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Abstract
Scientific research continually discovers and invents new concepts, which are

then referred to by new terms, neologisms, or neonyms in this context. As the vast
majority of publications are written in English, disseminating this new knowledge to
the general public often requires translating these terms. However, by definition, no
parallel data exist to provide such translations. Therefore, we propose to leverage
term definitions as a useful source of information for the translation process. As
we discuss, Large Language Models are well suited for this task and can benefit
from in-context learning with co-hyponyms and terms sharing the same derivation
paradigm. These models, however, are sensitive to the superficial and morphological
similarity between source and target terms. Their predictions are also impacted by
subword tokenization, especially for prefixed terms.

We also extended experiments on segmentation into sub-lexical units with a
controlled corpus, with negative prefixation and adverbial suffixation of adjectival
bases or pseudowords. Our results confirm the previous ones: language models
struggle to generate prefixations due to sub-optimal segmentation, which can be
resolved through morphological segmentation. We enrich these results with analyses
of the alignment between subword embeddings.

Résumé

La recherche scientifique découvre et invente continuellement de nouveaux concepts
qui sont alors désignés par de nouveaux termes, des néologismes ou néonymes dans
ce contexte. Puisque les publications se font très majoritairement en anglais, il
convient de traduire fidèlement ces termes dans d’autres langues, comme le français,
tout en évitant une multiplication d’anglicismes. Toutefois, il n’existe par défini-
tion pas de données parallèles où trouver des néologismes. Nous proposons donc
d’exploiter la définition du terme afin de le traduire plus fidèlement. Pour ce faire,
nous explorons les capacités de modèles de langues multilingues, qui parviennent
à traduire des néologismes scientifiques dans une certaine mesure. Nous montrons
notamment qu’ils utilisent souvent des procédés morphosyntaxiques appropriés mais
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sont limités par la segmentation en unités sous-lexicales, particulièrement pour la
préfixation, et biaisés par la fréquence d’occurrences des termes ainsi que par des
similarités de surface entre l’anglais et le français. Afin de pallier ces limites, nous
proposons de sélectionner des exemples (in-context learning) co-hyponymes du
terme ou issus du même paradigme dérivationnel.

Nous avons également approfondi les expériences sur la segmentation en unités
sous-lexicales avec un corpus contrôlé, avec une préfixation négative et une suf-
fixation adverbiale par base adjectivale ou pseudo-mot. Nos résultats confirment
les précédents: les modèles de langues peinent à générer des préfixations en raison
d’une segmentation sous-optimale, ce qui peut être résolu grâce à une segmentation
morphologique. Nous enrichissons ces résultats par des analyses sur l’alignement
entre les plongements des sous-mots.
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phantasmophobie (phasmophobia) : 
Crainte obsédante ou excessive des fantômes. 

(Obsessive or excessive fear of ghosts.) 
...

anxiété sociale (social anxiety disorder) : 
Crainte d’être dévisagé par d’autres personnes [...]

(Fear of being stared at by others)
...

bidirectionnel (bidirectional) : 
Se dit de ce qui est capable de transmettre de
l'information dans les deux sens.
(Having to do with the ability to transmit data in either direction.) 

Input Definition
Crainte obsédante ou
excessive des dents.

(Obsessive or excessive fear of teeth.)

Output term
odontophobie

(odontophobia)

LLM

Morphological
Analysis

34 common characters

7 common characters
ICL

Search

Prefixation

Suffixation

Neoclassical

Native

Syntagmatic

Figure 1: Overview of our experiments: in DEF setting, given a definition, we study how to retrieve
relevant ICL examples, here co-hyponyms. An LLM is then tasked to generate a term
matching the definition. We also perform several analyses, including a morphological
analysis of the output term. See text for details.

1. Introduction

New concepts are constantly introduced by researchers around the world, which leads to a
profusion of neologisms. These are also known as neonyms [Cabré, 1999], as opposed to
neologisms of everyday language [Cartier et al., 2018]. Because most of this research is pub-
lished in English [Gordin, 2015, Larivière and Riddles, 2021],1 communicating in another
language, such as French, requires translating these terms to facilitate scientific dissemination.2

For example, a teacher wanting to instruct their French students about “Large Language Mod-
els” would be hardly understandable if they directly borrowed every term from English, e.g.:

EN: large language models are self-supervised
?? les large language models sont self-supervised
FR: les grands modèles de langue sont auto-supervisés
Quoting Liu et al. [2021]: “Precisely defining the terminology is the first step in scientific

communication”.
Translating scientific neologisms is a fundamental problem for traditional Machine Translation

1In French-speaking countries, a significant part of research in humanities and social sciences is still disseminated in
French. The same holds for other major linguistic areas.

2See, e.g., https://www.helsinki-initiative.org/.
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(MT) systems that rely on parallel data, which, by definition, can not contain such new words.3

Therefore, we propose to leverage definitions of terms as a way to translate them more accurately.
We study how to take this information into account and, in particular, how to select relevant
examples for in-context learning, in a linguistically motivated manner. We conduct extensive
experiments on two thesauri covering 13 diverse domains, from Humanities to Computer Science
and find our methods to be domain-agnostic. As we focus on translation from English into French,
we rely on the fact that neologisms are mostly formed through five non-exclusive morphological
processes (prefixation, suffixation, and neoclassical, native, or syntagmatic compounding), and
study (i) how morphological divergences between the source and target impact translation; (ii)
whether systems outputs conform to attested morphological patterns (see Figure 1).

Terminology remains a major source of critical errors for MT [Haque et al., 2020], which
is often tackled by augmenting MT systems with domain-specific resources and dedicated
(pre-)processing modules [Semenov et al., 2023]. Our work could benefit such approaches by
enriching said thesaurus or providing on-the-fly translations by extracting definitions from source
documents [Jin et al., 2013, Head et al., 2021, August et al., 2022, Huang et al., 2022].

We tackle Neologism Translation with Large Multilingual Language Models (mLLMs), which
are effective for many MT and NLP tasks [Xu et al., 2024]. We show that these models are able,
to some extent, to translate terms from English to French, to generate a term from its (French)
definition, and also to combine both sources of information. We also show that LLMs benefit from
in-context learning examples that are co-hyponyms or belong to the same derivational paradigm
as the source term/definition (see Figure 1). However, we also highlight several limitations of
these models: (i) their tokenizer, based on crude heuristics such as BPE [Gage, 1994], tends to
over-segment prefixed terms, which is detrimental to translation quality; (ii) they perform much
better if the source and target term are superficially similar (likely cognates or loanwords), which
makes the task closer to othographic conversion than translation (e.g. exocytosis → exocytose);
(iii) their performance correlates with terms frequency in a large corpus, which may be used as a
proxy of their degree of lexicalization.

This work opens up new challenges for MT and more broadly NLP, on an important topic for
knowledge dissemination. It also sheds light on the somewhat overlooked issue of morphological
processing in LLMs. We propose several avenues for future work to address the limitations
outlined above. This work has been published in two conferences papers [Lerner and Yvon,
2025b,a]. Our code and data are freely available.4

2. Related Work

While we rely on definitions to generate neologisms, some work has been done in the opposite
direction, to generate the definition of a given word [Noraset et al., 2017]. Interestingly, like
us, they leverage the structure of definitions in genus and differentiae [Chodorow et al., 1985,
Montemagni and Vanderwende, 1992]. The genus is a hypernym of the input term (see Figure 1,
phasmophobia is a kind of fear). We will find that terms sharing the same hypernym prove to be
useful examples for In-Context Learning.

3At least, not with their new intended meaning.
4https://github.com/PaulLerner/neott
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Legend term formation

semantic neology

borrowingderivation compounding

affixation conversion (POS)

prefixation suffixation

morphological syntagmatic

neoclassical native

entrepreneur
expertise

hallucination
attention

run (V → N)
metric (A → N)

azophilic
synapomorphic

pretrain
unsupervised

morphological (N → A)
generalization (V → N)

large language model
sequence-to-sequence

benchmark
thumbnail

back-affixation

vivisect (N → V)

acronyms

LLM
VQA

not studiedwould need 
contextcore classes

Figure 2: Overview of the studied neological processes. Adapted from [Daille, 2017].

Neologism Translation is related to Multilingual Term Extraction [Laroche and Langlais, 2010,
Delpech et al., 2012, Rigouts Terryn et al., 2020], except that, importantly, we do not assume that
the target term exists anywhere. Indeed, we will see that a significant part of the terms in our test
data do not appear even a single time in a large corpus such as OSCAR [Abadji et al., 2022].

