛) as above, let 𝑠 ∈ {1,… , 𝑑 − 1} and suppose �̃�𝑠(𝐹𝑛)→ 0, where

𝐹𝑛 ≔
∑

𝑖1<⋯<𝑖𝑑

𝑎𝑛(𝑖1,… , 𝑖𝑑)𝐺𝑖1 ⋯𝐺𝑖𝑑 , 𝑛 ∈ ℕ.

Further, assume (𝐹𝑛)𝑛≥1 converges in distribution to 𝜇. Then there exists a multivariate polynomial 𝑄 such
that:

𝐥𝐚𝐰
[
𝑄(�⃗�)

]
= 𝜇, and deg(𝑄) ≤

⎢

⎣

𝑑

𝑠 + 1

⎥

⎦
.

Remark 1.5. For 𝑠 as in Theorem 1.3, we have
⌊

𝑑

𝑠+1

⌋
≤ 1, and thus 𝑄(�⃗�) is Gaussian. Thus, Theorem 1.4

contains Theorem 1.3.

1.2. Motivation. Early fundamental results by the founding figures of the theory of probability, such
as Chebyshev [Che91], Lindeberg [Lin22], Kolmogorov [Kol28], Lévy [Lév35], and Feller [Fel35] give
a complete characterization of the limits in law of the sum of 𝑛 independent random variables, as
𝑛 →∞. We refer to the monographs [Lév54; GK54] for thorough introductions to the subject and more
references.
Polynomials evaluated in random variables are central in several branches of probability theory: they
allow to model complex stochastic behaviour, and decomposing a random field on a polynomial basis is
a common strategy to study a probabilistic model. Such decomposition is known under various names:
Walsh decomposition for boolean functions [Wal23], Wiener’s polynomial chaos [Wie38], and its discrete
counterpart [WW43], Itô’smultiple integrals decomposition for Gaussian fields [Itô51] and for Poisson
fields [Itô56], or yet Hoeffding’s ANOVA decomposition [Hoe48]. To illustrate the importance of this
type of decomposition, here is a short non-exhaustive compilation of works, pertaining to different areas
of mathematics, fruitfully exploiting polynomials with random entries. For conciseness, we restrict
to papers from less than ten years ago (that is after 2015): [MPRW16; BDM17; DS18; KKO18; CSZ20;
EI20; ALM21; AADL21; JNP21; CSZ23; APS24; Hai24; GQ24]. We also mention that polynomial
decomposition plays an important roles in computational mathematics, see for instance the influential
papers [XK02; BS11].
In view of the importance of polynomials with random inputs, following the resolution of the linear
case, subsequent works have intensively studied probabilistic properties of such polynomials. We refer
to the two excellent surveys by Bogachev, and the references therein, for more details on polynomials
evaluated in generic random variables [Bog16], and in independent Gaussian variables [Bog22].
The primary motivation of this work is to address the long-standing problem of characterizing the
limiting distributions of polynomials, at least when the inputs admit finite moments. As with any
characterization result, this advances the field not only by providing precise insights on the behavior of
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random polynomials, but also by developing original tools to tame their complexity. In particular, our
novel analysis based on the directional influences allows us to break down a polynomials in pieces of
lower degree. Each of these smaller pieces can be further dissected until we obtain a decomposition
for which we have an explicit control on each of the terms. We believe that such a procedure could
turn useful in other problems related to polynomials in random variables, as it enables an efficient
dimension reduction.

1.3. Related works.

1.3.1. Characterization of the limits. The problem we solve in this paper is explicitly formulated by
Kolmogorov [Kol62] during a seminar, at least in the case of Gaussian inputs and degree 2, but could
have appeared earlier. Quickly thereafter [Sev62] presents a solution for degree 2 Gaussian polynomials,
that is the case 𝑑 = 2 of our Theorem 1.2. This solution later reappears in [Arc99]. Despite being
mentioned in different sources [Jan08, p. 85], [Bog16, Problem 4, p. 740], [Bog22, Question 3, p. 562],
[BDMM24, Conclusion], before the present work, this question has only received very partial answers.
∙ [AB09, Cor. 2] provides a form of almost sure stability for Gaussian polynomials of a certain type.
∙ Relying on a diagonalisation argument, [BKNP15, Thm. 1.2] proves a version of Theorem 1.2 for
𝑑 = 2 and for multivariate vectors.
∙ [BMM21; BDMM24] gives a characterisation of the limits of generic degree 2 polynomials under the
additional constraints that the coefficients of the polynomials are in {0, 1}, allowing for graph-theoretic
argument.
Apart from these works, we are not aware of any prior conclusive results addressing the stability of the
laws of polynomials with random inputs.
Aside from the aforementioned characterisation of the limits, polynomials in random variables have
been intensively studied in many directions [Bog22; Bog16]. In this section, we highlight two particular
directions of research that are indirectly connected to the question of the stability of distributions of
polynomials.

1.3.2. Central limit theorems. An important line of research focuses on generalizing the central limit
theorem to non-linear functionals, particularly polynomial ones. In this context, the generalization
typically involves identifying sufficient — and sometimes necessary — conditions to guarantee asymp-
totic normality, along with quantifying the rate of convergence in appropriate probabilistic distances.
Criteria ensuring central convergence serve as the backbone of asymptotic results for polynomials in
independent and identically distributed random variables and play a pivotal role in our approach. A
crucial ingredient of our proof is the recursive decomposition of a polynomial into lower-degree ones
that exhibit asymptotic Gaussian behavior.
Let us quote, in a very non-exhaustive way, some seminal contributions regarding non-linear central
limit theorems. The interested reader can also consult the references therein.
∙ In his seminal works, De Jong gives sufficient conditions for central limit theorems for quadratic
forms [dJon87] and for multilinear polynomials [dJon90].
∙ Nualart & Peccati [NP05], and Peccati & Tudor [PT05], characterize central limit theorems for
homogeneous Gaussian polynomials, also known asWiener chaoses, in term of the convergence of the
fourth moment. Still, in the Gaussian setting, Nualart & Ortiz-Latorre [NO08] express condition for
asymptotic normality in terms of operators fromMalliavin calculus. Later on, Nourdin & Peccati [NP09]
use similar ideas from Malliavin calculus, and combine them with Stein’s method, to quantity normal
convergence in Kolmogorov distance and total variation distance. See [NP12; APY21] for further
developments in this line of research.
∙ Chatterjee [Cha08] builds upon the celebrated Stein’s method to obtain a new criterion for asymptotic
normality in terms of a variance bound. In the same spirit, Chatterjee [Cha09], and Nourdin, Peccati &
Reinert [NPR09] provide criteria for asymptotic convergence of non-linear functionals of a Gaussian
fields, that can actually be used beyond the polynomial setting.
∙ Döbler & Peccati [DP18] extends the fourth-moment theorem to case of polynomials with Poisson
entries, also known as the Poisson–Wiener chaoses. We stress that our Theorem 1.1 does not apply in
the full generality of Poisson chaoses. Contrarily to the Gaussian case, a Poisson distribution of mean 𝜆
cannot be expressed as a polynomial transform of Poisson distribution with mean 1. Thus, even the
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Poisson chaos of degree one, cannot realised as linear form in a independent and identically distributed
sequence. It is a question of high interest to determine the closure in law of Poisson chaoses.

1.3.3. Invariance principles. A second popular line of research concerns the so called invariance princi-
ples. Informally speaking, invariance principles compare the law of a polynomial 𝑃(�⃗�), where �⃗� = (𝑋𝑖)

is a sequence of independent random variables with a common law that is rather generic, to that of
𝑃(�⃗�) where �⃗� is a sequence of independent standard Gaussian. Such invariance principles allow to
generalize results and tools from the Gaussian framework to a more singular one. In particular, they
play a prominent role in our proof of the stability theorem for polynomials with generic inputs.
As above, we present a short and non-exhaustive selection of emblematic results in the field.

∙ Rotar’ gives sufficient conditions for invariance principles for quadratic forms in [Rot73], and for
multilinear polynomials in [Rot79]. Later, Götze & Tikhomirov [GT99] quantify Rotar’s invariance
principle.
∙ Chatterjee [Cha05; Cha06] establishes a new invariance principle beyond the polynomial setting,
encompassing smooth functionals.
∙ Mossel, O’Donnell & Oleszkiewicz [MOO10] proves an invariance principle for polynomials, with an
explicit quantification in the degree and the so-called influence. This principle allows for the resolution
of two important conjectures related to boolean functions theory. Nourdin, Peccati & Reinert [NPR10]
builds upon the aforementioned invariance principle, and derive a central limit theorems for a polyno-
mials with general random independent entries from the particular case of Gaussian entries.

1.4. Outline of the proof in the Gaussian case.

1.4.1. A new criterion for asymptotic normality. As previously mentioned, our proof of Theorem 1.2
relies on the following principle, which characterizes the asymptotic normality of Gaussian polynomials.
See Theorem 1.3 and Theorem 3.9 for more precise statements.

Principle 1. Let �⃗� be an infinite vector of independent standard Gaussian variables, and let (𝑃𝑛) be a
sequence of multilinear polynomials of degree 𝑑 ≥ 2 without diagonal terms (that is, with no repeated
indices). Define 𝐹𝑛 ≔ 𝑃𝑛(�⃗�), which is assumed to be centered with unit variance. Then, the following
statements are heuristically equivalent:

(i) (𝐹𝑛)𝑛≥1 is asymptotically Gaussian.
(ii) (𝐹𝑛)𝑛≥1 is asymptotically independent of all polynomials in �⃗� of degree at most 𝑑 − 1.
(iii) (𝐹𝑛)𝑛≥1 is asymptotically independent of all polynomials in �⃗� of degree at most

⌊
𝑑

2

⌋
.

We quantify the asymptotic independence of (𝐹𝑛) with a sequence of polynomials (𝑋𝑛) in terms of

Γ(𝐹𝑛, 𝑋𝑛) ≔
∑

𝑖∈ℕ

𝜕𝐺𝑖𝐹𝑛𝜕𝐺𝑖𝑋𝑛.

The seminorm �̃�𝑘 rewrites in terms of Γ, and in Proposition 3.14, we explicitly connect the vanishing of
the seminorm with some asymptotic independence property.
For convenience, in the sequel, we present a slightly modified version of this semi-norm, 𝜌𝑘(𝐹), where
the supremum is taken over the unit ball of𝒲𝑑, theWiener chaos of order𝑑, that is a distinguished subset
of degree 𝑑 polynomials. Since �̃�𝑘 and 𝜌𝑘 are bi-comparable, we do not delve into these refinements,
which require defining Wiener chaoses.
For 𝑑 ∈ {2, 3}, ⌊𝑑∕2⌋ = 1, and the criterion for asymptotic normality takes a simpler form:

𝐹𝑛 →𝒩(0, 1) ⇔ �̃�1(𝐹𝑛)→ 0 ⇔ sup
�⃗�∈𝑙2(ℕ),‖�⃗�‖2=1

‖‖‖‖‖‖‖‖‖

∑

𝑖

𝑎𝑖𝜕𝐺𝑖𝐹𝑛

‖‖‖‖‖‖‖‖‖2

→ 0.

To illustrate our proof, we restrict ourselves to the cases 𝑑 ∈ {1, 2, 3}, which are sufficiently rich to
highlight the mechanisms of the proof and are of independent interest.
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1.4.2. Schematic proof: factoring out influential directions. Our approach proceeds by induction and
relies on Principle 1 in its contrapositive form. Assume that 𝑑 ∈ {1, 2, 3} and that 𝐹𝑛 is not asymptotically
Gaussian. Then, there exists �⃗�𝑛 ∈ 𝑙2(ℕ) and 𝛿 > 0 such that

‖‖‖‖‖‖‖‖‖

∑

𝑖

𝑎𝑛,𝑖𝜕𝐺𝑖𝐹𝑛

‖‖‖‖‖‖‖‖‖𝐿2(𝐏)

≥ 𝛿,

for sufficiently large 𝑛. Setting𝐻𝑛 ≔
∑

𝑖≥1
𝑎𝑛(𝑖)𝐺𝑖 ∼𝒩(0, 1), this implies that 𝐹𝑛 depends macroscopi-

cally on𝐻𝑛.
By performing an orthonormal change of basis such that 𝐺1 → 𝐻𝑛, which preserves the distribution of
�⃗�, one can write

𝐹𝑛 =

𝑑∑

𝑘=1

𝐴𝑘,𝑛(𝐺2,…)𝐻𝑘(𝐺1) + 𝐴0,𝑛,

where the coefficients (𝐴𝑘,𝑛)0≤𝑘≤𝑑 are polynomials in (𝐺𝑖)𝑖≥2, hence independent of 𝐺1. The coefficients
(𝐴𝑘,𝑛)𝑛≥1 have degree strictly less than 𝑑 and can be handled inductively, while 𝐴0,𝑛 remains of degree
𝑑.
Repeating this process for 𝐴0,𝑛, and after a sufficient number of iterations, the remainders become
asymptotically Gaussian, as per the aforementioned principle. Specifically, for some appropriately
chosen 𝑟𝑛 →∞, we write:

𝐹𝑛 =
(
𝐹𝑛,1 +⋯ + 𝐹𝑛,𝑟𝑛

)

⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟
Induction Step

+ 𝑅𝑛,𝑟𝑛 ,
⏟⏟⏟

Gaussian Remainder

where the following points are noteworthy:
(i) The term 𝐹𝑛,1 +⋯ + 𝐹𝑛,𝑟𝑛 involves countably many polynomials of degree strictly less than 𝑑,

requiring the induction to be carried out in an infinite-dimensional setting.
(ii) It is necessary to exchange the limits in 𝑟 and 𝑛 for the series 𝐹𝑛,1 +⋯ + 𝐹𝑛,𝑟. By construction,

𝔼(𝐹𝑛,𝑖𝐹𝑛,𝑗) = 0 for 𝑖 ≠ 𝑗, allowing for 𝐿2-control of the series.
(iii) For 𝑑 ≥ 4, the criterion involving �̃�1 is insufficient. However, the same strategy applies, with

decompositions of (𝐹𝑛)𝑛≥1 taking the form

𝐹𝑛 =

⌊𝑑∕𝑞⌋∑

𝑘=0

𝐴𝑘,𝑛𝐻𝑘(𝑋𝑛),

where (𝑋𝑛) is a suitable polynomial of degree 𝑞 < 𝑑 that is asymptotically normal, and (𝐴𝑘,𝑛)𝑘≥0
are polynomials asymptotically independent of (𝑋𝑛)𝑛≥1. Justifying such decompositions and
asymptotic independence is non-trivial; see Section 3 for details.

1.4.3. The statement for low degree polynomials. We give a ad hoc definition of Wiener chaoses. We give
more remainders on Wiener chaoses in Section 3.1. We fix �⃗� = (𝐺𝑖 ∶ 𝑖 ∈ ℕ) a sequence of independent
standard Gaussian variables, and we write 𝐻𝑘 for the Hermite polynomial of degree 𝑘. Here by vect𝐴,
we mean the closure in 𝐿2(𝐏) of the linear space generated by 𝐴 and we set

(1.1) 𝒲𝑝 ≔ vect{
∏

𝑖∈ℕ

𝐻𝑘𝑖
(𝐺𝑖) ∶

∑

𝑖

𝑘𝑖 = 𝑝}.

In particular,𝒲0 = ℝ, and𝒲1 contains only Gaussian variables, and each𝒲𝑝 in closed in 𝐿2(𝐏). We
also recall that

(1.2) 𝒲≤𝑝 ≔

𝑑⨁

𝑝=0

𝒲𝑝 =
{
𝑃(�⃗�) ∶ deg𝑃 ≤ 𝑑

}
.

Our induction is formulated as follows.
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Definition 1.6. For 𝑑 ∈ ℕ∗, we say that a sequence (�⃗�𝑛) of random infinite vectors is 𝑑-admissible
provided that:

∃𝐾 ∈ ℕ∗, ∀𝑖 ∈ ℕ, ∃𝑝𝑖 ∈ {0,… , 𝐾}, ∀𝑛 ∈ ℕ,
[
𝐹𝑛,𝑖 ∈𝒲𝑝𝑖

, and 𝐄
[
𝐹2
𝑛,𝑖

]
= 1

]
;(1.3)

∀𝑖 ∈ ℕ, [𝑝𝑖 ≤ 𝑑, or 𝐹𝑛,𝑖
𝐥𝐚𝐰
,,,,,→
𝑛→∞

𝒩(0, 1)].(1.4)

Let us establish the following result, which in view of (1.2) implies Theorem 1.2 for 𝑑 ∈ {1, 2, 3}.

Theorem 1.7. Let (�⃗�𝑛) be a 𝑑-admissible vector with 𝑑 ∈ {1, 2, 3}, that converges in law to some �⃗�∞. Then,
there exists a sequence (𝑌𝑖) ∈𝒲ℕ

≤𝑑
such that

𝐥𝐚𝐰 �⃗�∞ = 𝐥𝐚𝐰 �⃗�.

1.4.4. Initialisation: proof of the case 𝑑 = 1. Let us consider a 1-admissible sequence (�⃗�𝑛) converging in
law to some �⃗�∞. We can assume that �⃗�𝑛 has no deterministic component, that is 𝑝𝑖 > 0 for all 𝑖 ∈ ℕ.
Since we work with Gaussian polynomials, convergence in law implies convergence of moments, see
Theorem 2.1, we have that

𝐄
[
𝐹𝑛,𝑖𝐹𝑛,𝑗

]
,,,,,→
𝑛→∞

𝑐𝑖𝑗.

The first step consists of exhibiting �⃗� = (𝑁1, 𝑁2,⋯) a sequence in𝒲1 such that 𝐄(𝑁𝑖𝑁𝑗) = 𝑐𝑖,𝑗. Such a
sequence can be constructed inductively. Assume that we have built (𝑁1,⋯ , 𝑁𝑝) whose covariance
matrix is 𝐶𝑝 ≔ (𝑐𝑖,𝑗)1≤𝑖,𝑗≤𝑝. We seek for 𝑁𝑝+1 =

∑𝑝

𝑖=1
𝛼𝑖𝑁𝑖 + 𝛼𝑝+1𝐺 where 𝐺 is independent of

(𝑁1,⋯ , 𝑁𝑝), whenever𝐶𝑝 is invertible. If𝐶𝑝 is not invertible, we can build𝑁𝑝+1 as a linear combination
of 𝐺 and (𝑁𝑖1

,⋯ , 𝑁𝑖𝑞
) which is of full rank among (𝑁1,⋯ , 𝑁𝑝). We deal only with case det(𝐶𝑝) ≠ 0

below, for simplicity. The coefficients (𝛼1,⋯ , 𝛼𝑝+1)must fulfil

(1) 𝐄
(
𝑁𝑝+1𝑁𝑖

)
= 𝑐𝑖,𝑝+1, 𝑖 ∈ J1, 𝑝K which gives

⎛

⎜

⎝

𝑐1,1 ⋯ 𝑐1,𝑝
⋮ ⋮ ⋮

𝑐𝑝,1 ⋯ 𝑐𝑝,𝑝

⎞

⎟

⎠

⎛

⎜

⎝

𝛼1
⋮

𝛼𝑝

⎞

⎟

⎠

=
⎛

⎜

⎝

𝑐1,𝑝+1
⋮

𝑐𝑝,𝑝+1

⎞

⎟

⎠

. This gives

(𝛼1,⋯ , 𝛼𝑝) by inverting the system.
(2) Besides 𝐄

(
𝑁2
𝑝+1

)
= 𝑐𝑝+1,𝑝+1 = 𝛼2

𝑝+1
+
∑

1≤𝑖,𝑗≤𝑝
𝛼𝑖𝛼𝑗𝑐𝑖,𝑗 which provides 𝛼𝑝+1 up to the sign,

which does not matter. The resulting sequence (𝑁𝑖)𝑖≥1 admits 𝐶 = (𝑐𝑖,𝑗)1≤𝑖,𝑗≤𝑝 as covariance
matrix.

