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LIMIT DISTRIBUTIONS FOR POLYNOMIALS WITH INDEPENDENT AND
IDENTICALLY DISTRIBUTED ENTRIES

RONAN HERRY, DOMINIQUE MALICET, AND GUILLAUME POLY

ABSTRACT. We characterize the limiting distributions of random variables of the form P, ((X i)izl)’ where:
(i) (P,)n>1 is a sequence of multivariate polynomials, each potentially involving countably many variables;
(ii) there exists a constant D > 1 such that for all n > 1, the degree of P, is bounded above by D; (iii) (X,);»;
is a sequence of independent and identically distributed random variables, each with zero mean, unit
variance, and finite moments of all orders. More specifically, we prove that the limiting distributions of
these random variables can always be represented as the law of P, ((X;, G);s ), where P, is a polynomial of
degree at most D (potentially involving countably many variables), and (G;);; is a sequence of independent
standard Gaussian random variables, which is independent of (X;)5;.

The characterization of all possible limiting laws of polynomials in independent and identically dis-
tributed variables is a long-standing problem, that we trace back at least to Kolmogorov’s influential school
in Probability in the 1960s. The seminal work [Sev62] is the first to solve this problem for D = 2 and when
the (X;) are Gaussian. There, a diagonalization argument serves as the main analytical tool. In contrast,
the case of non-Gaussian inputs has been solved only recently: [BDMM?24; BMM21] propose a solution for
non-Gaussian quadratic polynomials, Zi’j <N, a, (i, j)X;X;, where the common law of the (X;) is generic
but the coefficients (a, (i, j)); j<v, form an adjacency matrix. This extra assumption enables combinatorial
arguments grounded in graph-theoretic techniques.

We solve this problem in full generality, addressing both Gaussian and non-Gaussian inputs, and with
no extra assumption on the coefficients of the polynomials. In the Gaussian case, our proof builds upon
several original tools of independent interest, including a new criterion for central convergence based
on the concept of maximal directional influence. Beyond asymptotic normality, this novel notion also
enables us to derive quantitative bounds on the degree of the polynomial representing the limiting law. We
further develop techniques regarding asymptotic independence and dimensional reduction. To conclude
for polynomials with non-Gaussian inputs, we combine our findings in the Gaussian case with invariance
principles from [MOO10].
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1. INTRODUCTION

1.1. Main results. We establish a complete characterization of the closure, for the topology of conver-
gence in law, of polynomials in independent random variables that are centered, have unit variance,
and possess finite moments of all orders.

1.1.1. Stability in law of polynomials chaoses. We present below our main result, restricted to the
univariate setting.

Theorem 1.1 (Stability of polynomial chaoses). Letd > 1, and let (P,) be a sequence of multivariate real
polynomials of degree at most d € N. Consider X = (X;);>1, a sequence of independent and identically
distributed random variables satisfying E[X;] = 0, E[Xf] =1, and E[|X;|P] < oo forall p € N. Assume

that Pn()z ) converges in law to a limit u. Then, there exist:

. G= (Gy)i>1, a sequence of independent standard Gaussian random variables, also independent of X;
» P, a multivariate polynomial of degree at most d, possibly involving countably many variables,

such that:

law[Poo(X,G)] - u
As a special case, we investigate polynomials in Gaussian variables, that is law|[X; | = y. In this setting,
we derive the following result, which extends a prior result known only for d < 2 (see [Sev62]).

Theorem 1.2 (Stability of Wiener chaoses). Let G= (G;) be a sequence of independent standard Gaussian
random variables. The set

{P(é) : P is a polynomial of degree at most d}
is closed for the topology of convergence in distribution.

In Theorem 4.1, we actually derive a stronger result than Theorem 1.1 in two ways:

(i) we obtain a multivariate version of the theorem, that is we can consider polynomial random
vectors (P j()? ))jen Where each P; is a polynomial of degree at most d;

(ii) the X;’s are not necessarily identically distributed, we only need to assume that they have finite
moments and that {law[X;] : i € N}is finite.

Similarly, in Theorem 3.1, we state the multivariate counterpart of Theorem 1.2.

1.1.2. Directional influences. To prove these two results, we introduce a novel quantity, the directional
influence of order k. For simplicity, in this introduction, we restrict the presentation of this object
to homogeneous polynomials without diagonal terms with Gaussian entries, and involving finitely
many variables, which suffices to illustrate the essence of our results. Namely, for F, a homogeneous
polynomial of degree d of the form

F = Z a;,,..i,Gi, - Giys
i< <ig<K

writing dg, for the partial derivate with respect to G;, we define the semi-norms:

pe(F)=supy | Y. 06 FdcX|| :X= > by Gy GlXlle<1p,  keN.
i>1 12 i <--<ig<K
Using this new framework, we establish a necessary and sufficient criterion for central convergence,
which plays a pivotal role in our analysis.
Theorem 1.3 (Asymptotic normality from directional influences). Let d > 1 and consider a sequence
Foi= ). ay(iy,..,ig)Gy Gy, neN.
i <-+<ig
Then, the following are equivalent:
() (F,) is asymptotically normal.
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(ii) Forsomek € {EJ, vy d — 1}, we have

ﬁk(Fn) - 0.

See Theorem 3.9 for a precise statement. With respect to the problem of characterizing all the distribu-
tional limits, this criterion enables, starting from a non asymptotically Gaussian polynomials, to factor
out polynomials of smaller degrees, allowing for an inductive argument. Numerous alternative criteria
for central convergence exist, most notably:

(i) the celebrated Fourth-Moment Theorem of Nualart & Peccati [NP05];
(ii) a criterion based Malliavin calculus by Nualart & Ortiz-Latorre [NO08];
(iii) the Second Order Poincaré inequalities developed by Chatterjee [Cha09], and Nourdin, Peccati
& Reinert [NPROO].

All the results above give necessary and sufficient conditions for asymptotic normality of homogeneous
polynomials without diagonal terms. Arguably, our criterion is a new contribution in the vast literature
of central limit criteria for Gaussian polynomials. However, directional influences offer new insights in
two directions.

(i) For Gaussian limits, we obtain the criterion from Theorem 1.3. This plays a crucial role in our
proof, we do not know how to derive from the classical criteria.

(i) Beyond Gaussian limits, the semi-norms g, encode precise information about the distributional
convergence of a sequence of polynomials (F),),>;, as demonstrated by the following result.

Theorem 1.4. With (F,) as above, let s € {1, ...,d — 1} and suppose g4(F,) — 0, where
Foi= ), ay(iy,...ig)G Gy, neN.

i <<y

Further, assume (F,),>1 converges in distribution to u. Then there exists a multivariate polynomial Q such
that:

laW[Q(é)] =u, and deg(Q)< lsj—LlJ

Remark 1.5. For s as in Theorem 1.3, we have l&J <1, and thus Q(é) is Gaussian. Thus, Theorem 1.4
S

contains Theorem 1.3.

1.2. Motivation. Early fundamental results by the founding figures of the theory of probability, such
as Chebyshev [Che91], Lindeberg [Lin22], Kolmogorov [Kol28], Lévy [Lév35], and Feller [Fel35] give
a complete characterization of the limits in law of the sum of n independent random variables, as
n — oo. We refer to the monographs [Lév54; GK54] for thorough introductions to the subject and more
references.

Polynomials evaluated in random variables are central in several branches of probability theory: they
allow to model complex stochastic behaviour, and decomposing a random field on a polynomial basis is
a common strategy to study a probabilistic model. Such decomposition is known under various names:
Walsh decomposition for boolean functions [Wal23], Wiener’s polynomial chaos [Wie38], and its discrete
counterpart [WW43], 1td’s multiple integrals decomposition for Gaussian fields [[t051] and for Poisson
fields [1t056], or yet Hoeffding’s ANOVA decomposition [Hoe48]. To illustrate the importance of this
type of decomposition, here is a short non-exhaustive compilation of works, pertaining to different areas
of mathematics, fruitfully exploiting polynomials with random entries. For conciseness, we restrict
to papers from less than ten years ago (that is after 2015): [MPRW16; BDM17; DS18; KKO18; CSZ20;
EI20; ALM21; AADL21; INP21; CSZ23; APS24; Hai24; GQ24]. We also mention that polynomial
decomposition plays an important roles in computational mathematics, see for instance the influential
papers [XK02; BS11].

In view of the importance of polynomials with random inputs, following the resolution of the linear
case, subsequent works have intensively studied probabilistic properties of such polynomials. We refer
to the two excellent surveys by Bogachev, and the references therein, for more details on polynomials
evaluated in generic random variables [Bog16], and in independent Gaussian variables [Bog22].

The primary motivation of this work is to address the long-standing problem of characterizing the
limiting distributions of polynomials, at least when the inputs admit finite moments. As with any
characterization result, this advances the field not only by providing precise insights on the behavior of
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random polynomials, but also by developing original tools to tame their complexity. In particular, our
novel analysis based on the directional influences allows us to break down a polynomials in pieces of
lower degree. Each of these smaller pieces can be further dissected until we obtain a decomposition
for which we have an explicit control on each of the terms. We believe that such a procedure could
turn useful in other problems related to polynomials in random variables, as it enables an efficient
dimension reduction.

1.3. Related works.

1.3.1. Characterization of the limits. The problem we solve in this paper is explicitly formulated by
Kolmogorov [Kol62] during a seminar, at least in the case of Gaussian inputs and degree 2, but could
have appeared earlier. Quickly thereafter [Sev62] presents a solution for degree 2 Gaussian polynomials,
that is the case d = 2 of our Theorem 1.2. This solution later reappears in [Arc99]. Despite being
mentioned in different sources [Jan08, p. 85], [Bog16, Problem 4, p. 740], [Bog22, Question 3, p. 562],
[BDMM24, Conclusion], before the present work, this question has only received very partial answers.

« [ABO09, Cor. 2] provides a form of almost sure stability for Gaussian polynomials of a certain type.

+ Relying on a diagonalisation argument, [BKNP15, Thm. 1.2] proves a version of Theorem 1.2 for
d = 2 and for multivariate vectors.

« [BMM21; BDMM24] gives a characterisation of the limits of generic degree 2 polynomials under the
additional constraints that the coefficients of the polynomials are in {0, 1}, allowing for graph-theoretic
argument.

Apart from these works, we are not aware of any prior conclusive results addressing the stability of the
laws of polynomials with random inputs.

Aside from the aforementioned characterisation of the limits, polynomials in random variables have
been intensively studied in many directions [Bog22; Bog16]. In this section, we highlight two particular
directions of research that are indirectly connected to the question of the stability of distributions of
polynomials.

1.3.2. Central limit theorems. An important line of research focuses on generalizing the central limit
theorem to non-linear functionals, particularly polynomial ones. In this context, the generalization
typically involves identifying sufficient — and sometimes necessary — conditions to guarantee asymp-
totic normality, along with quantifying the rate of convergence in appropriate probabilistic distances.
Criteria ensuring central convergence serve as the backbone of asymptotic results for polynomials in
independent and identically distributed random variables and play a pivotal role in our approach. A
crucial ingredient of our proof is the recursive decomposition of a polynomial into lower-degree ones
that exhibit asymptotic Gaussian behavior.