Our framing of Neologism Translation somewhat resembles the Reverse Dictionary task [Hill
et al., 2016, Pilehvar, 2019]. However, Reverse Dictionary is an Information Retrieval task that
consists of mapping the representation of a definition to an existing word embedding of a known
word. On the contrary, we design here a fully generative task for unknown words.

The study of Zhang et al. [2020] comes closest to our work but is restricted to a monolingual
setting in the very specific domain of genetics, where a term is linked to several genes according
to its molecular function, biological process, and cellular component.

Hofmann et al. [2021] and Truong et al. [2024] are also interested in derivational morphology
and LLMs but consider binary classification tasks that assess whether the LLM “understands”
words, while we are interested in the actual generation of new forms. Our results are consistent
with theirs: notably, Hofmann et al. [2021] also find that LLMs are unable to process prefixations,
compared to suffixations, for the same reason. They also find that enforcing morphological
segmentation improves performance. Hofmann et al. [2020] is similar to our work but always
relies on morphological segmentation, except in their preliminary experiment.

Oh and Schuler [2024] and Pimentel and Meister [2024] discuss another effect of BPE marking
the beginning of words: the miscomputation of word probabilities, an indicator of word surprise
used in psycholinguistic studies. Both propose a simple rescaling method to recover the correct
values.

3. Discussion

BPE is ubiquitous in NLP as virtually all LLMs depend on it. However, marking strings in the
beginning of words leads to caveats that are overlooked. We show that this faulty tokenization
limits the ability of LLMs to generate prefixations, a morphological process that is however
productive in many languages. Such defects in morphological abilities may partly explain the
recurrent difficulties of LLMs to generate a sufficiently large number of new lexemes, as attested
by low Type-to-Token Ratio scores in generated texts [Muñoz-Ortiz et al., 2024]. We also show
that an accessible solution is morphological segmentation, which enables even “small” models
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(of a few hundred million parameters) to reach near-perfect generation accuracy.

4. Neological and Morphological Processes

Typology Our typology of neologisms is adapted from Lieber [2010] and Daille [2017], and
relies on morphosyntactic features that can easily be detected automatically. Complementary
typologies, which vary according to the studied phenomena, have also been proposed, see, e.g.
[Lombard and Huyghe, 2020]. We retain the following five constructions that cover the largest
part of our corpus, both in English and French:

(i) Prefixation, where an affix is concatenated at the beginning of a word to form a new one
(e.g., pre+train = pretrain).

(ii) Suffixation, where affixation is performed at the word’s end (e.g. generalize+ation =
generalization).

(iii) Native compounding, which compounds two independent words. This process is more
regular in English (e.g. bench+mark = benchmark) than in French [Arnaud, 2003].

(iv) Neoclassical compounding, which compounds only bound morphemes, i.e. morphemes
that cannot act as independent words (e.g., azo+philic = azophilic). Like native English but
unlike native French, the head of neoclassical compounds is always located at the rightmost
position, in both languages: e.g. azophilic means “attracted to azote”, not “azote is attracted”
[Namer, 2003, Amiot and Dal, 2008].

(v) Syntagmatic compounding, where syntagms that follow syntactic rules of the language
are lexicalized into terms, thereby losing the compositionality of meaning. Therefore, they often
cannot be translated by a composition of translations of its constituents [Daille and Morin, 2005],
e.g. “zero-shot learning” translates to “apprentissage sans exemple” in French, literally “learning
without example”.

Note that for (i), (ii), and (iv), derivation is often accompanied by a phonological or graphemic
change at the junction between morphemes. Finally, note that these processes are not exclusive
but can be combined, e.g. bidirectional is a prefixation (bi-) of a suffixation (-al).5. All studied
morphological processes are illustrated in Figure 2.

Figure 2 also includes rarer processes that would require a disambiguating context and are
therefore not handled by the morphological classifier introduced below: (i) Semantic neology,
where a lexical unit is associated with a new concept through a metaphoric transfer between two
domains, resulting in a homonym. (ii) Conversion, where the part-of-speech (POS) of a word
changes without affixation, resulting again in a homonym [Tribout, 2010]. (iii) Back-affixation,
which requires a diachronic perspective to recognize it among other affixations (e.g. vivisect is
formed by removing tion from vivisection, and not the other way around).

We finally do not study the following processes, although they are frequent in both English
and French: (i) Borrowing, because we precisely seek to avoid it (e.g. entrepreneur is borrowed
as is from French). (ii) Acronyms, which cannot be translated without their expanded form.

5It could also be interpreted as the suffixation of the noun *bidirection although it is unattested [Corbin, 2012a]. See
also Copot and Bonami [2024] for a “baseless” approach to derivation where both directional and *bidirection
could interact with bidirectional.
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Setting Prompt template

TERM Le terme anglais {src_term} peut se traduire en français par :

“The English term {src_term} can be translated in French as :”
DEF {def} définit le terme :

“{def} defines the term :”
DEF+TERM {def} définit le terme anglais {src_term} qui peut se traduire en français par :

“{def} defines the English term {src_term} which can be translated to French as :”

Figure 3: Prompt templates used with LLMs corresponding to our three settings, with English
translations

The reader should refer to Dal [2003a], Lieber [2010], or Corbin [2012a] for a more complete
introduction to morphology,6 going beyond English and French, and therefore, the above processes
(e.g. templates in Semitic languages). Finally note that we are not interested in inflections (e.g.
singular/plural), which do not form new lexemes.

Morphosyntactic Classification We build two multi-label classifiers, one per language, to
identify the morphosyntactic processes described above. They rely on character n-gram features
and are trained on Wiktionary in the FastText framework [Joulin et al., 2017]. They are very
accurate with 92.5 F1 in English and 95.8 F1 in French, see Appendix C for details. This classifier
is used below to analyze the morphological processes used to coin new terms (see Figure 1), to
evaluate English-French congruences and divergences and how they impact the performance of
the models.

5. Translation Methods

We study the translation of neologisms in three settings, always in the EN-FR direction, which is
our main application scenario (see Section 6.1):7 (i) TERM: translate the contextless source term.
This is our baseline condition. (ii) DEF: generate the target term from its definition in the same
language, one of the main novelties of our work (see Figure 1); (iii) DEF+TERM: translate the
source term given its definition, combining the two sources of information. Both input terms and
definitions are extracted from public thesauri (see Section 6.1).

We cast these three subtasks in a text-to-text generation framework, where an LLM is tasked
to complete a prompt [Brown et al., 2020, Raffel et al., 2020]. Because of the mixed language
input in setting DEF+TERM, we use mLLMs. The prompt may contain several examples to enable
in-context learning (ICL). We study four ways to select these examples: the first two serve as
baselines, while the last two are linguistically motivated:

(i) Random: sampling from the set of examples for ICL.

6See also Aronoff [1976] and Fradin [2015] for a lexematic approach to morphology and Dal [2003b] and Mattiello
[2017] on analogy.

7Moreover, as most neonyms are first formed in English, then translated to French, studying the reverse direction
(FR-EN) would be plagued by translationese, which is known to lead to overoptimistic results [Zhang and Toral,
2019].
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(ii) Domain: similar to Random, additionally requiring ICL examples to belong to the same
domain as the target term (“oracle” condition).

(iii) Co-hyponyms: terms sharing the same hypernym are often formed in the same way.
To find co-hyponyms, we simply rely on the longest common string with the beginning of the
input definition (see Figure 1). Therefore, this method does not apply to the TERM setting,
which does not have access to definitions. For instance, definitions starting with “Crainte
obsédante ou excessive des”8 identify several phobias, e.g. traumatophobie (traumatophobia) or
odontophobie (odontophobia). With “Opération consistant à”,9 we find deverbals in -ation or
-age, e.g. dénaturation (denaturation), quantification (quantizing), or tricotage (knitting).

(iv) Derivation paradigms: as hinted at above, terms stemming from the same derivational
paradigm, i.e. sharing a base, prefix, or suffix, may serve as analogical context to form new
terms. For example, pretraining was likely formed on the model of preprocessing; likewise for
underfitting modeled after overfitting. Like for co-hyponyms, we rely on the longest common
string, but this time between source terms, either at the beginning or the term ending. Therefore,
this method does not apply to the DEF setting, which does not have access to the source term.
Note that this method is not limited to morphological affixes but can also find whole words in
common between syntagms. For example, “air gap” and “air flotation” share the word air in
their initial and “unmoderated newsgroup” and “unmerchantable” share the prefix un-.

The last two methods can be both combined in the DEF+TERM setting by concatenating their
top results, while keeping the total number of examples to five. The hyperparameters for this
fusion are set through grid search on the validation set.10 We limit the number of examples
to five to keep a reasonable input length and as we found the performance to quickly saturate,
consistently with prior work (e.g. Bawden and Yvon, 2023).