A seminal result of Peccati & Tudor [PT05] asserts that convergence in distribution of vectors with
Wiener chaotic entries to Gaussian vectors is equivalent to convergence of covariances matrices and
component-wise convergence. Hence, we have that

�⃗�𝑛
𝐥𝐚𝐰
,,,,,→
𝑛→∞

�⃗�,

which concludes the proof for 1-admissible sequences. □

1.4.5. First induction step: from linear to quadratic. We now show how to deduce the claim for 2-
admissible sequences. Thus, take (�⃗�𝑛) a 2-admissible sequence. As highlighted above, our pivotal idea is
that we can factor out Gaussian directions whenever a coordinate fails to be asymptotically Gaussian. To
make this intuition precise, we use the formalism ofMalliavin derivative, also known as carré du champ.
For a precise definition, see Section 3.1, here we simply recall that Gaussian polynomials 𝐹 = 𝑃(�⃗�) and
�̃� = �̃�(�⃗�), we have

Γ(𝐹, �̃�) ≔
∑

𝑖∈ℕ

𝜕𝐺𝑖𝐹𝜕𝐺𝑖 �̃�.

Let us define directional influence of degree 1

𝜌1(𝐹) ≔ sup
{
‖Γ(𝐹,𝑋)‖𝐿2(𝐏) ∶ 𝑋 ∈𝒲1, ‖𝑋‖ ≤ 1

}
.

Since every 𝑋 ∈𝒲 is of the form 𝑋 =
∑
𝑎𝑖𝐺𝑖 for some 𝑎 ∈ 𝓁2(ℕ), we have the simpler formula

Γ(𝐹,𝑋) =
∑

𝑖

𝑎𝑖𝜕𝑖𝑃(�⃗�).
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See Section 3.2 for a more detailed discussion on 𝜌1 and related objects. Write 𝐼 for the set of indices 𝑖
such that 𝐹𝑛,𝑖 is not asymptotically Gaussian. Then we consider the following iterative construction.
Set 𝑅𝑛,𝑖,0 ≔ 𝐹𝑛,𝑖. Then assuming that we have constructed 𝑅𝑛,𝑖,𝑘, define 𝑅𝑛,𝑖,𝑘+1 in the following way.
Consider (𝑋𝑛,𝑖,𝑘+1)𝑛 ∈𝒲ℕ

1
such that

𝜌1(𝑅𝑛,𝑖,𝑘) ≤ ‖Γ(𝑅𝑛,𝑖,𝑘, 𝑋𝑛,𝑖,𝑘+1)‖ +
1

𝑛
.

Then, completing 𝑋𝑛,𝑖,𝑘+1 in an orthonormal Gaussian basis of𝒲1 and expressing 𝑅𝑛,𝑖,𝑘 on this basis
allows to write:

𝑅𝑛,𝑖,𝑘 = 𝐴𝑛,𝑖,𝑘+1,2𝐻2(𝑋𝑛,𝑖,𝑘+1) + 𝐴𝑛,𝑖,𝑘+1,1𝐻1(𝑋𝑛,𝑖,𝑘+1) + 𝑅𝑛,𝑖,𝑘+1,

where𝐴𝑛,𝑖,𝑘+1,2 ∈𝒲0 (it is a constant),𝐴𝑛,𝑖,𝑘+1,1 ∈𝒲1 and is independent of𝑋𝑛,𝑖,𝑘+1, and 𝑅𝑛,𝑖,𝑘+1 ∈𝒲2

is independent of 𝑋𝑛,𝑖,𝑘+1. Necessarily, we also find that 𝑋𝑛,𝑖,𝑘+1 is independent of 𝑋𝑛,𝑖,𝑘. Indeed, write

𝑋𝑛,𝑖,𝑘+1 =
√
𝑡𝑋𝑛,𝑖,𝑘 +

√
1 − 𝑡𝑁,

for some 𝑁 ∈𝒲1 independent of 𝑋𝑛,𝑖,𝑘, and we have

Γ(𝑋𝑛,𝑖,𝑘+1, 𝑅𝑛,𝑖,𝑘) =
√
1 − 𝑡Γ(𝑁,𝑅𝑛,𝑖,𝑘),

which contradicts the almost optimality of 𝑋𝑛,𝑖,𝑘+1 unless 𝑡 = 0. Thus defining

𝐹𝑛,𝑖,𝑘 ≔ 𝐴𝑛,𝑖,𝑘,2𝐻2(𝑋𝑛,𝑖,𝑘) + 𝐴𝑛,𝑖,𝑘,1𝐻1(𝑋𝑛,𝑖,𝑘),

we find that

(1.5) 𝐹𝑛,𝑖 =

𝑙∑

𝑘=1

𝐹𝑛,𝑖,𝑘 + 𝑅𝑛,𝑖,𝑙.

Up to extracting a subsequence, we can assume that

𝐄
[
𝐹2
𝑛,𝑖,𝑘

]
,,,,,→
𝑛→∞

𝑣𝑖,𝑘,

for some non negative numbers 𝑣𝑖,𝑘’s and any 𝑖, 𝑘 ≥ 1. Based on elementary analytical considerations,
see Lemma 2.4, one can find a sequence 𝑙𝑛 →∞, such that

(1.6)
∑

𝑖≤𝑙𝑛

∑

𝑘≤𝑙𝑛

|||||
𝐄
[
𝐹2
𝑛,𝑖,𝑘

]
− 𝑣𝑖,𝑘

|||||
,,,,,→
𝑛→∞

0.

Lemma 1.8. The vector
(
𝐴𝑛,𝑖,𝑘,2, 𝐴𝑛,𝑖,𝑘,1, 𝑅𝑛,𝑖,𝑙𝑛 , 𝑋𝑛,𝑖,𝑘 ∶ 𝑖 ∈ ℕ, 𝑘 ∈ ℕ∗

)
,

is 1-admissible.

Proof. By construction 𝐴𝑛,𝑖,𝑘,2 ∈𝒲0, and 𝐴𝑛,𝑖,𝑘,1, 𝑋𝑛,𝑖,𝑘 ∈𝒲1. Let us check that 𝑅𝑛,𝑖,𝑙𝑛 is asymptotically
Gaussian. By definition

𝜌1(𝑅𝑛,𝑖,𝑙𝑛) ≤ ‖Γ(𝑅𝑛,𝑖,𝑙𝑛 , 𝑋𝑛,𝑖,𝑙𝑛+1)‖ +
1

𝑛
.

As explained previously, decomposing 𝑅𝑛,𝑖,𝑙𝑛 = 𝐹𝑛,𝑖,𝑙𝑛+1 + 𝑅𝑛,𝑖,𝑙𝑛+1, we find that 𝑅𝑛,𝑖,𝑙𝑛+1, 𝐴𝑛,𝑖,𝑙𝑛+1,2
and

𝐴𝑛,𝑖,𝑙𝑛+1,2
are independent of 𝑋𝑛,𝑖,𝑙𝑛+1 and that

Γ(𝑅𝑛,𝑖,𝑙𝑛 , 𝑋𝑛,𝑖,𝑙𝑛+1) = 𝐴𝑛,𝑖,𝑙𝑛+1,2
Γ(𝐻2(𝑋𝑛,𝑖,𝑙𝑛+1), 𝑋𝑛,𝑖,𝑙𝑛+1) + 𝐴𝑛,𝑖,𝑙𝑛+1,1

Γ(𝑋𝑛,𝑖,𝑙𝑛+1, 𝑋𝑛,𝑖,𝑙𝑛+1).

= 2𝐴𝑛,𝑖,𝑙𝑛+1,2
+ 𝐴𝑛,𝑖,𝑙𝑛+1,1

.

By independence and since 𝐄[𝑋𝐻2(𝑋)] = 0 for 𝑋 Gaussian, we have

‖𝐹𝑛,𝑖,𝑙𝑛+1‖
2 = ‖𝐴𝑛,𝑖,𝑙𝑛+1,2

𝐻2(𝑋𝑛,𝑖,𝑙𝑛+1) + 𝐴𝑛,𝑖,𝑙𝑛+1
𝑋𝑛,𝑖,𝑙𝑛+1‖

2 = 4𝐴2

𝑛,𝑖,𝑙𝑛+1,2
+ ‖𝐴2

𝑛,𝑖,𝑙𝑛+1,1
‖.

Combining with (1.6), we have shown that

𝜌1(𝑅𝑛,𝑖,𝑙𝑛+1) ≤ 4‖𝐹𝑛,𝑖,𝑙𝑛+1‖ +
1

𝑛
≤ 𝑐𝑣

1∕2

𝑖,𝑙𝑛+1
+
1

𝑛
+ 𝑜(1)

Since all the terms in (1.5) are orthogonal, and 𝐹𝑛 is normalized, we also find that
∑

𝑘

𝑣𝑖,𝑘 ≤ 1.
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Thus 𝑣𝑖,𝑙𝑛+1 → 0. This shows that 𝜌1(𝑅𝑛,𝑖,𝑙𝑛+1)→ 0 as 𝑛 →∞, and by Theorem 3.9 we conclude that it
is asymptotically Gaussian. □

By the induction hypothesis, we can thus, up to extraction, find 𝐴∞,𝑖,𝑘,2 ∈𝒲0, 𝐴∞,𝑖,𝑘,1 ∈𝒲≤1, 𝑅∞,𝑖 ∈

𝒲≤1, and 𝑋∞,𝑖,𝑘 ∈𝒲≤1 such that

(
𝐴𝑛,𝑖,𝑘,2, 𝐴𝑛,𝑖,𝑘,1, 𝑅𝑛,𝑖,𝑙𝑛 , 𝑋𝑛,𝑖,𝑘 ∶ 𝑖 ∈ ℕ, 𝑘 ∈ ℕ∗

) 𝐥𝐚𝐰
,,,,,→
𝑛→∞

(
𝐴∞,𝑖,𝑘,2, 𝐴∞,𝑖,𝑘,1, 𝑅∞,𝑖, 𝑋∞,𝑖,𝑘 ∶ 𝑖 ∈ ℕ, 𝑘 ∈ ℕ∗

)

By our inductive construction where 𝐹𝑛,𝑖,𝑘+1 is independent of (𝑋𝑛,𝑖,1,… , 𝑋𝑛,𝑖,𝑘) and since 𝐹𝑛,𝑖 is nor-
malised, we find that

1 ≥

‖‖‖‖‖‖‖‖‖

∑

𝑘

𝐹𝑛,𝑖,𝑘

‖‖‖‖‖‖‖‖‖

2

𝐿2(𝐏)

=
∑

𝑘

𝐄
[
𝐹2
𝑛,𝑖,𝑘

]
.

Since we work with Gaussian polynomials the orthogonality is preserved by the convergence in law, see
Theorem 2.1, thus using that the norm is weakly lower semi-continuous, we get

1 ≥

‖‖‖‖‖‖‖‖‖

∑

𝑘

𝐹∞,𝑖,𝑘

‖‖‖‖‖‖‖‖‖

2

𝐿2(𝐏)

=
∑

𝑘

𝐄
[
𝐹2
∞,𝑖,𝑘

]
.

This shows that the series
∑

𝑘
𝐹∞,𝑖,𝑘 is convergent in 𝐿2(𝐏) and is an element of𝒲≤2 since this space is

closed in 𝐿2(𝐏). Thus let us define

𝐹∞,𝑖 ≔
∑

𝑘

𝐹∞,𝑖,𝑘 + 𝑅∞,𝑖 ∈𝒲≤2.

We conclude the proof by showing the following convergence.

Lemma 1.9. The sequence (�⃗�𝑛) converges in law to �⃗�∞ ≔ (𝐹∞,𝑖).

Proof. Take a finite subset 𝐽 = {𝑗1,⋯ , 𝑗𝑝} ⊂ ℕ. Then, since 𝑙𝑛 →∞, there exists 𝑁0 such that for any
𝑛 ≥ 𝑁0 we have 𝐽 ⊂ {0,⋯ , 𝑙𝑛}. In virtue of (1.6) we have in particular

𝑙𝑛∑

𝑖=1

𝑙𝑛∑

𝑘=1

|||||
𝐄
[
𝐹2
𝑛,𝑖,𝑘

]
− 𝑣𝑖,𝑘

|||||
→ 0.

Let 𝜖 > 0, one may find 𝐾𝜖 ≥ 1 and 𝑁1 ≥ 𝑁0 such that for any 𝑛 ≥ 𝑁1 we have

𝑝∑

𝑙=1

𝑙𝑛∑

𝑘=𝐾𝜖+1

𝐄
[
𝐹2
𝑛,𝑗𝑙 ,𝑘

]
+ 𝐄

[
𝐹2
∞,𝑗𝑙 ,𝑘

]

⏟⎴⏟⎴⏟
=𝑣𝑗𝑙 ,𝑘

≤ 𝜖.

Thus, with𝐖2 the 2-Wasserstein defined in (2.1), one recovers

𝐖2

((
𝐹𝑛,𝑗

)

𝑗∈𝐽
,
(
𝐹∞,𝑗

)

𝑗∈𝐽

)

≤ 𝜖 +𝐖2

⎛

⎜
⎜

⎝

⎛

⎜

⎝

𝐾𝜖∑

𝑘=1

𝐹𝑛,𝑗𝑙 ,𝑘 + 𝑅𝑛,𝑗𝑙 ,𝑙𝑛

⎞

⎟

⎠𝑗∈𝐽

,
⎛

⎜

⎝

𝐾𝜖∑

𝑘=1

𝐹∞,𝑗𝑙 ,𝑘
+ 𝑅∞,𝑗𝑙

⎞

⎟

⎠𝑗∈𝐽

⎞

⎟
⎟

⎠

.

Letting 𝑛 →∞ and using induction hypothesis implies that

𝐖2

⎛

⎜
⎜

⎝

⎛

⎜

⎝

𝐾𝜖∑

𝑘=1

𝐹𝑛,𝑗𝑙 ,𝑘 + 𝑅𝑛,𝑗𝑙 ,𝑙𝑛

⎞

⎟

⎠𝑗∈𝐽

,
⎛

⎜

⎝

𝐾𝜖∑

𝑘=1

𝐹∞,𝑗𝑙 ,𝑘
+ 𝑅∞,𝑗𝑙

⎞

⎟

⎠𝑗∈𝐽

⎞

⎟
⎟

⎠

→ 0.

Letting 𝜖 → 0 completes the proof. □
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1.4.6. The quadratic case implies the cubic case. The mechanism of proof is identical, we consider
(
𝐹𝑛

)

an admissible sequence of order 3. As before we focus on the set 𝐼 of indices such that (𝐹𝑛,𝑖); 𝑖 ∈ 𝐼 does
not have a Gaussian limit. Then, we notice that, as in the case of degree 2, for Wiener chaoses of degree
3, the semi-norm 𝜌1 controls the asymptotic Gaussianity. Thanks to this observation, we may perform
similar decompositions: for 𝑅𝑛,𝑖,𝑘 being constructed, we set

𝑅𝑛,𝑖,𝑘 = 𝐴𝑛,𝑖,𝑘+1,3𝐻3(𝑋𝑛,𝑖,𝑘+1) + 𝐴𝑛,𝑖,𝑘+1,2𝐻2(𝑋𝑛,𝑖,𝑘+1) + 𝐴𝑛,𝑖,𝑘+1,1𝐻1(𝑋𝑛,𝑖,𝑘+1) + 𝑅𝑛,𝑖,𝑘+1.

There, 𝐴𝑛,𝑖,𝑘+1,3 is in𝒲0 hence constant, 𝐴𝑛,𝑖,𝑘+1,2 is in𝒲1, and 𝐴𝑛,𝑖,𝑘+1,1 is in𝒲2. All are indepen-
dent of 𝑋𝑛,𝑖,𝑘+1 which is in 𝒲1 and satisfies 𝜌1(𝑅𝑛,𝑖,𝑘) ≤ ‖Γ

[
𝑅𝑛,𝑖,𝑘, 𝑋𝑛,𝑖,𝑘+1

]
‖ +

1

𝑛
. Setting 𝐹𝑛,𝑖,𝑘 ≔

𝐴𝑛,𝑖,𝑘+1,3𝐻3(𝑋𝑛,𝑖,𝑘+1) + 𝐴𝑛,𝑖,𝑘+1,2𝐻2(𝑋𝑛,𝑖,𝑘+1) + 𝐴𝑛,𝑖,𝑘+1,1𝐻1(𝑋𝑛,𝑖,𝑘+1) one can also write (with the exact
same orthogonality and independence as in the quadratic case) for some 𝑟𝑛 →∞

𝐹𝑛,𝑖 =

𝑟𝑛∑

𝑘=1

𝐹𝑛,𝑖,𝑘 + 𝑅𝑛,𝑖,𝑟𝑛 ; where 𝑅𝑛,𝑖,𝑟𝑛 has Gaussian limit.

Then, in order to conclude the proof, one is left to apply the induction hypothesis to the 2-admissible
sequence (𝐴𝑛,𝑖,𝑘,3, 𝐴𝑛,𝑖,𝑘,2, 𝐴𝑛,𝑖,𝑘,1, 𝑋𝑛,𝑖,𝑘, 𝑅𝑛,𝑖,𝑙𝑛 ∶ 𝑖, 𝑘 ≥ 1) and to truncate the series tails

∑𝑙𝑛

𝑘=𝐾𝜖+1
𝐹𝑛,𝑖,𝑘

in the exact same manner. This truncation procedure relies entirely on the fact that (𝐹𝑛,𝑖,𝑘)𝑘≥1 is an
orthogonal sequence and this still holds for degree 3Wiener chaoses. For degree strictly higher than 3,
this orthogonality must be replaced by a weaker asymptotic orthogonality but we do not discuss this in
the outline.

2. Preliminaries

Since we are working with polynomials with random inputs, let us gather some facts about those.
We start by recalling a direct consequence of hypercontractivity for polynomials [MOO10, § 3.2].

Theorem 2.1. Let (𝑃𝑛) be a sequence of multivariate polynomials of at most 𝑑 ∈ ℕ. Let �⃗� = (𝑋𝑖) be a
sequence of independent and identically distributed random variables, that are centered, with unit variance,
and such that 𝐄[|𝑋1|𝑝] <∞ for all 𝑝 ∈ ℕ. Then, if (𝑃𝑛(�⃗�)) converges in law to some 𝑌∞, then

𝐄[
|||||
𝑃𝑛(�⃗�)

|||||

𝑝

] ,,,,,→
𝑛→∞

𝐄
[
|𝑌∞|

𝑝]
, 𝑝 ∈ ℕ.

The following is also standard and follows, for instance, from [MOO10, Prop. 3.5].

Theorem 2.2. Let �⃗� be as above. Then the set
{
𝑃(�⃗�) ∶ 𝑃 multivariate polynomial with degree at most 𝑑

}
,

is closed in 𝐿2(𝐏).

Let also recall the definition if the Wasserstein distance. Here 𝑑 ∈ ℕ∗, and 𝑋 and 𝑌 are random vectors
in ℝ𝑑.