Let us quote, in a very non-exhaustive way, some seminal contributions regarding non-linear central
limit theorems. The interested reader can also consult the references therein.

« In his seminal works, De Jong gives sufficient conditions for central limit theorems for quadratic
forms [dJon87] and for multilinear polynomials [dJon90].

o Nualart & Peccati [NP05], and Peccati & Tudor [PT05], characterize central limit theorems for
homogeneous Gaussian polynomials, also known as Wiener chaoses, in term of the convergence of the
fourth moment. Still, in the Gaussian setting, Nualart & Ortiz-Latorre [NOO08] express condition for
asymptotic normality in terms of operators from Malliavin calculus. Later on, Nourdin & Peccati [NP09]
use similar ideas from Malliavin calculus, and combine them with Stein’s method, to quantity normal
convergence in Kolmogorov distance and total variation distance. See [NP12; APY21] for further
developments in this line of research.

+ Chatterjee [Cha08] builds upon the celebrated Stein’s method to obtain a new criterion for asymptotic
normality in terms of a variance bound. In the same spirit, Chatterjee [Cha09], and Nourdin, Peccati &
Reinert [NPR0O9] provide criteria for asymptotic convergence of non-linear functionals of a Gaussian
fields, that can actually be used beyond the polynomial setting.

+ Dobler & Peccati [DP18] extends the fourth-moment theorem to case of polynomials with Poisson
entries, also known as the Poisson-Wiener chaoses. We stress that our Theorem 1.1 does not apply in
the full generality of Poisson chaoses. Contrarily to the Gaussian case, a Poisson distribution of mean 4
cannot be expressed as a polynomial transform of Poisson distribution with mean 1. Thus, even the
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Poisson chaos of degree one, cannot realised as linear form in a independent and identically distributed
sequence. It is a question of high interest to determine the closure in law of Poisson chaoses.

1.3.3. Invariance principles. A second popular line of research concerns the so called invariance princi-
ples. Informally speaking, invariance principles compare the law of a polynomial P()? ), where X = (X))
is a sequence of independent random variables with a common law that is rather generic, to that of
P(@) where G is a sequence of independent standard Gaussian. Such invariance principles allow to
generalize results and tools from the Gaussian framework to a more singular one. In particular, they
play a prominent role in our proof of the stability theorem for polynomials with generic inputs.

As above, we present a short and non-exhaustive selection of emblematic results in the field.

« Rotar’ gives sufficient conditions for invariance principles for quadratic forms in [Rot73], and for
multilinear polynomials in [Rot79]. Later, Gotze & Tikhomirov [GT99] quantify Rotar’s invariance
principle.

+ Chatterjee [Cha05; Cha06] establishes a new invariance principle beyond the polynomial setting,
encompassing smooth functionals.

» Mossel, O’'Donnell & Oleszkiewicz [MOO10] proves an invariance principle for polynomials, with an
explicit quantification in the degree and the so-called influence. This principle allows for the resolution
of two important conjectures related to boolean functions theory. Nourdin, Peccati & Reinert [NPR10]
builds upon the aforementioned invariance principle, and derive a central limit theorems for a polyno-
mials with general random independent entries from the particular case of Gaussian entries.

1.4. Outline of the proof in the Gaussian case.

1.4.1. A new criterion for asymptotic normality. As previously mentioned, our proof of Theorem 1.2
relies on the following principle, which characterizes the asymptotic normality of Gaussian polynomials.
See Theorem 1.3 and Theorem 3.9 for more precise statements.

Principle 1. Let G be an infinite vector of independent standard Gaussian variables, and let (P,) be a
sequence of multilinear polynomials of degree d > 2 without diagonal terms (that is, with no repeated
indices). Define F,, := Pn(é), which is assumed to be centered with unit variance. Then, the following
statements are heuristically equivalent:

(i) (F,)n>1 is asymptotically Gaussian.
(ii) (Fp)n>1 is asymptotically independent of all polynomials in G of degree at most d — 1.
(iii) (Fy,)u>1 is asymptotically independent of all polynomials in G of degree at most EJ

We quantify the asymptotic independence of (F,,) with a sequence of polynomials (X,,) in terms of

L(Fy, Xp) = Z aG,»FnaGan-
ieN

The seminorm g rewrites in terms of I', and in Proposition 3.14, we explicitly connect the vanishing of
the seminorm with some asymptotic independence property.

For convenience, in the sequel, we present a slightly modified version of this semi-norm, p;(F), where
the supremum is taken over the unit ball of W, the Wiener chaos of order d, that is a distinguished subset
of degree d polynomials. Since g and p are bi-comparable, we do not delve into these refinements,
which require defining Wiener chaoses.

Ford € {2,3}, |d/2]| = 1, and the criterion for asymptotic normality takes a simpler form:

- 0.

F,—>N(@,1) & j(F,) >0 < sup

5 S 2 aiaGiF”
ael(N),llafl=1

i

2

To illustrate our proof, we restrict ourselves to the cases d € {1, 2, 3}, which are sufficiently rich to
highlight the mechanisms of the proof and are of independent interest.
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1.4.2. Schematic proof: factoring out influential directions. Our approach proceeds by induction and
relies on Principle 1 in its contrapositive form. Assume thatd € {1, 2, 3} and that F,, is not asymptotically
Gaussian. Then, there exists a, € [2(N) and § > 0 such that

>0,
L2(P)

Z an,iaGiFn
i

for sufficiently large n. Setting H,, := ),
cally on H,,.

By performing an orthonormal change of basis such that G; — H,,, which preserves the distribution of
5, one can write

i>1 a,(D)G; ~ N (0, 1), this implies that F,, depends macroscopi-

d
F, = Z Apn(Gyy DH(Gy) + Ag s
k=1

where the coefficients (A ,)o<k<q are polynomials in (G;);>,, hence independent of G;. The coefficients
(Ak.n)n>1 have degree strictly less than d and can be handled inductively, while A ,, remains of degree
d.

Repeating this process for A, ,, and after a sufficient number of iterations, the remainders become
asymptotically Gaussian, as per the aforementioned principle. Specifically, for some appropriately
chosen r,, — oo, we write:

Fp=(Fu1+-+Fp, )+ Ry,
N——
Induction Step Gaussian Remainder

where the following points are noteworthy:

(i) The term F,,; + --- + F,,, involves countably many polynomials of degree strictly less than d,
requiring the induction to be carried out in an infinite-dimensional setting.
(ii) Itis necessary to exchange the limits in r and n for the series F,,; + --- + F,,. By construction,
E(F,F, ;) = 0fori# j, allowing for L2-control of the series.
(iii) For d > 4, the criterion involving g, is insufficient. However, the same strategy applies, with
decompositions of (F,),>; taking the form

ld/ql
F, = Z Ak,nHk(Xn),
k=0
where (X,) is a suitable polynomial of degree q < d that is asymptotically normal, and (A k>0
are polynomials asymptotically independent of (X,,),,>1. Justifying such decompositions and
asymptotic independence is non-trivial; see Section 3 for details.

1.4.3. The statement for low degree polynomials. We give a ad hoc definition of Wiener chaoses. We give
more remainders on Wiener chaoses in Section 3.1. We fix G = (G; : i € N) a sequence of independent
standard Gaussian variables, and we write H, for the Hermite polynomial of degree k. Here by vect A,
we mean the closure in L2(P) of the linear space generated by A and we set

(1.1) W, = VethH Hy(G) : Dk = pz.
ieN i

In particular, W, = R, and W, contains only Gaussian variables, and each W, in closed in L(P). We
also recall that

d
(1.2) W, =Pw,= {P(é) - degP < d}.
p=0

Our induction is formulated as follows.
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Definition 1.6. For d € N*, we say that a sequence (13 ) of random infinite vectors is d-admissible
provided that:

(1.3) IK e N*, Vi e N, Ap; €{0,...,K}, Vn € N, [Fn’,- € W, and E[Fil.] = 1];
law

(1.4) VieN, [p; <d, or F,; —— N(0, 1)].
n—oo

Let us establish the following result, which in view of (1.2) implies Theorem 1.2 for d € {1, 2, 3}.

Theorem 1.7. Let (13”) be a d-admissible vector with d € {1, 2, 3}, that converges in law to some 1300. Then,
there exists a sequence (Y;) € WE‘ 4 Such that

law 17”00 =lawY.

1.4.4. Initialisation: proof of the case d = 1. Let us consider a 1-admissible sequence (17“”) converging in
law to some F,. We can assume that F,, has no deterministic component, that is p; > 0 for all i € N.
Since we work with Gaussian polynomials, convergence in law implies convergence of moments, see
Theorem 2.1, we have that
E[FyiFy ] —— ¢

The first step consists of exhibiting N=(N 1, N3, ---) a sequence in W; such that E(N;N;) =¢; ;. Such a
sequence can be constructed inductively. Assume that we have built (N, -, N p) whose covariance
matrix is C, = (¢;j)i<ij<p- We seek for Ny, = Zle a;N; + a,11G where G is independent of
(Ny, -+, Np), whenever C), is invertible. If C,, is not invertible, we can build N, ; as a linear combination
of G and (N, -+ ,Niq) which is of full rank among (N, -+, Np). We deal only with case det(Cp) # 0

below, for simplicity. The coefficients (a, -+, a,1) must fulfil
€11 0 Cp (% C1,p+1
(1) E(Np41Ni) = ¢ipy1,i € [1,p] which gives | ¢ @ = : |. This gives
Cp1 = Cpp)\%p Cp.p+1
(ety, -+, ap) by inverting the system.

. 2 2 . . .
(2) Besides E (Np+1) = Cptipl = Fpy t lei’jsp a;ajc; ; which provides ap,,; up to the sign,
which does not matter. The resulting sequence (N;);»; admits C = (¢; j)1<; j<p as covariance
matrix.