5.1. Implementation

We experiment with two mLLMs: BLOOM [BigScience et al., 2023] and CroissantLLM [Faysse
et al., 2024]. BLOOM was the first open-source mLLM to scale up to billions of parameters. It is
highly multilingual, trained on 46 natural languages, including EN and FR. We experiment with
both 1.1B and 7.1B parameters versions. CroissantLLM is an EN-FR bilingual model, trained on
an equally large amount of data in the two languages. With only 1.3B parameters, it was designed
to be efficient at inference time, to make up for its costly pretraining, following Liu et al. [2019]
and Hoffmann et al. [2022].

Each of our three prompt templates (see Figure 3) correspond to one settings presented above.
We experimented with a few different wordings but found that the prompt content hardly mattered
because of ICL examples, consistently with prior work (e.g. Zebaze et al., 2024). ICL examples
use the same prompt template, but include both the instruction and the target term. Different
examples are separated by the three characters ###, which serves as end-of-sequence signal.

Apart from LLMs, we use mBART as a standard sequence-to-sequence baseline for the TERM

setting (standard MT). More precisely, we fine-tune mBART50-One-to-Many, a 610M parameter

8“Obsessive or excessive fear of”.
9“Operation consisting of”.

10The optimum for Derivation paradigms is three prefixes and two suffixes. When fusing with Co-hyponyms the
optimum is one co-hyponym from the definition, three prefixes, and one suffix.
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model [Tang et al., 2021], on 1.1M EN-FR parallel sentences from SciPar [Roussis et al., 2022].
This process ensures that the model is robust to scientific vocabulary. Still, mBART only translates
from EN to FR and is not suited for the conditions DEF and DEF+TERM. This model achieves
37.3 BLEU on a held-out test set of 3K sentences [Papineni et al., 2002]. See Peng et al. [2024]
and Appendix D for additional details.

5.2. Evaluation

We draw inspiration from standard Question Answering metrics (e.g. Rajpurkar et al., 2016)
and considered: (i) Exact Match (EM) between the target and output strings;11 (ii) token-level
F1 score after standard preprocessing (case insensitive, stop-words and punctuation filtering).
At a time when LLM-based metrics flourish, one might criticize these metrics for being overly
strict and not modeling semantic similarity. However, we argue that evaluating terminological
equivalence is mostly not a semantic matter: the meaning of the terms is highly dependent on the
domain and words that would otherwise be synonymous often cannot be used interchangeably.
For instance “*big language model” is an incorrect variant of “large language model”, although
big and large are synonyms (i.e. semantically close, even with a non-neural metric like METEOR;
Banerjee and Lavie, 2005). Moreover, LLM-based metrics are known to bias towards models
with the same architecture or training data [He et al., 2023, Panickssery et al., 2024], while EM is
equally strict for all models.

In addition to EM and F1, we alsol assess whether our models generate terms with the same
morphological processes as the reference, as described in Section 4 (see Figure 1).

Model Setting FranceTerme TERMIUM
EM F1 EM F1

mBART TERM 26.3 41.3 31.1 49.7

CroissantLLM TERM 25.6 42.2 30.3 50.3
CroissantLLM DEF 4.6 19.8 3.8 22.7
CroissantLLM DEF+TERM 25.3 42.9 30.2 51.5
BLOOM-1.1B TERM 15.9 31.3 17.1 37.1
BLOOM-1.1B DEF 1.1 11.3 1.4 15.4
BLOOM-1.1B DEF+TERM 17.8 34.9 20.0 41.2
BLOOM-7.1B TERM 23.7 40.3 27.5 47.7
BLOOM-7.1B DEF 10.0 24.7 7.5 26.6
BLOOM-7.1B DEF+TERM 27.1 44.6 32.1 53.5

Table 1: Definition-augmented Translation results on the test sets of FranceTerme and TERMIUM,
with 5 randomly selected ICL examples for LLMs. Best overall results are bolded while
best results in settings TERM and DEF are underlined.

11EM is also used to evaluate morphological reinflection in the SIGMORPHON Shared Task, where it is referred to
as “accuracy” [Cotterell et al., 2016].
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6. Translation Results

6.1. Datasets

We experiment with two EN-FR bilingual thesauri in this work: FranceTerme12 and TERMIUM,13,
which are curated by the French and Canadian governments, respectively. Both of these thesauri
are well-studied in the neology literature [Pecman, 2012, Tonti, 2023, Holeš, 2024]. We filter
loanwords (cf. Section 4) by removing terms that are identical in EN and FR (case insensitive;
2.9% of FranceTerme, 4.6% of TERMIUM). To filter acronyms, we discard terms with two
consecutive upper-case letters (1.8% of FranceTerme, 2.3% of TERMIUM). We also filter entries
with missing data to only keep triples of (EN term, FR term, FR definition).14 FranceTerme finally
amounts to 6,623 terms equally and randomly split into validation and test sets. When testing, the
validation set will serve for ICL and vice-versa. TERMIUM is much larger so we randomly keep
5,000 terms for validation, 5,000 for testing, and the remaining 194,992 for ICL. TERMIUM
broadly covers 13 coarse-grained domains (listed in Table 3), which are balanced enough so that
we can confidently compute statistics for each of them (from 83 samples in Metal. to 895 in MPS
in the test set). On the other hand, FranceTerme covers ≈ 70 very imbalanced domains (some
containing just one sample) so we only consider it as a whole.

Setting ICL FranceTerme TERMIUM
EM F1 EM F1

TERM Random 23.7 40.3 27.5 47.7
TERM Domain 26.3 42.6 29.6 49.7
TERM Paradigm 27.0 43.8 36.3 55.4
DEF Random 10.0 24.7 7.5 26.6
DEF Domain 10.1 25.1 8.6 27.5
DEF Co-hyponyms 10.7 25.8 10.5 30.0
DEF+TERM Random 27.1 44.6 32.1 53.5
DEF+TERM Domain 28.5 46.0 32.5 54.2
DEF+TERM Fusion 31.2 48.2 40.7 60.0

Table 2: Results of BLOOM-7.1B on the test sets of FranceTerme and TERMIUM according to
our ICL selection strategy: (i) random (baseline); (ii) domain (baseline); (iii) derivation
paradigm (not applicable to DEF); (iv) co-hyponyms (not applicable to TERM); (v) fusion
of the latter two. Best overall results are bolded while best results in settings TERM and
DEF are underlined.

12https://www.culture.fr/franceterme, open license compatible with CC-BY 2.0, version of November 17 2023.
13https://www.btb.termiumplus.gc.ca/ Open Government Licence - Canada, version of February 6 2023.
14FranceTerme definitions are only available in FR, the target language. TERMIUM provides both EN and FR

definitions, so we provide additional results in Appendix A with machine-translated definitions. We find our results
to be consistent with both reference and machine-translated French definitions.
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Setting ICL Agr. CS Indus. MPS Mech. Med. Hum. Env. Tele. Jus. Eco. Elec. Metal.

TERM Random 20.5 36.2 16.5 33.0 18.9 31.3 27.2 32.9 32.7 33.1 26.5 24.4 19.3
TERM Paradigm 22.6 44.1 22.7 46.8 28.1 50.0 34.5 39.1 38.1 30.5 31.9 31.1 24.1
DEF Random 5.6 6.0 5.9 6.9 5.1 11.2 10.2 9.1 5.4 5.9 8.4 6.7 4.8
DEF Co-hyponyms 5.6 8.6 9.7 11.7 9.7 15.3 11.5 13.2 6.5 7.6 8.6 7.7 10.8
DEF+TERM Random 29.2 40.5 21.2 36.9 21.9 37.1 34.3 37.4 32.7 32.2 31.3 25.4 28.9
DEF+TERM Fusion 28.7 44.8 28.4 48.5 31.1 52.9 40.9 46.0 44.6 38.1 37.3 34.9 33.7

Table 3: Exact Match of BLOOM-7.1B on the 13 domains of TERMIUM according to our ICL
selection strategy: Agriculture (Agr.), Electronic and Computer Science (CS), Industries
(Indus.), Maths Physics and Natural Sciences (MPS), Mechanics (Mech.), Medicine
(Med.), Humanities (Hum.), Environmental Sciences (Env.), Telecommunications (Tele.),
Law and Justice (Jus.), Economy (Eco.), Electricity (Elec.), and Metallurgy (Metal.).
Best overall results are bolded while best results in settings TERM and DEF are underlined.

