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SHARP TOTAL VARIATION RATES OF CONVERGENCE
FOR FLUCTUATIONS OF LINEAR STATISTICS OF β-ENSEMBLES

JÜRGEN ANGST, RONAN HERRY, DOMINIQUE MALICET, AND GUILLAUME POLY

Abstract. In this article, we revisit the question of fluctuations of linear statistics of beta
ensembles in the single cut and non-critical regime for general potentials V under mild regularity
and growth assumptions. Our main objective is to establish sharp quantitative Central Limit
Theorems (CLT) for strong distances, such as the total variation distance, which to the best
of our knowledge, is new for general potentials, even qualitatively. Namely, setting µV the
equilibrium measure, for a test function ξ ∈ C 14, we establish the convergence in total variation
of Xn =

∑n
i=1 ξ(λi)− n〈ξ, µV 〉 to an explicit Gaussian variable at the sharp speed 1/n. Under

the same assumptions, we also establish multivariate CLTs for vectors of linear statistics in
p−Wasserstein distances for any p ≥ 1, with the optimal rate 1/n, a result which already in
dimension one sharpens the speed of convergence established in the recent contribution [26] as
well as the required regularity on the test functions. A second objective of this paper, in a more
qualitative direction, is to establish the so-called super-convergence of linear statistics, that is
to say the convergence of all derivatives of the densities of Xn uniformly on R, provided that
ξ ∈ C∞(R) and is not too degenerated in some sense.
As far as quantitative results are concerned, our approach shares similar tools with the latter
reference as we also rely on Stein’s method and integration by part formalism provided by the
Dyson generator L. Nevertheless, we adopt a different and innovative strategy which consists
in proving that, up to centering, the above linear statistics Xn can be written in the form
LFn +Zn where Zn is some small remainder and Γ[Xn, Fn] converges to some constant as direct
consequences of the law of large numbers. We emphasize that this approach bypasses the costly
requirement of the invertibility of the Markov operator which is central in Malliavin-Stein’s
method and seems robust enough to be implemented for various models of Gibbs measures. On
the qualitative side, the proof of the super-convergence of densities, for its part, is a consequence
of the existence of negative moments for the carré du champ of linear statistics, associated with
integration by parts techniques.
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1. Introduction and statement of the results

1.1. Overview of our contributions. Given a parameter β > 0 interpreted as an inverse
temperature, the β-ensemble, with n particles associated with a continuous potential V : R→ R
such that lim infx→±∞ V (x)− log|x| > 0, is the Gibbs probability distribution on Rn associated
with the energy

Hn(λ) :=
∑
i<j

log
1

|λi − λj |
+ n

∑
i

V (λi).

Namely, the β-ensemble is the probability measure

(1.1) P(dλ) = Pn,β(dλ) :=
1

Zn,β
e−βHn(λ)dλ,

1
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where Zn,β :=
∫

e−βHndλ is the partition function, and dλ stands for the Lebesgue measure on
Rn. In this paper, we establish both qualitative and quantitative Central Limit Theorems (CLT)
for linear statistics of β-ensemble, which are random variables of the form

Xn :=
n∑
i=1

ξ(λi)− n
∫
ξdµV , n ∈ N,

for some non-constant test function ξ : R→ R satisfying some mild regularity assumptions, where
µV is the so-called equilibrium measure, and where the random vector (λ1, . . . , λn) is drawn from
the Gibbs measure P.

Our first main results quantifies precisely the fluctuations of such linear statistics under mild
assumptions on the potential V and the test function ξ. Whenever V ∈ C 7(R) is semi-convex,
regular, and that we are in the single-cut regime (see Assumption 1 below), we indeed obtain a
CLT for linear statistics, in both total variation and p−Wasserstein distances (1 ≤ p <∞), with
the following rates:
• (Theorem 1.2) If ξ ∈ C 14(R), we obtain the optimal rate 1

n .
• (Theorem 1.1) If ξ ∈ C 6(R), we obtain the almost optimal rate 1

n1−α for all α > 0.
• (Theorem 1.3) If ξ ∈ C 1,γ(R) with γ ∈ (0, 1), we obtain an explicit rate of convergence
depending on the Hölder exponent γ.

Our bounds in p−Wasserstein distance are furthermore obtained in the multivariate case. In fact,
we obtain precise rates of convergence, with explicit upper bounds involving n, β and norms of
derivatives of ξ. This could allow for limit theorems with varying temperature and/or with a
test functions ξ also depending on n.

Our next main result Theorem 1.4 is of qualitative nature and show that the convergence in law
of a linear statistic to a Gaussian automatically upgrades to a very strong form of convergence.
Namely, if the potential V and the test function ξ are of class C∞ and if the latter is not
degenerate is some sense, then (Xn) super-converges to a Gaussian (see Section 1.3.3 below for
definition of the super-convergence). Informally it means that the density of (Xn) converges in
the C∞-topology to that of a Gaussian. In particular, it entails that the convergence of linear
statistics holds in relative entropy.

1.2. Motivations. The β-ensembles, also known as 1d-log gas, are related to random matrix
theory. We refer to the monographs [33, 20] for details on the subject, as well as [36] for a
broader introduction to Coulomb gases. Indeed, in the case β ∈ {1, 2, 4} and V (x) = x2, the
corresponding β-ensemble describes the joint law of the spectrum of an n× n random matrix
whose density is proportional to exp(−βn

4 TrV (M))dM , where dM is the Haar measure on the
sets of symmetric, hermitian, or symplectic matrices respectively. The observation that certain
β-ensembles relate to eigenvalues of Gaussian ensembles goes back at least to [17].
The spectral macroscopic properties of large Gaussian matrices first observed by [41], actually
extend to more general β-ensembles, and it is by now well-understood, see for instance [33, Thm.
11.1.2], that

1

n

n∑
i=1

ξ(λi)
a.s−−−→

n→∞

∫
ξdµV ,

where the non-random equilibrium measure µV is the unique minimizer of the mean-field energy

IV (µ) :=

∫
V dµ− 1

2

∫∫
log|x− y|µ(dx)µ(dy).

In this article, our goal is to study the fluctuations associated with the above “law of large
numbers”, with different motivations that we detail below.
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1.2.1. Sharp quantitative Central Limit Theorems. The seminal work of [24] shows that, in the
matrix case and under suitable assumptions on the potential V and the test function ξ, the
fluctuations of

∑n
i=1 ξ(λi) around the value n

∫
ξdµV are Gaussian. The quantitative aspect of

this convergence has attracted a lot of attention in the last decade: i) in [13], total variation
bounds are provided in the matrix case via second order Poincaré inequalities; ii) in [3], still in
the matrix case, near optimal rates of convergence are derived for Kolmogorov distance; iii) for
general β-ensembles, polynomial rates of convergence are obtained for 2−Wasserstein distance in
[26] using a variant of Stein’s method due to Meckes. However, in the last reference, the rates
obtained are at most O(n−2/3+ε) for general potential and of near optimal order O(n−1+ε) only
in the quadratic case. Our primary motivation in this work is to derive total variation estimates,
which is a much stronger distance than the Wasserstein ones, but also to get optimal rate of
convergence of order O(n−1). We also provide sharp rates of convergence in Wasserstein metric
in both univariate and multivariate settings, and our findings require less regularity on the test
functions than previous results on this question, see [26, 5].