A seminal result of Peccati & Tudor [PT05] asserts that convergence in distribution of vectors with
Wiener chaotic entries to Gaussian vectors is equivalent to convergence of covariances matrices and
component-wise convergence. Hence, we have that

- law -
F,— N,
n—oo

which concludes the proof for 1-admissible sequences. O

1.4.5. First induction step: from linear to quadratic. We now show how to deduce the claim for 2-
admissible sequences. Thus, take (17” ) a 2-admissible sequence. As highlighted above, our pivotal idea is
that we can factor out Gaussian directions whenever a coordinate fails to be asymptotically Gaussian. To
make this intuition precise, we use the formalism of Malliavin derivative, also known as carré du champ.
For a precise definition, see Section 3.1, here we simply recall that Gaussian polynomials F = P(é) and
£ = P(G), we have
I(F,F):= ), 06FoGF.
ieN
Let us define directional influence of degree 1
p1(F) = sup{||IF(E. X)llpze) : X € Wi, [IX]| < 13,
Since every X € W is of the form X = Y ¢;G; for some a € ¢2(N), we have the simpler formula

I(F,X) = Y. a,0;P(G).
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See Section 3.2 for a more detailed discussion on p; and related objects. Write I for the set of indices i
such that F,, ; is not asymptotically Gaussian. Then we consider the following iterative construction.
Set R, ;o = F,;. Then assuming that we have constructed R, ; ;, define R, ; .41 in the following way.
Consider (X, x+1)x € W) such that

1
pl(Rn,i,k) < ||F(Rn,i,kan,i,k+1)” + E

Then, completing X, ; x4 in an orthonormal Gaussian basis of W; and expressing R, ; ; on this basis
allows to write:

Ryik = Anik12H2 X iks1) + Aniks1,1H1 (X k1) + Rk

where A, ; k112 € Wy (itisa constant), A, ; k411 € W, andisindependent of X, ; 41, and Ry, 11 € W,
is independent of X, ; ;. Necessarily, we also find that X, ; ., is independent of X, ; ;. Indeed, write

Xn,i,k+1 = \/?Xn,i,k +V1-—1tN,

for some N € W, independent of X,, ; ;, and we have

FXik+1>Rpik) = V1 — TN, Ry i k),
which contradicts the almost optimality of X, ; ;41 unless ¢ = 0. Thus defining
Fpik = Anik2Ho X1 4) + An i1 H1 (X110,
we find that

!
(1.5) F,;= Z Fpix + Ry
k=1

Up to extracting a subsequence, we can assume that
2
E[F2,, | — vk

for some non negative numbers v; ;’s and any i, k > 1. Based on elementary analytical considerations,
see Lemma 2.4, one can find a sequence [,, — o0, such that

(1.6) >3 |E[Ffl,i’k] — Uik

i<l, k<,

— 0.
n—oo

Lemma 1.8. The vector
(An,i,k,Z’An,i,k,l’Rn,i,ln’Xn,i,k (e N’ ke N*)’
is 1-admissible.
Proof. By construction A, ; i, € Wy, and Ay ;i 1, X € Wp. Let us check that R,,;; is asymptotically
Gaussian. By definition
1
Pl(Rn,i,ln) < ”F(Rn,i,l,,’Xn,i,l,,+1)|| + E
As explained previously, decomposing R, ;1 = F ;) 11 + Ry 41, wefind thatR,,;; 11, Ay 412 and
Ayl +1, are independent of X, ;; 1, and that
C(Ry i1 Xnit,+1) = Anit, 4120 (H2 X1 410 X 41) + Ani, 41,10 X nin 415 Xnig, +1)-
=240 1,412t Anil,, 10
By independence and since E[XH,(X)] = 0 for X Gaussian, we have

2 2
iy 1P = MAnig a1 2Ho Ko, 40) + AnigrXnagnlP = 442, Lo+ 1142, -

Combining with (1.6), we have shown that

1/2

1
L+ + E + 0(1)

1
'ol(Rn,i,lnH) <4|Fp i+l + P <cv

Since all the terms in (1.5) are orthogonal, and F,, is normalized, we also find that

Z vi,k < 1.
k
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Thus v;; 1 — 0. This shows that p;(R,,;; +1) — 0 asn — oo, and by Theorem 3.9 we conclude that it
is asymptotically Gaussian. O

By the induction hypothesis, we can thus, up to extraction, find Ay, ; 2 € Wy, Awik1 € W<1, R €
Wqy,and X, ; k € W such that

N law .
(An,i,k,Za An,i,k,la Rn,i,l,,’Xn,i,k .l e N,k (S N*) —_— (Aoo,i,k,2’Aoo,i,k,15RoolaXoo ik . l1e N,k (S N*)

n—-oo

By our inductive construction where F,; ;4 is independent of (X, 1, ...,X,,; k) and since F, ; is nor-
malised, we find that

1>

ZFnlk

Since we work with Gaussian polynomials the orthogonality is preserved by the convergence in law, see
Theorem 2.1, thus using that the norm is weakly lower semi-continuous, we get

S Foi| = ZE[FWk]

k 12(P)

=2 E[Fu)

L(P)

2
12>

This shows that the series ), i Foo i,k I8 convergent in L?(P) and is an element of W, since this space is
closed in L2(P). Thus let us define

i = ZFoo,i,k + Roo,i € WSZ'
k

We conclude the proof by showing the following convergence.
Lemma 1.9. The sequence (13 ) converges in law to F 00 = (Fooi)-

Proof. Take a finite subset J = {ji, -+, jp} C N. Then, since [, — oo, there exists Nj, such that for any
n > Ny we haveJ C {0, ---, ,}. In virtue of (1.6) we have in particular

n lVl

|E [ nlk] Uik
1k=1

— 0.

i

v

Let € > 0, one may find K, > 1 and N; > N, such that for any n > N; we have

Thus, with W, the 2-Wasserstein defined in (2.1), one recovers
W2 ((F”’j)jef ’ (Fm’j)jej)

K.
<e+W, Z F"ka + R”Jz,ln ’ Foo’jl:k + ROOJI

k=1 . k=1 .
jeJ JjeJ

ig

Letting n — oo and using induction hypothesis implies that

K. K.
Z F"Jz:k + R”Jz’ln ’ Z Foo,jz,k + ROOJI — 0.
k=1 . k=1 .

jeJ JjeJ

Letting e — 0 completes the proof. (|
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N

1.4.6. The quadratic case implies the cubic case. The mechanism of proof is identical, we consider (Fn)

an admissible sequence of order 3. As before we focus on the set I of indices such that (F,,;);i € I does
not have a Gaussian limit. Then, we notice that, as in the case of degree 2, for Wiener chaoses of degree
3, the semi-norm p; controls the asymptotic Gaussianity. Thanks to this observation, we may perform
similar decompositions: for R, ; x being constructed, we set

Ryik = Anikr13H3X i k1) + Anik12H2 X kes1) + A kr11H1 X ik1) + Rkt

There, A, k413 is in W, hence constant, A, ; ;11 isin Wy, and A, ; 411 is in W,. All are indepen-
dent of X, ; .41 which is in W, and satisfies p;(Ry ;1) < |IT[RuiXniks1]ll + = Setting Fp;p =

Anikr13H3Kn k1) + An i1 2H2 X k1) + Anika1,1H1 (X 1 k41) 0ne can also write (with the exact
same orthogonality and independence as in the quadratic case) for some r,, — o

I'n
Fp;= Z Fyix + Ryr,; where R, ;. has Gaussian limit.

k=1
Then, in order to conclude the proof, one is left to apply the induction hypothesis to the 2-admissible
sequence (Ap ;i3> Anik2s Anik1> Xnjiks Rnjig, * I,k > 1) and to truncate the series tails ZZ‘zKS w1 Frik
in the exact same manner. This truncation procedure relies entirely on the fact that (F,,; x )x>1 is an
orthogonal sequence and this still holds for degree 3 Wiener chaoses. For degree strictly higher than 3,
this orthogonality must be replaced by a weaker asymptotic orthogonality but we do not discuss this in
the outline.

2. PRELIMINARIES

Since we are working with polynomials with random inputs, let us gather some facts about those.
We start by recalling a direct consequence of hypercontractivity for polynomials [MOO10, § 3.2].

Theorem 2.1. Let (P,) be a sequence of multivariate polynomials of at most d € N. LetX = (X;) bea
sequence of independent and identically distributed random variables, that are centered, with unit variance,
and such that E[|X;|P] < oo forall p € N. Then, if (P,,(X)) converges in law to some Y ,, then

d

The following is also standard and follows, for instance, from [MOO10, Prop. 3.5].

- |P
P | — Elivel’l.  pen.

Theorem 2.2. Let X be as above. Then the set

{P(f( ) : P multivariate polynomial with degree at most d },

is closed in L*(P).

Let also recall the definition if the Wasserstein distance. Here d € N*, and X and Y are random vectors
in R,

1/2

(2.1) W,(X,Y) = inf{[E[lX -Y)?|]"" : law[X] = law[X], law[Y] = law[Y]},

where |-| is the Euclidean norm on R¢. Following [Vil09, Thm. 6.9], the Wasserstein distance metrizes
the topology of the convergence in law together with the convergence of the second moment. Combining
with Theorem 2.1, we obtain the following.

Corollary 2.3. Foralld € Nandl € N*, on the set
{(Pl(f( )y ey Pl()? )) . (P;); multivariate polynomial with degree at most d },
the topology of the convergence in law is equivalent to that induced by the Wasserstein distance.

We finish this short section with an elementary lemma that we use several times.
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Lemma 2.4. Consider a sequence of sequences (Uy, ), m>1 Such that forany m > 1, u,, , —— 0. Then,

n—oo

there exists a real sequence (r,) such that r,, — oo and
’'n

Z |un,k’ — 0.

k=1 n—oo

Proof. One may build an increasing sequence of integers (N;);>; such that for any n > N; we have

: 1
Z |un,k| < 7
k=1

Assume that we have (N, -, N;) fulfilling the above conditions. There exists N;,; > N; such that for any
; . . i+1
k € [1,i] and n > N;;; we have |u, ;| < ﬁ This entails that for any n > N;,, Z;:_l [ty g < i
4 - L
Then, for any n € [N;,N;,,[ one sets r, = i. By construction, on this integers interval one has
Z;":l [ty | < % which concludes the proof. O

3. STABILITY OF WIENER CHAOSES
We prove the following infinite-variate version of Theorem 1.2.

Theorem 3.1. Let (P;,); , be polynomials of degree at most d € N*; let G be a standard Gaussian vector;
and let F ., be the infinite random vector given by
Fi,n = Pi,n(é), i, neN.

Assume that (13 ) converges in law. Then, there exist polynomials (Q;); of degree at most d such that
> law >
Fp— (Qi(G));-

3.1. Reminders on the Wiener space. In this section, we review the necessary materials, and only
the necessary materials, regarding Wiener chaoses. Readers interested in a broader introduction or the
most general definitions should read [BH91; Jan08; Nua06; NP12] for thorough introduction on the
subjects.

3.1.1. The Wiener space. In this section, we work on the Wiener space which is the probability space
(Q, B, P) = (R, BR),y)®,
where B(R) is the Borel o-algebra of R, and y = N'(0, 1) is the standard Gaussian distribution. We
equip it with the canonical coordinates process
Gi(w) = w;, w€E Q, ieN,
in a way that the vector G= (G;) is an infinite-vector of independent standard Gaussian variables. The

Wiener space is invariant under orthogonal transformation, that is if A € 6(¢2) then AG has the same
law as G, and all the definitions below are also independent of the choice of the basis.

3.1.2. Wiener chaoses. Recall that we have defined W,, the Wiener chaos of degree d in (1.1), as well as
W4, the sum of chaos of degree at most d, which coincides with the space of Gaussian polynomials of
degree at most d. From the definition of W_; in terms of polynomials, we see that

(3.1) [F e We, X € Wey| = FX € Weigym)-

For F € W4, we write J,,,F for its orthogonal projection onto W,,. The Hermite polynomials form an
orthonormal basis of L2(y), from which we see that

Wey C ﬂ LP(P).
p<oo

Actually on Wiener chaoses, all the LP-norms are equivalent. Namely, following [HMP24, §3.1.3], for
d e N,and 1 < p < g <1, there exists ¢ = ¢,, , , such that

(3.2) 1Fllg < cllFllp,  F € Wga.
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From this we obtain the following characterization.