6.2. Definition-augmented Translation

We now explore the three settings of Neologisms Translation with our four models, keeping
ICL selection random (see Table 1). We find that TERM, translating the contextless source term,
is much easier than DEF, where the input is the FR definition. However, the performance of
models in setting TERM are limited, with mBART, BLOOM-7.1B, and CroissantLLM all reaching
similar performance. We find that BLOOM-7.1B is able to combine information from source
term and definition in setting DEF+TERM, significantly outperforming TERM. Model size is
particularly important in this setting, as we observe that BLOOM-1.1B and CroissantLLM, which
are roughly the same size, barely outperform or even deteriorate TERM when using the additional
definition. Therefore, we focus on BLOOM-7.1B in the following experiments. BLOOM-7.1B
DEF+TERM is so effective that it outperforms an oracle late fusion of TERM and DEF, suggesting
an interaction between the two sources of information. For instance, BLOOM-7.1B DEF+TERM

correctly predicts capteur de mission for mission sensor “capteur réalisant des mesures qui font
partie de l’objet de la mission d’un engin spatial”,15 unlike TERM which predicts mission de
reconnaissance and DEF which predicts instrument de mesure (“measuring instrument”).

6.3. In-Context Learning

Results according to our different ICL strategies are in Table 2. We find that our strategies
consistently improve over random and domain selection, even though the latter accesses the
ground-truth domain through an oracle. The performance gains are especially high for TERMIUM,
where the set of examples for ICL is much larger. Furthermore, we show in Table 3 that
our methods are domain-agnostic, with significant improvements in 12 out of 13 domains of
TERMIUM, from Humanities to Computer Science. In the rest of this section, we will focus on
FranceTerme for the sake of space, but our results are consistent on both datasets.

15“sensor performing measurements that are part of the mission of a spacecraft”.
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Figure 4: Exact Match (EM) of BLOOM-7.1B (DEF) w.r.t. term’s corpus frequency, comparing
random and co-hyponym ICL selection, on FranceTerme’s test set. The upper part
shows the number of examples in each bin. Note the logarithmic scale of the 𝑥-axis.

6.4. Frequency Bias and Semantic Change

Our main research interest lies in Neologism Translation. However, assessing whether a term
is neological or lexicalized is a subjective matter [Lombard and Huyghe, 2020]. Therefore, we
choose a continuous scale of neology based on the term’s frequency in large corpora, namely
ROOTS-fr-open [Laurençon et al., 2022] and OSCAR-fr 22.01 [Abadji et al., 2022]. ROOTS-fr-
open is a French CC-licensed subset of ROOTS, the dataset used to train BLOOM. It consists of
4 billion words (20 GB), mostly from Wikimedia. OSCAR-fr 22.01 is a French cleaned subset
of Common Crawl, which was also partly used to train BLOOM. It consists of 42 billion words
(382 GB).

Figure 4 shows that 15.8% of FranceTerme target (French) terms do not appear even a single
time in this huge corpus, and most appear less than 100 times (i.e. the frequency of monolexical
terms is less than 2 × 10−9). See Appendix B for examples of each decile. We find that the
neological feeling [Lombard and Huyghe, 2020] is weaker after 1,000 occurrences (e.g. effet de
rebond “rebound effect”). It is not a coincidence that BLOOM (DEF) predicts terms much more
accurately above this 1,000 occurrences threshold (Figure 4). However, the bulk of the distribution
lies before 1,000, where we find our co-hyponym ICL selection method to significantly and
consistently improve results. For example, given “Enzyme qui déphosphoryle les résidus sérine,
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thréonine ou tyrosine préalablement phosphorylés, présents dans les protéines”,16 BLOOM,
with random ICL, fails to generate protéine-phosphatase (“protein phosphatase”, 0 occurrences),
while our co-hyponym selection strategy succeeds because of relevant ICL examples such as
protéine-kinase (“protein-kinase”): “Enzyme qui phosphoryle les résidus sérine, thréonine ou
tyrosine présents dans les protéines.”17

On the other hand, we observe that most frequent terms are indeed semantic neologisms, i.e.
terms transferred from one domain to another, with a meaning change. We find that BLOOM is
unable to generate semantic neologisms, as its performance drops after 106 occurrences (Figure 4).
For example, for pression “marquage serré de l’adversaire en possession du ballon”18, which
metaphorically transfers the concept of pressure from physics to sports, the model generates the
literal syntagm marquage individuel (“individual marking”).

Setting ICL Pre. Suff. Neo. Native Synt.

TERM Random 71.5 86.2 61.1 14.8 87.7
TERM Paradigm 73.4 87.4 59.8 24.4 88.0
DEF Random 59.2 82.0 39.5 15.8 77.6
DEF Co-hyponyms 59.7 82.5 36.7 18.7 79.5
DEF+TERM Random 71.8 86.9 63.3 17.9 87.6
DEF+TERM Fusion 74.8 88.4 65.3 26.5 88.8

Table 4: F1 scores of morphosyntactic processes prediction by BLOOM-7.1B on FranceTerme
test set. The best overall results are in boldface while the best results in settings TERM

and DEF are underlined.

6.5. Morphosyntactic Analysis

The multi-label classifier described in Section 4 allows us to analyze the morphological processes
used to coin new terms. We compare the morphological processes of the models’ outputs with
the corresponding reference (see Table 4). We find that, even when the output term is incorrect,
the morphological analysis of the output term agrees mostly with the reference. For example,
while énantiomère (“enantiomer”) does not match the reference distomère (“distomer”), both are
neoclassical compounds. The only exception is for native compounds, which are rare in French:
only 2.8% of EN native compounds are translated as native compounds into FR. Overall, these
performance are in line with previous results (Table 2): our ICL selection strategies consistently
improves the scores.

16“Enzyme that dephosphorylates previously phosphorylated serine, threonine or tyrosine residues in proteins”
17“Enzyme that phosphorylates serine, threonine or tyrosine residues present in proteins.”
18“close marking of opponents in possession of the ball”
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6.6. Morphosyntactic Divergences

The multi-label classifier also enables us to evaluate the divergences between English source
terms and their reference French counterparts. We study here how this divergence impacts the
performance of the models. Given 𝐸 and 𝐹 , the sets of EN and FR morphosyntactic processes
involved in the generation of a given term, respectively, we rely on the symmetric difference
between these two sets to define a distance metric: ∆ = |(𝐸 ∪ 𝐹 ) ∖ (𝐹 ∩ 𝐸)|. We find that
model performance is negatively correlated with this distance, especially when relying on the EN

source term, see Figure 5. For example, the TERM model translates the syntagm of suffixation
“homing head” using the same processes, resulting in tête de guidage, not matching the reference
prefixation autodirecteur.
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Figure 5: Exact Match (EM) of BLOOM-7.1B outputs w.r.t. morphosyntactic difference ∆
between EN and FR processes, in the three usual settings with randomly selected ICL
examples on FranceTerme’s test set (left). The upper part shows the number of examples
for ∆ ∈ [0, 4]. Exact Match (EM) of BLOOM-7.1B (TERM) outputs w.r.t. edit distance
between EN and FR monolexical terms, with randomly selected ICL examples on
FranceTerme’s test set (right). The upper part displays the number of examples in each
bin. Edit distance is at least 1 because loanwords were filtered out.

6.7. Translation or Orthographic Conversion?

We saw in Section 6.2 that setting TERM was much easier than DEF. We show that this is
due to frequent surface similarities between EN and FR, which makes the translation akin to
an orthographic conversion. We quantify this by computing the edit distance between EN and
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Figure 6: Distribution of word fertilities for prefixed and suffixed terms on FranceTerme’s test set
(left). Density is normalized separately for prefixes and suffixes to ease visualization.
Exact Match (EM) of BLOOM-7.1B (DEF+TERM) outputs w.r.t. word fertilities (right).
The upper part shows the number of examples in each bin.

FR monolexical terms.19 Figure 5 shows that the performance in setting TERM is negatively
correlated with the edit distance, while DEF does not suffer from this bias. For example, the model
correctly predicts the following terms with an edit distance of 3 or less: mycotoxin → mycotoxine,
exocytosis → exocytose, iconomatic → iconomatique. This result holds for both character-level
and token-level edit distance. For token-level distance, we may assume that the model directly
copies tokens from source to target. The examples above actually share the following tokens:
“_my c oto”, “_ex”, and “_ic onom”, respectively.

6.8. Prefixation, Fertility, and BPE

BLOOM, as mBART and CroissantLLM, relies on BPE tokenization, like most LLMs [Gage,
1994, Sennrich et al., 2016]. While BPE circumvents out-of-vocabulary (OOVs) issues by splitting
rare words into subwords, it only relies on character n-grams co-occurrences and rarely generates
morphologically sound segmentations [Church, 2020]. When pre-tokenizing text on whitespace,
tokens beginning a word bear a special mark “_”; without pre-tokenization, a whitespace will
occur before each word start [Kudo and Richardson, 2018, Wolf et al., 2020]. This means that
prefixations and suffixations are not treated equally, with two issues for prefixations: (i) even if
segmented correctly, the base and derivation will not share any representation (e.g. “_collision”
vs. “_pré collision”; Hofmann et al., 2021); (ii) most likely, the derived term will be over-
segmented, as the occurrences of the base in word-internal position are too rare to warrant a
dedicated vocabulary entry (e.g. “collision”). For our running example, précollision is split as
“_préc oll ision”20. Unlike suffixations which are often reasonably well segmented and share
representations with their base (e.g. “_collision neur”).