1.2.2. Implementing a robust Stein’s approach for β-ensembles. Historically, Stein’s method [38]
has proved its remarkable efficientcy to obtain quantitative CLTs in strong probabilistic metrics
such as total variation or relative entropy. Despite numerous applications to various probabilistic
models such as: (a) Erdös–Rényi random graphs [35]; (b) infinite-dimensional Gaussian fields
[32]; (c) Poisson point processes [34]; (d) free probability [19]; to the best of our knowledge,
Stein’s method to study β-ensemble has only been implemented in [26, 21], through a variant due
to Meckes [30], which in this context consists in approaching linear statistics by infinite sums of
approximate eigenvectors of the Dyson generator. This demanding task requires strong regularity
assumptions on the test function ξ and prevents one to both get optimal rates and to handle
total variation metric. A second motivation for this works is to develop a Stein’s method for
β-ensembles, sufficiently robust and general to be possibly applied to other models in statistical
physics involving Gibbs measures.

1.2.3. Super-convergence phenomenon. For sums of independent and identically distributed
random variables, due to the convolution structure and provided the common law has some
small initial regularity, the regularity in fact improves along the classical CLT. In particular, it is
possible to reinforce the classical convergence in law to the get the C∞ convergence of densities,
see [28]. This particular behavior also appears in the free CLT [8], from which the terminology
of super-convergence proceeds. Recently, three of the authors have revisited this regularization
phenomenon on Wiener chaoses [23] and for quadratic forms [22]. In the setting of β-ensembles,
despite the linear nature of the statistics in consideration, no convolution structure arises due to
the interaction between the particles. Establishing better-than-expected limit theorems in this
dependent setting serves as the third motivation of this article.

1.3. Statement of the main results. Let us now precise our assumptions, fix our notations
and state formally our main results.

1.3.1. Assumption and notations. In the rest of the paper, we will always assume that the
potential V satisfies the following conditions. Note that the latter are classical, in particular they
coincide with the assumptions in [26].

Assumption 1. The potential V and associated equilibrium measure µV are such that
• (Smoothness) V ∈ C 7(R).
• (Single-cut) The equilibrium measure µV is supported on the interval ΣV := [−1, 1].
• (Semi-convexity) infR V

′′ > −∞.
• (Regularity) The measure µV has a positive density with respect to the semi-circle law.

Recall that the measure µV is here the unique minimizer of the mean-field energy IV . In
particular, it satisfies the Euler–Lagrange equation, for some constant CV ∈ R:

V (x)−
∫

log(|x− y|)µV (dy) = CV , ∀x ∈ ΣV .
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Under the above assumptions, the equilibrium measure µV admits a density with respect to the
semi-circular law µsc(dx) := 2

π

√
1− x21[−1,1](x)dx, namely setting ρ(dx) := dx

π
√

1−x2

µV (dx) = S(x)µsc(dx), where S(x) :=
1

2

∫ 1

−1

V ′(x)− V ′(y)

x− y
ρ(dy).

As already mentioned, our main objective is to provide (multivariate) qualitative and quantitative
CLTs for linear statistics of β-ensembles. We consider test functions ξ1, . . . , ξd : R→ R and we
define the random vector X = (X1, . . . , Xd) by

Xk :=

n∑
i=1

ξk(λi)− n
∫
ξkdµV , 1 ≤ k ≤ d.

For such a vector X, as n goes to infinity, following Equations (1.10) and (1.11) in [26], the
candidate limiting mean m = (mi)1≤i≤d and covariance matrix C = (ci,j)1≤i,j,d are given by

mi :=

(
1

2
− 1

β

)[
ξi(−1) + ξi(1)

2
−
∫

ΣV

ξi(x)ρ(dx)− 1

2

∫
Σ2
V

S′(x)

S(x)

ξi(x)− ξi(y)

x− y
ρ(dy)µsc(dx)

]
,

cij :=
1

2β

∫
ξi(x)− ξi(y)

x− y
ξj(x)− ξj(y)

x− y
(1− xy)ρ(dx)ρ(dy).

The above matrix C is well-defined as soon as the ξi’s are 1/2-Hölder continuous. We shall see
in Section 4.1.1 below that C is indeed a covariance matrix as soon as

(1.2) 1, ξ1, . . . , ξd are linearly independent.

For an open set U ⊂ R, we write C r(U) for the space of r times continuously differentiable
functions on U with bounded derivatives. We endow it with the Banach norm

‖ξ‖C r(U) := max
r′≤r

sup
x∈U
|ξ(r′)(x)|.

When ξ = (ξ1, . . . , ξd), we also write

‖ξ‖C r(U) =
d∑

k=1

‖ξk‖C r(U).

We write indifferently |·| for the absolute value of a real number, the Euclidean norm of a vector,
or the Euclidean norm of a square matrix, also known as its Hilbert–Schmidt norm. For a square
symmetric matrix A, we write ‖A‖op for its operator norm, that is its largest singular value.
Given two random variables X and Y , the p−Wasserstein distance is

Wp(X,Y ) := inf
{
E
[
|X ′ − Y ′|p

]
: X ′

law
= X,Y ′

law
= Y

}
.

The Wasserstein distances only depends on X and Y through their respective laws but we
favor a probabilistic notation more suited for the approximation theorems we establish. The
p−Wasserstein distance induces a topology corresponding to convergence in law together with
convergence of the p-th moment [39, Thm. 6.9]. We also work with the total variation distance
of real-valued random variables

TV(X,Y ) := sup{P[X ∈ B]−P[Y ∈ B] : B Borel}.

Let us finally define

Aβ :=

(
1

β
‖C1/2‖op|C−1|‖N‖Lp +

∣∣∣∣12 − 1

β

∣∣∣∣‖C1/2‖op
)

;

aβ :=

(
1

β

1

σ2
+

∣∣∣∣12 − 1

β

∣∣∣∣√π2
)
.
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1.3.2. Quantitative CLT in total variation and Wasserstein distances. We can now state our main
results concerning the quantitative behavior of the fluctuations of linear statistics of β-ensembles.
The following bounds are optimal or nearly optimal depending on the regularity of the test
functions.

Theorem 1.1. Let us fix 1 ≤ p < ∞ and α > 0. There exists Kp,α > 0 such that for all test
functions ξ1, . . . , ξd ∈ C 6(R) satisfying (1.2), we have, with N a standard Gaussian in Rd

Wp(X,C
1/2N +m) ≤ Kp,αAβ

‖ξ‖C 6(R) + ‖ξ‖2C 2(R)

n1−α .

In the univariate case d = 1, with σ :=
√
c11 and m = m1, we also have

TV(X,σN +m) ≤ K1,αaβ
‖ξ‖C 6(R) + ‖ξ‖2C 2(R)

n1−α .

Assuming more regularity on the test functions, we obtain an optimal rate of convergence.

Theorem 1.2. For 1 ≤ p <∞ and α > 0, there exists Kp,α > 0 such that for all test functions
ξ1, . . . , ξd ∈ C 14(R) satisfying (1.2), we have, with N a standard Gaussian in Rd

Wp(X,C
1/2N +m) ≤ KpAβ

‖ξ‖C 14(R) + ‖ξ‖2C 7(R)

n
.

In the univariate case d = 1, with σ :=
√
c11 and m = m1, we also have

TV(X,σN +m) ≤ K1aβ
‖ξ‖C 14(R) + ‖ξ‖2C 7(R)

n
.