Lemma 3.2. Let K C W.y. The following are equivalent.

(i) K is bounded in some LP(P) (p < o).
(ii) K is relatively compact for the topology of the convergence in law and the convergence of all moments.
(iii) K is relatively compact for the topology of the Wasserstein distance.

Remark 3.3. Our Theorem 1.2 actually completes this result by stating that L? balls in W, are actually
compact for the topology of the Wasserstein distance.
3.1.3. Differential operators on the Wiener spaces. Let us define the Ornstein—Uhlenbeck generator

d
LF = > (=d)J,F, F€& W

m=0

The operator L : W4 — Wy is continuous for the L*(P)-topology, and its eigenspaces are exactly W,,.
Related, to L, we define the carré du champ operator

T[F,X] = %(L(FX) — FLX —XLF), F,X€e Wi,.

For Wiener chaoses, the carré du champ has a particularly simple form
1
(3.3) I(F.X)=s(L+p+)FX), FeW,XeW,
Similarly to (3.1), the carré du champ satisfies a multiplication property
(3.4) |[F € Wey,G € Wy, | = T[F,G] € We(gim—2).
3.1.4. Smooth random variables. We define the space D™ as the closure of U,y W<y, for the family of
seminorms
F + ||L*F|| Py, keN,pe(,oo).

It is known that D is an algebra stable under L, I', and composition with smooth functions with
polynomial growth. This allows to state the important chain rule formula for I’

(3.5) rlg(F),G] = ¢'(F)[F,Gl,  F,GeD,¢e%%,

In particular, the carré du champ can be understood as the square £2-norm of the infinite-dimensional
gradient

(3.6) (G, $(G) = 3, 893, @ P €B,

ieN
Finally, the following integration by parts formula plays a crucial role in our analysis
(3.7) — E[FLG] = E[I'[F,G]], F.Ge%.

An immediate consequence of the definition and the properties is the following result that we use
repeatedly.

Lemma 3.4. Let (F,G,H) € W, x W, X W, with (p,q,r) € N°. Then,

(3.8) E[T[F,G]H] = w E[FGH].

Proof. By definition of " and the fact that F and G are chaotic, we find
1
['[F,G] = E(L + p + Q)(FG).

By (3.7),
E[HL(FG)] = E[FGLH] = —r E[FGH].

We also need the following inequality.

Lemma3.5. LetX € W, andY € Wy Then

[XYT(X,Y)].

E[I(X,Y)] < P4ﬁ E
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Proof. Using (3.3) and (3.7), we find that

E[r(X,V)?] =  BICYILL + p + @XXY)] + 7(p + @) EIXY)IX, V)]

By definition, L is a non-positive operator, and, on the other, by (3.1), XY € W, onwhichL+p+gq
is a non-negative operator. Thus, the first term on the right-hand side is non-positive, and this yields
the inequality. O

3.2. Directional influences: a new criterion for asymptotic normality on Wiener chaoses. We
introduce the directional influences of degree k, we new tool we develop to study convergence in law
for a sequence of random variables in a Wiener chaos of fixed degree. We use them to formulate a
new necessary and sufficient condition for such a sequence to have a Gaussian limit. This criterion, of
independent interest, plays a prominent role in our approach.

Definition 3.6. Let g € N*, the directional influence of degree q is defined as
(3.9) pg(F) = sup{||T(F,X) : X € W ,E[X?] =1]|}, F € D*™.
Since we use this construction often let us also define.

Definition 3.7. Let (F,,) be a sequence in D* and q € N*. We say that a sequence (X,,) realises pq(F,)
provided X,, € W, with E[X7] = 1 is such that

1
ITLF s Xl L2y = pg(Fr) — =
The following monotonicity property is immediate.
Lemma 3.8. For1 < g < pwehave p; < pp,.

Proof. Take g < p, F € D* and (X,,) realizing p,(F). We first assume that F depends on finitely many
Gaussian coordinates say Gy, ..., G, for some m € N*. In this case we can also take X,, only depending
on Gy, ..., Gp,. Can consider (Y,,),; in W,_, only depending on Gyy41, Gy, .. With E[Y2] = 1. In
particular, Y, is independent of (F,X,,),>; and I'(F,Y,) = I'(X,,, Y,,) = 0. Thus,

(3.10) E[T[F, XY, ]?] = B[YZTTF, X, 2] = ITTF, Xyl 5y —— pg(F)-

Using that the carré du champ vanished, we also find that
L(X,Y,) = X,LY, + Y,LX, = —pX,Y,.

Thus, X,,Y,, € W), hence ||T[F,X,Y,]|l, < p,(F) by definition. Combining with (3.10) and taking
n — oo, we conclude. For the general case, we approximate F by a sequence (F,) in D*® depending only
on the m,, first coordinates. O

3.2.1. Revisiting asymptotic normality on Wiener chaoses. The following result summarizes some known
criterion for normal convergence, and establish the equivalence with our new criterion based on
directional influence. To the best of our knowledge, it is new.

Theorem 3.9. Let (F,) be a sequence in W,. The following are equivalent.
() (F,) is asymptotically Gaussian.
(ii) VarT|[F,,F,] converges to 0.
(iii) for k > 2, H,(F,,) is asymptotically an eigenvalue for L of order kp
L*(P)
(L+ kp)H(F,) — 0.
n—oo
(iv) fork > 2, H,(F,) has asymptotically no components other than kp
L*(P)
JqH(Fp) —0 q # kp.

(v) pp-1(Fy) vanishes as n — oo.
i) p[EJ(F”) vanishes as n — co.
2
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Proof. (i) < (ii) follows from [NOO08].

(ii) © (iii) is immediate once we observe that (L + kp)H(F,) = k(k — 1)H,_,(F,)(I'(F,, F,) — p), see
[AMMP16, Eq. (4.6)].

(iii) & (iv) since (L + 2p) corresponds exactly to projecting on Wlp, up to a multiplicative constant.
We can assume that p > 1, otherwise, on the one hand (F,) is already Gaussian, and on the other
hand W,_; = W, = R. Thus, the chain rule (3.5) implies that T'[F,,, X] = 0 for every X € W,, hence
P[%J(Fn) = pp-1(F,) = 0. Thus, we assume that p > 2.

(iii) and (iv) = (v). Consider (Fj,) >, € W), such that F,, — N'(0,1) and let us prove that p,,_;(F,) — 0.
Take (X,,) realising p,,_,(F,). Since X, € W,_;, by (3.1), we find X2 e Wep—2)- Given that W,, 1
W (2p—2), We derive, by (iv), that E[H,(F,)X};]| — 0. On the other hand by (iii) E[(L + 2p)H,(F,)X;] —
0. Using the chain rule (3.5), the integration by parts (3.7), we thus find

7 BTG, Ho(F,)1]

=~ E[XILH,(F,)]

E[Fanr[Fn’Xn]] =

g E[X2H,(F,)] — o.

1
=— E[XZ(L 4+ 2p)H,(F,)] + —
By Lemma 3.5, we conclude that
2
[(Fy X) 2 O,
and thus p,_;(F,) — 0.
(v)= (vi). Direct consequence of the monotonicity Lemma 3.8.
(vi) = (ii). We want to establish that Var[I'(F,, F,)] — 0asn — oo. By (3.4), it is sufficient to show
that for all (Z,),~; a bounded sequence in W, with k € {1, ...,2p — 2}. E[T'[F,,F,]Z,] — 0. Indeed,
this yields that orthogonal projections of I'[F,,, F,,] on chaoses of order k tend to zero, hence the desired
claim. For everyl < p A k, and every multi-index (iy, ---,i;) € N! we have 9i,-..iyF'n € Wp_; and
0i...iyZn € Wy_;. Provided that (p —I) + (k — ) # p, thatis k # 21, recalling (3.6), Lemma 3.4 entails
that

E[F,0; ...iFndi...,Zn] =

1y,

= ZZE[FF iFns 03y i Znl]

- m Z E[Fna ll+1X a ll+1 }"l]

Applying r-times consecutively the previous procedure leads to

E[F,F,Z,] = 2 B[E,T[F,. 2]

2 (o]
= = D EIFu0iF10,Z,]
(3.11) Pt
2r o0
Tk — 2D i 5=
We can apply this procedure as long as k # 2l for every l € {0, ...,r — 1}. Let ry be maximal such that

the above equality holds, in particular p = (p — r() + (k — ry), otherwise one could further decompose
contradicting the maximality of ry. Then, either p — ry < § ork—ry < %. Otherwise p —ry > § and

E[F,0;

Q1,000

i Fnbi i Znl.

k—ry> g which contradicts p = (p —ro) + (k — ).

(a) Case p—ry < g. In this case, p —rg < EJ, since we are working with integers. By Lemma 3.4, for
a given multi-index (iy, ---, i, ) and given that p + (p —ro) =2p —ro > k —ro (k €{1,...,2p — 2}) we
obtain

2
(3.12) E[Fna,-l,...,irana,-b...,,-rOZn] =

2p—k

E[F[Fn, 8., Fuldi,..

s'rg ’ "lro

Zn].



LIMIT DISTRIBUTIONS FOR POLYNOMIALS 15

Letuswrite m := EJ Besides, forany X € W,,_, wehave ||T[F,, X][|> < [IX|l20p—r,(Fn) < IX]20m(Fp)
since p — ry < m and since we have Lemma 3.8. Hence, using Cauchy-Schwarz with I'[F,,, ail,__,,irOFn]
and ai1,~~~,irOZn we have,

Gathering these facts, we may write

2pm(Fn)

Fyi ooty Fdty iy Zn |y iy Ty

ll""’ro » ol

sdrg ™ 1 L2(P)| by 1| L2y

2p—k

|E[T[F,, Fu1Z,]| = ‘E [F2z ]| (Lemma 3.4).

(o]
2p—k 270

< X — E |E Fo; .. ; F,0; ..; Z 3.11
(313) 2 D IE[k 21] ..,irg—l [ R R n] ( )
ro 1(k 21) H [ AL R n] ool L1(P) (3 )

Applying then the Cauchy-Schwarz inequality twice: first on the L'-norm then on the sum, we obtain

270
rol

. L=
(G14)  [BIE.FIZ,] < oo

Pm(FnIDFpll2(nv0)@r2) [P Znl 2(nr0) g 12(P)
where we use the random sequences

DX := {a- 5, X ¢ (i) € Nro}, X € D®.

When F is a Wiener chaos of order A, then:

(a) by integration by parts (3.7), Y., ||6;F||? = E[L[F, F]] = —A E[F?];

(b) for any multi-index (i1, -, i), 0;, ... ; F',, is @ Wiener chaos of order 4 —r.
Combining these two facts two facts together gives

For 112 _ - 3 21 2 p!
ID Fn”,fz(Nro)@Lz(p) - Z E ( ila""iran> =p(p-D-(p-r+ I)E[F ] (p—r n’
i1, iy =1 0
®© 2
2 _ 2
D" Zal s orpraey = 2 E[(az) ] —(p oy Bzl
ll"”’er:

Substituting in (3.14), we get, since (Z,,) is bounded,

2700, (Fp) p!