Figure 6 shows that prefixed terms suffer from this BPE tokenization more than suffixed forms

19Doing so for polylexical terms would require more caution, because of syntactic divergences between EN and FR.
20Note that these three tokens are not meaningful morphemes in French.
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and have a much higher word fertility.21 Furthermore, in the same figure, we show that word
fertility is negatively correlated with EM. For example, BLOOM fails to predict téléconsultation
(segmented as “_tél éc ons ult ation”, although “_consultation” has a dedicated token).

7. Derivational Morphology

Large Language Models (LLMs) constitute a workhorse of modern Natural Language Processing
applications, owing to their unprecedented ability to generate syntactically correct, semantically
coherent, and pragmatically relevant utterances, responses to a wide array of queries, in a growing
number of languages. As recent studies have shown, during their training process, LLMs also
acquire some sort of morphological abilities, e.g., to generate inflected forms for known and
unknown lemmas [Weissweiler et al., 2023] – at least when they follow regular morphological
patterns (see also Hofmann et al., 2020, Mortensen et al., 2024). These abilities extend even to
previously unknown languages, given that some examples of the targeted patterns are provided in
the prompt [Tanzer et al., 2024, Zhang et al., 2024]. Such morphological knowledge is essential
to achieve good performance in constrained (e.g., Machine Translation) as well as unconstrained
text generation applications. The ability to manipulate and recombine substrings and to handle
unknown word forms can be attributed to the use of subword vocabularies, e.g., relying on Byte
Pair Encoding (BPE; Gage, 1994, Sennrich et al., 2016).

_a _use r _of _tiktok
"a user of tiktok"

_tiktok er

"tiktoker"
LLM

_un follow _on _tiktok
"unfollow on tiktok"

_un tiktok

"untiktok"
LLM Prefixation

Suffixation

Figure 7: In BPE tokenization, marking word-initial tokens with “_” hinders the generation of
prefixed forms (e.g., “_un tiktok”), as they do not share any token with their base
(e.g., “_tiktok”). Identical tokens are highlighted in the same color.

In this contribution, we show that if BPE-based tokenizers enable morphological generalization,
they do not handle all morphological processes equally well. The reason, we claim, is that BPE
marks word-initial substrings with a special character “_”, to make tokenization reversible [Kudo
and Richardson, 2018].22 Therefore, suffixed and prefixed forms are handled differently: once
tokenized, suffixed forms such as “tiktoker” may share a subword with their base “tiktok”,
implying also some semantic similarity. Crucially, this cannot happen with prefixed forms like
21Fertility is the number of tokens in a given form; for polylexical terms, we define word fertility as the maximum

fertility over words occurring in the term.
22Equivalently, Sennrich et al. [2016] marked intra-words with “@@”, e.g., “tiktok @@er”. Marking the end of words

instead of their start would hinder suffixations. The issue is identical for all subword tokenizers that we are aware
of: BPE, Unigram [Kudo, 2018], and WordPiece [Wu et al., 2016], as they all mark word-initial substrings to
make tokenization reversible. A similar case is made by Hofmann et al. [2021] about WordPiece, as discussed
in Section 2. We simply focus on BPE as it has now been widely adopted by all modern LLMs (e.g., GPT-4,
[OpenAI, 2023]; Llama-3, [Llama Team, 2024]; and Gemma, [Gemma Team, 2024]).
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“untiktok”, which, even assuming a morphologically plausible tokenization “_un tiktok”, are
represented using a distinct token “tiktok”, unrelated to the base “_tiktok” (see Figure 7;
Hofmann et al., 2020).23

We present here experiments that highlight this problem in a very controlled setting. For this,
we consider two regular affixation processes in English and French: negative prefixations (e.g., EN

“un-”, FR “in-”) and adverbial suffixations (e.g., EN “-ly”, FR “-ment”). As both processes apply
to adjectives, we can compare on a fair basis the capacities of LLMs to generate prefixations and
suffixations of the same set of lexemes. Our experiments include both attested adjectival bases and
nonce words. We find, across several LLM families and sizes, that (i) LLMs often fail to derive
new words via prefixation compared to suffixation; (ii) the cases where prefixation is successful
may be explained by the alignment between word-initial and word-internal embeddings of the
same string (e.g., when “_tiktok” ≈ “tiktok” in the embedding space), which is dependent
on the model size and amount of pretraining data; (iii) this tendency can be mitigated with
in-context learning (ICL), especially with a consistent selection of ICL examples; (iv) the issue
disappears when using a morphological segmentation, which leads to near-perfect accuracy, for
both prefixations and suffixations.

Derivational Morphology is central to the structure of the lexicon, so as to move away from
the arbitrariness of the sign [De Saussure, 1916, Lieber, 2010, Corbin, 2012b]. Affixation is
cross-linguistically the most common process that human languages use to derive new lexemes
[Štekauer, 2012, Goethem, 2020]. For example, Turkish’s -li attaches to nouns to make personal
nouns (e.g., şehir ‘city’ → şehirli ‘city dweller’); Chinese’s -xué attaches to nouns to make
nouns meaning ‘the study of X’ (e.g., dòngwù ‘animal’ → dòngwùxué ‘zoology’); Samoan’s
fa’a- attaches to nouns to make verbs meaning ‘make X’ (e.g., goto ‘sink’ → fa’agoto ‘make
sink’, Lieber, 2010). In this paper, we study English and French as mere examples to motivate
our finding about BPE, which formally applies to any text in any language. Regular affixation
processes are routinely used to form neologisms, new lexemes or terms, either in everyday
conversations or in specific domains [Daille, 2017, Cartier et al., 2018].

Formally, prefixation operates at the beginning of a lexeme (e.g., “untiktok”), whereas suffix-
ation applies at lexeme’ ends (e.g., “tiktoker”). This implies, as discussed above, that the two
types of derivative will be handled differently by subword tokenizers. Affixation may additionally
cause phonological or graphemic change(s), resulting in variation (allomorphy) in the surface
realization of some lexemes [Lieber, 2010]. This is another cause of possible divergence between
the tokenization of a base and a derived lexeme. In our experiments, we make sure to only
consider cases of purely concatenative affixations,24 as in the above examples, to isolate the
tokenization challenge from other segmentation issues. In English and French, other differences,
not developed here, between prefixation and suffixation are that the latter tends to play a more
syntactic role (e.g., converting adjectives to adverbs with “-ly”) while the former holds a more
semantic role (e.g., negating adjectives with “un-”).

23Word-internal tokens only make their way to the tokenizer’s vocabulary if supported by enough prefixed forms in
the training corpus; otherwise, such derivatives are over-segmented, e.g., “_un tik t ok”.

24This means that valid morphological segmentations will always be either “<prefix> <base>” for prefixations or
“<base> <suffix>” for suffixations.
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8. Derivation Methods

Lang. Affix Definition

EN un- Not <base>
FR in- Qui n’est pas <base>

EN -ly In a <base> manner
FR -ment D’une manière <base>

Table 5: Affixations and associated definition templates

8.1. Definition to Word Generation

To measure differences in the way suffixations and prefixations are handled by LLMs, we consider
the simple morphological task of generating a lexeme from its definition, framed here as a text-to-
text problem [Brown et al., 2020, Raffel et al., 2020]. Given the definition of a lexeme (e.g., “a
user of tiktok”), an LLM is prompted to generate the derivative (e.g., “tiktoker”), cf. Figure 7.
Models are prompted in the same language as the definition (<def>) and the target lexeme, i.e.
(i) EN: “<def> defines the term :”; (ii) FR: “<def> définit le terme :”. The expected
continuation is the derived form. Definitions always include the base lexeme and unambiguously
correspond to either a prefixed or a suffixed derivative (Table 5).

8.2. In-Context Learning

LLMs can further generalize to such tasks by leveraging In-Context Learning. Our early results
suggested that LLMs were not too sensitive to the exact prompt formulation, but mostly leveraged
ICL examples, consistently with prior work (e.g., Zebaze et al., 2024). We thus use five ICL
examples in each prompt, formatted as above, separated by the three characters ###, which serve
as end-of-sequence signal. Here is an example from the ADJ-EN dataset, using a single ICL
example: “Not pluvial defines the term : unpluvial ### Not lightfast defines the term :” (the
model should generate “unlightfast”).