We also prove a theorem for functions of lower regularity. For γ ∈ (0, 1), we write ξ ∈ C 1,γ(R),
provided ξ ∈ C 1(R) and it satisfies

‖ξ‖C 1,γ(R) := ‖ξ‖C 1(R) + sup
x 6=y

|ξ′(x)− ξ′(y)|
|x− y|γ

<∞.

Theorem 1.3. Let ξ ∈ C 1,γ(R) for some γ ∈ (0, 1). Setting σ :=
√
c11 and m = m1, and for

any a < γ
6+γ , we have

TV(X,σN +m) ≤ Kaaβ
‖ξ‖C 1,γ(R)

na
.

1.3.3. Super-convergence. We now turn to our qualitative results and the reinforcement of the
mode of convergence is the smooth case. We say that a sequence (Xn) super-converges to a
non-degenerate Gaussian N ∼ N (m,σ2) with density ϕm,σ2 provided that, for all r ∈ N, there
exists n0 ∈ N such that for n ≥ n0, the law of Xn admits a density ϕn ∈ C r(R), and

lim sup
n→∞

‖ϕn − ϕm,σ2‖C r(R) = 0.

Regarding linear statistics, we obtain that convergence in law can easily be upgraded to super-
convergence. For α > 0, we say that ξ ∈ C 1(R) is α-regular provided that

Leb(x ∈ Rd : |ξ′(x)| ≤ ε) . εα.
It is in particular true for any polynomial function ξ.

Theorem 1.4. Let ξ ∈ C∞(R) be α-regular such that (Xn) converges in law to a Gaussian
variable N ∼ N (m,σ2). Then, (Xn) super-converges to N .
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1.4. Comparison with existing results.

1.4.1. Gaussian fluctuations for linear statistics. The mathematical study of fluctuations of linear
statistics around their equilibrium starts with the seminal work [24]. His method consists in
writing the Laplace transform of a linear statistics as the ratio of a partition function associated
with a perturbed potential by that associated with the initial potential. Interestingly, the
perturbation involves the so-called master operator, noted ΘV in the sequel, see section 3.1
for precise definition. This operators plays also a central role in our approach. The method
developed in [24] has been continued in [25, 37, 9, 10] to obtain qualitative CLT with increasing
levels of generality, allowing, for instance, results in the multi-cut regime. All the above results
require the potential V to be analytic. Using the same approach on the Laplace transform, [5]
proves a CLT when V ∈ C 5(R) and ξ ∈ C 3

c (R). To the best of our knowledge, these are the
best results available regarding the regularity of V and ξ. In contrast, we obtain a CLT for
V ∈ C 7(R) but allowing to lower the regularity to ξ ∈ C 1,γ(R). Our results are also limited to
the single-cut case. We stress that in the multi-cut regime, non-Gaussian fluctuations are known,
and additional compatibility conditions on ξ are required to ensure a CLT. We also mention [6]
that derives a CLT for linear statistics at all meso-scales, that is for linear statistics where the
particles are rescaled by a factor n−α for α ∈ (0, 1). Even if our main result allows to recover
CLT at some meso-scale, we cannot reach their full range with our method.

1.4.2. Stein’s method and β-ensemble. To the best of our knowledge, the reference [26] is the first
to implement Stein’s method in the setting of general β-ensembles and to provide quantitative
bounds in 2−Wasserstein distance which are near optimal for V (x) = x2 but sub-optimal for
more general potentials. Their method works for linear statistics that are close to be eigenvalues
of the Dyson generator, and technically completing their requires, among others, the tour de
force of diagonalizing the so-called master operator. Relying on the concept of exchangeable
pairs which plays an important role in Stein’s method (see e.g. [30]), quantitative CLTs for linear
statistics of Haar distributed random variables on compact classical groups are established in
[16, 15] and later on, in the context of circular β-ensembles, in [40] where exchangeable pairs are
built through the n-dimensional circular Dyson Brownian motion. Finally, the contribution [21]
which builds upon the techniques given in [26] to provide quantitative (near optimal) CLTs in
the high temperature regime.

Let us also mention the seminal article [13]. There, the author introduced a variation around
Stein’s method, based on second-order Poincaré inequality in order to study fluctuations of
eigenvalues of matrices with random coefficients, possibly not identically distributed, whose
distributions admit suitable densities. It is somewhat complicated to compare the results there
with ours, simply because for general potentials V we cannot a priori interpret β-ensembles as
spectrum of random matrices with independent coefficients. Besides, [13, Thm. 4.2] obtains
convergence to a Gaussian of random variables of the form TrApnn where (An) are some random
matrices as above, and pn = o(log n). Note that, in comparison, in our context, it should be
possible to get CLTs for ξn(x) = xpn when pn grows polynomially although the models are pretty
different and only coincide for V (x) = x2.

We would like to point out that despite the aforementioned articles and ours being inspired by
the philosophy of Stein’s method, they strongly differ in the way Stein’s method is implemented.
Indeed, [26] relies on ideas coined in [30] using exchangeable pairs while our builds on a novel
refinement of the well established Malliavin Stein’s approach, which allows to handle random
variables which are not in the image of the underlying Markov generator. Indeed, whenever
X belongs to the image of L one can directly provide a Stein’s kernel by setting τ(x) =
E
[
Γ
[
X,−L−1X

]]
which fulfils the equation E [φ′(X)τ(X)−Xφ(X)] = 0. The great advantage

of this point of view is to control the total variation distance (among others) by E [|1− τ(X)|] but
it requires the costly assumption that L is invertible which is not true in general. To overcome
this obstacle, we notice that it is enough to show that X is near Im(Z) in the following sense:
X = LF + Z for Z small in probability. This simple remark, which is new to the best of our
knowledge, increases considerably the applicability of the above Malliavin-Stein’s approach and
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still enables to provide total variation bounds but is a priori not sufficient to build a Stein’s
kernel. While this being noticed, our strategy then consists in proving that any linear statistics
is close to the range of L, a step which proceeds from the invertibility of the master operator.
As a result, our findings thus refine those of [26] by providing optimal rates of convergence for
stronger metrics such as the total variation distance and we believe that our approach could
also be successfully implemented in the framework of circular β-ensembles and Haar distributed
matrices on compact groups.

1.4.3. Super-convergence. To the best of our knowledge, in the context of random matrices or
β-ensembles, the question of establishing convergence in metrics stronger than total variation
or Wasserstein distances has not been considered yet. We deploy here ideas that are classical
in the framework of Malliavin calculus and stochastic analysis and which merely consists in
establishing negative moments for the carré-du-champ operator applied to the considered linear
statistics. Then, relying on integration by parts techniques, we are able to prove strong forms of
convergence for the densities of the underlying sequences of random variables.

1.5. Outline of the proofs an plan of the paper. Let us give here more details on our
strategy of proof and on the plan of the paper.

1.5.1. The generator of the Dyson Brownian motion. The overall strategy behind our quantitative
and qualitative estimates leverage the characterization of the β-ensemble as the unique invariant
distribution of the Dyson Brownian motion. Namely, consider the generator of the Dyson
Brownian motion

(1.3) L = Ln,β,V =:= ∆− β∇H · ∇ =
n∑
i=1

∂2
λi
− βn

n∑
i=1

V ′(λi)∂λi +
β

2n

∑
i 6=j

∂λi − ∂λj
λi − λj

.