E[l'[F,,F,]Z,]| <
|E[L[ 1Z,]] < ro 1(k 21)(p—r)'

1Znll2 = .

(b) Casek —ry < g. Since k > 1, p + (k — ry) > p — ry and one may write relying on Lemma 3.4 that

E[Fnail,---,i, FyOi oy Zn] . E[F[Fnaail,m,ir Zn]ail,m,iran]-

0

The rest of the proof is identical up to a change in the constant E that is now replaced by . The final
bound is then given by

2°(2p —k)pm(F,)  p!

E[T[F,,F,]Z,]| <
Bl < K1Y, (k=21 (P=ro)!

1Zall2 = .
(]

Remark 3.10. When p = 3, then EJ = 1 and, owing to the fact that every element of W, is of the form

d-Gforsomed e ¢ 2(N), we get the following equivalence for Wiener chaoses of degree 3

F, —>N(0 D& sup [ adiFa,,q

lldll o2y <1



LIMIT DISTRIBUTIONS FOR POLYNOMIALS 16

For chaoses of higher degree, p; is not enough to measure asymptotic normality as illustrated by the
following counterexample. Set F,, := (n~/2 ZZ=1 H,(Gy)) X (n~1/2 ZZ=1 H,(Gy41)), which, by the

usual central limit theorem converges to the product of two independent Gaussian. For X := d - G with
||a|lgz(N) =1, we find

TFy ( Nm kZl aZkGZk) (% ,;Hz(szH)) + <% g,le(Gzzc)> X (% k§1 a2k+1G2k+1>-

Moreover,

Z a2 G

”lkl

1 & .1
=a %Sy
L2(P) k=1

with a similar bound for the odd terms. This implies, computing the norm with the previous equality

and using independence, that ||T'[F,,, X]||, < 27\/5 Thus p;(F,,) — 0 but the limit is non Gaussian.
n

3.2.2. Asymptotic independence and normal convergence. We show how our new criterion provides new
insights on asymptotic independence for Wiener chaoses that are asymptotically Gaussian. We start by
establishing that the carré du champ of an asymptotically normal Wiener chaos is asymptotically an
eigenfunction.

Lemma 3.11. Let (F,,X,),> be a sequence in Wy X W, with, E[Ffl] =1land X,, - N(0,1). Then,
. L*(P)
ifg<p,  (L+p=QlFyXy] —0.

2
ifq > p, FG@XJ—LLO

(3.15)

Proof. The case p < q follows immediately from Theorem 3.9. Thus, take p > q. By (3.4), I'[F,,, X,,] €
W pig—2- Since L + (p — q)I) corresponds to the orthogonal projection on W;_q, it is sufficient to
consider, by (3.4), k € {0,..., p + ¢ — 2} such that k # p — q and (Z,,),,>; a bounded sequence in W,
and to establish that E[['[F,,X,]Z,] - 0. If g < pthenq — p < 0and k > q — p, while if p = g then

by assumption k # p — q = 0 and k > g — p as well. Hence, applying Lemma 3.4 twice gives

+q—k
E[[(F,, X, 12,] = 20— B[F,X,Z,]
_ptq-—-k 2
= Xy Bl ZulXal
P+q—k<
= o¥k—gq D 18:F 8 Z,X ).

i=1
Iterating the previous procedure r, times with r, being the smallest integer such that we do not divide
by 0 yields

ro—1

k
EIT(F, X, 12,] = ==« T
=0

2

ptk—g-2 ~4 E[0y ..y Fniy iy ZnXn |
157" 50

*ro
0:1
Since r, is maximal, the previous expression cannot be further decomposed and one must have p —ry +
k —ry = q. Hence, either p — ry < 2 either k — ry < % and, as in the previous proof, we consider both
cases. 2
(a) Casek —ry < %. For a given multi-index (i, ---, i;,) we have J; .. F ew

—r, and 81-1,...,1-’02” S
Wi, Besides (k —ry) + q # p — ry since k # p — q hence

‘E[ail,u-,i,OFrzail,---,i,o nXn

__p|E[@bn¢mP¢ngpahnﬁmzn”'

P e i1l

2
_q+k—p‘

H( n)-

"llr2p)
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Using Cauchy-Schwarz in the same way as to derive (3.14), we find

p+q—k 2 2
BT, X020 < 5= T smmm o P2 I Fallageys 107 Zull )
=0
=
p+a-
= P2 K, g ooz P Fallevorerae) [P Zallevorerae)

ro—1
_ p+q—k 2 p! k!
= P[%J(Xn)q%_p 111 p+k_q_21\/ (p_ro)!\/ U—ro) X |Fpllz@)l1ZnllL2e)-

By assumption X,, — N'(0, 1), thus using Theorem 3.9, we get pla J(X ) — 0. Thus, the last line vanishes
2

as n — oo, since both (F,) and (Z,,) are bounded in L?(P).

(b) Case p—ry < g. For a given multi-index (i, -+, i, ) we have ail’,,,,iran € W,_, and 81-1,...,%2” S

Wi, Besides (p —ro) + q # k —rgsincek < p+q—2 < p+qhence

B[81,, 208, o] F,]]

2
= ST TR [E[61,.-.i,, ZaT X By

strg

2
< —
T ptqg-—k

The rest of the proof is identical to the previous case with just a minor change on the final constants.
O

194+, Znll2119%, .., Fnll2 P[%J(Xn)-

Definition 3.12. For (X,,) a sequence in W, that is asymptotically normal, we define the asymptotic
independence algebra as the set A(X,,) of all sequences (Y,,) in D* such that

L*(P)
rx,,Y, —o.
n—oo

Lemma 3.13. For (X,,) as above, the set A(X,,) is an algebra stable by orthogonal projections on chaoses,
L, T, and composition with smooth functions with polynomial growth.

Proof. The fact that A(X,,) is an algebra stable by composition with smooth functions follows imme-
diately from the fact that T is bilinear and satisfies a chain rule (3.5). Let us show that it is stable by
projections. That would imply stability by L since L is a multiplication operator on chaoses, and thus by
I in view of the definition of I'. Take (Y,) € A(X,,). In view of Lemma 3.11:

(i) I'X,,J,Y,) > 0forr <q.

(i) I'(X,,J,Y,) are asymptotically in chaoses of different degree, for r > g.

Thus writing
[(X,,Y,) = Z [(Xy,J,Y,) = 0,
reN
and using the orthogonality of Wiener chaoses we conclude. (|

We give a novel characterization of asymptotic independence in terms of the carré du champ, that
justifies the name of A.

Proposition 3.14. Let (X,) be a sequence in W, asymptotically normal. Then every (Y,) € A(X,,) is
asymptotically independent of (X,,), namely

E[pX,p(Y )] — E[p(X ) ER(Y )] —— 0, ¢.9 €E,(R).
Proof. Take 3 € €,°(R) and define

cnt) = E[$(Y,)e™| - E[p(Y)]e™ /2, teR.

It suffices to show that c,(t) — 0 for all t € R. The function ¢, is smooth and verifies ¢, (0) = 0.
Moreover, we find

¢a(t) = it B[X,(Y,)el™n ] + te=*/2 B[p(Y,,)].
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By integration by parts (3.7) and the chain rule (3.5), we thus find

, it : t? ~ _

Cn(t) = E E[F(Xn, ¢(Yn))eltxn] - E E[F(Xn,Xn)eltX"¢(Yn)] +te t2/2 E[¢(Yn)]
Since (Y,) € A(X,,), we have that the first term vanishes. Moreover, by Theorem 3.9 (ii), we have that
I'X,,X,) — q. Thus

é,(t) = —te,(t) + o(1).
O

3.3. Decomposition of variables in the direction of strongest directional influence. In this
section we gather several technical lemmas allowing us to factor directions out of a non-asymptotically
normal chaos. Thus in all this section we fix p > 2 and we let (F,,),»; be a sequence in W, with
E[FZ| = 1 that is not asymptotically Gaussian. As eluded in the introduction, we want to factorize out
of F,, macroscopic directions. We formalize this intuition by measuring the importance of a direction
using the directional influence. This naturally leads to the following definition.

Definition 3.15. We define the degree of strongest directional influence
q(F,) = q :== min{k € N* : p,(F,) does not converge to 0}.

We call any sequence (X,) realising p,(F,) a direction of strongest influence.

Remark 3.16. Since F,, / N(0,1) then png(Fn) +# 0 by Theorem 3.9 (vi) and q < [%J is well defined
2

as the minimum of a non empty set of positive integers. Up to extracting a subsequence, we always

assume that p,(F,) is lower bounded.

The following result ensures that directions of strongest influence are asymptotically Gaussian.

Lemma 3.17. For any direction of strongest influence (X,,), we have
law
X, — N(0,1).
n—oo

Proof. We prove the claim by induction on p.

(a) Initialisation. Let p := 2 then, [gJ = 1, and thus, g = 1. Hence, every (X,,) realising p; is an
element of W, with unit variance, that is law[X,,] = N(0,1) for alln € N.

(b) Induction step. Assume that p > 2, and that we have established the claim for all p’ < p. Take
(X,,) realising p,(F,,), and assume, by contradiction, that it is not asymptotically Gaussian. Since

g < [%J < p, we can apply the induction hypothesis, on (X,). Thus, up to extracting a subsequence,

there exists r < [%J and a sequence (Y,,) living in W, such that

1
(3~16) ”F[Xn’Yn]”LZ(p) 2 pr(Xn) - Z >8>0,
law
(3.17) Y, — N(0,1).
n—oo

Consider A, the orthogonal projection of X, on the closed vector space Y, W,_,. Thus, we write X,, =
AnY, + R, with A, € W,_, and R, L Y, W,_,. Using Lemma 3.11, [|(L + g — N)[T[Xy, Yy ]lll;2p) = 0.
In particular, Y,,I'(X,,, Y,) is asymptotically in Y,, W,_,. Thus, using properties of orthogonal projections,
we find:

E[Xnan[Xna Yn]] - E[AnYnF[Xm Yn]] — 0.

n—oo
On the other hand, combining Lemma 3.5 and (3.16),
p+r
4
Hence, the two previous equations with the Cauchy-Schwarz inequality gives
p+r
4

E[X,Y, X, Y,]] > 52,

B[1[X,,, v, 2] = 257

82 < | AnY ull2)IT[X s Yoo lllr2ce).»
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which implies that for some 6’ > 0 we have ||A,Y,|| > &’. Then, since E[F2] = 1, by orthogonality of
R, and A,Y, we have also E[R%] < 1 — &"2. Moreover, the chain rule (3.5) implies that
qg-1
T[Fp, X,] = T[Fy, AlYy + AuL[F,, Yyl + ) T[Fp, 3R] + T[Fp, 3R, .
s=1
Assume for the moment, that (4,),>; is bounded in L2, then all the terms in the right-hand side vanish,

but the last one, by minimality of g, as they all involve quantities of the form I'[F,,, Z,] with Z,, a
bounded sequence in W, with ¢ < g. Since E[RZ] < 1 — &', taking into account the normalization

in Definition 3.6, the last term has a norm bounded from above by (1 — §’%)!/ 2,oq(F ). Hence, letting
n — oo in the above equation yields that p,(F,,) < (1 — §"*)!/?p,(F,) which is absurd, hence the result.