We limit the number of ICL examples to five to keep a reasonable input length.25 We compare
two ICL selection methods: (i) Random sampling, examples can be either a prefixation or
a suffixation; (ii) Morphological: sampling only prefix (resp. suffix) for prefix (resp. suffix)
generation tasks.

8.3. Large Multilingual Models

We conduct experiments with three model families: BLOOM [BigScience et al., 2023], CroissantLLM-
1.3B [Faysse et al., 2024], and Llama-2-7B [Touvron et al., 2023], including various sizes for
BLOOM, ranging from 560M to 7.1B parameters. All models are multilingual and cover EN

25Early experiments suggest that the difference between prefixes and suffixes is only stronger with fewer examples.

21



and FR to different degrees: BLOOM is highly multilingual, trained on 46 natural languages;
CroissantLLM is bilingual, trained on an equal share of EN and FR; Llama-2 is mostly trained on
EN (89.70%) but does include some FR (0.16%).

8.4. Segmentation

We compare two segmentation strategies:
(i) BPE, used by all studied LLMs. Keeping the same example as above, the base and derived

word are tokenized as follow by BPE (for BLOOM but beginning of words are always marked by

BPE, regardless of the LLM):
pluvial _pluv ial

unpluvial _un pl uv ial
Notice how the derived word does not include the tokens of its base.
(ii) Morphological segmentation, where we enforce that derived words in the ICL samples

share tokens with their base by adding an extra space to the affix. In that case, the output is
expected to be also space separated. For example:

un pluvial _un _pluv ial

8.5. Controlled Datasets

Dataset Base Prefixation Suffixation

ADJ-FR démontable indémontable démontablement
ADJ-EN lightfast unlightfast lightfastly
PSEUDO-FR géniable ingéniable géniablement
PSEUDO-EN orionful unorionful orionfully

Table 6: Examples of a base and its derivatives for each dataset

We perform controlled experiments, where each base has one derived prefixation and suffixation.
We study two regular affixations that apply to adjectival bases: (i) negative prefixations (EN: “un-”,
FR: “in-”); (ii) adverbial suffixations (EN: “-ly”, FR: “-ment”), paired with the definitions listed in
Table 5, e.g.: (i) “Not lightfast” → “unlightfast”; (ii) “In a lightfast manner” → “lightfastly”.

We experiment with two sets of bases, in each language: (i) ADJ, attested adjectives from
MorphyNet [Batsuren et al., 2021], which is built upon Wiktionary; (ii) PSEUDO, pseudo-words
generated with UniPseudo [New et al., 2024] (see examples for each dataset in Table 6). As
explained above, we restrict ourselves to purely concatenative affixation and avoid allomorphy
phenomena using “morphotactic” rules described in Appendix E. MorphyNet has fewer samples
in FR than EN, and FR morphotactics are more strict, so ADJ-FR contains 2,313 adjectival bases,
i.e. 4,626 derived words (one prefixation and suffixation per base), while ADJ-EN contains 14,455
bases. Pseudo-adjectives are generated with UniPseudo, using a character n-gram model trained
with attested adjectives. In each language, we first generate 5,000 nonce words of 𝐿 letters, for
𝐿 ∈ J6, 12K. After filtering these with morphotactic rules, we obtain PSEUDO-FR (comprising
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Figure 8: Exact match scores for prefixes vs. suffixes for four datasets (attested adjectival bases
and pseudo-words, EN and FR; plotted with different shapes), three model families and
four BLOOM model sizes ranging from 560M to 7.1B parameters (plotted with different
sizes), according to ICL examples and segmentation method (different colors). Most
points are above the line 𝑦 = 𝑥, because suffixes are better generated than prefixes.

8,507 bases) and PSEUDO-EN (29,177 bases). The datasets are equally and randomly split in
ICL-test splits, without overlap between bases.26

9. Derivation Results

9.1. Prefixations vs. Suffixations

Figure 8 displays our main results on the four datasets with three different model families:
BLOOM, CroissantLLM-1.3B, and Llama-2-7B (detailed scores are in Table 13 in Appendix F).
We use Exact Match (EM), also known as accuracy to evaluate generation [Cotterell et al.,
2016]. Clearly, with standard BPE segmentation, suffix generation is overall far superior to prefix
generation (e.g., 26.2 EM for prefixes vs. 56.0 for suffixes, with BLOOM-7.1B on FR attested
adjectives; above the 𝑦 = 𝑥 line). Errors in prefixations also include cases of morphotactically

26See Appendix D for implementation details and github.com/PaulLerner/neott for code and data.

23

https://github.com/PaulLerner/neott


incorrect forms, with the generated prefixes containing extraneous letters, dashes, or spaces (e.g.,
“incgrandiose”, “in-onirique”, or “in cognitive”, with BLOOM-7.1B on FR attested adjectives).
We also find that prefixes are sensitive to the choice of ICL examples: selecting only prefixes
(resp. suffixes) for prefix (resp. suffix) prediction helps to reduce the gap (green vs. orange
dots). This finding is consistent with Hofmann et al. [2024] who find that LLMs generalize
through analogies rather than rules. We finally observe that Llama outperforms BLOOM and
CroissantLLM for this task.

Morphological segmentation, on the other hand, solves the initial- vs. intra-word tokenization
issue and yields near-perfect accuracy, for both prefixes and suffixes and all models (blue vs.
green dots).27 Figure 8 shows that even small versions of BLOOM, with 560M or 1.1B parameters
(small dots), achieve near-perfect accuracy for prefixes with a morphological segmentation, when
the corresponding Exact Match score was close to zero with BPE segmentation. BLOOM-7.1B
is still able to correctly generate some prefixed form, probably due to its larger number of
parameters. These results are consistent on the four datasets, i.e., for both attested adjectival
bases and pseudo-words, in EN and FR.

9.2. Initial- vs. Intra-word Alignment

In this section we ask: how is it possible at all for BPE-based models to generate prefixations? We
argue that, like for suffixations where the model simply needs to copy the base (e.g., “_tiktok”)
and append a suffix (e.g., “er”),28 for prefixations the model first needs to generate the prefix (e.g.,
“_un”) then an intra-word token whose representation is close to that of the base (e.g., “tiktok”),
therefore to model the similarity between the two tokens (e.g., “_tiktok” ≈ “tiktok”).

We find that, when a string has dedicated embeddings respectively covering word-initial and
word-internal occurrences (e.g. “_like” and “like” or “_vraisemblable” and “vraisemblable”),
both are often aligned, i.e., close in the embedding space. To evaluate this, for each pair pairs
of vocabulary units of the form (_𝑥, 𝑥) made of a word-initial and a matched word-internal
vocabulary entry, we compute the cosine similarity of _𝑥 with all existing word-internal entries
and measure the ability to retrieve the matched entry 𝑥 with Precision@1 (P@1). Depending on
the model, we find P@1 values ranging from 71.9 to 83.0, reported in Table 7. These values are
well correlated with the EM scores for prefixes reported above (for the four BPE-based BLOOM
models, we find Pearson 𝑟 = 0.639, 𝑝 < 0.01, across the four datasets).

This finding is consistent with Itzhak and Levy [2022], who find that word embeddings encode
the string of characters that compose it; and Tytgat et al. [2024] who find that word embeddings
are sensitive to surface similarities (e.g. edit distance).

Figure 9 shows that alignment increases with the number of tokens seen in training: for
CroissantLLM, P@1 increases from 55.2 (after 300B tokens) up to 71.9 after 3T (again correlated
with EM scores of prefixes of BPE-based models with Pearson 𝑟 = 0.338, 𝑝 < 0.05, across the
four datasets). Therefore, gigantic amounts of data are used to implicitly learn an alignment that

27Note that, while suffixations can always be tokenized by BPE as “<base> <suffix>” (e.g., “_lightfast ly”),
the optimal tokenization (according to BPE) may not necessarily preserve the base (e.g., “_light fastly”). This
explains why morphological segmentation also improves suffixation results.

28Empirically, we find across all models and datasets that BPE-based models tend to copy the base tokens at a 63%
rate in average when generating suffixations.
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could be made explicit using morphological segmentation.

Model # Pairs # Intra P@1

CroissantLLM-1.3B 3,771 14,296 71.9
BLOOM-7.1B 13,365* 111,326 76.3
Llama-2-7B 5,272 15,590 83.0

Table 7: Alignment between embeddings of word-initial types and the corresponding word-
internal variant, for three models. *BLOOM’s vocabulary contains a lot of noise so we
evaluate only on fully Latin strings (matching [A-Za-z]), otherwise P@1 would drop to
65.4.
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Figure 9: Alignment between embeddings of word-initial types and the corresponding word-
internal variant for various checkpoints of CroissantLLM, according to the number of
tokens used in training (in trillions).