The operator L is the diffusive Markov generator canonically associated with the β-ensemble.
We have indeed the following characterization of the β-ensemble Gibbs measure P:

P̃ = P⇔
(
ẼLF = 0, ∀F ∈ C∞c (Rn)

)
⇔
(
Ẽ[FLG] = Ẽ[GLF ], ∀F,G ∈ C∞c (Rn)

)
.

The differential structure induced by L on Rn, technically called a Dirichlet structure, comes
with a carré du champ operator

Γ[F,G] := ∇F · ∇G, F, G ∈ C 1(Rn).

We have the following integration by parts formula

(1.4) E[Γ[F,G]] = −E[FLG], F, G ∈ C∞c (Rn).

1.5.2. Γ-Stein’s method for β-ensemble. At an informal level, the data of a diffusive Markov
generator generally combines well with Stein’s method to provide quantitative bounds for normal
approximation. Provided ker L is limited to constant functions, L is invertible on mean-zero
functions, and the celebrated Γ-Stein approach [32, 34, 1, 27], or Malliavin–Stein approach in
the setting of Gaussian fields or Poisson point processes, yields that the variance of Γ[X,−L−1X]
controls the Gaussian fluctuations of X, in total variation or Wasserstein distance. However, in
the case β-ensembles, the operator L is in general not invertible.
To overcome this difficulty, we amend the classical Γ-Stein approach. Intuitively, whenever
X = LF for some F , L−1X makes sense despite the non-invertibility of L. In this case, it is
natural to expect that Γ[X,−L−1X] = Γ[X,−F ] controls the Gaussian fluctuations of X. In the
next Section 2 and more precisely in Theorem 2.1 below, we formalize this intuition by proving
quantitative bounds for the normal approximation, in Wasserstein distance and total variation,
of random variables of the form X = LF +Z. Provided, Z is small and that Γ[X,−F ] is close to
a constant σ2, then X is close to a Gaussian with variance σ2. This theorem should not come as
a surprise to Stein’s method aficionados and its proof is rather straightforward. However, this
observation has, to the best of our knowledge, never been remarked and this “almost invertibility”
decomposition is precisely what allows us to provide an efficient proof. We stress that our bounds
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hold for generic abstract diffusive Markov generators and we believe it could prove useful in other
statistical physics models where the Gibbs measure has an explicit density.

1.5.3. The master equation. The next Section 3 of the paper consists in checking that the Dyson
generator is indeed in line with the global strategy developed in Section 2. In order to apply
our abstract bound, we need to show that our linear statistics X is of the form LF + Z. With
the notations of Section 3, using mostly algebraic manipulations together with the minimality
of µV with respect to the mean-field energy IV , we show, in Theorem 3.8, that whenever
F :=

∑n
i=1 f(λi) is a linear statistic, setting mf :=

(
1
2 −

1
β

)
〈f ′′|µV 〉 which is such that the term

in parenthesis below is asymptotically centered, we have

1

nβ
LF =

(
n∑
i=1

(ΘV f
′)(λi)− n

∫
(ΘV f

′)dµV −mf

)
+
Z

β
,

where Z is a quadratic (which should be thought as a remainder) term and ΘV is the so-called
master operator. In particular, under Assumption 1, ΘV is invertible in a neighborhood of [−1, 1].
Namely, there exists an open neighborhood U of [−1, 1], such that given ξ ∈ C 6(R), we can find
ψ ∈ C 5

c (R) and cξ ∈ R satisfying

(ΘV ψ)(x) = ξ(x) + cξ, x ∈ U.

Under Assumption 1, by [11] the (λi) enjoy a strong rigidity property, precisely recalled in
Theorem 3.3. Informally, the probability that the λi’s deviate from the grid given by the i/n-th
quantiles of µV is overwhelmingly small. Note that this rigidity phenomenon is also used in [26].
Thus up to paying a loss factor, that is negligible compared to our bound, we can assume that all
the λi’s are localized in the neighborhood U . By the master equation, choosing f any primitive
of ψ, we are thus left with establishing the quantitative CLT for the random variable

X =
1

nβ
LF − Z

β
,

which falls precisely under the scope of our Stein’s bound.

1.5.4. Controlling the carré du champ and the remainder. In Section 4, we concretely implement
our strategy and complete the proofs of our main results. We first establish the quantitative
statements, namely Theorem 1.1, Theorem 1.2 and Theorem 1.3. In view of our strategy, we
show that (nβ)−1Γ[X,−F ] is close to a constant and that (β)−1Z is small. We control the term
involving the carré du champ by relying on a simple yet remarkable property of the carré du
champ: it preserves linear statistics. Precisely, we have that

Γ
[∑

ϕ(λi),
∑

χ(λi)
]

=
∑

ϕ′(λi)χ
′(λi).

It follows that
1

n
Γ[X,F ] =

1

n

∑
ξ′(λi)f

′(λi).

By the convergence to equilibrium, the above quantity converges to
∫
ξ′f ′dµV . Using the

minimality property of µV , it can be shown that this last integral coincides with limiting
covariance given above. To derive quantitative bounds from there, we rely on a quantitative
convergence to equilibrium which also follows from the rigidity estimate from [11].
Handling the quadratic remainder Z is more tedious. We use Fourier inversion to decompose
Z into a product of linear statistics. By the aforementioned quantitative law, one of term goes
to 0 at a given rate while the other stays bounded. This allows us to conclude for the proof
Theorem 1.1. From there, Theorem 1.2 follows by a bootstrap argument: we essentially redo the
same proof but instead of using the sub-optimal quantitative law of large numbers provided by
[11], we use the CLT we just established that gives us a law of large numbers at speed 1/n. To
conclude for Theorem 1.3, we approximate ξ ∈ C 1,γ(R) by a sequence of smooth functional ξε
while choosing ε ' na, for a well-chosen a.
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1.5.5. Super-convergence. The proof of our qualitative result Theorem 1.4 is finally given in
Section 4.4. The derivation of the super-convergence relies on a lemma, classical in Dirichlet
forms / Malliavin calculus theory, stating that negative moments of Γ[X,X] control the Sobolev
norms of the density of X. We rely again on the fact that Γ preserves linear statistics. In this
precise case,

Γ[X,X] =
∑

(ξ′(λi))
2.

We obtain negative moments through a direct control on P
[∑

(ξ′(λi))
2 ≤ ε

]
.

2. Stein’s method for Markov diffusive operators

In order to carry out our program, we need to establish quantitative bounds in total variation for
random variables which are close in some sense to the range of a given Markov diffusive operator
L. To the best of our knowledge, the following estimates seem to be new in the well-studied area
of Malliavin–Stein’s method and are of independent interest. We stress that all the results of this
section are valid for any diffusive Markov operator L associated with Γ the so-called carré du
champ and P the invariant measure for L. We refer to [2] for definitions in this abstract setting.
Indeed, the only properties used in our proofs are the chain rule and the integration by parts
which hold in full generality. The cornerstone of our method relies on the following Theorem
which will proved in Section 2.3 based on the content of Sections 2.1 and 2.2.

In case of vector-valued random variables F and G, we extend our definition to the matrix-valued
carré du champ

Γ[F,G]ij := Γ[Fi, Gj ], i, j = 1, . . . , d.