It remains to prove that (A,),>, is a L>(P)-bounded sequence. To do so, we combine the equivalence of
norms (3.2) with the fact that Y,, - N(0, 1), which is (3.17). We thus have

1
Anlle@y < 2 [[AYnllee) + 1An 1y, 1<mllLoce)
1

1 : !

< o + 32 (1Al PY sl < M]:.

Since, P[|Y,| < M] - P[|N| < M] for N ~ N(0, 1), for M small enough fixed and n large enough one

r 1

has 32 P[|Y,| < M]+ < % which by the above inequality gives that ||A,||;2p) < % for n large enough,
hence the result.

O

We now present the decomposition procedure, which serves as the cornerstone of our proof by induction.

Lemma 3.18. Let p € N* and (F,,),»; be a sequence in W, with E[F;]| = 1. Take an asymptotically
normal sequence (X,,),»1 in Wy with q € {1, ..., p — 1}. Then, the following decomposition holds

,_
I's

|

M-

(3.18) F,= ), A H(X,)+ Ay,

I=1

where, for every |l € {0, s FJ}, Al € Wepaig) is
p <
(i) asymptotically independent: (4, ;) € A(X,,), namely

LX(P)
I'A,;,X,] — 0.

n—oo
(i) asymptotically chaoses:

L*(P)
(L + D — lq)An,l —> 0.
n—oo

Proof. Introduce the vector space E, to be the L?(P)-closure of X,, Wp_q + We(p-1)- Let P, be the
orthogonal projection of F,, on E,. Write F,, = P, + R,, where R, € Ex. We proceed by induction with
some preparatory steps.

(a) Asymptotic independence of (R,,). Using (3.1)), X, W,_, C W, which implies that E,, C W,
and thus R, = F,, — P, € W,,. Besides, since W.(,_;y C E,, we have (E)*t C Wé(p_l) guaranteeing
that R, € W, n W2,
subsequence one finds § > 0 such that ||T[R,,X,]|| > &. By definition of orthogonal projection, and
Lemma 3.4, we get

= W,. Assume by contradiction that I'[R,,X,] # 0. Up to extracting a

E[R,X,A] =0 = éE[F[Rn,Xn]A].

On the other hand, using Lemma 3.11, we infer that T'[R,,, X, ] asymptotically belongs to W,,_,. Choosing
A = J,_4(T[R,,X,]), which by Lemma 3.11 is ['[R,, X,,] + 072(p)(1), we find that for n large enough

2
that E[R, X,,A] > % > 0 which is contradictory. Thus, we deduce that I'[R,, X,,] — 0
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(b) Asymptotic chaos from asymptotic independence. Let us assume that we are given a decompo-
sition (3.18) with (4,;) € A(X,) and let us show that they are automatically asymptotically chaotic.
Since F,, € WP applying (L + pI) to (3.18), and developing L(AX) using the definition of I we find that

12]
q

0= D3 [20(Ay s, Hi(X,) + Apg(L + LOH(X,) + Hi(X)(L + P = 1Ay | + (L + p)Ayg.
=1

Since A,,; € A(X,), by the chain rule (3.5), I'(A,,;, H/(X,,)) = 0, in L?(P); while, by Theorem 3.9 (iii)
(L + Ig)H(X,)) — 0 also in L?(P). On the other hand, (An1) € A(X,) thus by Proposition 3.14 the
A, 1’s are asymptotically independent of (X,,). In particular, using that asymptotically the H;(X,,) are
orthogonal for different values of [, we find, taking the variance in the above equation that

p
L

0=> E[((L + lq)An,l)z] + o(1).
1=0

This shows that the A,,;’s are indeed asymptotically chaotic.
It remains to show that a decomposition such as (3.18) exists a that it satisfies the asymptotic indepen-
dence, which we prove by induction.
(c) Initialisation. Let p := 2. Since g < p, we have g = 1. Considering as before the orthogonal
projection of F,, on E,,, the closure of X,, W; + W, we write F,, = P,, + R,,. The previous step ensures
that I'(F,,, R,)) — 0. Since X,, € W, we actually have that

X, Wy + Woy = Hy(X,)R @ X,,(X;- n W) @ (Xi- n Woy),

which is already closed. Thus P, = a,H,(X,) + X,N,, + B, for some a, € R, N, € W, independent
of X,, and B, € W, also independent of X,,. We claim that setting 4, , = a,, A,; = N, and
Apo = B, + R, yields the desired decomposition. Indeed, since N, B, and a, are independent of X,
we get that

F(Xna an) = F(XnaNn) = F(Xn’Bn) =0,

Since I'(X,,, R,,) — 0, we have that the asymptotic independence is satisfied, by Proposition 3.14.

(d) Induction step. Take p > 2 and assume that the decomposition is proved for all p’ < p. In this case,
although it must be possible to decompose E,, in a direct sum as in the initialization step, since we are
dealing with Wiener chaoses of degree more than 1, orthogonality and independence are not the same
and that would render finding this orthogonal decomposition more tedious, thus we adopt a slightly
different strategy. Since we are projecting on E,, that is a closure, we write F,, = X, A,, + B, + R,, + o(1)
where A, € W,_,, B, € W(,_1), and where the o(1) represent the approximation of the closure by
elements of E,. Since p — q < p, we apply our induction hypothesis on A,, this yields coefficients
Cy1 € A(X,,) such that

|

Ay = Z Cn,lHl(Xn)~
=1

Then using well-known recursive formulas for Hermite polynomials, we get

l?JH L%J—l
AXn= D) CpHiX)+ ) (U4 DCrunHi(X,).
=2 =0

We handle B,, similarly by considering its different chaotic decomposition. As a result, one can decom-
pose A, X, + B, as linear combinations of (H;(X,,)); with coefficients in A(X,,). The maximal index [
involved in this decomposition is given by [ 2= | + 1 < | £].
q q
O
Since by Lemma 3.17 any direction of strongest influence is asymptotically normal, these directions are

natural candidates to apply (3.18). We now establish that iterating this decomposition is a compatible
with our influence-based criterion.
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Lemma 3.19. Apply the decomposition (3.18) with (X,,) a direction of strongest influence. Then, for some
constant ¢, , > 0 only depending on (g, p), we have ||Ag ,||z2p) < 1 — ¢, 46. Moreover,

pr(AO,n) 0’ r < q‘
n—oo

Remark 3.20. Since r < g, we have by minimality of q that p,(F,,) — 0. Thus, this result states that if
pr(Fn) -0, then pr(An,O) - 0.

Proof. Take (Z,) a sequence in W,. Taking the carré du champ in (3.18) yields
l§J l§J
T(Fy, Zy) = ; AniH{(X )T (X, Z,) + ; Hi(X)T (A Zn) + T(Apo. Zo).
By minimality of g, the left-hand side vanishes as n — 0. Since (X,,) is asymptotically Gaussian by
Lemma 3.17, we find by Theorem 3.9 (v) that the first term in the right-hand side also vanishes. Thus
lfJ
0rp)(1) = ng(Xar(An,l, Zy) + T(Ay 0, Zy).

Using that by Theorem 3.9 (iii), H;(X,,) is asymptotically a chaos, and the orthogonality of Wiener chaos,
this yields

L*(P) p
I‘(An,l,Zn) — 0, le {0, s lEJ}
n—oo

We also establish that iterating our construction preserves the asymptotic independence.

Lemma 3.21. Let (R,) sequence in W, that is not asymptotically Gaussian. Let (X, ;) an asymptotically
Gaussian sequence in W . Let (X, ;) a sequence in W, a direction of strongest influence for (R,,). Apply
the decomposition (3.18) to R, that is

2]

R, = Z An,lHl(Xn,Z)-
1=0

If(Rn) € A(Xn,l)- Then, (Xn,z) and (An,l) € A(Xn,l)-

»-Ql.m

Proof. If q; # q, then by Theorem 3.9, we find that (X,,,) € A(X,;). If q; = g,, using orthogonal
projections, write X, , = a,X,1 + Z,, where E[Z,X,, ;]| = 0. Then,
F(Rn’Xn,Z) = anF(Rn’Xn,l) + F(Rn’Zn)’

where the first term on the right-hand side vanishes by assumption. Since (Y,,) is a directional of
strongest influence, and that Z, € W,, with E[Z;] = 1 — a;,, we find

/ 1
pqz(Fn) < 1- a%lpqz(Fn) + E

Thus a,, — 0 which implies that I'(X}, ;, X}, ,) = 0.
Now let us handle, the A, ;’s. Here, we have no assumption on g; and g,. Write

TRy, X1) = 2 A TH (X 02), Xn1) + D Hi(Xp )T (A 1, X0 1)-
l 1

By assumption, the right-hand side vanishes as n — 0. Also, since, we have shown that I'(X,, 1, X, ,)
vanishes with n — oo, the first sum on the right-hand side also vanishes. Finally, by construction
(An1) € A(X,,), and form the previous point (X,,;) € A(X,,,). It follows that, by Lemma 3.13,
I'(A,1,X,1) € A(X, ). Using that the Hermite polynomials are an orthonormal basis for the Gaussian
measure and that X, , is asymptotically Gaussian, we find

or2p)(1) = Z E[F(An,l’Xn,z)zl
l
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We now describe the result of iterating the decomposition (3.18). We define recursively, the random
variables (A, x 1), (X, k), and (R, x) in the following way. Set

€na, = (Ano — IpAno) andforl>1A4,,,:=A4,,
Xn,l =X,
12]

q

Fpp:= ZAn,l,lHl(Xn) + An10
I=1

Rn,l = JpA}'l,O'

Since (A, ) is asymptotically in W,, we have in fact that ,, ; is negligible when n — co. By construction,
R, € W, with E[Ri 1] < 1—cé. If (R,,) is asymptotically Gaussian, we stop; otherwise we apply the

decomposition (3.18) to R, ; which produces A, ,;, X,,,, F,,, and R, ,. Repeating the procedure, we
obtain the following result.

Lemma 3.22. There exist an interval K C N, possibly infinite, integers (q : k € K), and for every k € K
random sequences

° (Rn,k)n in Wp’
o (Xpin in Wy, for some qy,

° (An,k,l)n in WS(P—I‘Jk)forl € {1’ B lqﬁkJ},
* (Enk)n in Weip),
such that

(i) (Xyk41)n is a direction of strongest influence for (R, ), and T(X,, ., X, 1) — 0 for k # K/,
(i) Ryx)n> (A Dn € A(Xpjn), for k! <k,
(iii) epp = or2(py(1),
(iv) wehave F,, = F, 1 + -+ + Fp, ;. + Ry, where

[£]

qi
Foy =Y At HiX i) + eni.
I=1

W) (Fyuq, Fyks Ry i)y forms an asymptotic orthogonal sequence.