(2.1) 𝐖2(𝑋,𝑌) ≔ inf {
[
𝐄
[
|�̃� − �̃�|2

]]1∕2
∶ 𝐥𝐚𝐰[�̃�] = 𝐥𝐚𝐰[𝑋], 𝐥𝐚𝐰[�̃�] = 𝐥𝐚𝐰[𝑌]},

where |⋅| is the Euclidean norm on ℝ𝑑. Following [Vil09, Thm. 6.9], the Wasserstein distance metrizes
the topology of the convergence in law together with the convergence of the secondmoment. Combining
with Theorem 2.1, we obtain the following.

Corollary 2.3. For all 𝑑 ∈ ℕ and 𝑙 ∈ ℕ∗, on the set
{
(𝑃1(�⃗�),… , 𝑃𝑙(�⃗�)) ∶ (𝑃𝑖)𝑖 multivariate polynomial with degree at most 𝑑

}
,

the topology of the convergence in law is equivalent to that induced by the Wasserstein distance.

We finish this short section with an elementary lemma that we use several times.
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Lemma 2.4. Consider a sequence of sequences (𝑢𝑛,𝑚)𝑛,𝑚≥1 such that for any𝑚 ≥ 1, 𝑢𝑛,𝑚 ,,,,,→
𝑛→∞

0. Then,

there exists a real sequence (𝑟𝑛) such that 𝑟𝑛 →∞ and
𝑟𝑛∑

𝑘=1

||||𝑢𝑛,𝑘
|||| ,,,,,→𝑛→∞

0.

Proof. One may build an increasing sequence of integers (𝑁𝑖)𝑖≥1 such that for any 𝑛 ≥ 𝑁𝑖 we have
𝑖∑

𝑘=1

|𝑢𝑛,𝑘| ≤
1

𝑖
.

Assume thatwe have (𝑁1,⋯ , 𝑁𝑖) fulfilling the above conditions. There exists𝑁𝑖+1 > 𝑁𝑖 such that for any
𝑘 ∈ J1, 𝑖K and 𝑛 ≥ 𝑁𝑖+1 we have |𝑢𝑛,𝑘| ≤

1

(𝑖+1)2
. This entails that for any 𝑛 ≥ 𝑁𝑖+1,

∑𝑖+1

𝑘=1
|𝑢𝑛,𝑘| ≤

1

𝑖+1
.

Then, for any 𝑛 ∈ J𝑁𝑖, 𝑁𝑖+1J one sets 𝑟𝑛 = 𝑖. By construction, on this integers interval one has
∑𝑟𝑛

𝑘=1
|𝑢𝑛,𝑘| ≤

1

𝑖
which concludes the proof. □

3. Stability of Wiener chaoses

We prove the following infinite-variate version of Theorem 1.2.

Theorem 3.1. Let (𝑃𝑖,𝑛)𝑖,𝑛 be polynomials of degree at most 𝑑 ∈ ℕ∗; let �⃗� be a standard Gaussian vector;
and let �⃗�𝑛 be the infinite random vector given by

𝐹𝑖,𝑛 ≔ 𝑃𝑖,𝑛(�⃗�), 𝑖, 𝑛 ∈ ℕ.

Assume that (�⃗�𝑛) converges in law. Then, there exist polynomials (𝑄𝑖)𝑖 of degree at most 𝑑 such that

�⃗�𝑛
𝐥𝐚𝐰
,,,,,→
𝑛→∞

(𝑄𝑖(�⃗�))𝑖.

3.1. Reminders on theWiener space. In this section, we review the necessary materials, and only
the necessary materials, regarding Wiener chaoses. Readers interested in a broader introduction or the
most general definitions should read [BH91; Jan08; Nua06; NP12] for thorough introduction on the
subjects.

3.1.1. The Wiener space. In this section, we work on theWiener space which is the probability space

(Ω,𝔚,𝐏) ≔ (ℝ,𝔅(ℝ), 𝛾)⊗∞,

where 𝔅(ℝ) is the Borel 𝜎-algebra of ℝ, and 𝛾 = 𝒩(0, 1) is the standard Gaussian distribution. We
equip it with the canonical coordinates process

𝐺𝑖(𝜔) ≔ 𝜔𝑖, 𝜔 ∈ Ω, 𝑖 ∈ ℕ,

in a way that the vector �⃗� = (𝐺𝑖) is an infinite-vector of independent standard Gaussian variables. The
Wiener space is invariant under orthogonal transformation, that is if 𝖠 ∈ 𝒪(𝓁2) then 𝖠�⃗� has the same
law as �⃗�, and all the definitions below are also independent of the choice of the basis.

3.1.2. Wiener chaoses. Recall that we have defined𝒲𝑑, the Wiener chaos of degree 𝑑 in (1.1), as well as
𝒲≤𝑑, the sum of chaos of degree at most 𝑑, which coincides with the space of Gaussian polynomials of
degree at most 𝑑. From the definition of𝒲≤𝑑 in terms of polynomials, we see that

(3.1)
[
𝐹 ∈𝒲≤𝑚, 𝑋 ∈𝒲≤𝑑

]
⟹ 𝐹𝑋 ∈𝒲≤(𝑑+𝑚).

For 𝐹 ∈𝒲≤𝑑, we write 𝖩𝑚𝐹 for its orthogonal projection onto𝒲𝑚. The Hermite polynomials form an
orthonormal basis of 𝐿2(𝛾), from which we see that

𝒲≤𝑑 ⊂
⋂

𝑝<∞

𝐿𝑝(𝐏).

Actually on Wiener chaoses, all the 𝐿𝑝-norms are equivalent. Namely, following [HMP24, §3.1.3], for
𝑑 ∈ ℕ, and 1 ≤ 𝑝 ≤ 𝑞 < 1, there exists 𝑐 = 𝑐𝑚,𝑝,𝑞 such that

(3.2) ‖𝐹‖𝑞 ≤ 𝑐‖𝐹‖𝑝, 𝐹 ∈𝒲≤𝑑.
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From this we obtain the following characterization.

Lemma 3.2. Let 𝐾 ⊂𝒲≤𝑑. The following are equivalent.
(i) 𝐾 is bounded in some 𝐿𝑝(𝐏) (𝑝 <∞).
(ii) 𝐾 is relatively compact for the topology of the convergence in law and the convergence of all moments.
(iii) 𝐾 is relatively compact for the topology of the Wasserstein distance.

Remark 3.3. Our Theorem 1.2 actually completes this result by stating that 𝐿𝑝 balls in𝒲≤𝑑 are actually
compact for the topology of the Wasserstein distance.

3.1.3. Differential operators on the Wiener spaces. Let us define the Ornstein–Uhlenbeck generator

𝖫𝐹 ≔

𝑑∑

𝑚=0

(−𝑑)𝖩𝑚𝐹, 𝐹 ∈𝒲≤𝑑.

The operator 𝖫∶ 𝒲≤𝑑 →𝒲≤𝑑 is continuous for the 𝐿2(𝐏)-topology, and its eigenspaces are exactly𝒲𝑚.
Related, to 𝖫, we define the carré du champ operator

Γ[𝐹,𝑋] ≔
1

2
(𝖫(𝐹𝑋) − 𝐹𝖫𝑋 − 𝑋𝖫𝐹), 𝐹, 𝑋 ∈𝒲≤𝑑.

For Wiener chaoses, the carré du champ has a particularly simple form

(3.3) Γ(𝐹,𝑋) =
1

2
(𝖫 + 𝑝 + 𝑞)(𝐹𝑋), 𝐹 ∈𝒲𝑝, 𝑋 ∈𝒲𝑞.

Similarly to (3.1), the carré du champ satisfies a multiplication property
(3.4)

[
𝐹 ∈𝒲≤𝑑, 𝐺 ∈𝒲≤𝑚

]
⟹ Γ[𝐹, 𝐺] ∈𝒲≤(𝑑+𝑚−2).

3.1.4. Smooth random variables. We define the space 𝔻∞ as the closure of ∪𝑚∈ℕ𝒲≤𝑚 for the family of
seminorms

𝐹 ↦ ‖𝖫𝑘𝐹‖𝐿𝑝(𝐏), 𝑘 ∈ ℕ, 𝑝 ∈ (1,∞).

It is known that 𝔻∞ is an algebra stable under 𝖫, Γ, and composition with smooth functions with
polynomial growth. This allows to state the important chain rule formula for Γ
(3.5) Γ[𝜑(𝐹), 𝐺] = 𝜑′(𝐹)Γ[𝐹, 𝐺], 𝐹, 𝐺 ∈ 𝔻∞, 𝜑 ∈ 𝒞∞

𝑝𝑜𝑙
.

In particular, the carré du champ can be understood as the square 𝓁2-norm of the infinite-dimensional
gradient

(3.6) Γ(𝜑(�⃗�), 𝜓(�⃗�)) =
∑

𝑖∈ℕ

𝜕𝑖𝜑(�⃗�)𝜕𝑖𝜓(�⃗�), 𝜑, 𝜓 ∈ 𝒞∞

𝑝𝑜𝑙
.

Finally, the following integration by parts formula plays a crucial role in our analysis
(3.7) −𝐄[𝐹𝖫𝐺] = 𝐄[Γ[𝐹, 𝐺]], 𝐹, 𝐺 ∈ 𝒞∞

𝑝𝑜𝑙
.

An immediate consequence of the definition and the properties is the following result that we use
repeatedly.

Lemma 3.4. Let (𝐹, 𝐺,𝐻) ∈𝒲𝑝 ×𝒲𝑞 ×𝒲𝑟 with (𝑝, 𝑞, 𝑟) ∈ ℕ3. Then,

(3.8) 𝐄[Γ[𝐹, 𝐺]𝐻] =
𝑝 + 𝑞 − 𝑟

2
𝐄[𝐹𝐺𝐻].

Proof. By definition of Γ and the fact that 𝐹 and 𝐺 are chaotic, we find

Γ[𝐹, 𝐺] =
1

2
(𝖫 + 𝑝 + 𝑞)(𝐹𝐺).

By (3.7),
𝐄[𝐻𝖫(𝐹𝐺)] = 𝐄[𝐹𝐺𝖫𝐻] = −𝑟𝐄[𝐹𝐺𝐻].

□

We also need the following inequality.

Lemma 3.5. Let 𝑋 ∈𝒲𝑝 and 𝑌 ∈𝒲𝑞. Then

𝐄
[
Γ(𝑋,𝑌)2

]
≤
𝑝 + 𝑞

4
𝐄[𝑋𝑌Γ(𝑋,𝑌)].
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Proof. Using (3.3) and (3.7), we find that

𝐄
[
Γ(𝑋,𝑌)2

]
=
1

4
𝐄[(𝑋𝑌)𝖫(𝖫 + 𝑝 + 𝑞)(𝑋𝑌)] +

1

4
(𝑝 + 𝑞)𝐄[(𝑋𝑌)Γ(𝑋,𝑌)].

By definition, 𝖫 is a non-positive operator, and, on the other, by (3.1), 𝑋𝑌 ∈𝒲≤(𝑝+𝑞) on which 𝖫+𝑝+ 𝑞
is a non-negative operator. Thus, the first term on the right-hand side is non-positive, and this yields
the inequality. □

3.2. Directional influences: a new criterion for asymptotic normality onWiener chaoses. We
introduce the directional influences of degree 𝑘, we new tool we develop to study convergence in law
for a sequence of random variables in a Wiener chaos of fixed degree. We use them to formulate a
new necessary and sufficient condition for such a sequence to have a Gaussian limit. This criterion, of
independent interest, plays a prominent role in our approach.

Definition 3.6. Let 𝑞 ∈ ℕ∗, the directional influence of degree 𝑞 is defined as

(3.9) 𝜌𝑞(𝐹) = sup
{
‖Γ(𝐹,𝑋) ∶ 𝑋 ∈𝒲𝑞,𝐄

[
𝑋2
]
= 1‖

}
, 𝐹 ∈ 𝔻∞.

Since we use this construction often let us also define.

Definition 3.7. Let (𝐹𝑛) be a sequence in 𝔻∞ and 𝑞 ∈ ℕ∗. We say that a sequence (𝑋𝑛) realises 𝜌𝑞(𝐹𝑛)
provided 𝑋𝑛 ∈𝒲𝑞 with 𝐄

[
𝑋2
𝑛

]
= 1 is such that

‖Γ[𝐹𝑛, 𝑋𝑛]‖𝐿2(𝐏) ≥ 𝜌𝑞(𝐹𝑛) −
1

𝑛
.

The following monotonicity property is immediate.

Lemma 3.8. For 1 ≤ 𝑞 < 𝑝 we have 𝜌𝑞 ≤ 𝜌𝑝.

Proof. Take 𝑞 < 𝑝, 𝐹 ∈ 𝔻∞ and (𝑋𝑛) realizing 𝜌𝑞(𝐹). We first assume that 𝐹 depends on finitely many
Gaussian coordinates say 𝐺1,… , 𝐺𝑚 for some𝑚 ∈ ℕ∗. In this case we can also take 𝑋𝑛 only depending
on 𝐺1,… , 𝐺𝑚. Can consider (𝑌𝑛)𝑛≥1 in𝒲𝑝−𝑞, only depending on 𝐺𝑚+1, 𝐺𝑚+2,… with 𝐄

[
𝑌2
𝑛

]
= 1. In

particular, 𝑌𝑛 is independent of (𝐹,𝑋𝑛)𝑛≥1 and Γ(𝐹,𝑌𝑛) = Γ(𝑋𝑛, 𝑌𝑛) = 0. Thus,

(3.10) 𝐄
[
Γ[𝐹,𝑋𝑛𝑌𝑛]

2
]
= 𝐄

[
𝑌2
𝑛Γ[𝐹,𝑋𝑛]

2
]
= ‖Γ[𝐹,𝑋𝑛]‖

2

𝐿2(𝐏)
,,,,,→
𝑛→∞

𝜌𝑞(𝐹).

Using that the carré du champ vanished, we also find that

𝖫(𝑋𝑛𝑌𝑛) = 𝑋𝑛𝖫𝑌𝑛 + 𝑌𝑛𝖫𝑋𝑛 = −𝑝𝑋𝑛𝑌𝑛.

Thus, 𝑋𝑛𝑌𝑛 ∈ 𝒲𝑝, hence ‖Γ[𝐹,𝑋𝑛𝑌𝑛]‖2 ≤ 𝜌𝑝(𝐹) by definition. Combining with (3.10) and taking
𝑛 →∞, we conclude. For the general case, we approximate 𝐹 by a sequence (𝐹𝑛) in𝔻∞ depending only
on the𝑚𝑛 first coordinates. □

3.2.1. Revisiting asymptotic normality onWiener chaoses. The following result summarizes some known
criterion for normal convergence, and establish the equivalence with our new criterion based on
directional influence. To the best of our knowledge, it is new.

Theorem 3.9. Let (𝐹𝑛) be a sequence in𝒲𝑝. The following are equivalent.
(i) (𝐹𝑛) is asymptotically Gaussian.
(ii) 𝐕𝐚𝐫 Γ[𝐹𝑛, 𝐹𝑛] converges to 0.
(iii) for 𝑘 ≥ 2,𝐻𝑘(𝐹𝑛) is asymptotically an eigenvalue for 𝖫 of order 𝑘𝑝

(𝖫 + 𝑘𝑝)𝐻𝑘(𝐹𝑛)
𝐿2(𝐏)
,,,,,→
𝑛→∞

0.

(iv) for 𝑘 ≥ 2,𝐻𝑘(𝐹𝑛) has asymptotically no components other than 𝑘𝑝

𝒥𝑞𝐻𝑘(𝐹𝑛)
𝐿2(𝐏)
,,,,,→
𝑛→∞

0, 𝑞 ≠ 𝑘𝑝.

(v) 𝜌𝑝−1(𝐹𝑛) vanishes as 𝑛 →∞.
(vi) 𝜌⌊ 𝑝

2

⌋(𝐹𝑛) vanishes as 𝑛 →∞.
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Proof. (i)⇔ (ii) follows from [NO08].
(ii)⇔ (iii) is immediate once we observe that (𝖫 + 𝑘𝑝)𝐻𝑘(𝐹𝑛) = 𝑘(𝑘 − 1)𝐻𝑘−2(𝐹𝑛)(Γ(𝐹𝑛, 𝐹𝑛) − 𝑝), see
[AMMP16, Eq. (4.6)].
(iii)⇔ (iv) since (𝖫 + 2𝑝) corresponds exactly to projecting on𝒲⟂

2𝑝
, up to a multiplicative constant.

We can assume that 𝑝 > 1, otherwise, on the one hand (𝐹𝑛) is already Gaussian, and on the other
hand𝒲𝑝−1 =𝒲0 = ℝ. Thus, the chain rule (3.5) implies that Γ[𝐹𝑛, 𝑋] = 0 for every 𝑋 ∈𝒲0, hence
𝜌⌊ 𝑝

2
⌋(𝐹𝑛) = 𝜌𝑝−1(𝐹𝑛) = 0. Thus, we assume that 𝑝 ≥ 2.

(iii) and (iv)⇒ (v). Consider (𝐹𝑛)𝑛≥1 ∈𝒲𝑝 such that 𝐹𝑛 →𝒩(0, 1) and let us prove that 𝜌𝑝−1(𝐹𝑛)→ 0.
Take (𝑋𝑛) realising 𝜌𝑝−1(𝐹𝑛). Since 𝑋𝑛 ∈ 𝒲𝑝−1, by (3.1), we find 𝑋2

𝑛 ∈ 𝒲≤(2𝑝−2). Given that𝒲2𝑝 ⟂

𝒲≤(2𝑝−2), we derive, by (iv), that𝐄
[
𝐻2(𝐹𝑛)𝑋

2
𝑛

]
→ 0. On the other hand by (iii)𝐄

[
(𝖫 + 2𝑝)𝐻2(𝐹𝑛)𝑋

2
𝑛

]
→

0. Using the chain rule (3.5), the integration by parts (3.7), we thus find

𝐄[𝐹𝑛𝑋𝑛Γ[𝐹𝑛, 𝑋𝑛]] =
1

4
𝐄
[
Γ[𝑋2

𝑛, 𝐻2(𝐹𝑛)]
]

= −
1

4
𝐄
[
𝑋2
𝑛𝖫𝐻2(𝐹𝑛)

]

= −
1

4
𝐄
[
𝑋2
𝑛(𝖫 + 2𝑝)𝐻2(𝐹𝑛)

]
+
𝑝

2
𝐄
[
𝑋2
𝑛𝐻2(𝐹𝑛)

]
,,,,,→
𝑛→∞

0.