Theorem 2.1. Take F1, . . . , Fd ∈ Dom L, Z1, . . . , Zd ∈ Lp, and X := (LF1 + Z1, . . . , LFd + Zd).
Let Σ be a positive symmetric matrix, C = Σ2 and N be standard Gaussian in Rd. Then, we have

Wp(X,ΣN) ≤ ‖Σ‖op‖N‖Lp‖id− Σ−1Γ[X,−F ]Σ−1‖Lp + ‖Σ‖op‖Z‖Lp

≤ ‖Σ‖op‖C−1‖‖N‖Lp‖C − Γ[X,−F ]‖Lp + ‖Σ‖op‖Z‖Lp .
(2.1)

Moreover, in the univariate case d = 1, setting σ = Σ11, we obtain

(2.2) TV(X,σN) = TV(σ−1X,N) ≤ 2

σ2
‖σ − Γ[X,−F ]‖L1 +

√
π

2
‖Z‖L1 .

2.1. Reminders on Stein kernels. Let us first recall important results regarding Stein kernels.
Here we work on a general probability space (Ω,W,P). Given a multivariate random variable
X = (X1, . . . , Xd), we say that a matrix-valued random variable τ , measurable with respect to
X, is a Stein kernel for X provided

E[X · ∇ϕ(X)] = E
[
τ · ∇2ϕ(X)

]
, ϕ ∈ C∞(Rd).

Heuristically, Stein kernels are relevant for normal approximation, since X is a standard multi-
variate normal variable if and only if it admits τ = id as a Stein kernel. A key observation at the
heart of Stein’s method are the following quantitative normal approximation inequalities.

Lemma 2.2 (Stein kernel bounds [27, 18, 31] ). Let X = (X1, . . . , Xd), let N be a standard
normal variable on Rd, and τ be Stein kernel for X.

(i) Let p ∈ [1,∞). If X ∈ Lp(Ω), then

Wp(X,N)p ≤ E[|N |p]E[‖τ − id‖p].

(ii) In the univariate setting d = 1, we have

TV(X,N) ≤ 2E[|τ − 1|].
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2.2. Computations of Stein kernels on Im L. The celebrated Malliavin–Stein method [32]
puts forward a strikingly efficient way to compute a Stein kernel for sufficiently smooth functionals
of an infinite-dimensional Gaussian field.

Lemma 2.3. Take F1, . . . , Fd ∈ Dom L. Let X := (LF1, . . . , LFd), and define the matrix-valued
random variable τ = (τij), where

τij := E[Γ[Xi,−Fj ] |X], i, j = 1, . . . , d.

Then, τ is a Stein kernel for X.

Proof. Take ϕ ∈ C∞(Rd). Then, using the integration by parts, and then the chain rule, we get

E[X · ∇ϕ(X)] =
l∑

i=1

E[LFi∂iϕ(X)] = −
∑
i,j

E[∂ijϕ(X)Γ[Fi, Xj ]].

This concludes the proof in view of the definition of a Stein kernel. �

Combining Lemmas 2.2 and 2.3, we obtain the following Γ-Stein bound.

Theorem 2.4. Take F1, . . . , Fd ∈ Dom L, and X := (LF1, . . . , LFd). Then

Wp(X,N)p ≤ E[|N |p]E[‖id−Γ[X,−F ]‖p].
Moreover, in the univariate case d = 1, we find

TV(X,N) ≤ 2E[|1− Γ[X,−F ]|].

Remark 2.5. The classical approach on the Wiener space relies on the invertibility of the generator
of the Ornstein–Uhlenbeck process. In this case, it is known that

τij := E
[
Γ[Xi,−L−1Xj ] |X

]
, i, j = 1, . . . , d,

is a Stein kernel for X ∈ L2(Ω) with EX = 0. This strategy has also been applied in the
setting of other diffusive Markov generators with discrete spectrum, see for instance [1, 27]. This
actually could be further generalized to any diffusive Markov generators that is invertible away
from constants. Note that, the generator of the Dyson Brownian motion L is in general not
invertible, in particular it is a priori not true that a given linear statistics belongs to the range of
L. Therefore, we need to extend the above techniques for random variables not belonging to the
range of L which is precisely the object of the next section.

2.3. Normal approximation away from Im L. Given X, finding F such that LF = X is a
demanding task. Indeed as already mentioned, L may be not invertible. Nevertheless, as we
now demonstrate, the bounds obtained by the Stein’s method can be amended in order to cover
the case where X is close to the range of L that is to say of the form X = LF + Z with small
perturbation Z.

Proof of Theorem 2.1. We first prove the claim in the case Σ = id, and then explain how to
handle the case of general non-degenerate covariance. For the upper bound (2.1), by the triangle
inequality, we have that

Wp(X,N) ≤Wp(LF,N) + Wp(LF, LF + Z).

We apply Lemma 2.3 on the first term on the right-hand side. For the second term by choosing
the coupling (LF, LF + Z) in the minimization problem defining Wp, we see that

Wp(LF, LF + Z)p ≤ E[‖LF − LF + Z‖p] = E[‖Z‖p].
This concludes the proof of (2.1).
We now prove (2.2). Since, by the chain rule an integration by parts, we have

E
[
ϕ′(X)Γ[X,−F ]

]
= E[ϕ(X)LF ] = E[ϕ(X)X]−E[ϕ(X)Z],

we find that
E
[
ϕ′(X)−Xϕ(X)

]
= E

[
ϕ′(X)(1− Γ[X,−F ])

]
−E[ϕ(X)Z].
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Recalling that, by [32, Thm. 3.3.1],

TV(X,N) ≤ sup

{
E
[
ϕ′(X)

]
−E[Xϕ(X)] : ‖ϕ‖∞ ≤

√
π

2
, ‖ϕ′‖∞ ≤ 2

}
,

this concludes the proof in the case where Σ = id. Now we take an general positive, hence
invertible, covariance matrix Σ. On the one hand, by the stability of Wasserstein distances under
the Lipschitz map Rn 3 v 7→ Σv, we find that

Wp(X,ΣN) ≤ ‖Σ‖opWp(Σ
−1X,N).

Recall that ‖·‖op is the operator norm with respect to the Euclidean norm on Rn. On the other
hand, a routine computation yields

Γ[Σ−1X,−Σ−1F ] = Σ−1Γ[X,−F ]Σ−1.

Thus by (2.1), we get

Wp(X,ΣN) ≤ ‖Σ‖op‖N‖Lp‖id− Σ−1Γ[X,−F ]Σ−1‖Lp + ‖Σ‖op‖Z‖Lp

≤ ‖Σ‖op‖C−1‖‖N‖Lp‖C − Γ[X,−F ]‖Lp + ‖Σ‖op‖Z‖Lp .
(2.3)

Similarly, in the univariate case d = 1, we obtain the bound (2.2). �

3. The master equation for linear statistics

We now apply the content of the previous section to the specific operator L which is the generator
of the Dyson Brownian motion which was given in equation (1.3).

3.1. Notations and introduction of relevant operators. We show here that linear statistics
associated with β-ensembles can indeed be expressed in the form LF +Z thus making them good
candidates to apply our Theorem 2.1. For a more concise exposition of our results and proofs,
we adopt the following notations related to the empirical measure:

νn :=

n∑
i=1

δλi , and ν̄n := νn − nµV ;

µn :=
νn
n
, and µ̄n := µn − µV .