Proof. As mentioned above we iterate (3.18). K is simply given by the interval that contains all the k
until we stop the procedure, that is until (R, ;), is asymptotically Gaussian, which might never happen
in which case K = N. From the construction and successive iteration of Lemma 3.21, we have already
that (i), (ii), (iii) and (iv) hold. Thus, only (v) remains to be proven. By Lemma 3.21, we have that for
k' <k,(Fpx) € AX,x). Thus
z
qis

E[FokFop]= D) E[An i FuicHi X))
=1
The sum above vanishes since (A, y/ ;Fp, k) € A(X,, ). Finally, since (R, x) € A(X,, ), we also get that
E[F,R.x] — 0. O

We need a final ingredient for our proof by induction. At this point, all the F,, ; are decomposed in
sum of chaoses of lower degrees that we could handle by induction. However, R, ;. is still in W,,, to
overcome this difficulty we show that it can be taken asymptotically Gaussian. When K is unbounded,
for a fixed k, (R, ;) might fail to be asymptotically Gaussian. Our idea is to use that for k,, — co then
we can restore the asymptotic normality. The following result shows that up to taking an sufficiently
slowly growing (k,,), we have that (R, ) is asymptotically Gaussian.

Lemma 3.23. Up to extraction, there exists a sequence of integers (k,) such that k,, — sup K and built
upon Lemma 2.4 such that we have that (R, ., ) is asymptotically Gaussian.
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Proof. There is only something to prove whenever K is unbounded. Otherwise, any converging sequence
(k,,) is eventually constant equals to k* := max K and in this case (R, ;- ) is asymptotically normal by
construction. Thus, we assume that K = N. First, by definition py(F,) = 0 and p4(F,) > § > 0. By
Lemma 3.8, we can take consider s the largest integer such that p,(F,) — 0. To conclude, it suffices to
show that for any (k,) converging to oo, then p,,1(R,, ) — 0. Thus, applying this fact a finite number
of times, would yield that P 2 J(Rn,kn) — 0, and we conclude by Theorem 3.9. To prove the claim, recall

that for all k € N we have constructed (X, j4;) in W, that is a direction of strongest influence for
(R x)- Thus

1 1
qun+] (Rn,k,,) < ﬁ + “F(Rn,kn’Xn,kn+1)|'L2(P) < E + C”Fn,kn+1||L2(P) + OLZ(P)(l)a

where we use that Ry, i = Fp, i 11+ Ry g 41, that T(R, i 11, Xk, ) — 0, and that by equivalence of norms
(3.2) and the asymptotic independence (ii) in Lemma 3.22, I'(F,, i, 41, X, ,) has a norm comparable to
that of F,, ;. Up to extraction, we have that

¥

iy 52 9
In view of the orthogonal property (v) in Lemma 3.22, we find that ], ai < 1. Thusoy 4 — O
for any k, — oo, which shows that Pg, (Rpk,) — 0. Moreover in view of Lemma 2.4, we have that

IFpnk,+11l2p) < €Ok, 41 + 0(1). Since by construction k,, > s + 1, we conclude by Lemma 3.8. O

3.4. Main result through an induction procedure. To state properly our results, we consider
convergence in law for infinite random vectors with Wiener chaotic components. Here, we understand
the convergence in the usual sense of convergence of all finite dimensional marginals, but with the
additional requirement that the limit can be represented as an infinite random vector whose components
belong to the Wiener space.

Definition 3.24. Let (Ij“n) = (Fp1,*,Fpj, " )u>1 such that for all i > 1, there exists p; € N such

that F,,; € W, for alln € N. We say that (17“”)”21 Wiener-converges in law provided there exists
17”00 = (Feo,1>Foop, - ) such thatforalln e NF; € W, , and

= law =
F,——F
n—oo

00"

Remark 3.25. Our Theorem 1.2 can thus be rephrased by saying that convergence in law in equivalent
to Wiener-convergence in law.

Let us introduce the following definition that helps to formalize our proof.

Definition 3.26. For d € N. We say that a sequence (17“,1 ),, of infinite-random vector is Wiener admissible
of degree d, provided there exists p € N and integers p; < p such that F,,; € W, , at least one of the
following condition holds

(i) (Fy;) is asymptotically Gaussian;

(ii) or, p; < d.

We now complete the proof of Theorem 1.2 by proving the following result by induction.

Theorem 3.27. Letd € N and let (13 ),, be d-admissible. Assume that (13 ) converges in law, then (13 )
Wiener-converges in law. Moreover, notion F, a vector realising the Wiener convergence in law, we have
that F, ; is Gaussian if and only if F, ; € W.

Proof. We work by induction on d. We have already proved the initialisation, that is d = 1 (actually
alsod = 2 and d = 3) in Theorem 1.7. Take d > 2, and assume the claim is proved for all d’ < d.
Let (F,) be d-admissible and converging in distribution, without loss of generality we further assume

that E[Fﬁl] = 1foriand n. Letusdefinel := {i > 1|F,; # N(0,1)}. The indices not in I are
covered immediately by the induction hypothesis and their limits are in the first Wiener chaos. Now for
each i € I one apply our decomposition lemma Lemma 3.22to F, ; and we obtain that there exists a

ki € NN {oco} such that for alli € N* and all k € Nwith k <k
Fn,i = Fn,i,l + -+ Fn,i,k + Rn,i,k’
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where F,; ; = Zl>0 nide H1(Xy i k). Let us write g; . for the integer such that X, ;, € W, and for
shortlet[;; = [—J Up to extraction, there exists real numbers (o; ;) such that ||F,, ; i ||r2p) = 0ik- By

Lemma 2.4, we can find k,,; — k', such that

rnl

2 [E[F ] ot

n—oo

Consider the vectors

I—}n = (An,i,k,l’Xn,i,kiRn,i,kn,i cieNfle {1, vy li,k})’ neN.

By Lemma 3.23, (I7n) is admissible. Thus, by the induction hypothesis, up to extraction, there exists
Voo = (Acoitts Xooifo Reoi 1 1 EN* T EL 1),
with A i1 € We(p-ig, ) a0d Ry ; and X, ;, € Wi, such that
— law —
Vi— V.
n—oo
Define further

li

Fooik =, Ao it HIX oo i 0)-
=1

Moreover, since for i € N*, (F, ; ¢ )x] are orthogonal by Lemma 3.22 (v), we find that the (F, ; ) are
also orthogonal, in particular the series
= Z Foo,k,i’

keN

exists in L*(P), and is an element of W_ p; since the later is closed in L*(P). Define F,; == F; + Ry €
W .. We claim that

= law -
Fp—— F,
n—oo

which would conclude the proof. This is not completely immediate since S, ; is an infinite series.
However, we can use again the properties of (k,,) from Lemma 2.4 as in the proof of Theorem 1.7 to
truncate the series and conclude for the convergence. (]

We conclude this section with the proof of Theorem 1.4.

Proof of Theorem 1.4. We proceed by induction on p —s. When s = p — 1, the lemma 3.9 ensures a

Gaussian limit for F,, hence Q must be linear in this case. Indeed lLJ = 1 which is consistent. As

s+1

established above, for any sequence (F,),»; in W,, one may write forany r > 1thatF, = 2;21 F,,.+Ry,,
where

. F,; = p/ql A(l) H(X,00),

© X yH_oJ N(O, 1) and ||T[Ry i—1, X ] ll2 2 pg,(Rp) = 1/n.
If one further assume that py(F,) — 0, for some s > 1, then one gets that g; > s + 1 in the above
decomposition. Indeed, recall that g; :== min(k > 1|px (R, ;1) = pk(A 1)) + 0) and that thanks to
Lemma 3.23 we get that ps(Ag’)n) — 0 for each k € [0, 5]] and eachi > 1. Besides, relying on the proof

of our main Theorem, we may assert that for some suitable r, — oo we have py; (Rn,rn) — 0 as well as
(up to extracting subsequences)

e F; = Fy = lp/ql A(z) Hy(Xo ),
* Rn,rn - Roo’

« F,—> 221 F; « + Ry, (the series is converging in L?)
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with all convergences being joint. By our induction hypothesis we may already infer that R, may be
represented by a polynomial of degree less than | p/(s + 2)|. Moreover, X, ; is an element of the first
®

. . k’n
is asymptotically in W,_, with ,os(Ali’)n) — 0. If s > p — kq; then we obtain that A(kl)n is asymptotically

chaos and Hy (X, ;) is then a degree k-polynomial. Besides, for each i > 1 and each k € [1,p/q;], A

independent of a chaos of higher order which entails that AI(:)n — 0. When p — kq; > s + 1, since
1 < p—kqg; —s < p—s,wemay use our induction hypothesis and Ag)oo may be represented by a

polynomial of degree lps_TquiJ' Hence, F; , is a polynomial of degree less than

— ka —k 1
max P~ X4 +k< max p-ks+1) +k=l P J,
ke[Ll(p—s-1)/ql] | S+1 ke[Ll(p—s—1)/g;1] s+1 s+1

where the last inequality uses that g; > s + 1 and that x — |x]| is monotonic. The final argument
uses the fact that the series Eizl F,; is converging in L? and the fact W, is a closed space for any
m > 0. O

4. FROM STABILITY OF WIENER CHAOSES TO STABILITY OF ARBITRARY POLYNOMIAL CHAOSES

Theorem 4.1. Let (P;,); , be polynomials of degree at mostd € N; let X be a vector of independent and
identically random variables, that are centered, with unit variance, and admitting moments at every order;
and let F,, be the infinite random vector given by

Fi,n = Pi,n(i), i,n e N.
Assume that (ﬁ ) converges in law. Then, there exist polynomials (Q;); of degree at most d and an infinite
random vector Y with independent entries such that law|Y;] € {law|[X; ], N (0, 1)} and

Fy = QD)

4.1. Reduction to multilinear polynomials. We build upon an invariance results from [MOO10]. Let
us introduce some notions taken from there. In view of our assumptions, there exist polynomials T, :=
1,Ty := x,T, == x> — 1, ..., T4, such that the random variables TyX;, T X1, ..., T4X; are orthonormal.
Let us consider the orthonormal ensembles
XL ={ToX;, T1 X, ..., TaX}.
Then the F, ;’s are multilinear polynomials over these ensembles, namely
Fn,i = Z Apia H a/"j,ocj’
a€efl,...,dN jeN

for suitably chosen real coefficients (a, ;o). Since all the I ;’s actually contains the same number of
variables, it is sufficient for our purpose to work with elementary multilinear polynomials of the form

(41) Z a]ZJ,
JCN

where the a;’s are real coefficients and Z; := Hj o Zj,withZ; € I;.

4.2. Proof by induction.

Definition 4.2. We say that a sequence of vectors (ﬁn) is d-admissible provided that there exists K € N
such that for alli and n € N, F,; is a multilinear polynomial as in (4.1) with degree at most K, and

(i) either 7(F,;) — 0,as n — oo,
(ii) ordeg(F,;) <d.

Definition 4.3 (Induction hypothesis). For all d € N, we write H(d) to indicate that the conclusion of
Theorem 4.1 holds provided (F,,) is a d-admissible sequence.

In view of Section 4.1, establishing H(d) for all d € N proves Theorem 4.1.
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4.3. Initialisation. Take a 1-admissible sequence (l’3 »)- This means that for n and i € N either F,; is
linear, either 7(F, ;) - 0asn — co.