By Lemma 3.5, we conclude that

Γ(𝐹𝑛, 𝑋𝑛)
𝐿2(𝐏)
,,,,,→
𝑛→∞

0,

and thus 𝜌𝑝−1(𝐹𝑛)→ 0.
(v)⇒ (vi). Direct consequence of the monotonicity Lemma 3.8.
(vi)⇒ (ii). We want to establish that 𝐕𝐚𝐫[Γ(𝐹𝑛, 𝐹𝑛)] → 0 as 𝑛 → ∞. By (3.4), it is sufficient to show
that for all (𝑍𝑛)𝑛≥1 a bounded sequence in𝒲𝑘 with 𝑘 ∈ {1,… , 2𝑝 − 2}. 𝐄[Γ[𝐹𝑛, 𝐹𝑛]𝑍𝑛] → 0. Indeed,
this yields that orthogonal projections of Γ[𝐹𝑛, 𝐹𝑛] on chaoses of order 𝑘 tend to zero, hence the desired
claim. For every 𝑙 ≤ 𝑝 ∧ 𝑘, and every multi-index (𝑖1,⋯ , 𝑖𝑙) ∈ ℕ𝑙 we have 𝜕𝑖1,⋯,𝑖𝑙

𝐹𝑛 ∈ 𝒲𝑝−𝑙 and
𝜕𝑖1,⋯,𝑖𝑙

𝑍𝑛 ∈𝒲𝑘−𝑙. Provided that (𝑝 − 𝑙) + (𝑘 − 𝑙) ≠ 𝑝, that is 𝑘 ≠ 2𝑙, recalling (3.6), Lemma 3.4 entails
that

𝐄
[
𝐹𝑛𝜕𝑖1,⋯,𝑖𝑙

𝐹𝑛𝜕𝑖1,⋯,𝑖𝑙
𝑍𝑛
]
=

2

𝑘 − 2𝑙
𝐄
[
𝐹𝑛Γ[𝜕𝑖1,⋯,𝑖𝑙

𝐹𝑛, 𝜕𝑖1,⋯,𝑖𝑙
𝑍𝑛]

]

=
2

𝑘 − 2𝑙

∞∑

𝑖𝑙+1=1

𝐄
[
𝐹𝑛𝜕𝑖1,⋯,𝑖𝑙+1

𝑋𝑛𝜕𝑖1,⋯,𝑖𝑙+1
𝑍𝑛
]
.

Applying 𝑟-times consecutively the previous procedure leads to

𝐄[𝐹𝑛𝐹𝑛𝑍𝑛] =
2

𝑘
𝐄[𝐹𝑛Γ[𝐹𝑛, 𝑍𝑛]]

=
2

𝑘

∞∑

𝑖=1

𝐄[𝐹𝑛𝜕𝑖𝐹𝑛𝜕𝑖𝑍𝑛]

⋮

=
2𝑟

∏𝑟−1

𝑙=0
(𝑘 − 2𝑙)

∞∑

𝑖1,⋯,𝑖𝑟=1

𝐄
[
𝐹𝑛𝜕𝑖1,⋯,𝑖𝑟

𝐹𝑛𝜕𝑖1,⋯,𝑖𝑟
𝑍𝑛
]
.

(3.11)

We can apply this procedure as long as 𝑘 ≠ 2𝑙 for every 𝑙 ∈ {0,… , 𝑟 − 1}. Let 𝑟0 be maximal such that
the above equality holds, in particular 𝑝 = (𝑝 − 𝑟0) + (𝑘 − 𝑟0), otherwise one could further decompose
contradicting the maximality of 𝑟0. Then, either 𝑝 − 𝑟0 ≤

𝑝

2
or 𝑘 − 𝑟0 ≤

𝑝

2
. Otherwise 𝑝 − 𝑟0 >

𝑝

2
and

𝑘 − 𝑟0 >
𝑝

2
which contradicts 𝑝 = (𝑝 − 𝑟0) + (𝑘 − 𝑟0).

(a) Case 𝑝 − 𝑟0 ≤
𝑝

2
. In this case, 𝑝 − 𝑟0 ≤

⌊
𝑝

2

⌋
, since we are working with integers. By Lemma 3.4, for

a given multi-index (𝑖1,⋯ , 𝑖𝑟0) and given that 𝑝 + (𝑝 − 𝑟0) = 2𝑝 − 𝑟0 > 𝑘 − 𝑟0 (𝑘 ∈ {1,… , 2𝑝 − 2}) we
obtain

(3.12) 𝐄
[
𝐹𝑛𝜕𝑖1,⋯,𝑖𝑟0

𝐹𝑛𝜕𝑖1,⋯,𝑖𝑟0
𝑍𝑛

]
=

2

2𝑝 − 𝑘
𝐄
[
Γ[𝐹𝑛, 𝜕𝑖1,⋯,𝑖𝑟0

𝐹𝑛]𝜕𝑖1,⋯,𝑖𝑟0
𝑍𝑛

]
.
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Let uswrite𝑚 ≔
⌊
𝑝

2

⌋
. Besides, for any𝑋 ∈𝒲𝑝−𝑟0

wehave ‖Γ[𝐹𝑛, 𝑋]‖2 ≤ ‖𝑋‖2𝜌𝑝−𝑟0(𝐹𝑛) ≤ ‖𝑋‖2𝜌𝑚(𝐹𝑛)

since 𝑝 − 𝑟0 ≤ 𝑚 and since we have Lemma 3.8. Hence, using Cauchy-Schwarz with Γ[𝐹𝑛, 𝜕𝑖1,⋯,𝑖𝑟0
𝐹𝑛]

and 𝜕𝑖1,⋯,𝑖𝑟0
𝑍𝑛 we have,

‖‖‖‖‖
𝐹𝑛𝜕𝑖1,⋯,𝑖𝑟0

𝐹𝑛𝜕𝑖1,⋯,𝑖𝑟0
𝑍𝑛
‖‖‖‖‖𝐿1(𝐏)

≤
2𝜌𝑚(𝐹𝑛)

2𝑝 − 𝑘

‖‖‖‖‖
𝜕𝑖1,⋯,𝑖𝑟0

𝐹𝑛
‖‖‖‖‖𝐿2(𝐏)

‖‖‖‖‖
𝜕𝑖1,⋯,𝑖𝑟0

𝑍𝑛
‖‖‖‖‖𝐿2(𝐏)

.

Gathering these facts, we may write
|||𝐄[Γ[𝐹𝑛, 𝐹𝑛]𝑍𝑛]

||| =
2𝑝−𝑘

2

||||𝐄
[
𝐹2𝑛𝑍𝑛

]|||| (Lemma 3.4).

≤
2𝑝−𝑘

2
×

2𝑟0

∏𝑟0−1

𝑙=0
𝐄[𝑘−2𝑙]

∞∑

𝑖1,⋯,𝑖𝑟0=1

|||||
𝐄
[
𝐹𝑛𝜕𝑖1,⋯,𝑖𝑟0

𝐹𝑛𝜕𝑖1,⋯,𝑖𝑟0
𝑍𝑛

]|||||
(3.11)

≤
2𝑟0

∏𝑟0−1

𝑙=0
(𝑘−2𝑙)

∞∑

𝑖1,⋯,𝑖𝑟0=1

‖‖‖‖‖
Γ[𝐹𝑛, 𝜕𝑖1,⋯,𝑖𝑟0

𝐹𝑛]𝜕𝑖1,⋯,𝑖𝑟0
𝑍𝑛
‖‖‖‖‖𝐿1(𝐏)

(3.12)

(3.13)

Applying then the Cauchy–Schwarz inequality twice: first on the 𝐿1-norm then on the sum, we obtain

(3.14) |||𝐄[Γ(𝐹𝑛, 𝐹𝑛)𝑍𝑛]
||| ≤

2𝑟0

∏𝑟0−1

𝑙=0
(𝑘−2𝑙)

𝜌𝑚(𝐹𝑛)‖𝖣
𝑟0𝐹𝑛‖𝓁2(ℕ𝑟0 )⊗𝐿2(𝐏)‖𝖣

𝑟0𝑍𝑛‖𝓁2(ℕ𝑟0 )⊗𝐿2(𝐏)

where we use the random sequences

𝖣𝑟0𝑋 ≔
{
𝜕𝑖1,…,𝑖𝑟0

𝑋 ∶ (𝑖1,… , 𝑖𝑟0) ∈ ℕ𝑟0
}
, 𝑋 ∈ 𝔻∞.

When 𝐹 is a Wiener chaos of order 𝜆, then:
(a) by integration by parts (3.7),

∑∞

𝑖=1
‖𝜕𝑖𝐹‖

2
2
= 𝐄[Γ[𝐹, 𝐹]] = −𝜆𝐄

[
𝐹2
]
;

(b) for any multi-index (𝑖1,⋯ , 𝑖𝑟), 𝜕𝑖1,⋯,𝑖𝑟
𝐹𝑛 is a Wiener chaos of order 𝜆 − 𝑟.

Combining these two facts two facts together gives

‖𝖣𝑟0𝐹𝑛‖
2

𝓁2(ℕ𝑟0 )⊗𝐿2(𝐏)
=

∞∑

𝑖1,⋯,𝑖𝑟0=1

𝐄[
(
𝜕𝑖1,⋯,𝑖𝑟0

𝐹𝑛

)2
] = 𝑝(𝑝 − 1)⋯ (𝑝 − 𝑟 + 1)𝐄

[
𝐹2𝑛
]
=

𝑝!

(𝑝 − 𝑟0)!
,

‖𝖣𝑟0𝑍𝑛‖
2

𝓁2(ℕ𝑟0 )⊗𝐿2(𝐏)
=

∞∑

𝑖1,⋯,𝑖𝑟0=1

𝐄[
(
𝜕𝑖1,⋯,𝑖𝑟0

𝑍𝑛

)2
] =

𝑝!

(𝑝 − 𝑟0)!
𝐄
[
𝑍2𝑛
]
.

Substituting in (3.14), we get, since (𝑍𝑛) is bounded,

|||𝐄[Γ[𝐹𝑛, 𝐹𝑛]𝑍𝑛]
||| ≤

2𝑟0𝜌𝑚(𝐹𝑛)
∏𝑟0−1

𝑙=0
(𝑘 − 2𝑙)

𝑝!

(𝑝 − 𝑟0)!
‖𝑍𝑛‖2 → 0.

(b) Case 𝑘 − 𝑟0 ≤
𝑝

2
. Since 𝑘 ≥ 1, 𝑝 + (𝑘 − 𝑟0) > 𝑝 − 𝑟0 and one may write relying on Lemma 3.4 that

𝐄
[
𝐹𝑛𝜕𝑖1,⋯,𝑖𝑟0

𝐹𝑛𝜕𝑖1,⋯,𝑖𝑟0
𝑍𝑛

]
=
2

𝑘
𝐄
[
Γ[𝐹𝑛, 𝜕𝑖1,⋯,𝑖𝑟0

𝑍𝑛]𝜕𝑖1,⋯,𝑖𝑟0
𝐹𝑛

]
.

The rest of the proof is identical up to a change in the constant 2

2𝑝−𝑘
that is now replaced by 2

𝑘
. The final

bound is then given by

|||𝐄[Γ[𝐹𝑛, 𝐹𝑛]𝑍𝑛]
||| ≤

2𝑟0(2𝑝 − 𝑘)𝜌𝑚(𝐹𝑛)

𝑘
∏𝑟0−1

𝑙=0
(𝑘 − 2𝑙)

𝑝!

(𝑝 − 𝑟0)!
‖𝑍𝑛‖2 → 0.

□

Remark 3.10. When 𝑝 = 3, then
⌊
𝑝

2

⌋
= 1 and, owing to the fact that every element of𝒲1 is of the form

�⃗� ⋅ �⃗� for some �⃗� ∈ 𝓁2(ℕ), we get the following equivalence for Wiener chaoses of degree 3

𝐹𝑛
𝐥𝐚𝐰
,,,,,→
𝑛→∞

𝒩(0, 1)⇔ sup
‖�⃗�‖𝓁2(ℕ)≤1

‖‖‖‖

∑
𝑎𝑖𝜕𝑖𝐹𝑛

‖‖‖‖𝐿2(𝐏)
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For chaoses of higher degree, 𝜌1 is not enough to measure asymptotic normality as illustrated by the
following counterexample. Set 𝐹𝑛 ≔ (𝑛−1∕2

∑𝑛

𝑘=1
𝐻2(𝐺2𝑘)) × (𝑛−1∕2

∑𝑛

𝑘=1
𝐻2(𝐺2𝑘+1)), which, by the

usual central limit theorem converges to the product of two independent Gaussian. For 𝑋 ≔ �⃗� ⋅ �⃗� with
‖�⃗�‖𝓁2(ℕ) = 1, we find

Γ[𝐹𝑛, 𝑋] = (
2
√
𝑛

𝑛∑

𝑘=1

𝑎2𝑘𝐺2𝑘) × (
1
√
𝑛

𝑛∑

𝑘=1

𝐻2(𝐺2𝑘+1)) + (
1
√
𝑛

𝑛∑

𝑘=1

𝐻2(𝐺2𝑘)) × (
2
√
𝑛

𝑛∑

𝑘=1

𝑎2𝑘+1𝐺2𝑘+1).

Moreover,
‖‖‖‖‖‖‖‖‖

1
√
𝑛

𝑛∑

𝑘=1

𝑎2𝑘𝐺2𝑘

‖‖‖‖‖‖‖‖‖

2

𝐿2(𝐏)

=
1

𝑛

𝑛∑

𝑘=1

𝑎2
2𝑘
≤
1

𝑛
,

with a similar bound for the odd terms. This implies, computing the norm with the previous equality

and using independence, that ‖Γ[𝐹𝑛, 𝑋]‖2 ≤
2
√
2

√
𝑛
. Thus 𝜌1(𝐹𝑛)→ 0 but the limit is non Gaussian.

3.2.2. Asymptotic independence and normal convergence. We show how our new criterion provides new
insights on asymptotic independence for Wiener chaoses that are asymptotically Gaussian. We start by
establishing that the carré du champ of an asymptotically normal Wiener chaos is asymptotically an
eigenfunction.

Lemma 3.11. Let (𝐹𝑛, 𝑋𝑛)𝑛≥1 be a sequence in𝒲𝑝 ×𝒲𝑞 with , 𝐄
[
𝐹2𝑛
]
= 1 and 𝑋𝑛 →𝒩(0, 1). Then,

(3.15)

⎧
⎪

⎨
⎪

⎩

if 𝑞 ≤ 𝑝, (𝖫 + 𝑝 − 𝑞)Γ[𝐹𝑛, 𝑋𝑛]
𝐿2(𝐏)
,,,,,→
𝑛→∞

0.

if 𝑞 > 𝑝, Γ(𝐹𝑛, 𝑋𝑛)
𝐿2(𝐏)
,,,,,→
𝑛→∞

0.

Proof. The case 𝑝 < 𝑞 follows immediately from Theorem 3.9. Thus, take 𝑝 ≥ 𝑞. By (3.4), Γ[𝐹𝑛, 𝑋𝑛] ∈
𝒲≤𝑝+𝑞−2. Since 𝖫 + (𝑝 − 𝑞)𝖨) corresponds to the orthogonal projection on𝒲⟂

𝑝−𝑞, it is sufficient to
consider, by (3.4), 𝑘 ∈ {0,… , 𝑝 + 𝑞 − 2} such that 𝑘 ≠ 𝑝 − 𝑞 and (𝑍𝑛)𝑛≥1 a bounded sequence in𝒲𝑘,
and to establish that 𝐄[Γ[𝐹𝑛, 𝑋𝑛]𝑍𝑛]→ 0. If 𝑞 < 𝑝 then 𝑞 − 𝑝 < 0 and 𝑘 > 𝑞 − 𝑝, while if 𝑝 = 𝑞 then
by assumption 𝑘 ≠ 𝑝 − 𝑞 = 0 and 𝑘 > 𝑞 − 𝑝 as well. Hence, applying Lemma 3.4 twice gives

𝐄[Γ[𝐹𝑛, 𝑋𝑛]𝑍𝑛] =
𝑝 + 𝑞 − 𝑘

2
𝐄[𝐹𝑛𝑋𝑛𝑍𝑛]

=
𝑝 + 𝑞 − 𝑘

2
×

2

𝑝 + 𝑘 − 𝑞
𝐄[Γ[𝐹𝑛, 𝑍𝑛]𝑋𝑛]

=
𝑝 + 𝑞 − 𝑘

𝑝 + 𝑘 − 𝑞

∞∑

𝑖=1

[𝜕𝑖𝐹𝑛𝜕𝑖𝑍𝑛𝑋𝑛].

Iterating the previous procedure 𝑟0 times with 𝑟0 being the smallest integer such that we do not divide
by 0 yields

𝐄[Γ[𝐹𝑛, 𝑋𝑛]𝑍𝑛] =
𝑝 + 𝑞 − 𝑘

2
×

𝑟0−1∏

𝑙=0

2

𝑝 + 𝑘 − 𝑞 − 2𝑙

∞∑

𝑖1,⋯,𝑖𝑟0=1

𝐄
[
𝜕𝑖1,⋯,𝑖𝑟0

𝐹𝑛𝜕𝑖1,⋯,𝑖𝑟0
𝑍𝑛𝑋𝑛

]
.

Since 𝑟0 is maximal, the previous expression cannot be further decomposed and one must have 𝑝 − 𝑟0 +
𝑘 − 𝑟0 = 𝑞. Hence, either 𝑝 − 𝑟0 ≤

𝑞

2
either 𝑘 − 𝑟0 ≤

𝑞

2
and, as in the previous proof, we consider both

cases.
(a) Case 𝑘 − 𝑟0 ≤

𝑞

2
. For a given multi-index (𝑖1,⋯ , 𝑖𝑟0) we have 𝜕𝑖1,⋯,𝑖𝑟0

𝐹𝑛 ∈𝒲𝑝−𝑟0
and 𝜕𝑖1,⋯,𝑖𝑟0

𝑍𝑛 ∈

𝒲𝑘−𝑟0
. Besides (𝑘 − 𝑟0) + 𝑞 ≠ 𝑝 − 𝑟0 since 𝑘 ≠ 𝑝 − 𝑞 hence

|||||
𝐄
[
𝜕𝑖1,⋯,𝑖𝑟0

𝐹𝑛𝜕𝑖1,⋯,𝑖𝑟0
𝑍𝑛𝑋𝑛

]|||||
=

2

𝑞 + 𝑘 − 𝑝

|||||
𝐄
[
𝜕𝑖1,⋯,𝑖𝑟0

𝐹𝑛Γ[𝑋𝑛, 𝜕𝑖1,⋯,𝑖𝑟0
𝑍𝑛]

]|||||

≤
2

𝑞 + 𝑘 − 𝑝

‖‖‖‖‖
𝜕𝑖1,⋯,𝑖𝑟0

𝐹𝑛
‖‖‖‖‖𝐿2(𝐏)

‖‖‖‖‖
𝜕𝑖1,⋯,𝑖𝑟0

𝑍𝑛
‖‖‖‖‖𝐿2(𝐏)

𝜌⌊ 𝑞
2

⌋(𝑋𝑛).
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Using Cauchy-Schwarz in the same way as to derive (3.14), we find

‖𝐄[Γ[𝐹𝑛, 𝑋𝑛]𝑍𝑛]‖ ≤
𝑝+𝑞−𝑘

2

𝑟0−1∏

𝑙=0

2

𝑝+𝑘−𝑞−2𝑙

2

𝑞+𝑘−𝑝
× 𝜌⌊ 𝑞

2

⌋(𝑋𝑛)
⟨
‖𝖣𝑟0𝐹𝑛‖𝐿2(𝐏), ‖𝖣

𝑟0𝑍𝑛‖𝐿2(𝐏)

⟩

𝓁2(ℕ𝑟0 )

≤ 𝜌⌊ 𝑞
2

⌋(𝑋𝑛)
𝑝+𝑞−𝑘

𝑞+𝑘−𝑝

𝑟0−1∏

𝑙=0

2

𝑝+𝑘−𝑞−2𝑙
× ‖𝖣𝑟0𝐹𝑛‖𝓁2(ℕ𝑟0 )⊗𝐿2(𝐏)‖𝖣

𝑟0𝑍𝑛‖𝓁2(ℕ𝑟0 )⊗𝐿2(𝐏)

= 𝜌⌊ 𝑞
2
⌋(𝑋𝑛)

𝑝+𝑞−𝑘

𝑞+𝑘−𝑝

𝑟0−1∏

𝑙=0

2

𝑝+𝑘−𝑞−2𝑙

√
𝑝!

(𝑝−𝑟0)!

√
𝑘!