We will write 〈f |µ〉 for the integration of a function f against a measure µ. We consider the
following operators, acting on functions f ∈ C 2(R):

TV (f)(x) :=

∫
f(x)− f(y)

x− y
dµV (y) =

∫ ∫ 1

0
f ′((1− u)x+ uy)duµV (dy);

ΘV (f) := −V ′f + TV (f);

Tn(f)(x) :=

∫ ∫ 1

0
f ′′((1− u)x+ uy)duµn(dy) =

1

n

n∑
i=1

f ′(x)− f ′(λi)
x− λi

1x 6=λi + f ′′(λi)1x=λi ;

Θn(f) := −V ′f ′ + Tn(f).

To some extend, Tn and Θn are the empirical counterparts of TV and ΘV . Since µV is compactly
supported and since f is chosen C 2, the integrals above are all convergent. This shows in
particular that the operators TV and ΘV are well-defined. We recall an invertibility result for
ΘV taken from [5].

Lemma 3.1 ([5, Lem. 3.3]). There exists δ > 0, such that if U := (−1 − δ, 1 + δ), for all
ξ ∈ C 6(R), there exist a constant cξ and ψ ∈ C 5

c (R) such that

(ΘV ψ)(x) = ξ(x) + cξ, x ∈ U,(3.1)
‖ψ‖C 5(R) ≤ C‖ξ‖C 6(R).(3.2)

For the rest of the paper, we fix the margin δ > 0 and the associated neighborhood U given by
Lemma 3.1 above.
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Remark 3.2. (a) A slight variant of this invertibility result can be found in [4, Lem. 3.2].
(b) We do not assume [5, (H3)], however as noticed in this last reference, this assumption is not
used in the proof of [5, Lem. 3.3].
(c) Since we are in the single-cut case, with no singular density, with the notations of [5], we
have here k = 0 and m = 0.

3.2. The rigidity estimates and its consequences. Many ingredients in our proof proceed
from a rigidity result from [11] which is also used in [26].

Theorem 3.3 ([11, Thm 2.4]). Let ρ0 := −1, and ρj be the j/n-quantile of µV for j ∈ {1, · · · , n}.
Set ̂ := min(j, n− j + 1) and write (λ(j)) for the increasingly-ordered vector of λj’s. For any
ε > 0, there exist cε > 0 and Nε > 0 such that for all n ≥ Nε

(3.3) P
[
∃j ∈ [1, n] : |λ(j) − ρj | > ̂−

1
3n−

2
3

+ε
]
≤ exp(−ncε).

As anticipated, we repeatedly use in our proofs, the following corollary on the control of the
outliers. Philosophically, it allows us to work on U = (−1− δ, 1 + δ) and to discard the rest up
to accepting a negligible loss. The next result follows directly from the Theorem 3.3 and fact
that the locations (ρj)1≤j≤n belong to [−1, 1].

Lemma 3.4. There exists C > 0 and c > 0 such that for n large enough

(3.4) P

[
max

1≤i≤n
|λi| ≥ 1 + δ

]
≤ C exp(−nc).

Remark 3.5. Similar results are numerous in the literature: even with weaker assumptions on the
potential V than the ones in [11] for which the rigidity is not yet known, one can derive better
rate of convergence, such as exponential decay. Such exponential decay follows, for instance,
from the large deviations principle for the extreme positions, as in [9, Prop. 2.1]. Under strong
assumptions on the potential V , the reference [29, Lem. 4] offers an exponential decay with
an explicit dependence on δ, which, of course we do not need since our margin δ is fixed. See
also [12, Thm. 1.12] for similar a similar result under weaker assumptions in dimension greater
than two. As the rigidity estimate given by Theorem 3.3 is in fact used to quantify the speed
of convergence to equilibrium in the next Lemma 3.6 and since the associated bound (3.4) is
sufficient for our purpose, we have decided to use the rigidity also to control the outliers.

As proved in [26], Theorem 3.3 provides a polynomial speed of convergence to equilibrium.
Namely, they obtain the following lemma that we reproduce below for completeness.

Lemma 3.6 ([26, Lemma 5.3]). Let α > 0 and p ≥ 1. Then, there exists Kp,α > 0 such that for
any bounded and Lipschitz function f we have

(3.5) ‖〈f |µn − µV 〉‖Lp ≤
1

n1−αKp,α(‖f‖∞ + ‖f ′‖∞).

Remark 3.7. As we shall see below, our findings allow to upgrade the rate of convergence given
in Lemma 3.6 to get an optimal rate O(n−1) for regular enough test functions f .

3.3. The master equation. In relation to the Dyson generator L, the master operator ΘV

allows us to derive the following master equation, which is at the heart of our argument.

Theorem 3.8. Consider a test function f ∈ C 2(R) and define F := 〈f |ν̄n〉. Then, we have the
following decomposition

(3.6)
LF

n
=

2− β
2
〈f ′′|µn〉+ β〈ΘV f

′|ν̄n〉+
β

2
〈Tnf ′ − TV f ′|ν̄n〉.

Proof. Recalling the definitions of L and Tn, we get that
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LF

n
= 〈f ′′|µn〉 − β〈V ′f ′|νn〉+

β

2n

n∑
i 6=j

f ′(λi)− f ′(λj)
λi − λj

=
2− β

2
〈f ′′|µn〉 − β〈V ′f ′|νn〉+

β

2
〈Tnf ′|νn〉

=
2− β

2
〈f ′′|µn〉 − β〈V ′f ′|ν̄n〉+

β

2
〈Tnf ′|νn〉 − nβ〈V ′f ′|µV 〉.

(3.7)

Recall that the Euler–Lagrange equation for the minimality of µV with respect to the energy
reads, for some CV ∈ R:

V (x)−
∫

log(|x− y|)µV (dy) = CV , x ∈ ΣV .

Differentiating with respect to x leads to

V ′(x)−
∫

1

x− y
µV (dy) = 0, x ∈ ΣV .

From there, multiplying by f ′(x), integrating with respect to µV (dx), and symmetrizing yields

〈V ′f ′|µV 〉 =
1

2

∫
f ′(x)− f ′(y)

x− y
µV (dx)µV (dy) =

1

2
〈TV f ′|µV 〉.

Substituting the latter in (3.7), one gets

LF

n
=

2− β
2
〈f ′′|µn〉 − β〈V ′f ′|ν̄n〉+

β

2
〈Tnf ′|νn〉 −

β

2
〈TV f ′|nµV 〉

=
2− β

2
〈f ′′|µn〉 − β〈V ′f ′|ν̄n〉 −

β

2
〈TV f ′|nµV 〉

+
β

2
〈Tnf ′ − TV f ′|ν̄n〉+

β

2
〈Tnf ′|nµV 〉+

β

2
〈TV f ′|ν̄n〉.

(3.8)

By Fubini Theorem, we have that 〈Tnf ′|nµV 〉 = 〈TV f ′|νn〉. This gives

〈Tnf ′|nµV 〉 − 〈TV f ′|nµV 〉 = 〈TV f ′|ν̄n〉.

Plugging this equality in (3.8) leads to the announced result. �

4. Proofs of the main results

We now complete the proofs of our main results. Regarding quantitative normal approximation
for linear statistics of β-ensembles, we follow the strategy described in Sections 2 and 3, applying
the general quantitative bounds given by Theorem 2.1.

4.1. Proof of Theorem 1.1. We first give the proof of Theorem 1.1, which gives a near optimal
rate of convergence O(n−1+α) for all α > 0.