10. Conclusion

Neologism translation is a challenge for standard MT systems that rely on parallel data. We pro-
pose a first effort to leverage definitions to accurately translate neologisms with Large Language
Models. We found that LLMs were, to some extent, able to generate terms from their definition.
Moreover, they can also combine the definition with the source term to translate it more accurately.
As these models rely on In-Context Learning, we proposed to retrieve co-hyponyms or terms
from the same derivation paradigm as the source term, which consistently improved results over
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two datasets covering 13 diverse domains. The more terms are neological, which we assess from
their corpus frequency, the more co-hyponyms retrieval improves performance.

However, we also pinpoint several limitations of these models: (i) they are sensitive to the
similarity of source and target terms, either superficial or morphological; (ii) they rely on BPE
tokenization, which is not morphologically sound and therefore impacts performance, especially
for prefixations. This first limit is likely to be persistent but should be controlled in future work.
The second limit, however, may be tackled using morphological segmentation [Smit et al., 2014,
Batsuren et al., 2022] or character-based models [Cherry et al., 2018, Wang et al., 2024].

Our models may prove useful to enrich thesauri (e.g., providing suggestions to FranceTerme’s
translators and lexicographers). Another obvious application is terminology-constrained MT
[Semenov et al., 2023], with challenging research questions, especially for document-level MT,
where one must find the right balance between terminological consistency and variation. Finally,
in our future work we would also like to study the translation of terms in a more dynamic
settings, considering new derivatives or complex noun phrases as they are coined or proposed
to denote novel concepts in emerging research works. The latter category, which generalize our
”syntagmatic compounds” , in particular, is likely to pose difficult translation problems, due to the
opaqueness of the semantic relationships between their subparts.

11. Limitations

11.1. On Translation

Our study is limited to a single language pair, namely EN-FR, which, however, is highly demanding
of such technology.29 Moreover, French has a strong tradition of scientific writings as well as
scientific terminology, as a large body of literature was published in French until a decline in the
mid-20th century [Bacaër, 2019, Larivière and Riddles, 2021] and higher education is given in
French. This is not the case for many low-resource languages due to a general tendency, observed
in many countries, to use English for higher education, or for which scientific terminology simply
does not exist [Gordin, 2015].

Furthermore, we conduct extensive experiments on EN-FR and find our results to be consistent
across two datasets and 13 diverse domains. Our method could be extended to other languages
with a tradition of scientific writing, e.g., Russian, Chinese, or German [Céspedes et al., 2024].
In the latter case, we could leverage multilingual thesauris such as IATE [Zorrilla-Agut and
Fontenelle, 2019]). It would be particularly interesting to study other morphosyntactic processes
than those of Section 4. We also plan to study the FR-EN direction, which is especially relevant for
humanities and social sciences, where a large body of work is still published in French. However,
many concepts in humanities are culture-dependent and challenging to translate.

As a first step to study definition-to-term generation, we assume that the definition of the term
is available. In future work, we plan to extract definitions on the fly from source documents [Jin
et al., 2013, Head et al., 2021, August et al., 2022, Huang et al., 2022]. Because of FranceTerme,
experiments of Sections 6.2 and 6.3 were conducted with definitions in French (the target

29Both France and Québec are pushing to disseminate scientific findings in multiple languages. See, e.g., Second
French Plan for Open Science [Vidal, 2021].
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language). However, we provide additional results in Appendix A with TERMIUM definitions
machine-translated from English. Our findings of Sections 6.2 and 6.3 are consistent with these
machine-translated definitions.

Studying neologisms in necessarily a race against the clock. We find that some terms in
FranceTerme and TERMIUM already appear in large corpora such as OSCAR (cf. Section 6.4).
However, most terms of FranceTerme appear less than 100 times in a 46 billion words corpus
(i.e. 2× 10−9 frequency). We recommend future work to conduct a similar analysis and focus on
the performance on these rare terms. Our ICL method significantly improves performance on
low-frequency terms. Also note that terms recorded in a thesauri show institutionalization, which
is a step towards lexicalization [Hohenhaus, 2005]. Finally, we find that very frequent terms are
indeed neologisms but have gone through semantic change. We plan to better assess this latter
phenomenon by studying diachronic corpora [Ryskina et al., 2020].

11.2. On Morphology

We study only two languages: English and French. However, we focus on a formal issue of the
BPE method, which would be identical for any text and therefore any language. We assume that
this caveat would affect only more strongly less-resourced languages.

We are limited to one prefixation and one suffixation per language. This restriction was
inevitable to allow stratified data generation (Section 8.5): the chosen negative prefixations and
adverbial suffixations are very regular in English and French, both can be applied to any adjective.
However, formally, the affixation process is identical regardless of the actual affix, be it -ly, -ation,
or -ical.

Hofmann et al. [2021] had already pointed out the issue of marking beginning of words
with WordPiece (instead of BPE), and also proposed to fix it by leveraging morphological
segmentation. However, we propose a new framework (generation instead of classification) and
provide additional analysis to understand the phenomenon through in-context learning (Figure 8),
alignment of initial- and intra-word embeddings (Table 7), and amount of pretraining data
(Figure 9). Additionally, we conduct extensive experiments on three different LLM families,
while Hofmann et al. [2020, 2021] only use BERT [Devlin et al., 2019].

We propose to use morphological segmentation to solve the issue with the BPE tokenizer.
This, however, is easier said than done: BPE has the advantage of being language-agnostic
and therefore allows transfer learning between languages within a multilingual language model.
In contrast, we are not aware of a morphological segmentation method that could be applied
to all languages. It would most likely require a language identification pipeline followed by
language-specific segmentation.
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A. Machine-Translated Definitions

In the main text, experiments of definition-augmented translation (Sections 6.2 and 6.3) were
conducted with French definitions, the target language, as it is the only language available in
FranceTerme. We provide here additional results for TERMIUM, which includes both French
and English definitions. This enables us to study a more general setting, where we do not assume
that a French definition exists.

For this, we automatically translate English definitions into French using TowerInstruct-7B-v0.2
[Alves et al., 2024], and reproduce the experiments of Section 5 with these machine-translated
definitions.30

We find the results of Sections 6.2 and 6.3 to be consistent with these machine-translated
definitions, as reported in Table 8: (i) definition-augmented translation (DEF+TERM) improves
term translation (TERM); (ii) the co-hyponym and derivation paradigm strategies improve over
random sampling and domain strategies.

30Using the tower_instruct_0_shot configuration as instructed in https://github.com/deep-spin/tower-eval.
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Setting ICL EM F1

TERM Random 27.5 47.7
TERM Domain 29.6 49.7
TERM Paradigm 36.3 55.4
DEF Random 6.2 23.4
DEF Domain 6.4 23.2
DEF Co-hyponyms 8.2 25.7
DEF+TERM Random 29.2 50.4
DEF+TERM Domain 29.8 50.8
DEF+TERM Fusion 36.6 57.0

Table 8: Results of BLOOM-7.1B on the TERMIUM test set with machine-translated defini-
tions. Results are broken down by ICL selection strategy, like in Table 2: (i) random
(baseline); (ii) domain (baseline); (iii) derivation paradigm (not applicable to DEF); (iv)
co-hyponyms (not applicable to TERM); (v) fusion of the latter two. Best overall results
are bolded while best results in settings TERM and DEF are underlined. Results in setting
TERM are copied from Table 2.

B. Frequency and Neology

In addition to the analysis of Section 6.4, Table 9 displays random examples of terms for each
decile, which accurately reflects the feeling of neology. After the 7th decile, i.e. 1,000 occurrences,
the neological feeling is weaker. Note that pas, the most frequent term, is a semantic neologism
from the electronics domain and relates to the distance between two adjacent interconnection
lines in an integrated circuit. However, pas has many different meanings, including as negation
adverb “not”, which covers most of its occurrences.

C. Morphosyntactic Classification

We build a multi-label classifier for four of the five classes defined in section 4: prefixation,
suffixation, neoclassical or native compounding. For the fifth (syntagmatic compounding), we
rely on a simple heuristic: the number of words segmented by spaCy. If there are several words,
we consider the term to be a syntagm.

To detect these four morphological processes, we use FastText’s architecture [Joulin et al.,
2017], which provides a linear classifier for character sequences, represented by the set of words
and character n-grams found in them. This classifier is trained in a one-versus-all fashion,
equivalent to a binary classifier for each class.