(𝑘−𝑟0)!
× ‖𝐹𝑛‖𝐿2(𝐏)‖𝑍𝑛‖𝐿2(𝐏).

By assumption𝑋𝑛 →𝒩(0, 1), thus using Theorem 3.9, we get 𝜌⌊ 𝑞
2
⌋(𝑋𝑛)→ 0. Thus, the last line vanishes

as 𝑛 →∞, since both (𝐹𝑛) and (𝑍𝑛) are bounded in 𝐿2(𝐏).
(b) Case 𝑝 − 𝑟0 ≤

𝑞

2
. For a given multi-index (𝑖1,⋯ , 𝑖𝑟0) we have 𝜕𝑖1,⋯,𝑖𝑟0

𝐹𝑛 ∈𝒲𝑝−𝑟0
and 𝜕𝑖1,⋯,𝑖𝑟0

𝑍𝑛 ∈

𝒲𝑘−𝑟0
. Besides (𝑝 − 𝑟0) + 𝑞 ≠ 𝑘 − 𝑟0 since 𝑘 ≤ 𝑝 + 𝑞 − 2 < 𝑝 + 𝑞 hence

|||||
𝐄
[
𝜕𝑖1,⋯,𝑖𝑟0

𝑍𝑛𝜕𝑖1,⋯,𝑖𝑟0
𝐹𝑛𝑋𝑛

]|||||
=

2

𝑝 + 𝑞 − 𝑘

|||||
𝐄
[
𝜕𝑖1,⋯,𝑖𝑟0

𝑍𝑛Γ[𝑋𝑛, 𝜕𝑖1,⋯,𝑖𝑟0
𝐹𝑛]

]|||||

≤
2

𝑝 + 𝑞 − 𝑘
‖𝜕𝑖1,⋯,𝑖𝑟0

𝑍𝑛‖2‖𝜕𝑖1,⋯,𝑖𝑟0
𝐹𝑛‖2 𝜌⌊ 𝑞

2
⌋(𝑋𝑛).

The rest of the proof is identical to the previous case with just a minor change on the final constants.
□

Definition 3.12. For (𝑋𝑛) a sequence in𝒲𝑞 that is asymptotically normal, we define the asymptotic
independence algebra as the set 𝒜(𝑋𝑛) of all sequences (𝑌𝑛) in 𝔻∞ such that

Γ(𝑋𝑛, 𝑌𝑛)
𝐿2(𝐏)
,,,,,→
𝑛→∞

0.

Lemma 3.13. For (𝑋𝑛) as above, the set𝒜(𝑋𝑛) is an algebra stable by orthogonal projections on chaoses,
𝖫, Γ, and composition with smooth functions with polynomial growth.

Proof. The fact that 𝒜(𝑋𝑛) is an algebra stable by composition with smooth functions follows imme-
diately from the fact that Γ is bilinear and satisfies a chain rule (3.5). Let us show that it is stable by
projections. That would imply stability by 𝖫 since 𝖫 is a multiplication operator on chaoses, and thus by
Γ in view of the definition of Γ. Take (𝑌𝑛) ∈ 𝒜(𝑋𝑛). In view of Lemma 3.11:

(i) Γ(𝑋𝑛, 𝖩𝑟𝑌𝑛)→ 0 for 𝑟 < 𝑞.
(ii) Γ(𝑋𝑛, 𝖩𝑟𝑌𝑛) are asymptotically in chaoses of different degree, for 𝑟 ≥ 𝑞.

Thus writing
Γ(𝑋𝑛, 𝑌𝑛) =

∑

𝑟∈ℕ

Γ(𝑋𝑛, 𝖩𝑟𝑌𝑛)→ 0,

and using the orthogonality of Wiener chaoses we conclude. □

We give a novel characterization of asymptotic independence in terms of the carré du champ, that
justifies the name of 𝒜.

Proposition 3.14. Let (𝑋𝑛) be a sequence in𝒲𝑞 asymptotically normal. Then every (𝑌𝑛) ∈ 𝒜(𝑋𝑛) is
asymptotically independent of (𝑋𝑛), namely

𝐄[𝜑(𝑋𝑛)𝜓(𝑌𝑛)] − 𝐄[𝜑(𝑋𝑛)]𝐄[𝜓(𝑌𝑛)] ,,,,,→
𝑛→∞

0, 𝜑, 𝜓 ∈ 𝒞𝑏(ℝ).

Proof. Take 𝜓 ∈ 𝒞∞

𝑏
(ℝ) and define

𝑐𝑛(𝑡) ≔ 𝐄
[
𝜓(𝑌𝑛)e

i𝑡𝑋𝑛
]
− 𝐄[𝜓(𝑌𝑛)]e

−𝑡2∕2, 𝑡 ∈ ℝ.

It suffices to show that 𝑐𝑛(𝑡) → 0 for all 𝑡 ∈ ℝ. The function 𝑐𝑛 is smooth and verifies 𝑐𝑛(0) = 0.
Moreover, we find

�̇�𝑛(𝑡) = i𝑡𝐄
[
𝑋𝑛𝜓(𝑌𝑛)e

i𝑡𝑋𝑛
]
+ 𝑡e−𝑡

2∕2 𝐄[𝜓(𝑌𝑛)].
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By integration by parts (3.7) and the chain rule (3.5), we thus find

�̇�𝑛(𝑡) =
i𝑡

𝑞
𝐄
[
Γ(𝑋𝑛, 𝜓(𝑌𝑛))e

i𝑡𝑋𝑛
]
−
𝑡2

𝑞
𝐄
[
Γ(𝑋𝑛, 𝑋𝑛)e

i𝑡𝑋𝑛𝜓(𝑌𝑛)
]
+ 𝑡e−𝑡

2∕2 𝐄[𝜓(𝑌𝑛)].

Since (𝑌𝑛) ∈ 𝒜(𝑋𝑛), we have that the first term vanishes. Moreover, by Theorem 3.9 (ii), we have that
Γ(𝑋𝑛, 𝑋𝑛)→ 𝑞. Thus

�̇�𝑛(𝑡) = −𝑡𝑐𝑛(𝑡) + 𝑜(1).

□

3.3. Decomposition of variables in the direction of strongest directional influence. In this
section we gather several technical lemmas allowing us to factor directions out of a non-asymptotically
normal chaos. Thus in all this section we fix 𝑝 ≥ 2 and we let (𝐹𝑛)𝑛≥1 be a sequence in 𝒲𝑝 with
𝐄
[
𝐹2𝑛
]
= 1 that is not asymptotically Gaussian. As eluded in the introduction, we want to factorize out

of 𝐹𝑛 macroscopic directions. We formalize this intuition by measuring the importance of a direction
using the directional influence. This naturally leads to the following definition.

Definition 3.15. We define the degree of strongest directional influence

𝑞(𝐹𝑛) = 𝑞 ≔ min{𝑘 ∈ ℕ∗ ∶ 𝜌𝑘(𝐹𝑛) does not converge to 0}.

We call any sequence (𝑋𝑛) realising 𝜌𝑞(𝐹𝑛) a direction of strongest influence.

Remark 3.16. Since 𝐹𝑛 ̸→ 𝒩(0, 1) then 𝜌⌊ 𝑝
2
⌋(𝐹𝑛) ̸→ 0 by Theorem 3.9 (vi) and 𝑞 ≤ ⌊

𝑝

2
⌋ is well defined

as the minimum of a non empty set of positive integers. Up to extracting a subsequence, we always
assume that 𝜌𝑞(𝐹𝑛) is lower bounded.

The following result ensures that directions of strongest influence are asymptotically Gaussian.

Lemma 3.17. For any direction of strongest influence (𝑋𝑛), we have

𝑋𝑛
𝐥𝐚𝐰
,,,,,→
𝑛→∞

𝒩(0, 1).

Proof. We prove the claim by induction on 𝑝.
(a) Initialisation. Let 𝑝 ≔ 2 then, ⌊𝑝

2
⌋ = 1, and thus, 𝑞 = 1. Hence, every (𝑋𝑛) realising 𝜌1 is an

element of𝒲1 with unit variance, that is 𝐥𝐚𝐰[𝑋𝑛] =𝒩(0, 1) for all 𝑛 ∈ ℕ.
(b) Induction step. Assume that 𝑝 > 2, and that we have established the claim for all 𝑝′ < 𝑝. Take
(𝑋𝑛) realising 𝜌𝑞(𝐹𝑛), and assume, by contradiction, that it is not asymptotically Gaussian. Since
𝑞 ≤ ⌊

𝑝

2
⌋ < 𝑝, we can apply the induction hypothesis, on (𝑋𝑛). Thus, up to extracting a subsequence,

there exists 𝑟 ≤ ⌊
𝑞

2
⌋ and a sequence (𝑌𝑛) living in𝒲𝑟 such that

‖Γ[𝑋𝑛, 𝑌𝑛]‖𝐿2(𝐏) ≥ 𝜌𝑟(𝑋𝑛) −
1

𝑛
≥ 𝛿 > 0,(3.16)

𝑌𝑛
𝐥𝐚𝐰
,,,,,→
𝑛→∞

𝒩(0, 1).(3.17)

Consider 𝐴𝑛 the orthogonal projection of 𝑋𝑛 on the closed vector space 𝑌𝑛𝒲𝑞−𝑟. Thus, we write 𝑋𝑛 =
𝐴𝑛𝑌𝑛 + 𝑅𝑛 with 𝐴𝑛 ∈𝒲𝑞−𝑟 and 𝑅𝑛 ⟂ 𝑌𝑛𝒲𝑞−𝑟. Using Lemma 3.11, ‖(𝖫 + 𝑞 − 𝑟)[Γ[𝑋𝑛, 𝑌𝑛]]‖𝐿2(𝐏) → 0.
In particular,𝑌𝑛Γ(𝑋𝑛, 𝑌𝑛) is asymptotically in𝑌𝑛𝒲𝑞−𝑟. Thus, using properties of orthogonal projections,
we find:

𝐄[𝑋𝑛𝑌𝑛Γ[𝑋𝑛, 𝑌𝑛]] − 𝐄[𝐴𝑛𝑌𝑛Γ[𝑋𝑛, 𝑌𝑛]] ,,,,,→
𝑛→∞

0.

On the other hand, combining Lemma 3.5 and (3.16),

𝐄[𝑋𝑛𝑌𝑛Γ[𝑋𝑛, 𝑌𝑛]] ≥
𝑝 + 𝑟

4
𝐄
[
Γ[𝑋𝑛, 𝑌𝑛]

2
]
≥
𝑝 + 𝑟

4
𝛿2.

Hence, the two previous equations with the Cauchy–Schwarz inequality gives
𝑝 + 𝑟

4
𝛿2 ≤ ‖𝐴𝑛𝑌𝑛‖𝐿2(𝐏)‖Γ[𝑋𝑛, 𝑌𝑛]‖𝐿2(𝐏),
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which implies that for some 𝛿′ > 0 we have ‖𝐴𝑛𝑌𝑛‖ ≥ 𝛿′. Then, since 𝐄
[
𝐹2𝑛
]
= 1, by orthogonality of

𝑅𝑛 and 𝐴𝑛𝑌𝑛 we have also 𝐄
[
𝑅2𝑛
]
≤ 1 − 𝛿′2. Moreover, the chain rule (3.5) implies that

Γ[𝐹𝑛, 𝑋𝑛] = Γ[𝐹𝑛, 𝐴𝑛]𝑌𝑛 + 𝐴𝑛Γ[𝐹𝑛, 𝑌𝑛] +

𝑞−1∑

𝑠=1

Γ[𝐹𝑛, 𝖩𝑟𝑅𝑛] + Γ[𝐹𝑛, 𝖩𝑞𝑅𝑛].

Assume for the moment, that (𝐴𝑛)𝑛≥1 is bounded in 𝐿2, then all the terms in the right-hand side vanish,
but the last one, by minimality of 𝑞, as they all involve quantities of the form Γ[𝐹𝑛, 𝑍𝑛] with 𝑍𝑛 a
bounded sequence in𝒲𝑡 with 𝑡 < 𝑞. Since 𝐄

[
𝑅2𝑛
]
≤ 1 − 𝛿′, taking into account the normalization

in Definition 3.6, the last term has a norm bounded from above by (1 − 𝛿′2)1∕2𝜌𝑞(𝐹𝑛). Hence, letting
𝑛 →∞ in the above equation yields that 𝜌𝑞(𝐹𝑛) ≤ (1 − 𝛿′2)1∕2𝜌𝑞(𝐹𝑛) which is absurd, hence the result.
It remains to prove that (𝐴𝑛)𝑛≥1 is a 𝐿2(𝐏)-bounded sequence. To do so, we combine the equivalence of
norms (3.2) with the fact that 𝑌𝑛 →𝒩(0, 1), which is (3.17). We thus have

‖𝐴𝑛‖𝐿2(𝐏) ≤
1

𝑀
‖𝐴𝑛𝑌𝑛‖𝐿2(𝐏) + ‖𝐴𝑛1|𝑌𝑛|<𝑀‖𝐿2(𝐏)

≤
1

𝑀
+ 3

𝑟

2 ‖𝐴𝑛‖𝐿2(𝐏) 𝐏[|𝑌𝑛| ≤ 𝑀]
1

4 .

Since, 𝐏[|𝑌𝑛| ≤ 𝑀]→ 𝐏[|𝑁| ≤ 𝑀] for 𝑁 ∼𝒩(0, 1), for𝑀 small enough fixed and 𝑛 large enough one

has 3
𝑟

2 𝐏[|𝑌𝑛| ≤ 𝑀]
1

4 ≤
1

2
which by the above inequality gives that ‖𝐴𝑛‖𝐿2(𝐏) ≤

2

𝑀
for 𝑛 large enough,

hence the result.
□

We now present the decomposition procedure, which serves as the cornerstone of our proof by induction.

Lemma 3.18. Let 𝑝 ∈ ℕ∗ and (𝐹𝑛)𝑛≥1 be a sequence in𝒲𝑝 with 𝐄
[
𝐹2𝑛
]
= 1. Take an asymptotically

normal sequence (𝑋𝑛)𝑛≥1 in𝒲𝑞 with 𝑞 ∈ {1,… , 𝑝 − 1}. Then, the following decomposition holds

(3.18) 𝐹𝑛 =

⌊
𝑝

𝑞
⌋

∑

𝑙=1

𝐴𝑛,𝑙𝐻𝑙(𝑋𝑛) + 𝐴𝑛,0,

where, for every 𝑙 ∈ {0,… ,

⌊
𝑝

𝑞

⌋

}, 𝐴𝑛,𝑙 ∈𝒲≤(𝑝−𝑙𝑞) is

(i) asymptotically independent: (𝐴𝑛,𝑙) ∈ 𝒜(𝑋𝑛), namely

Γ[𝐴𝑛,𝑙, 𝑋𝑛]
𝐿2(𝐏)
,,,,,→
𝑛→∞

0.

(ii) asymptotically chaoses:

(𝖫 + 𝑝 − 𝑙𝑞)𝐴𝑛,𝑙

𝐿2(𝐏)
,,,,,→
𝑛→∞

0.

Proof. Introduce the vector space 𝐸𝑛 to be the 𝐿2(𝐏)-closure of 𝑋𝑛𝒲𝑝−𝑞 + 𝒲≤(𝑝−1). Let 𝑃𝑛 be the
orthogonal projection of 𝐹𝑛 on 𝐸𝑛. Write 𝐹𝑛 = 𝑃𝑛 + 𝑅𝑛 where 𝑅𝑛 ∈ 𝐸⟂𝑛 . We proceed by induction with
some preparatory steps.
(a) Asymptotic independence of (𝑅𝑛). Using (3.1)), 𝑋𝑛𝒲𝑝−𝑞 ⊂𝒲≤𝑝 which implies that 𝐸𝑛 ⊂𝒲≤𝑝,
and thus 𝑅𝑛 = 𝐹𝑛 − 𝑃𝑛 ∈𝒲≤𝑝. Besides, since𝒲≤(𝑝−1) ⊂ 𝐸𝑛, we have (𝐸𝑛)⟂ ⊂𝒲⟂

≤(𝑝−1)
guaranteeing

that 𝑅𝑛 ∈ 𝒲≤𝑝 ∩𝒲
⟂

≤(𝑝−1)
= 𝒲𝑝. Assume by contradiction that Γ[𝑅𝑛, 𝑋𝑛] ↛ 0. Up to extracting a

subsequence one finds 𝛿 > 0 such that ‖Γ[𝑅𝑛, 𝑋𝑛]‖ ≥ 𝛿. By definition of orthogonal projection, and
Lemma 3.4, we get

𝐄[𝑅𝑛𝑋𝑛𝐴] = 0 =
1

𝑞
𝐄[Γ[𝑅𝑛, 𝑋𝑛]𝐴].

On the other hand, using Lemma 3.11, we infer that Γ[𝑅𝑛, 𝑋𝑛] asymptotically belongs to𝒲𝑝−𝑞. Choosing
𝐴 ≔ 𝖩𝑝−𝑞(Γ[𝑅𝑛, 𝑋𝑛]), which by Lemma 3.11 is Γ[𝑅𝑛, 𝑋𝑛] + 𝑜𝐿2(𝐏)(1), we find that for 𝑛 large enough

that 𝐄[𝑅𝑛𝑋𝑛𝐴] ≥
𝛿2

2
> 0 which is contradictory. Thus, we deduce that Γ[𝑅𝑛, 𝑋𝑛]→ 0



LIMIT DISTRIBUTIONS FOR POLYNOMIALS 20

(b) Asymptotic chaos from asymptotic independence. Let us assume that we are given a decompo-
sition (3.18) with (𝐴𝑛,𝑙) ∈ 𝒜(𝑋𝑛) and let us show that they are automatically asymptotically chaotic.
Since 𝐹𝑛 ∈𝒲𝑝 applying (𝖫+ 𝑝𝖨) to (3.18), and developing 𝖫(𝐴𝑋) using the definition of Γ we find that

0 =

⌊
𝑝

𝑞
⌋

∑

𝑙=1

[
2Γ(𝐴𝑛,𝑙, 𝐻𝑙(𝑋𝑛)) + 𝐴𝑛,𝑙(𝖫 + 𝑙𝑞)𝐻𝑙(𝑋𝑛) +𝐻𝑙(𝑋𝑛)(𝖫 + 𝑝 − 𝑙𝑞)𝐴𝑛,𝑙

]
+ (𝖫 + 𝑝)𝐴𝑛,0.

Since 𝐴𝑛,𝑙 ∈ 𝒜(𝑋𝑛), by the chain rule (3.5), Γ(𝐴𝑛,𝑙, 𝐻𝑙(𝑋𝑛)) → 0, in 𝐿2(𝐏); while, by Theorem 3.9 (iii)
(𝖫 + 𝑙𝑞)𝐻𝑙(𝑋𝑛) → 0 also in 𝐿2(𝐏). On the other hand, (𝐴𝑛,𝑙) ∈ 𝒜(𝑋𝑛) thus by Proposition 3.14 the
𝐴𝑛,𝑙’s are asymptotically independent of (𝑋𝑛). In particular, using that asymptotically the𝐻𝑙(𝑋𝑛) are
orthogonal for different values of 𝑙, we find, taking the variance in the above equation that

0 =

⌊
𝑝

𝑞
⌋

∑

𝑙=0

𝐄[
(
(𝖫 + 𝑙𝑞)𝐴𝑛,𝑙

)2
] + 𝑜(1).