4.1.1. Handling the covariance. Let us recall the form of the limit covariance matrix C of the
linear statistics and let us first prove that it is invertible. Following [26, §4.1, in particular Eq.
(4.14)], we have

cij =
1

2β

∫
ξi(x)− ξi(y)

x− y
ξj(x)− ξj(y)

x− y
(1− xy)ρ(dx)ρ(dy) =: 〈ξi, ξj〉H 1/2 .

The bilinear symmetric form 〈ξi, ξj〉H 1/2 is not a scalar product, since 〈g, g〉H 1/2 = 0 if and
only if g is constant. Nevertheless, the matrix C := (cij) is a Gram matrix with respect to the
semi-scalar product 〈·, ·〉H 1/2 . Thus under the freeness condition (1.2), the matrix C is symmetric
definite positive, and we write Σ for its unique positive symmetric square root.
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4.1.2. Preparatory computations. We now use the master equation (3.6) to decompose the linear
statistics in a suitable form to apply Theorem 2.1.

Reduction to the case LF + Z. Let us consider ξ ∈ C 6(R), ψ ∈ C 5
c (R) associated with ξ through

Lemma 3.1 and let f be any primitive of ψ. We then have

ΘV f
′ = ξ + cξ +

(
ΘV f

′ − ξ − cξ
)
1R\U .

Since 〈1|ν̄n〉 = 0, and that suppµV ⊂ U , we find that

〈ξ|ν̄n〉 = 〈ΘV f
′|ν̄n〉+

n∑
i=1

1|λi|>1+δ(ΘV f
′ − ξ − cξ).

By Lemma 3.4, we have that∥∥∥∥∥
n∑
i=1

1|λi|>1+δ(ΘV f
′ − ξ − cξ)

∥∥∥∥∥
Lp

= ne−n
c
O
(
‖ξ‖∞ + ‖ΘV f

′‖∞ + 1
)
.

From the explicit expression of ΘV and (3.2), we find that

‖ΘV f
′‖∞ ≤ c(‖f ′‖∞ + ‖f ′′‖∞) ≤ c‖ψ‖C 5(R) ≤ c‖ξ‖C 6(R).

Combining those two estimates, and since 〈1|ν̄n〉 = 0, it is sufficient to establish our bound for
linear statistics of the form 〈ΘV f

′|ν̄n〉, where f ′ = ψ ∈ C 5
c (R) is associated with ξ ∈ C 6(R) by

Lemma 3.1. Thus, we now study

X :=
(
〈ΘV f

′
1|ν̄n〉, . . . , 〈ΘV f

′
d|ν̄n〉

)
.

By Theorem 3.8, we can then decompose X under the form

X = m+
1

n
LF + Z,

where m = (mi)1≤i≤d with mi := (1/2− 1/β)〈f ′′i |µV 〉 where Fi := 1
β 〈fi|ν̄n〉, and

(4.1) Zi :=

(
1

2
− 1

β

)
〈f ′′i |µn〉 −mi −

1

2
〈Tnf ′i − TV f ′i |ν̄n〉.

In the next section, we apply Theorem 2.1 to provide quantitative bounds.

Computation of Γ[X,−F ]. We repeatedly use the simple yet remarkable observation that linear
statistics are stable under the action of the carré du champ, namely

(4.2) Γ
[
〈ϕ|νn〉, 〈ψ|νn〉

]
= 〈ϕ′ψ′|νn〉, ϕ, ψ ∈ C 1(R).

Thus, we find that for 1 ≤ i, j ≤ d

(4.3) Γ

[
Xi,−

Fj
n

]
=

1

β
〈(ΘV f

′
i)
′f ′j |µn〉.

Heuristics. As a consequence of the convergence to equilibrium, µn → µV , we see that the sum
of the first two terms on the right-hand side in (4.1) converges to zero. Similarly, by Equation
(4.3), the term Γ[Xi,−Fj/n] converges to 1

β 〈ξ
′
if
′
j |µV 〉 which will be the limit covariance of

(〈ξi, ν̄n〉, 〈ξj , ν̄n〉). Relying on the expression of the limit variance given in [26] and by uniqueness
one must therefore have

cij = lim
n

Cov(〈ξi, ν̄n〉, 〈ξj , ν̄n〉) =
1

β
〈ξ′if ′j |µV 〉.

However, the determination of the asymptotics of all the terms involving the quadratic term
〈(Tn − Tv)f ′i |ν̄n〉 is more delicate. Indeed, the same heuristic on the convergence to equilibrium
shows that this term is of order o(n) whereas one would expect o(1). We handle this remainder
in two steps:
(i) We split the quadratic term in a product of linear terms, using Fourier inversion. Indeed
since f ′i ∈ C 5

c (R) is is in the image of the Fourier transform.
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(ii) We control each of the linear term as before using convergence to equilibrium. This is where
we need the finer quantitative estimates recalled in Lemma 3.6.

4.1.3. Quantitative control and completion of the proof. Le us now quantify the remainders
mentioned in the last Section.

Splitting the remainder by Fourier inversion. For simplicity, we omit the indices here and write
f for fi, 1 ≤ i ≤ d. Since f ′ ∈ C 5

c (R), we have

(4.4) |f̂ ′′(t)| ≤ 2
‖f (6)‖∞
(1 + |t|)4

, t ∈ R.

In particular, f̂ ′′ ∈ L1(R). By the Fourier inversion Theorem, one finds

〈(Tn − TV )f ′|ν̄n〉 = n

∫∫ ∫ 1

0
f ′′((1− u)x+ uy)(µn − µV )(dx)(µn − µV )(dy)

= n

∫
R

∫ 1

0
f̂ ′′(t)〈eitu•|µn − µV 〉〈eit(1−u)•|µn − µV 〉dudt.

(4.5)

By Lemma 3.6 applied to the exponential functions and by Hölder’s inequality, we have

n‖〈eitu•|µn − µV 〉〈eit(1−u)•|µn − µV 〉‖Lp ≤
1

n1−2α
K2
p,α(1 + |t|+ t2).

Thus, reporting in (4.5), and up to changing the constants from line to line, we find that

(4.6) ‖〈(Tn − TV )f ′|ν̄n〉‖Lp ≤
1

n1−2α
Kp,α

∫
R
|f̂ ′′(t)|

(
1 + |t|+ t2

)
dt ≤ 1

n1−2α
Kp,α‖f (6)‖∞.

Completion of the proof. We can finally complete the proof Theorem 1.1. Again, to simplify the
expressions, we omit the indices 1 ≤ i ≤ d. here. Recall the definition of the term Z given by
Equation (4.1). By Lemma 3.6 and the above Equation (4.6), we find that

‖Z‖Lp ≤
(

1

2
− 1

β

)
‖〈f ′′|µn − µV 〉‖Lp + ‖〈(Tn − TV )f ′|ν̄n〉‖Lp ≤

1

n1−αKp,α‖f ′‖C 5(R).

Introducing the random matrix

Cn(i, j) := 〈ξ′if ′i |µn〉,

we have by Equation (4.3) ∥∥∥∥ 1

β
C − Γ[X,−F/n]

∥∥∥∥
Lp

=
1

β
‖C − Cn‖.

Invoking Lemma 3.6 to control C − Cn yields, again with constants which may change from line
to line,

‖C − Cn‖Lp ≤ Kp,α
1

n1−α
(
‖ξ′‖∞‖f ′‖∞ + ‖ξ′‖∞‖f ′′‖∞ + ‖ξ′′‖∞‖f ′‖∞

)
≤ Kp,α

n1−α ‖ξ‖C 2(R)‖f‖C 2(R).