In this section, we describe in more detail the data used to train and evaluate this classifier.
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Decile Term Occurrences

min classification semi-dirigée 0
“semi-supervised classification”

0.1 moment d’exécution 0
“timing”

0.2 stellarateur 2
“stellarator”

0.3 horloge à fontaine atomique 7
“atomic fountain clock”

0.4 sondage au limbe 22
“limb sounding”

0.5 sauvetage côtier sportif 74
“surf life saving”

0.6 planche nautique 273
“aquatic board”

0.7 effet de rebond 1,052
“rebound effect”

0.8 embardée 4,327
“nudging”

0.9 clonage 45,680
“cloning”

max pas 232,506,256
“pitch”

Table 9: Random examples of terms from FranceTerme according to their frequency in a large
corpus, one per decile

C.1. Datasets

We build a training and evaluation set from the MorphyNet etymological databases [Batsuren
et al., 2021] and the one used for the SIGMORPHON 2022 shared task [Batsuren et al., 2022],
both extracted from English Wiktionary.31 We combine the two databases because they contain
complementary information: SIGMORPHON contains native compoundings but only provides
morphological segmentation, while MorphyNet provides the base of all words and differentiates
between prefixation and suffixation.

However, these two databases share the same shortcoming: they do not consider neoclassical
compounds, which are found mixed in with affixations. To differentiate between them, we use a
simple heuristic: if all morphemes in a word are categorized as affixes within MorphyNet, then

31https://en.wiktionary.org/
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none of them are free, so it is a neoclassical compound.
Our algorithm is recursive for decomposing complex words (with more than two morphemes).

For example, bidirectional will be decomposed into bi+directional (prefixation) and directional
will in turn be decomposed into direction+al (suffixation). Bidirectional will therefore inherit
these two labels.

C.2. Implementation

Statistics from the English and French lexicons are in Table 10, which confirm that native com-
pounds are much rarer in French. We also note that neoclassical compounds are less systematically
annotated in French than in English, perhaps because MorphyNet and SIGMORPHON come from
English Wiktionary. We also show how the different processes combine in Table 12. Derived
terms are often prefixed and suffixed at the same time, which is impossible for neoclassical
compounds, by construction.

These lexicons are randomly divided into training (80%), validation (10%), and test (10%) sets.
We train one model for each language. Monomorphemes (inflected or not) are kept and serve as
negative examples for all classes during training.

FastText hyperparameters are determined automatically on the validation set using the fastText
Python library. For both languages, we find it optimal to use character n-grams for 𝑛 ∈ J3, 6K.

C.3. Results

Results on the test set are in Table 11. The classifier is very accurate and has very good recall,
with the exception of native compounds in French which are under-represented, due to their rarity,
and for which recall is modest. To a lesser extent, recall for neoclassical compounds is lower
in French than in English, due to their under-representation in SIGMORPHON, as mentioned
above.

Process # EN # FR

Native 45,463 2,854
Neoclassical 32,766 7,583
Prefixation 190,305 96,721
Suffixation 217,404 155,169

Table 10: Number of words in our English and French morphological classification corpora for
each process independently
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English French

P R F1 P R F1

Native 95.3 93.0 94.1 89.7 66.3 76.2
Neo. 93.4 91.4 92.4 92.2 87.2 89.6
Pre. 91.5 91.3 91.4 93.8 93.5 93.6
Suff. 93.2 93.3 93.2 97.4 98.0 97.7

Overall 92.7 92.4 92.5 95.9 95.7 95.8

Table 11: Precision (P), Recall (R) and F1 for multi-label morphological classification, in English
and French

D. Implementation Details

D.1. LLM Implementation

LLMs are implemented in the transformers library [Wolf et al., 2020] itself based on pytorch
[Paszke et al., 2019]. LLMs are quantized in 8 bits for effective inference on a single V100 GPU
with 32GB of RAM. We use greedy decoding.

D.2. mBART Fine-tuning on SciPar

mBART is implemented with fairseq [Ott et al., 2019]. It is fine-tuned with a single NVIDIA
RTX A6000 GPU with 48GB of RAM. It uses a batch size of 4,096 samples and accumulates
gradients for 4 steps. Early stopping is done according to the validation BLEU score [Peng et al.,
2024].32

D.3. Corpus frequency

For the analysis of Section 6.4, we compute corpus frequency (case insensitive) using Aho-
Corasick’s algorithm [Aho and Corasick, 1975, Wu et al., 2012], implemented in the pyahocorasick
Python library.33

E. Rules of Morphotactics

The following rules were used to create controlled datasets pairing a base (e.g., “lightfast”)
with a prefixed derivative (e.g., “unlightfast”) and a suffixed derivative (e.g., “lightfastly”; see
Section 8.5).

32SacreBLEU signature [Post, 2018]:
nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1

33https://pyahocorasick.readthedocs.io
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Native Neo. Pre. Suff. # EN # FR

207,074 118,811
✓ 109,353 90,646

✓ 91,115 35,646
✓ ✓ 88,349 60,307

✓ 17,191 3,508
✓ ✓ 9,677 3,640
✓ ✓ 5,593 432
✓ ✓ ✓ 0 0

✓ 34,425 2,162
✓ ✓ 5,552 353
✓ ✓ 808 115
✓ ✓ ✓ 4,373 221
✓ ✓ 138 1
✓ ✓ ✓ 100 2
✓ ✓ ✓ 67 0
✓ ✓ ✓ ✓ 0 0

Table 12: Number of words in our English and French morphological classification corpora for
each process combination

For English (i) The base should not start with “un” to avoid a double negation. (ii) The base
should not end with:

• “y” because it would then have to be substituted by “i” (as in “easy” → “easily”);

• “le” because it would be deleted (as in “noble” → “nobly”);

• “ll” because the suffix would then be “-y” instead of “-ly” (as in “full” → “fully”) ;

• “ic” to avoid allomorphy with the suffix“-ally” (as in “allergic” → “allergically”).

For French (i) The base should not start with:

• “i” to avoid a double negation;

• “b”, “l”, “m”, “n”, “p”, or “r” to avoid allomorphy with the “i-” prefix (also respectively
written “il-”, “im-”, or “ir-”), as in “irréaliste”.

(ii) The base should end with an “e” so that the “-ment” suffixation is morphotactic (e.g., avoid
impossible words like “*absentment”) and orthographic (e.g., adverbs are often formed on the
feminine adjectival form that ends with an “e”: “amicalement” and not “*amicalment”).
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Model Dataset Random ICL + BPE Seg. Morph. ICL + BPE Seg. Morph. (ICL + Seg.)

Prefix Suffix Prefix Suffix Prefix Suffix

CroissantLLM-1.3B

ADJ-EN 0.196 0.581 0.836 0.842 0.988 0.988
ADJ-FR 0.047 0.356 0.371 0.754 0.991 0.947
PSEUDO-EN 0.265 0.651 0.811 0.866 0.987 0.980
PSEUDO-FR 0.045 0.285 0.367 0.586 0.978 0.961

Llama-2-7B

ADJ-EN 0.715 0.812 0.949 0.879 0.990 0.999
ADJ-FR 0.549 0.565 0.889 0.717 0.994 0.990
PSEUDO-EN 0.792 0.802 0.943 0.900 0.997 0.997
PSEUDO-FR 0.597 0.390 0.868 0.523 0.988 0.988

BLOOM-560M

ADJ-EN 0.105 0.477 0.561 0.771 0.998 0.996
ADJ-FR 0.005 0.230 0.055 0.457 0.970 0.993
PSEUDO-EN 0.077 0.556 0.535 0.772 0.996 0.992
PSEUDO-FR 0.002 0.141 0.028 0.275 0.969 0.981

BLOOM-1.1B

ADJ-EN 0.154 0.412 0.595 0.696 0.995 0.996
ADJ-FR 0.063 0.166 0.280 0.285 0.978 0.985
PSEUDO-EN 0.175 0.632 0.578 0.783 0.962 0.951
PSEUDO-FR 0.037 0.087 0.254 0.217 0.981 0.981

BLOOM-3B

ADJ-EN 0.251 0.663 0.796 0.860 0.998 0.995
ADJ-FR 0.132 0.448 0.556 0.635 0.994 0.987
PSEUDO-EN 0.298 0.663 0.759 0.785 0.997 0.995
PSEUDO-FR 0.106 0.292 0.516 0.470 0.988 0.981

BLOOM-7.1B

ADJ-EN 0.488 0.724 0.893 0.879 0.999 0.998
ADJ-FR 0.262 0.560 0.655 0.746 0.995 0.996
PSEUDO-EN 0.625 0.799 0.873 0.868 0.999 0.998
PSEUDO-FR 0.278 0.435 0.670 0.585 0.998 0.994

Table 13: Numbers in Figure 8

F. Complete Results

Table 13 reports the scores that are plotted in Figure 8.
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