This shows that the 𝐴𝑛,𝑙’s are indeed asymptotically chaotic.
It remains to show that a decomposition such as (3.18) exists a that it satisfies the asymptotic indepen-
dence, which we prove by induction.
(c) Initialisation. Let 𝑝 ≔ 2. Since 𝑞 < 𝑝, we have 𝑞 = 1. Considering as before the orthogonal
projection of 𝐹𝑛 on 𝐸𝑛, the closure of 𝑋𝑛𝒲1 +𝒲≤1, we write 𝐹𝑛 = 𝑃𝑛 + 𝑅𝑛. The previous step ensures
that Γ(𝐹𝑛, 𝑅𝑛)→ 0. Since 𝑋𝑛 ∈𝒲1 we actually have that

𝑋𝑛𝒲1 +𝒲≤1 = 𝐻2(𝑋𝑛)ℝ⊕𝑋𝑛(𝑋
⟂
𝑛 ∩𝒲≤1)⊕ (𝑋⟂

𝑛 ∩𝒲≤1),

which is already closed. Thus 𝑃𝑛 = 𝑎𝑛𝐻2(𝑋𝑛) + 𝑋𝑛𝑁𝑛 + 𝐵𝑛 for some 𝑎𝑛 ∈ ℝ, 𝑁𝑛 ∈𝒲≤1 independent
of 𝑋𝑛 and 𝐵𝑛 ∈ 𝒲≤1, also independent of 𝑋𝑛. We claim that setting 𝐴𝑛,2 ≔ 𝑎𝑛, 𝐴𝑛,1 ≔ 𝑁𝑛, and
𝐴𝑛,0 ≔ 𝐵𝑛 + 𝑅𝑛 yields the desired decomposition. Indeed, since 𝑁𝑛, 𝐵𝑛 and 𝑎𝑛 are independent of 𝑋𝑛,
we get that

Γ(𝑋𝑛, 𝑎𝑛) = Γ(𝑋𝑛, 𝑁𝑛) = Γ(𝑋𝑛, 𝐵𝑛) = 0,

Since Γ(𝑋𝑛, 𝑅𝑛)→ 0, we have that the asymptotic independence is satisfied, by Proposition 3.14.
(d) Induction step. Take 𝑝 > 2 and assume that the decomposition is proved for all 𝑝′ < 𝑝. In this case,
although it must be possible to decompose 𝐸𝑛 in a direct sum as in the initialization step, since we are
dealing with Wiener chaoses of degree more than 1, orthogonality and independence are not the same
and that would render finding this orthogonal decomposition more tedious, thus we adopt a slightly
different strategy. Since we are projecting on 𝐸𝑛 that is a closure, we write 𝐹𝑛 = 𝑋𝑛𝐴𝑛 + 𝐵𝑛 + 𝑅𝑛 + 𝑜(1)

where 𝐴𝑛 ∈ 𝒲𝑝−𝑞, 𝐵𝑛 ∈ 𝒲≤(𝑝−1), and where the 𝑜(1) represent the approximation of the closure by
elements of 𝐸𝑛. Since 𝑝 − 𝑞 < 𝑝, we apply our induction hypothesis on 𝐴𝑛, this yields coefficients
𝐶𝑛,𝑙 ∈ 𝒜(𝑋𝑛) such that

𝐴𝑛 =

⌊
𝑝−𝑞

𝑞

⌋

∑

𝑙=1

𝐶𝑛,𝑙𝐻𝑙(𝑋𝑛).

Then using well-known recursive formulas for Hermite polynomials, we get

𝐴𝑛𝑋𝑛 =

⌊
𝑝−𝑞

𝑞
⌋+1

∑

𝑙=2

𝐶𝑙−1,𝑛𝐻𝑙(𝑋𝑛) +

⌊
𝑝−𝑞

𝑞
⌋−1

∑

𝑙=0

(𝑙 + 1)𝐶𝑙+1,𝑛𝐻𝑙(𝑋𝑛).

We handle 𝐵𝑛 similarly by considering its different chaotic decomposition. As a result, one can decom-
pose 𝐴𝑛𝑋𝑛 + 𝐵𝑛 as linear combinations of (𝐻𝑙(𝑋𝑛))𝑙 with coefficients in 𝒜(𝑋𝑛). The maximal index 𝑙
involved in this decomposition is given by ⌊𝑝−𝑞

𝑞
⌋ + 1 ≤ ⌊

𝑝

𝑞
⌋.

□

Since by Lemma 3.17 any direction of strongest influence is asymptotically normal, these directions are
natural candidates to apply (3.18). We now establish that iterating this decomposition is a compatible
with our influence-based criterion.
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Lemma 3.19. Apply the decomposition (3.18) with (𝑋𝑛) a direction of strongest influence. Then, for some
constant 𝑐𝑝,𝑞 > 0 only depending on (𝑞, 𝑝), we have ‖𝐴0,𝑛‖𝐿2(𝐏) ≤ 1 − 𝑐𝑝,𝑞𝛿. Moreover,

𝜌𝑟(𝐴0,𝑛) ,,,,,→
𝑛→∞

0, 𝑟 < 𝑞.

Remark 3.20. Since 𝑟 < 𝑞, we have by minimality of 𝑞 that 𝜌𝑟(𝐹𝑛)→ 0. Thus, this result states that if
𝜌𝑟(𝐹𝑛)→ 0, then 𝜌𝑟(𝐴𝑛,0)→ 0.

Proof. Take (𝑍𝑛) a sequence in𝒲𝑟. Taking the carré du champ in (3.18) yields

Γ(𝐹𝑛, 𝑍𝑛) =

⌊
𝑝

𝑞
⌋

∑

𝑙=1

𝐴𝑛,𝑙𝐻
′

𝑙
(𝑋𝑛)Γ(𝑋𝑛, 𝑍𝑛) +

⌊
𝑝

𝑞
⌋

∑

𝑙=1

𝐻𝑙(𝑋𝑛)Γ(𝐴𝑛,𝑙, 𝑍𝑛) + Γ(𝐴𝑛,0, 𝑍𝑛).

By minimality of 𝑞, the left-hand side vanishes as 𝑛 → ∞. Since (𝑋𝑛) is asymptotically Gaussian by
Lemma 3.17, we find by Theorem 3.9 (v) that the first term in the right-hand side also vanishes. Thus

𝑜𝐿2(𝐏)(1) =

⌊
𝑝

𝑞
⌋

∑

𝑙=1

𝐻𝑙(𝑋𝑛)Γ(𝐴𝑛,𝑙, 𝑍𝑛) + Γ(𝐴𝑛,0, 𝑍𝑛).

Using that by Theorem 3.9 (iii),𝐻𝑙(𝑋𝑛) is asymptotically a chaos, and the orthogonality of Wiener chaos,
this yields

Γ(𝐴𝑛,𝑙, 𝑍𝑛)
𝐿2(𝐏)
,,,,,→
𝑛→∞

0, 𝑙 ∈ {0,… , ⌊
𝑝

𝑞
⌋}.

□

We also establish that iterating our construction preserves the asymptotic independence.

Lemma 3.21. Let (𝑅𝑛) sequence in𝒲𝑝 that is not asymptotically Gaussian. Let (𝑋𝑛,1) an asymptotically
Gaussian sequence in𝒲𝑞1

. Let (𝑋𝑛,2) a sequence in𝒲𝑞2
a direction of strongest influence for (𝑅𝑛). Apply

the decomposition (3.18) to 𝑅𝑛 that is

𝑅𝑛 =

⎢

⎣

𝑝

𝑞2

⎥

⎦∑

𝑙=0

𝐴𝑛,𝑙𝐻𝑙(𝑋𝑛,2).

If (𝑅𝑛) ∈ 𝒜(𝑋𝑛,1). Then, (𝑋𝑛,2) and (𝐴𝑛,𝑙) ∈ 𝒜(𝑋𝑛,1).

Proof. If 𝑞1 ≠ 𝑞2 then by Theorem 3.9, we find that (𝑋𝑛,2) ∈ 𝒜(𝑋𝑛,1). If 𝑞1 = 𝑞2, using orthogonal
projections, write 𝑋𝑛,2 = 𝑎𝑛𝑋𝑛,1 + 𝑍𝑛, where 𝐄

[
𝑍𝑛𝑋𝑛,1

]
= 0. Then,

Γ(𝑅𝑛, 𝑋𝑛,2) = 𝑎𝑛Γ(𝑅𝑛, 𝑋𝑛,1) + Γ(𝑅𝑛, 𝑍𝑛),

where the first term on the right-hand side vanishes by assumption. Since (𝑌𝑛) is a directional of
strongest influence, and that 𝑍𝑛 ∈𝒲𝑞2

with 𝐄
[
𝑍2𝑛
]
= 1 − 𝑎2𝑛, we find

𝜌𝑞2(𝐹𝑛) ≤

√

1 − 𝑎2𝑛𝜌𝑞2(𝐹𝑛) +
1

𝑛
.

Thus 𝑎𝑛 → 0 which implies that Γ(𝑋𝑛,1, 𝑋𝑛,2)→ 0.
Now let us handle, the 𝐴𝑛,𝑙’s. Here, we have no assumption on 𝑞1 and 𝑞2. Write

Γ(𝑅𝑛, 𝑋𝑛,1) =
∑

𝑙

𝐴𝑛,𝑙Γ(𝐻𝑙(𝑋𝑛,2), 𝑋𝑛,1) +
∑

𝑙

𝐻𝑙(𝑋𝑛,2)Γ(𝐴𝑛,𝑙, 𝑋𝑛,1).

By assumption, the right-hand side vanishes as 𝑛 → 0. Also, since, we have shown that Γ(𝑋𝑛,1, 𝑋𝑛,2)
vanishes with 𝑛 → ∞, the first sum on the right-hand side also vanishes. Finally, by construction
(𝐴𝑛,𝑙) ∈ 𝒜(𝑋𝑛,2), and form the previous point (𝑋𝑛,1) ∈ 𝒜(𝑋𝑛,2). It follows that, by Lemma 3.13,
Γ(𝐴𝑛,𝑙, 𝑋𝑛,1) ∈ 𝒜(𝑋𝑛,1). Using that the Hermite polynomials are an orthonormal basis for the Gaussian
measure and that 𝑋𝑛,2 is asymptotically Gaussian, we find

𝑜𝐿2(𝐏)(1) =
∑

𝑙

𝐄
[
Γ(𝐴𝑛,𝑙, 𝑋𝑛,2)

2
]
.

□
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We now describe the result of iterating the decomposition (3.18). We define recursively, the random
variables (𝐴𝑛,𝑘,𝑙), (𝑋𝑛,𝑘), and (𝑅𝑛,𝑘) in the following way. Set

𝜀𝑛,1, ≔ (𝐴𝑛,0 − 𝖩𝑝𝐴𝑛,0), and for 𝑙 > 1 𝐴𝑛,1,𝑙 ≔ 𝐴𝑛,𝑙,

𝑋𝑛,1 ≔ 𝑋𝑛,

𝐹𝑛,1 ≔

⌊
𝑝

𝑞
⌋

∑

𝑙=1

𝐴𝑛,1,𝑙𝐻𝑙(𝑋𝑛) + 𝐴𝑛,1,0,

𝑅𝑛,1 ≔ 𝖩𝑝𝐴𝑛,0.

Since (𝐴𝑛,0) is asymptotically in𝒲𝑝, we have in fact that 𝜀𝑛,1 is negligible when 𝑛 →∞. By construction,
𝑅𝑛,1 ∈𝒲𝑝 with 𝐄

[
𝑅2
𝑛,1

]
≤ 1 − 𝑐𝛿. If (𝑅𝑛,1) is asymptotically Gaussian, we stop; otherwise we apply the

decomposition (3.18) to 𝑅𝑛,1 which produces 𝐴𝑛,2,𝑙, 𝑋𝑛,2, 𝐹𝑛,2 and 𝑅𝑛,2. Repeating the procedure, we
obtain the following result.

Lemma 3.22. There exist an interval 𝐾 ⊂ ℕ, possibly infinite, integers (𝑞𝑘 ∶ 𝑘 ∈ 𝐾), and for every 𝑘 ∈ 𝐾

random sequences
∙ (𝑅𝑛,𝑘)𝑛 in𝒲𝑝,
∙ (𝑋𝑛,𝑘)𝑛 in𝒲𝑞𝑘

for some 𝑞𝑘,

∙ (𝐴𝑛,𝑘,𝑙)𝑛 in𝒲≤(𝑝−𝑙𝑞𝑘)
for 𝑙 ∈ {1,… ,

⌊
𝑝

𝑞𝑘

⌋

},

∙ (𝜀𝑛,𝑘,)𝑛 in𝒲≤(𝑝−1),
such that

(i) (𝑋𝑛,𝑘+1)𝑛 is a direction of strongest influence for (𝑅𝑛,𝑘)𝑛, and Γ(𝑋𝑛,𝑘, 𝑋𝑛,𝑘′)→ 0 for 𝑘 ≠ 𝑘′,
(ii) (𝑅𝑛,𝑘′)𝑛, (𝐴𝑛,𝑘′,𝑙)𝑛 ∈ 𝒜((𝑋𝑛,𝑘)𝑛), for 𝑘′ < 𝑘,
(iii) 𝜀𝑛,𝑘 = 𝑜𝐿2(𝐏)(1),
(iv) we have 𝐹𝑛 = 𝐹𝑛,1 +⋯ + 𝐹𝑛,𝑘 + 𝑅𝑛,𝑘, where

𝐹𝑛,𝑘 ≔

⌊
𝑝

𝑞𝑖
⌋

∑

𝑙=1

𝐴𝑛,𝑘,𝑙𝐻𝑙(𝑋𝑛,𝑘) + 𝜀𝑛,𝑘,,

(v) (𝐹𝑛,1,⋯ , 𝐹𝑛,𝑘, 𝑅𝑛,𝑘)𝑛 forms an asymptotic orthogonal sequence.

Proof. As mentioned above we iterate (3.18). 𝐾 is simply given by the interval that contains all the 𝑘
until we stop the procedure, that is until (𝑅𝑛,𝑘)𝑛 is asymptotically Gaussian, which might never happen
in which case 𝐾 = ℕ. From the construction and successive iteration of Lemma 3.21, we have already
that (i), (ii), (iii) and (iv) hold. Thus, only (v) remains to be proven. By Lemma 3.21, we have that for
𝑘′ < 𝑘, (𝐹𝑛,𝑘) ∈ 𝒜(𝑋𝑛,𝑘′). Thus

𝐄
[
𝐹𝑛,𝑘𝐹𝑛,𝑘′

]
=

⎢
⎢

⎣

𝑝

𝑞
𝑘′

⎥
⎥

⎦∑

𝑙=1

𝐄
[
𝐴𝑛,𝑘′,𝑙𝐹𝑛,𝑘𝐻𝑙(𝑋𝑛,𝑘′)

]
.

The sum above vanishes since (𝐴𝑛,𝑘′,𝑙𝐹𝑛,𝑘) ∈ 𝒜(𝑋𝑛,𝑘′). Finally, since (𝑅𝑛,𝑘) ∈ 𝒜(𝑋𝑛,𝑘′), we also get that
𝐄
[
𝐹𝑛,𝑘′𝑅𝑛,𝑘

]
→ 0. □

We need a final ingredient for our proof by induction. At this point, all the 𝐹𝑛,𝑘 are decomposed in
sum of chaoses of lower degrees that we could handle by induction. However, 𝑅𝑛,𝑘 is still in𝒲𝑝, to
overcome this difficulty we show that it can be taken asymptotically Gaussian. When 𝐾 is unbounded,
for a fixed 𝑘, (𝑅𝑛,𝑘)might fail to be asymptotically Gaussian. Our idea is to use that for 𝑘𝑛 →∞ then
we can restore the asymptotic normality. The following result shows that up to taking an sufficiently
slowly growing (𝑘𝑛), we have that (𝑅𝑛,𝑘𝑛) is asymptotically Gaussian.

Lemma 3.23. Up to extraction, there exists a sequence of integers (𝑘𝑛) such that 𝑘𝑛 → sup𝐾 and built
upon Lemma 2.4 such that we have that (𝑅𝑛,𝑘𝑛) is asymptotically Gaussian.



LIMIT DISTRIBUTIONS FOR POLYNOMIALS 23

Proof. There is only something to prove whenever𝐾 is unbounded. Otherwise, any converging sequence
(𝑘𝑛) is eventually constant equals to 𝑘∗ ≔ max 𝐾 and in this case (𝑅𝑛,𝑘∗) is asymptotically normal by
construction. Thus, we assume that 𝐾 = ℕ. First, by definition 𝜌0(𝐹𝑛) = 0 and 𝜌𝑞(𝐹𝑛) ≥ 𝛿 > 0. By
Lemma 3.8, we can take consider 𝑠 the largest integer such that 𝜌𝑠(𝐹𝑛)→ 0. To conclude, it suffices to
show that for any (𝑘𝑛) converging to∞, then 𝜌𝑠+1(𝑅𝑛,𝑘𝑛)→ 0. Thus, applying this fact a finite number
of times, would yield that 𝜌⌊ 𝑝

2
⌋(𝑅𝑛,𝑘𝑛)→ 0, and we conclude by Theorem 3.9. To prove the claim, recall

that for all 𝑘 ∈ ℕ we have constructed (𝑋𝑛,𝑘+1) in𝒲𝑞𝑘+1
that is a direction of strongest influence for

(𝑅𝑛,𝑘). Thus

𝜌𝑞𝑘𝑛+1
(𝑅𝑛,𝑘𝑛) ≤

1

𝑛
+
‖‖‖‖Γ(𝑅𝑛,𝑘𝑛 , 𝑋𝑛,𝑘𝑛+1)

‖‖‖‖𝐿2(𝐏)
≤
1

𝑛
+ 𝐶‖𝐹𝑛,𝑘𝑛+1‖𝐿2(𝐏) + 𝑜𝐿2(𝐏)(1),

where we use that 𝑅𝑛,𝑘𝑛 = 𝐹𝑛,𝑘𝑛+1+𝑅𝑛,𝑘𝑛+1, that Γ(𝑅𝑛,𝑘𝑛+1, 𝑋𝑛,𝑘𝑛)→ 0, and that by equivalence of norms
(3.2) and the asymptotic independence (ii) in Lemma 3.22 , Γ(𝐹𝑛,𝑘𝑛+1, 𝑋𝑛,𝑘𝑛) has a norm comparable to
that of 𝐹𝑛,𝑘𝑛 . Up to extraction, we have that

‖‖‖‖𝐹𝑛,𝑘
‖‖‖‖𝐿2(𝐏)

,,,,,→
𝑛→∞

𝜎𝑘.

In view of the orthogonal property (v) in Lemma 3.22, we find that
∑

𝑘
𝜎2
𝑘
≤ 1. Thus 𝜎𝑘𝑛+1 → 0

for any 𝑘𝑛 → ∞, which shows that 𝜌𝑞𝑘𝑛 (𝑅𝑛,𝑘𝑛) → 0. Moreover in view of Lemma 2.4, we have that
‖𝐹𝑛,𝑘𝑛+1‖𝐿2(𝐏) ≤ 𝑐𝜎𝑘𝑛+1 + 𝑜(1). Since by construction 𝑘𝑛 ≥ 𝑠 + 1, we conclude by Lemma 3.8. □

3.4. Main result through an induction procedure. To state properly our results, we consider
convergence in law for infinite random vectors with Wiener chaotic components. Here, we understand
the convergence in the usual sense of convergence of all finite dimensional marginals, but with the
additional requirement that the limit can be represented as an infinite random vector whose components
belong to the Wiener space.