4.3.1. Decomposition of the linear terms. Let us write I for the set of indices i such that foralln € NF,
is linear. Since we can discard the constants that do not play a role in the argument, we can write for all
iel,
Fn,i = Z an,i,ij’
jeN
for some real numbers a,,; ;. Choose a permutation o, ; that order the (a,; ;); in module, namely we
require that

|an,i,crn,i(1)| > |an,i,crn,i(2)| 2 ..
Without loss of generality, we assume that o, ; = id. Up to extracting non-relabelled subsequences, we
have that

an,i,on,i(j) n—>ooa aoo,i,j:

for some real numbers a; ;. Since the elements of the sequences are ordered, we find that the conver-
gence holds in £*°(N). Indeed, we first notice that we have
2 +--+a?

o V] Z 1, a2 ) < a"-iﬂn,i(l) n.i,opi(J)
1) ;

>

<t
J
. V] Z 1, an,i’o-n,i(j) — aoo,i,j| — 0.

Gathering these two facts entails the £*°-convergence.
4.3.2. Terms with small influence. In particular, letting

Y @it = G0V an(iyy LEL;
Rn,i = { jeN
Fpi» il

we find that 7(R,;) - 0asn — co. Take G = (Gy) a standard Gaussian vector. Our first result
characterizes the limit in law for elements of low influence following a combination of an invariance
principle [Rot79; MOO10] together with our stability result Theorem 3.1.

Lemma 4.4. There exist polynomials (T, ;) with deg(T, ;) < K foralli € Nand deg(T,;) < 1fori €l
such that

(4.2) (Ry; 1 i€ N) —, (Too,,.(é) e N).
n—oo

Proof. Take polynomials (T, ;) such thatR,,; = Tn,l-(Z ). By Theorem 3.1, there exist polynomials T, ; as
in the claim such that

- law -
(4.3) (Tn,i(G) e 1) — (Too,i(G) e 1)
n—oo
Take M € N*. Consider the Wasserstein distance W, defined in (2.1), by the triangle inequality
Ryt [ Teor(G) Rpp ) (Tna(©) Tp1(6)) (Teor(G)
(4.4) wy|l .. [ - <W, N . +W, - Ll
R",M Too,M(G) R”sM Tn,M(G) Tn,M(G) Too,M(G)

Since the Wasserstein distance W, metrizes the convergence in law for random polynomials vectors in
RM (see Corollary 2.3), the second term in the right hand side vanishes as n — co0. On the other hand
by the multivariate version of the invariance principle from [MOO10], see [NPR10, Thm. 7.1], the first
0, we conclude that the left-hand side in (4.4) ’é(,)es to 0. Since this holds for an arbitrary M € N*, the
proof is complete. O
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4.3.3. The ¢*-term. Here, our goal is to understand the asymptotic as n — oo of the linear terms
Ln’i = Z aoo’i’jzo'n,i(j)'
jeN

Since the coefficients a, ; ;’s are already independent of n, we study the limit in law of (Z, ;). Define

Cal(G ), ) = B[ Zs, (20,0 € 10,1}

Up to non-relabelled extractions, we have that C,, converges pointwise to some C,,. Define the relation
(i,j) ~ (t.J) provided C((i, j),(1.J)) = 1, which is equivalent to: for n large enough Z, ; = Zg, ¢)-
From this representation, we see that ~ is an equivalence relation. Up to non-relabelled extraction, we
can consider u, ; ; the limiting distribution of Z, ), which, by definition of ~, only depends on the
equivalence class of (i, j). Since the Z;’s are independent and & := {law|[Z;] : i € N} is a finite set, we
actually have that u.,; ; € Z Let us consider a sequence of independent random variables

(Zooco 1 C € (N\ ),
such that law [Zoo,C] = Ueo,i,j fOr any (i, j) € C. We build a N2-indexed sequence from there by setting
Z = Zo.C» (i, j) €C, C € (N?\ ~).

00,i,j *

Our construction guarantees that

C (i 2y law C (s 2
(4.5) (Z%_(j) (1, j))eN )E) (Zoyij + (i, )) € N).
Define

= D Qoo Zoojo
jeN
which exists as a series converging in L?(P). Indeed, since o, is a bijection, it is impossible to have
(i, j) ~ (i,J) for j # j. Thus all the terms in the series are actually orthogonal and the series is convergent
since ). aZ .. < 1. We can now characterize the limit in law of the L, ;’s
JjeN Too,i,j — i

Lemma 4.5. With the above notations

. law .

(Ll’l,i e N) g (Loo,i e N)

n—oo

Proof. For an integer Q and n € N, write

oo
SQ >Q . _
L z a°°l] Unl(])’ and Ln,i " Z a°°7i’jZUn,i(j)'
j=Q+1

We use a similar notation Lo—le. and L:le Let M € N* and ¢ > 0. Take Q such that

(o]
2
X ) 4, <€
M 0w
This ensures that
(4.6) sup max Var[L>Q] <g, and max Var[L>Q.] <e.
neN i=L,.. i=1,.,M co.l

Consider the Wasserstein distance W, defined in (2.1). By (4.6), we find that, uniformly in #,

<Q <Q
Ln,l Ln,l Loo,l Loo,l
woll . [L| - [|+Wl| - || - [||<2Mme
L v Lfg,[ LfOQM Leom

On the other hand, (4.5) implies that

<Q <Q
Ln,l Loo,l
W R 1N — 0.
2 <Q <Q n—oo
L> L~

n,M oo, M
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Since ¢ is arbitrary, we actually find that (L,; : i = 1,...,M) converges in Wasserstein distance to
(Leoi = 1=1,..,M). Since the Wasserstein distance metrizes the convergence in law Corollary 2.3, and
that the convergence holds for all M € N*, this completes the proof. (]

4.3.4. Asymptotic independence and joint convergence. So far we have established the convergence of the
low influence R, ;’s and the linear L, ;’s separately. Let us show that the two sequences are asymptotically
independent.

Lemma 4.6. We further assume that G and (Z,,j) are independent. Then,
. law .
(Ln,isRn,i ‘e N) m (Loo,i’ Roo,i cle N)

Proof. Fix M € N* take ®,¥ € %g"(RM). As above take £ > 0 and Q € N* such that (4.6) holds. Thus
by a Taylor expansion, we find that

(47) E[O((Lnicrr ¥(Rniean)] = B[ QL Diar) ¥(Ra dias) | + OMe),

The random variables (Lf?)isM only depend on the [ := (Q + 1)(M + 1) random variables (Z%( jris

M, j < Q). Let us write (R,,;) for the corresponding random variables where these I random variables
are replaced by independent copies.

(4.8) E| @5 ))ienr ¥Ry dicar) | = B| (L5 Diaan) Ry i) | + O,

,,,,,

now independent, combining (4.8) and (4.8) we find that

E[O((Ln)iert ¥(Rndiean)] = B[ (L Din) | B[Py Dican)] + O(M(e +7,))
= E[((Ly,)icn) | E[P(Ry,)icn)] + OM (e + 7).

Since ¢ was arbitrary, we obtain, by letting n — oo, the asymptotic independence for all vector of finite
length M. Since M is also arbitrary, we conclude. O

4.3.5. Conclusion. By the continuous mapping theorem, Lemma 4.6 ensures that

. law X
(F}’l,i L le N) —_— (Loo,i +Roo,i cle N),

n—oo

where we recall that the Gaussian vector G from which the R, ;’s are constructed, and the array (Z, ; ;); j
from which the L, ; are constructed are independent. To complete the proof, we now construct explicitly

Y and the Q,’s such that the conclusion of Theorem 4.1 holds. Take any bijection ¢ : N> — N. Define
Y = (Y}) with
Yor =G,  and Yoy = Zg gri()-

Recall that R, ; = Tm,i(é) for some polynomials T, ; which we can immediately write as Qi,l(?)-
Defining N; := ¢({i} X N), we have

Loo,i = Z aoo,¢—1(k)Y2k+1 = Qi,Z(Y)-
keN;

Setting Q; == Q; ; + Q;, we conclude.

4.4. Induction step. Let us assume H(d) for some d € N, and let us show H(d + 1). Take (Ij"n) a
(d + 1)-admissible sequence. The idea is to build a d-admissible vector out of F ,, and use our induction
hypothesis. Let I, := {i € N : 7(F, ;) - 0}. Since elements with vanishing influence are for free in the
definition of admissibility we keep F,, ; as is for i € I,.
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4.4.1. Decomposing the terms of large influence. For i & I, we consider permutations o,,; : N — N that
orders the influences, namely

To,,Fni) 2 T, @) Fni) = -
Our strategy consists in successively removing variables with large influence. To that extent, define
Fru={cN:Vkefl,. 1-1}0,k) ¢J, ando,,;(1) €T}

In other words, ¥, ;; is the set of all subsets where the [-th largest indices, in terms of influence, appears
but not the indices with larger influence. It is thus natural to define the polynomial with the I-th
influence removed

Ry = Z a;Z g, 1)
Jejn,i,l

as well as the reminder
Sn,i,p = Z aJZ].

C
Jen, f

n,i,l

By this construction, we find that for all p € N*

(4-9) Fn,i = Zcrn,,-(l)Rn,i,l + -+ Zon’i(p)Rn,i,p + Sn,i,p'

Since we remove the p-th first largest influence and that F, ; is normalized, we also find that

(4.10) T(Sn,ip) <01/ p), uniformly in n and i.

4.4.2. The admissible vector and its convergence. Take (p,,) be an increasing sequence of integers con-
verging to oo, to be specified later. By (4.10), we find that 7(S,,; ,, ) — 0. On the other hand, the Z; ;)’s
are polynomials of degree < d — actually, they are of degree exactly 1. Similarly, all the R,,; ;’s are, by

construction, of degree at most d. Thus, any vector containing them is a d-admissible vector. To be
concrete, choose a bijection ¢ : N* X Z — N. Consider the array A, = (4,(i, j))ien jez sSuch that

Ap(i,0) =Sy p
An(Q, J) =Ry j, JeN¥
An(i, J) = Zs, (i) VESA
and define the vector
V= (An(@71(K)) : k €N).

Thus, (I7n) is d-admissible and by the induction hypothesis, there exist Q; of degree at most d and a
vector Y such that

Vi —— Voo = (Qi(Y)).

4.4.3. Identification of the limit of F - We can subsequently define

Zooij = Voo pli—j)

Reoij = Vool
Seoi = Voo (1,003
Foo,i,j = Zoo,i,jRoo,i,j-

Since we are working with polynomials, by Theorem 2.1, we find that for all i € N, the terms of (F; ;);
are orthogonal and satisfy

Z E[Fio,i,j] <1
Jj=1

In particular, we find that the following random variables is well-defined
(o]
Foo,i = 2 Foo,i,j + Soo,i’
j=1

since the series converges in L2(P). Since the space of polynomials is also closed in L2(P) Theorem 2.2,
we find that F, ; = Q;(Y) for some Q; of degree at most d.
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4.4.4. Conclusion. To conclude, let us show the following.

- law -
Fp—
n—oo

00"

Again we need to show that despite the infinite series, the infinite series is not a problem. For this we
use a truncation argument already presented in the initialisation case that we do not repeat.
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