Definition 3.24. Let (�⃗�𝑛) = (𝐹𝑛,1,⋯ , 𝐹𝑛,𝑖,⋯)𝑛≥1 such that for all 𝑖 ≥ 1, there exists 𝑝𝑖 ∈ ℕ such
that 𝐹𝑛,𝑖 ∈ 𝒲𝑝𝑖

for all 𝑛 ∈ ℕ. We say that (�⃗�𝑛)𝑛≥1 Wiener-converges in law provided there exists
�⃗�∞ = (𝐹∞,1, 𝐹∞,2,… ) such that for all 𝑛 ∈ ℕ 𝐹∞,𝑖 ∈𝒲≤𝑝𝑖

, and

�⃗�𝑛
𝐥𝐚𝐰
,,,,,→
𝑛→∞

�⃗�∞.

Remark 3.25. Our Theorem 1.2 can thus be rephrased by saying that convergence in law in equivalent
to Wiener-convergence in law.

Let us introduce the following definition that helps to formalize our proof.

Definition 3.26. For 𝑑 ∈ ℕ. We say that a sequence (�⃗�𝑛)𝑛 of infinite-random vector isWiener admissible
of degree 𝑑, provided there exists 𝑝 ∈ ℕ and integers 𝑝𝑖 ≤ 𝑝 such that 𝐹𝑛,𝑖 ∈ 𝒲𝑝𝑖

, at least one of the
following condition holds

(i) (𝐹𝑛,𝑖) is asymptotically Gaussian;
(ii) or, 𝑝𝑖 ≤ 𝑑.

We now complete the proof of Theorem 1.2 by proving the following result by induction.

Theorem 3.27. Let 𝑑 ∈ ℕ and let (�⃗�)𝑛 be 𝑑-admissible. Assume that (�⃗�𝑛) converges in law, then (�⃗�𝑛)
Wiener-converges in law. Moreover, notion �⃗�∞ a vector realising the Wiener convergence in law, we have
that 𝐹∞,𝑖 is Gaussian if and only if 𝐹∞,𝑖 ∈𝒲1.

Proof. We work by induction on 𝑑. We have already proved the initialisation, that is 𝑑 = 1 (actually
also 𝑑 = 2 and 𝑑 = 3) in Theorem 1.7. Take 𝑑 ≥ 2, and assume the claim is proved for all 𝑑′ < 𝑑.
Let (�⃗�𝑛) be 𝑑-admissible and converging in distribution, without loss of generality we further assume
that 𝐄

[
𝐹2
𝑛,𝑖

]
= 1 for 𝑖 and 𝑛. Let us define 𝐼 ≔ {𝑖 ≥ 1 |𝐹𝑛,𝑖 ̸→ 𝒩(0, 1)}. The indices not in 𝐼 are

covered immediately by the induction hypothesis and their limits are in the first Wiener chaos. Now for
each 𝑖 ∈ 𝐼 one apply our decomposition lemma Lemma 3.22to 𝐹𝑛,𝑖 and we obtain that there exists a
𝑘∗
𝑖
∈ ℕ ∩ {∞} such that for all 𝑖 ∈ ℕ∗ and all 𝑘 ∈ ℕ with 𝑘 ≤ 𝑘∗

𝑖

𝐹𝑛,𝑖 = 𝐹𝑛,𝑖,1 +⋯ + 𝐹𝑛,𝑖,𝑘 + 𝑅𝑛,𝑖,𝑘,
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where 𝐹𝑛,𝑖,𝑘 =
∑

𝑙≥0
𝐴𝑛,𝑖,𝑘,𝑙𝐻𝑙(𝑋𝑛,𝑖,𝑘). Let us write 𝑞𝑖,𝑘 for the integer such that 𝑋𝑛,𝑖,𝑘 ∈ 𝒲𝑞𝑖,𝑘

, and for
short let 𝑙𝑖,𝑘 ≔ ⌊

𝑝

𝑞𝑖,𝑘
⌋. Up to extraction, there exists real numbers (𝜎𝑖,𝑘) such that ‖𝐹𝑛,𝑖,𝑘‖𝐿2(𝐏) → 𝜎𝑖,𝑘. By

Lemma 2.4, we can find 𝑘𝑛,𝑖 → 𝑘∗
𝑖
, such that

𝑟𝑛,𝑖∑

𝑘=1

|||||
𝐄
[
𝐹2
𝑛,𝑖,𝑘

]
− 𝜎2

𝑖,𝑘

|||||
,,,,,→
𝑛→∞

0, 𝑖 ∈ ℕ.

Consider the vectors

�⃗�𝑛 ≔
(
𝐴𝑛,𝑖,𝑘,𝑙, 𝑋𝑛,𝑖,𝑘, 𝑅𝑛,𝑖,𝑘𝑛,𝑖 ∶ 𝑖 ∈ ℕ∗, 𝑙 ∈

{
1,… , 𝑙𝑖,𝑘

})
, 𝑛 ∈ ℕ.

By Lemma 3.23, (�⃗�𝑛) is admissible. Thus, by the induction hypothesis, up to extraction, there exists

�⃗�∞ ≔
(
𝐴∞,𝑖,𝑘,𝑙, 𝑋∞,𝑖,𝑘, 𝑅∞,𝑖 ∶ 𝑖 ∈ ℕ∗, 𝑙 ∈

{
1,… , 𝑙𝑖,𝑘

})
,

with 𝐴∞,𝑖,𝑘,𝑙 ∈𝒲≤(𝑝−𝑙𝑞𝑘,𝑖)
and 𝑅∞,𝑖 and 𝑋∞,𝑖,𝑘 ∈𝒲1, such that

�⃗�𝑛
𝐥𝐚𝐰
,,,,,→
𝑛→∞

�⃗�∞.

Define further

𝐹∞,𝑖,𝑘 ≔

𝑙𝑖,𝑘∑

𝑙=1

𝐴∞,𝑖,𝑘,𝑙𝐻𝑙(𝑋∞,𝑖,𝑘).

Moreover, since for 𝑖 ∈ ℕ∗, (𝐹∞,𝑖,𝑘)𝑘] are orthogonal by Lemma 3.22 (v), we find that the (𝐹∞,𝑖,𝑘)𝑘 are
also orthogonal, in particular the series

𝑆∞,𝑖 ≔
∑

𝑘∈ℕ

𝐹∞,𝑘,𝑖,

exists in 𝐿2(𝐏), and is an element of𝒲≤𝑝𝑖
since the later is closed in 𝐿2(𝐏). Define 𝐹∞,𝑖 ≔ 𝐹∞,𝑖 +𝑅∞,𝑖 ∈

𝒲≤𝑝𝑖
. We claim that

�⃗�𝑛
𝐥𝐚𝐰
,,,,,→
𝑛→∞

�⃗�∞,

which would conclude the proof. This is not completely immediate since 𝑆∞,𝑖 is an infinite series.
However, we can use again the properties of (𝑘𝑛) from Lemma 2.4 as in the proof of Theorem 1.7 to
truncate the series and conclude for the convergence. □

We conclude this section with the proof of Theorem 1.4.

Proof of Theorem 1.4. We proceed by induction on 𝑝 − 𝑠. When 𝑠 = 𝑝 − 1, the lemma 3.9 ensures a
Gaussian limit for 𝐹𝑛 hence 𝑄 must be linear in this case. Indeed

⌊
𝑝

𝑠+1

⌋
= 1 which is consistent. As

established above, for any sequence (𝐹𝑛)𝑛≥1 in𝒲𝑝, onemaywrite for any 𝑟 ≥ 1 that𝐹𝑛 =
∑𝑟

𝑖=1
𝐹𝑛,𝑟+𝑅𝑛,𝑟,

where
∙ 𝐹𝑛,𝑖 =

∑⌊𝑝∕𝑞𝑖⌋

𝑘=1
𝐴
(𝑖)

𝑘,𝑛
𝐻𝑘(𝑋𝑛,𝑖),

∙ 𝑋𝑛,𝑖 ,,,,,→
𝑛→∞

𝒩(0, 1) and ‖Γ
[
𝑅𝑛,𝑖−1, 𝑋𝑛,𝑖

]
‖2 ≥ 𝜌𝑞𝑖 (𝑅𝑛,𝑖) − 1∕𝑛.

If one further assume that 𝜌𝑠(𝐹𝑛) → 0, for some 𝑠 ≥ 1, then one gets that 𝑞𝑖 ≥ 𝑠 + 1 in the above
decomposition. Indeed, recall that 𝑞𝑖 ≔ min(𝑘 ≥ 1|𝜌𝑘(𝑅𝑛,𝑖−1) = 𝜌𝑘(𝐴

(𝑖−1)

0,𝑛
) ↛ 0) and that thanks to

Lemma 3.23 we get that 𝜌𝑠(𝐴
(𝑖)

𝑘,𝑛
)→ 0 for each 𝑘 ∈ J0, 𝑝

𝑞𝑖
K and each 𝑖 ≥ 1. Besides, relying on the proof

of our main Theorem, we may assert that for some suitable 𝑟𝑛 →∞ we have 𝜌𝑠+1
(
𝑅𝑛,𝑟𝑛

)
→ 0 as well as

(up to extracting subsequences)

∙ 𝐹𝑛,𝑖 → 𝐹∞,𝑖 ≔
∑⌊𝑝∕𝑞𝑖⌋

𝑘=1
𝐴
(𝑖)

𝑘,∞
𝐻𝑘(𝑋∞,𝑖),

∙ 𝑅𝑛,𝑟𝑛 → 𝑅∞,
∙ 𝐹𝑛 →

∑∞

𝑖=1
𝐹𝑖,∞ + 𝑅∞ (the series is converging in 𝐿2)
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with all convergences being joint. By our induction hypothesis we may already infer that 𝑅∞ may be
represented by a polynomial of degree less than ⌊𝑝∕(𝑠 + 2)⌋. Moreover, 𝑋∞,𝑖 is an element of the first
chaos and𝐻𝑘(𝑋∞,𝑖) is then a degree 𝑘-polynomial. Besides, for each 𝑖 ≥ 1 and each 𝑘 ∈ J1, 𝑝∕𝑞𝑖K, 𝐴

(𝑖)

𝑘,𝑛

is asymptotically in𝒲𝑝−𝑘𝑞𝑖
with 𝜌𝑠(𝐴

(𝑖)

𝑘,𝑛
)→ 0. If 𝑠 ≥ 𝑝 − 𝑘𝑞𝑖 then we obtain that 𝐴

(𝑖)

𝑘,𝑛
is asymptotically

independent of a chaos of higher order which entails that 𝐴(𝑖)

𝑘,𝑛
→ 0. When 𝑝 − 𝑘𝑞𝑖 ≥ 𝑠 + 1, since

1 ≤ 𝑝 − 𝑘𝑞𝑖 − 𝑠 < 𝑝 − 𝑠, we may use our induction hypothesis and 𝐴(𝑖)

𝑘,∞
may be represented by a

polynomial of degree
⌊
𝑝−𝑘𝑞𝑖

𝑠+1

⌋
. Hence, 𝐹𝑖,∞ is a polynomial of degree less than

max
𝑘∈J1,⌊(𝑝−𝑠−1)∕𝑞𝑖⌋K

⎢
⎢

⎣

𝑝 − 𝑘𝑞𝑖

𝑠 + 1

⎥
⎥

⎦

+ 𝑘 ≤ max
𝑘∈J1,⌊(𝑝−𝑠−1)∕𝑞𝑖⌋K

⎢
⎢

⎣

𝑝 − 𝑘(𝑠 + 1)

𝑠 + 1

⎥
⎥

⎦

+ 𝑘 =

⌊ 𝑝

𝑠 + 1

⌋

,

where the last inequality uses that 𝑞𝑖 ≥ 𝑠 + 1 and that 𝑥 ↦ ⌊𝑥⌋ is monotonic. The final argument
uses the fact that the series

∑

𝑖≥1
𝐹∞,𝑖 is converging in 𝐿2 and the fact𝒲≤𝑚 is a closed space for any

𝑚 ≥ 0. □

4. From stability of Wiener chaoses to stability of arbitrary polynomial chaoses

Theorem 4.1. Let (𝑃𝑖,𝑛)𝑖,𝑛 be polynomials of degree at most 𝑑 ∈ ℕ; let �⃗� be a vector of independent and
identically random variables, that are centered, with unit variance, and admitting moments at every order;
and let �⃗�𝑛 be the infinite random vector given by

𝐹𝑖,𝑛 ≔ 𝑃𝑖,𝑛(�⃗�), 𝑖, 𝑛 ∈ ℕ.

Assume that (�⃗�𝑛) converges in law. Then, there exist polynomials (𝑄𝑖)𝑖 of degree at most 𝑑 and an infinite
random vector �⃗� with independent entries such that 𝐥𝐚𝐰[𝑌𝑖] ∈ {𝐥𝐚𝐰[𝑋1],𝒩(0, 1)} and

�⃗�𝑛
𝐥𝐚𝐰
,,,,,→
𝑛→∞

(𝑄𝑖(�⃗�))𝑖.

4.1. Reduction tomultilinear polynomials. We build upon an invariance results from [MOO10]. Let
us introduce some notions taken from there. In view of our assumptions, there exist polynomials 𝑇0 ≔
1, 𝑇1 ≔ 𝑥, 𝑇2 ≔ 𝑥2 − 1,… , 𝑇𝑑, such that the random variables 𝑇0𝑋1, 𝑇1𝑋1,… , 𝑇𝑑𝑋1 are orthonormal.
Let us consider the orthonormal ensembles

𝒳𝑗 ≔
{
𝑇0𝑋𝑗, 𝑇1𝑋𝑗,… , 𝑇𝑑𝑋𝑗

}
.

Then the 𝐹𝑛,𝑖’s aremultilinear polynomials over these ensembles, namely

𝐹𝑛,𝑖 =
∑

𝛼∈{1,…,𝑑}ℕ

𝑎𝑛,𝑖,𝛼

∏

𝑗∈ℕ

𝒳𝑗,𝛼𝑗
,

for suitably chosen real coefficients (𝑎𝑛,𝑖,𝛼). Since all the 𝒳𝑗’s actually contains the same number of
variables, it is sufficient for our purpose to work with elementary multilinear polynomials of the form

(4.1)
∑

𝐽⊂ℕ

𝑎𝐽𝑍𝐽 ,

where the 𝑎𝐽 ’s are real coefficients and 𝑍𝐽 ≔
∏

𝑗∈𝐽
𝑍𝑗, with 𝑍𝑗 ∈ 𝒳𝑗.

4.2. Proof by induction.

Definition 4.2. We say that a sequence of vectors (�⃗�𝑛) is 𝑑-admissible provided that there exists 𝐾 ∈ ℕ

such that for all 𝑖 and 𝑛 ∈ ℕ, 𝐹𝑛,𝑖 is a multilinear polynomial as in (4.1) with degree at most 𝐾, and
(i) either 𝜏(𝐹𝑛,𝑖)→ 0, as 𝑛 →∞,
(ii) or deg(𝐹𝑛,𝑖) ≤ 𝑑.

Definition 4.3 (Induction hypothesis). For all 𝑑 ∈ ℕ, we write 𝖧(𝑑) to indicate that the conclusion of
Theorem 4.1 holds provided (�⃗�𝑛) is a 𝑑-admissible sequence.

In view of Section 4.1, establishing 𝖧(𝑑) for all 𝑑 ∈ ℕ proves Theorem 4.1.
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4.3. Initialisation. Take a 1-admissible sequence (�⃗�𝑛). This means that for 𝑛 and 𝑖 ∈ ℕ either 𝐹𝑛,𝑖 is
linear, either 𝜏(𝐹𝑛,𝑖)→ 0 as 𝑛 →∞.

4.3.1. Decomposition of the linear terms. Let us write 𝐼 for the set of indices 𝑖 such that for all 𝑛 ∈ ℕ 𝐹𝑛,𝑖
is linear. Since we can discard the constants that do not play a role in the argument, we can write for all
𝑖 ∈ 𝐼,

𝐹𝑛,𝑖 =
∑

𝑗∈ℕ

𝑎𝑛,𝑖,𝑗𝑍𝑗,

for some real numbers 𝑎𝑛,𝑖,𝑗. Choose a permutation 𝜎𝑛,𝑖 that order the (𝑎𝑛,𝑖,𝑗)𝑗 in module, namely we
require that

|𝑎𝑛,𝑖,𝜎𝑛,𝑖(1)| ≥ |𝑎𝑛,𝑖,𝜎𝑛,𝑖(2)| ≥ ...

Without loss of generality, we assume that 𝜎𝑛,1 = id. Up to extracting non-relabelled subsequences, we
have that

𝑎𝑛,𝑖,𝜎𝑛,𝑖(𝑗) ,,,,,→𝑛→∞
𝑎∞,𝑖,𝑗,

for some real numbers 𝑎∞,𝑖,𝑗. Since the elements of the sequences are ordered, we find that the conver-
gence holds in 𝓁∞(ℕ). Indeed, we first notice that we have

∙ ∀𝑗 ≥ 1, 𝑎2
𝑛,𝑖,𝜎𝑛,𝑖(𝑗)

≤
𝑎2
𝑛,𝑖,𝜎𝑛,𝑖 (1)

+⋯+𝑎2
𝑛,𝑖,𝜎𝑛,𝑖 (𝑗)

𝑗
≤

1

𝑗
,

∙ ∀𝑗 ≥ 1,
|||||
𝑎𝑛,𝑖,𝜎𝑛,𝑖(𝑗) − 𝑎∞,𝑖,𝑗

|||||
→ 0.

Gathering these two facts entails the 𝓁∞-convergence.

4.3.2. Terms with small influence. In particular, letting

𝑅𝑛,𝑖 ≔

⎧

⎨

⎩

∑

𝑗∈ℕ

(𝑎𝑛,𝑖,𝜎𝑛,𝑖(𝑗) − 𝑎∞,𝑖,𝑗)𝑍𝜎𝑛,𝑖(𝑗), 𝑖 ∈ 𝐼;

𝐹𝑛,𝑖, 𝑖 ∉ 𝐼.

we find that 𝜏(𝑅𝑛,𝑖) → 0 as 𝑛 → ∞. Take �⃗� = (𝐺𝑘) a standard Gaussian vector. Our first result
characterizes the limit in law for elements of low influence following a combination of an invariance
principle [Rot79; MOO10] together with our stability result Theorem 3.1.

Lemma 4.4. There exist polynomials (𝑇∞,𝑖) with deg(𝑇∞,𝑖) ≤ 𝐾 for all 𝑖 ∈ ℕ and deg(𝑇∞,𝑖) ≤ 1 for 𝑖 ∈ 𝐼

such that

(4.2)
(
𝑅𝑛,𝑖 ∶ 𝑖 ∈ ℕ

) 𝐥𝐚𝐰
,,,,,→
𝑛→∞

(
𝑇∞,𝑖(�⃗�) ∶ 𝑖 ∈ ℕ

)
.

Proof. Take polynomials (𝑇𝑛,𝑖) such that 𝑅𝑛,𝑖 = 𝑇𝑛,𝑖(�⃗�). By Theorem 3.1, there exist polynomials 𝑇∞,𝑖 as
in the claim such that

(4.3)
(
𝑇𝑛,𝑖(�⃗�) ∶ 𝑖 ∈ 𝐼

) 𝐥𝐚𝐰
,,,,,→
𝑛→∞

(
𝑇∞,𝑖(�⃗�) ∶ 𝑖 ∈ 𝐼

)

Take𝑀 ∈ ℕ∗. Consider the Wasserstein distance𝐖2 defined in (2.1), by the triangle inequality

(4.4) 𝐖2

⎛

⎜

⎝

⎛

⎜

⎝

𝑅𝑛,1
…

𝑅𝑛,𝑀

⎞

⎟

⎠

,
⎛

⎜

⎝

𝑇∞,1(�⃗�)

…

𝑇∞,𝑀(�⃗�)

⎞

⎟

⎠

⎞

⎟

⎠

≤𝐖2

⎛

⎜

⎝

⎛

⎜

⎝

𝑅𝑛,1
…

𝑅𝑛,𝑀

⎞

⎟

⎠

,
⎛

⎜

⎝

𝑇𝑛,1(�⃗�)

…

𝑇𝑛,𝑀(�⃗�)

⎞

⎟

⎠

⎞

⎟

⎠

+𝐖2

⎛

⎜

⎝

⎛

⎜

⎝

𝑇𝑛,1(�⃗�)

…

𝑇𝑛,𝑀(�⃗�)

⎞

⎟

⎠

,
⎛

⎜

⎝

𝑇∞,1(�⃗�)

…

𝑇∞,𝑀(�⃗�)

⎞

⎟

⎠

⎞

⎟

⎠

.

Since the Wasserstein distance𝐖2 metrizes the convergence in law for random polynomials vectors in
ℝ𝑀 (see Corollary 2.3), the second term in the right hand side vanishes as 𝑛 →∞. On the other hand
by the multivariate version of the invariance principle from [MOO10], see [NPR10, Thm. 7.1], the first
term is controlled, up to a constant, bymax𝑖=1,…,𝑀 𝜏(𝑇𝑛,𝑖). Since by construction this influence goes to
0, we conclude that the left-hand side in (4.4) goes to 0. Since this holds for an arbitrary𝑀 ∈ ℕ∗, the
proof is complete. □
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4.3.3. The 𝓁2-term. Here, our goal is to understand the asymptotic as 𝑛 →∞ of the linear terms

𝐿𝑛,𝑖 ≔
∑

𝑗∈ℕ

𝑎∞,𝑖,𝑗𝑍𝜎𝑛,𝑖(𝑗).

Since the coefficients 𝑎∞,𝑖,𝑗’s are already independent of 𝑛, we study the limit in law of (𝑍𝜎𝑛,𝑖(𝑗)). Define

𝐶𝑛((𝑖, 𝑗), (�̃�, 𝚥)) ≔ 𝐄
[
𝑍𝜎𝑛,𝑖(𝑗)𝑍𝜎𝑛,�̃�(𝚥)

]
∈ {0, 1}.

Up to non-relabelled extractions, we have that 𝐶𝑛 converges pointwise to some 𝐶∞. Define the relation
(𝑖, 𝑗) ∼ (�̃�, 𝚥) provided 𝐶((𝑖, 𝑗), (�̃�, 𝚥)) = 1, which is equivalent to: for 𝑛 large enough 𝑍𝜎𝑛,𝑖(𝑗) = 𝑍𝜎𝑛,�̃�(𝚥).
From this representation, we see that ∼ is an equivalence relation. Up to non-relabelled extraction, we
can consider 𝜇∞,𝑖,𝑗 the limiting distribution of 𝑍𝜎𝑛,𝑖(𝑗), which, by definition of ∼, only depends on the
equivalence class of (𝑖, 𝑗). Since the 𝑍𝑖’s are independent and𝒵 ≔ {𝐥𝐚𝐰[𝑍𝑖] ∶ 𝑖 ∈ ℕ} is a finite set, we
actually have that 𝜇∞,𝑖,𝑗 ∈ 𝒵 Let us consider a sequence of independent random variables

(
𝑍∞,𝐶 ∶ 𝐶 ∈ (ℕ2⧵ ∼)

)
,

such that 𝐥𝐚𝐰
[
𝑍∞,𝐶

]
= 𝜇∞,𝑖,𝑗 for any (𝑖, 𝑗) ∈ 𝐶. We build a ℕ2-indexed sequence from there by setting

𝑍∞,𝑖,𝑗 ≔ 𝑍∞,𝐶 , (𝑖, 𝑗) ∈ 𝐶, 𝐶 ∈ (ℕ2⧵ ∼).

Our construction guarantees that

(4.5) (𝑍𝜎𝑛,𝑖(𝑗) ∶ (𝑖, 𝑗) ∈ ℕ2)
𝐥𝐚𝐰
,,,,,→
𝑛→∞

(𝑍∞,𝑖,𝑗 ∶ (𝑖, 𝑗) ∈ ℕ2).

Define
𝐿∞,𝑖 ≔

∑

𝑗∈ℕ

𝑎∞,𝑖,𝑗𝑍∞,𝑖,𝑗,

which exists as a series converging in 𝐿2(𝐏). Indeed, since 𝜎𝑛,𝑖 is a bijection, it is impossible to have
(𝑖, 𝑗) ∼ (𝑖, 𝚥) for 𝑗 ≠ 𝚥. Thus all the terms in the series are actually orthogonal and the series is convergent
since

∑

𝑗∈ℕ
𝑎2
∞,𝑖,𝑗

≤ 1. We can now characterize the limit in law of the 𝐿𝑛,𝑖’s.

Lemma 4.5. With the above notations

(𝐿𝑛,𝑖 ∶ 𝑖 ∈ ℕ)
𝐥𝐚𝐰
,,,,,→
𝑛→∞

(𝐿∞,𝑖 ∶ 𝑖 ∈ ℕ).

Proof. For an integer 𝑄 and 𝑛 ∈ ℕ, write

𝐿
≤𝑄

𝑛,𝑖
≔

𝑄∑

𝑗=0

𝑎∞,𝑖,𝑗𝑍𝜎𝑛,𝑖(𝑗), and 𝐿
>𝑄

𝑛,𝑖
≔

∞∑

𝑗=𝑄+1

𝑎∞,𝑖,𝑗𝑍𝜎𝑛,𝑖(𝑗).

We use a similar notation 𝐿≤𝑄
∞,𝑖

and 𝐿>𝑄
∞,𝑖
. Let𝑀 ∈ ℕ∗ and 𝜀 > 0. Take 𝑄 such that

max
𝑖=1,…,𝑀

∞∑

𝑗=𝑄+1

𝑎2
∞,𝑖,𝑗

≤ 𝜀.

This ensures that

(4.6) sup
𝑛∈ℕ

max
𝑖=1,…,𝑀

𝐕𝐚𝐫
[
𝐿
>𝑄

𝑛,𝑖

]
≤ 𝜀, and max

𝑖=1,…,𝑀
𝐕𝐚𝐫

[
𝐿
>𝑄

∞,𝑖

]
≤ 𝜀.

Consider the Wasserstein distance𝐖2 defined in (2.1). By (4.6), we find that, uniformly in 𝑛,

𝐖2

⎛

⎜
⎜

⎝

⎛

⎜

⎝

𝐿𝑛,1
…

𝐿𝑛,𝑀

⎞

⎟

⎠

,

⎛

⎜
⎜

⎝

𝐿
≤𝑄

𝑛,1

…

𝐿
≤𝑄

𝑛,𝑀

⎞

⎟
⎟

⎠

⎞

⎟
⎟

⎠

+𝐖2

⎛

⎜
⎜

⎝

⎛

⎜
⎜

⎝

𝐿
≤𝑄

∞,1

…

𝐿
≤𝑄

∞,𝑀

⎞

⎟
⎟

⎠

,
⎛

⎜

⎝

𝐿∞,1

…

𝐿∞,𝑀

⎞

⎟

⎠

⎞

⎟
⎟

⎠

≤ 2𝑀𝜀.

On the other hand, (4.5) implies that

𝐖2

⎛

⎜
⎜

⎝

⎛

⎜
⎜

⎝

𝐿
≤𝑄

𝑛,1

…

𝐿
≤𝑄

𝑛,𝑀

⎞

⎟
⎟

⎠

,

⎛

⎜
⎜

⎝

𝐿
≤𝑄

∞,1

…

𝐿
≤𝑄

∞,𝑀

⎞

⎟
⎟

⎠

⎞

⎟
⎟

⎠

,,,,,→
𝑛→∞

0.
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Since 𝜀 is arbitrary, we actually find that (𝐿𝑛,𝑖 ∶ 𝑖 = 1,… ,𝑀) converges in Wasserstein distance to
(𝐿∞,𝑖 ∶ 𝑖 = 1,… ,𝑀). Since the Wasserstein distance metrizes the convergence in law Corollary 2.3, and
that the convergence holds for all𝑀 ∈ ℕ∗, this completes the proof. □

4.3.4. Asymptotic independence and joint convergence. So far we have established the convergence of the
low influence𝑅𝑛,𝑖’s and the linear 𝐿𝑛,𝑖’s separately. Let us show that the two sequences are asymptotically
independent.

Lemma 4.6. We further assume that �⃗� and (𝑍∞,𝑖,𝑗) are independent. Then,

(
𝐿𝑛,𝑖, 𝑅𝑛,𝑖 ∶ 𝑖 ∈ ℕ

) 𝐥𝐚𝐰
,,,,,→
𝑛→∞

(
𝐿∞,𝑖, 𝑅∞,𝑖 ∶ 𝑖 ∈ ℕ

)
.

Proof. Fix𝑀 ∈ ℕ∗ take Φ,Ψ ∈ 𝒞∞

𝑏
(ℝ𝑀). As above take 𝜀 > 0 and 𝑄 ∈ ℕ∗ such that (4.6) holds. Thus

by a Taylor expansion, we find that

(4.7) 𝐄
[
Φ((𝐿𝑛,𝑖))𝑖≤𝑀Ψ((𝑅𝑛,𝑖)𝑖≤𝑀)

]
= 𝐄

[
Φ((𝐿

≤𝑄

𝑛,𝑖
)𝑖≤𝑀)Ψ((𝑅𝑛,𝑖)𝑖≤𝑀)

]
+ 𝑂(𝑀𝜀).

The random variables (𝐿≤𝑄
𝑛,𝑖
)𝑖≤𝑀 only depend on the 𝑙 ≔ (𝑄 + 1)(𝑀 + 1) random variables (𝑍𝜎𝑛,𝑖(𝑗) ∶ 𝑖 ≤

𝑀, 𝑗 ≤ 𝑄). Let us write (�̂�𝑛,𝑖) for the corresponding random variables where these 𝑙 random variables
are replaced by independent copies.

(4.8) 𝐄
[
Φ((𝐿

≤𝑄

𝑛,𝑖
))𝑖≤𝑀Ψ((𝑅𝑛,𝑖)𝑖≤𝑀)

]
= 𝐄

[
Φ((𝐿

≤𝑄

𝑛,𝑖
)𝑖≤𝑀)Ψ((�̂�𝑛,𝑖)𝑖≤𝑀)

]
+ 𝑂(𝑀𝜏𝑛),

where 𝜏𝑛 ≔ max𝑖=1,…,𝑀 𝜏(𝑅𝑛,𝑖)→ 0 as 𝑛 →∞. Since the two random vectors on the right-hand side are
now independent, combining (4.8) and (4.8) we find that

𝐄
[
Φ((𝐿𝑛,𝑖))𝑖≤𝑀Ψ((𝑅𝑛,𝑖)𝑖≤𝑀)

]
= 𝐄

[
Φ((𝐿

≤𝑄

𝑛,𝑖
)𝑖≤𝑀)

]
𝐄
[
Ψ((�̂�𝑛,𝑖)𝑖≤𝑀)

]
+ 𝑂(𝑀(𝜀 + 𝜏𝑛))

= 𝐄
[
Φ((𝐿𝑛,𝑖)𝑖≤𝑀)

]
𝐄
[
Ψ((𝑅𝑛,𝑖)𝑖≤𝑀)

]
+ 𝑂(𝑀(𝜀 + 𝜏𝑛)).

Since 𝜀 was arbitrary, we obtain, by letting 𝑛 →∞, the asymptotic independence for all vector of finite
length𝑀. Since𝑀 is also arbitrary, we conclude. □

4.3.5. Conclusion. By the continuous mapping theorem, Lemma 4.6 ensures that

(𝐹𝑛,𝑖 ∶ 𝑖 ∈ ℕ)
𝐥𝐚𝐰
,,,,,→
𝑛→∞

(𝐿∞,𝑖 + 𝑅∞,𝑖 ∶ 𝑖 ∈ ℕ),

where we recall that the Gaussian vector �⃗� fromwhich the 𝑅∞,𝑖’s are constructed, and the array (𝑍∞,𝑖,𝑗)𝑖,𝑗
fromwhich the 𝐿∞,𝑖 are constructed are independent. To complete the proof, we now construct explicitly
�⃗� and the 𝑄𝑖’s such that the conclusion of Theorem 4.1 holds. Take any bijection 𝜑∶ ℕ2 → ℕ. Define
�⃗� = (𝑌𝑘) with

𝑌2𝑘 ≔ 𝐺𝑘, and 𝑌2𝑘+1 ≔ 𝑍∞,𝜑−1(𝑘).

Recall that 𝑅∞,𝑖 = 𝑇∞,𝑖(�⃗�) for some polynomials 𝑇∞,𝑖 which we can immediately write as 𝑄𝑖,1(�⃗�).
Defining ℕ𝑖 ≔ 𝜑({𝑖} × ℕ), we have

𝐿∞,𝑖 =
∑

𝑘∈ℕ𝑖

𝑎∞,𝜑−1(𝑘)𝑌2𝑘+1 ≔ 𝑄𝑖,2(�⃗�).

Setting 𝑄𝑖 ≔ 𝑄𝑖,1 + 𝑄𝑖,2 we conclude.

4.4. Induction step. Let us assume 𝖧(𝑑) for some 𝑑 ∈ ℕ, and let us show 𝖧(𝑑 + 1). Take (�⃗�𝑛) a
(𝑑 + 1)-admissible sequence. The idea is to build a 𝑑-admissible vector out of �⃗�𝑛 and use our induction
hypothesis. Let 𝐼0 ≔

{
𝑖 ∈ ℕ ∶ 𝜏(𝐹𝑛,𝑖)→ 0

}
. Since elements with vanishing influence are for free in the

definition of admissibility we keep 𝐹𝑛,𝑖 as is for 𝑖 ∈ 𝐼0.
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4.4.1. Decomposing the terms of large influence. For 𝑖 ∉ 𝐼0, we consider permutations 𝜎𝑛,𝑖 ∶ ℕ→ ℕ that
orders the influences, namely

𝜏𝜎𝑛,𝑖(1)(𝐹𝑛,𝑖) ≥ 𝜏𝜎𝑛,𝑖(2)(𝐹𝑛,𝑖) ≥ …

Our strategy consists in successively removing variables with large influence. To that extent, define

𝒥𝑛,𝑖,𝑙 ≔
{
𝐽 ⊂ ℕ ∶ ∀𝑘 ∈ {1,… , 𝑙 − 1}, 𝜎𝑛,𝑖(𝑘) ∉ 𝐽, and 𝜎𝑛,𝑖(𝑙) ∈ 𝐽

}
;

In other words, 𝒥𝑛,𝑖,𝑙 is the set of all subsets where the 𝑙-th largest indices, in terms of influence, appears
but not the indices with larger influence. It is thus natural to define the polynomial with the 𝑙-th
influence removed

𝑅𝑛,𝑖,𝑙 ≔
∑

𝐽∈𝒥𝑛,𝑖,𝑙

𝑎𝐽𝑍𝐽⧵𝜎𝑛,𝑖(𝑙);

as well as the reminder

𝑆𝑛,𝑖,𝑝 ≔
∑

𝐽∈∩𝑙≤𝑝𝒥
𝐶

𝑛,𝑖,𝑙

𝑎𝐽𝑍𝐽 .

By this construction, we find that for all 𝑝 ∈ ℕ∗

(4.9) 𝐹𝑛,𝑖 = 𝑍𝜎𝑛,𝑖(1)𝑅𝑛,𝑖,1 +⋯ + 𝑍𝜎𝑛,𝑖(𝑝)𝑅𝑛,𝑖,𝑝 + 𝑆𝑛,𝑖,𝑝.

Since we remove the 𝑝-th first largest influence and that 𝐹𝑛,𝑖 is normalized, we also find that

(4.10) 𝜏(𝑆𝑛,𝑖,𝑝) ≤ 𝑂(1∕𝑝), uniformly in 𝑛 and 𝑖.

4.4.2. The admissible vector and its convergence. Take (𝑝𝑛) be an increasing sequence of integers con-
verging to∞, to be specified later. By (4.10), we find that 𝜏(𝑆𝑛,𝑖,𝑝𝑛)→ 0. On the other hand, the 𝑍𝜎𝑛,𝑖(𝑗)’s
are polynomials of degree ≤ 𝑑— actually, they are of degree exactly 1. Similarly, all the 𝑅𝑛,𝑖,𝑗’s are, by
construction, of degree at most 𝑑. Thus, any vector containing them is a 𝑑-admissible vector. To be
concrete, choose a bijection 𝜑∶ ℕ∗ ×ℤ→ ℕ. Consider the array 𝐴𝑛 = (𝐴𝑛(𝑖, 𝑗))𝑖∈ℕ∗,𝑗∈ℤ such that

𝐴𝑛(𝑖, 0) ≔ 𝑆𝑛,𝑖,𝑝𝑛 ;

𝐴𝑛(𝑖, 𝑗) ≔ 𝑅𝑛,𝑖,𝑗, 𝑗 ∈ ℕ∗;

𝐴𝑛(𝑖, 𝑗) ≔ 𝑍𝜎𝑛,𝑖(𝑗), 𝑗 ∈ ℤ∗
−;

and define the vector
�⃗�𝑛 ≔ (𝐴𝑛(𝜑

−1(𝑘)) ∶ 𝑘 ∈ ℕ).

Thus, (�⃗�𝑛) is 𝑑-admissible and by the induction hypothesis, there exist �̃�𝑖 of degree at most 𝑑 and a
vector �̃� such that

�⃗�𝑛
𝐥𝐚𝐰
,,,,,→
𝑛→∞

�⃗�∞ ≔ (�̃�𝑖(�⃗�)).

4.4.3. Identification of the limit of �⃗�𝑛. We can subsequently define

𝑍∞,𝑖,𝑗 ≔ 𝑉∞,𝜑(𝑖,−𝑗);

𝑅∞,𝑖,𝑗 ≔ 𝑉∞,𝜑(𝑖,𝑗);

𝑆∞,𝑖 ≔ 𝑉∞,𝜑(𝑖,0);

𝐹∞,𝑖,𝑗 ≔ 𝑍∞,𝑖,𝑗𝑅∞,𝑖,𝑗.

Since we are working with polynomials, by Theorem 2.1, we find that for all 𝑖 ∈ ℕ, the terms of (𝐹∞,𝑖,𝑗)𝑗
are orthogonal and satisfy

∞∑

𝑗=1

𝐄
[
𝐹2
∞,𝑖,𝑗

]
≤ 1.

In particular, we find that the following random variables is well-defined

𝐹∞,𝑖 ≔

∞∑

𝑗=1

𝐹∞,𝑖,𝑗 + 𝑆∞,𝑖,

since the series converges in 𝐿2(𝐏). Since the space of polynomials is also closed in 𝐿2(𝐏) Theorem 2.2,
we find that 𝐹∞,𝑖 = 𝑄𝑖(�⃗�) for some 𝑄𝑖 of degree at most 𝑑.
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4.4.4. Conclusion. To conclude, let us show the following.

�⃗�𝑛
𝐥𝐚𝐰
,,,,,→
𝑛→∞

�⃗�∞.

Again we need to show that despite the infinite series, the infinite series is not a problem. For this we
use a truncation argument already presented in the initialisation case that we do not repeat.
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