(4.7)

Since by Lemma 3.1, we have ‖f‖C 2(R) ≤ K‖ξ‖C 2(R), all the bounds above can thus be rewritten
only in term of the norm ‖ξ‖C 2(R). Injecting these estimates in the general upper bound given
by Theorem 2.1, we arrive at the announced result.
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4.2. Proof of Theorem 1.2. We now give the proof of Theorem 1.2, which gives an optimal
rate of convergence O(n−1) in the case where the test function ξ is sufficiently regular. We work
here in dimension d = 1 for simplicity, but the proof will extend verbatim to higher dimensions.

The strategy used in order to obtain the optimal rate of convergence consists in bootstrapping the
argument used in the previous proof of Theorem 1.1. Except that instead of invoking Lemma 3.6,
we use here a better law of large numbers provided by Theorem 1.1 itself. Namely, for ξ ∈ C 6(R),
taking α := 1/2 and using the p-Wasserstein bound for any p ≥ 1 given by Theorem 1.1, we have
that

‖〈ξ|ν̄n〉‖Lp ≤ Kp

(
‖ξ‖C 6(R)) + ‖ξ‖2C 2(R)

n1/2

)
+ ‖σN +m‖Lp ,

where N is a standard Gaussian and both the mean m = m1 and the standard deviation σ =
√
c11

are controlled by ‖ξ‖C 1(R), see Section 1.3.1 where their explicit expressions are given. This
shows that provided we can control the 6-th derivative, we can remove the polynomial loss in
the quantitative law of large numbers given by Lemma 3.6. At the level of the upper bound
(4.6), this implies that we have a t12 appearing in the integral, which leads to an upper bound
controlled by ‖ξ‖C 14(R). Similarly, in the upper bound (4.7), the right hand side now yields a
control of the form ‖ξ′‖C 6(R)‖f ′‖C 6(R) and concludes the proof.

As a result and as already mentioned in Remark 3.7, this argument implies that any polynomial
speed of convergence on the law of large numbers can be upgraded to the optimal speed 1

n , the
price to pay is to impose stronger regularity assumption on the test functions.

4.3. Proof of Theorem 1.3. We now show how Theorem 1.3 dealing with functions with Hölder
derivative easily follows from Theorem 1.1 together with Lemma 3.6.

Take η a smooth probability density supported on [−1, 1] with finite first moment. Defining
ηε := 1

εη(•ε ), and ξε := ξ ∗ ηε, we see by direct computations that

‖ξ − ξε‖∞ ≤ ‖ξ′‖∞ε
∫
|y|η(y),

‖ξ′ − ξ′ε‖∞ ≤ ‖ξ‖C 1,γ(R) ε
γ

∫
|y|γη(y).(4.8)

Thus by Lemma 3.6, for any α > 0, we have

‖〈ξ − ξε|ν̄n〉‖1 ≤ Kαε
γnα‖ξ‖C 1,γ(R).

Now we use the master equation (3.6) for the linear statistics ξε and we write:
LFε
n

=
2− β

2
〈f ′′ε |µn〉+ β〈Θvf

′
ε|ν̄n〉+

β

2
〈Tnf ′ε − TV f ′ε|ν̄n〉,

where Θvf
′
ε = ξε on the neighbourhood U . Mimicking the arguments developed in Section 4.1.2,

we thus have:
LFε
n

=
2− β

2
〈f ′′ε |µn〉+ β〈ξε|ν̄n〉+

β

2
〈Tnf ′ε − TV f ′ε|ν̄n〉+O

(
ne−n

c‖ξε‖C 6

)
.

As a result, we get
LFε
n

=
2− β

2
〈f ′′ε |µn〉+ β〈ξ|ν̄n〉+

β

2
〈Tnf ′ε − TV f ′ε|ν̄n〉+O

(
ne−n

c‖ξε‖C 6

)
+ 〈ξ − ξε|ν̄n〉.

Hence, we may decompose the linear statistics in the form 〈ξ|ν̄n〉 = mε + LFε
n +Zε as in the proof

of Theorem 1.1 with this time

mε :=

(
1

2
− 1

β

)
〈f ′′ε |µV 〉,

Zε :=
2− β

2
〈f ′′ε |µn − µV 〉+

β

2
〈Tnf ′ε − TV f ′ε|ν̄n〉+O

(
ne−n

c‖ξε‖C 6

)
+ 〈ξ − ξε|ν̄n〉.
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Gathering the bounds given in the proof of Theorem 1.1 and the above Equation (4.8), we then
obtain the following controls∥∥∥∥2− β

2
〈f ′′ε |µn − µV 〉+

β

2
〈Tnf ′ε − TV f ′ε|ν̄n〉

∥∥∥∥
1

≤ Kα

n1−2α

(
‖ξε‖C 6 + ‖ξε‖2C 2

)
,

‖〈ξ − ξε|ν̄n〉‖1 ≤ Kαε
γnα‖ξ‖C 1,γ(R),

‖Cε − Cn,ε‖Lp ≤
K

n1−α ‖ξε‖
2
C 2 ,

where Cε denote the limit variance associated with the linear statistic ξε and Cn,ε := 〈ξ′εf ′ε|µn〉
is the empirical analogue. By Equation (2.2) in Theorem 2.1, combined with the three above
bounds we may write for some constant Kα

(4.9) TV (〈ξ|ν̄n〉,mε + σεN) ≤ Kα

(
1

ε6n1−2α
+ εγnα

)
‖ξ‖C 1,γ(R).

In order to complete the proof, one needs to show that mε and σε converge towards m and σ
and to estimate mathbfTV (mε + σεN,m+ σN) as ε goes to zero. First of all, relying on the
explicit expressions of the limit means and variances, we have indeed as ε goes to zero

|mε −m| = O (‖ξε − ξ‖C 1) = O (εγ‖ξ‖C 1,γ ) , as well as |σε − σ| = O (εγ‖ξ‖C 1,γ ) .

Finally, using for instance Theorem 1.3 in [14], we derive that

TV (mε + σεN,m+ σN) ≤ Kεγ‖ξ‖C 1,γ .

Optimizing in the parameters in Equation (4.9), since α can be chosen arbitrarily small, we get
the announced bound of O(n−a) for any a < γ

γ+6 .

4.4. Proof of Theorem 1.4. We finally give the proof of Theorem 1.4 stating the super-
convergence of linear statistics of β−ensembles. If X denotes our linear statistics, the proof is
based on the fact that Γ[X,X] admit negative moments. This fact, combined with classical
integration by parts techniques indeed ensure the convergence of densities.

4.4.1. Control of the negative moments of Γ. Let us first establish the following lemma.

Lemma 4.1. Take ξ ∈ C 1(R) such that there exist α > 0 such that

Leb
(
x ∈ R : |ξ′(x)| ≤ ε

)
. εα, ε > 0.

Then, there exist γ > 0, such that for n large enough

(4.10) P

[
1

n

n∑
i=1

ξ′(λi)
2 ≤ ε

]
. εγn, ε > 0.

Proof of Lemma 4.1. To simplify the expressions in this proof, we set g := (ξ′)2 and m := 〈g|µV 〉.
We distinguish here two regimes depending on the magnitude of ε.

The large deviation regime. Take ε < 1
2m, then by the large deviations principle for β-ensembles

[36, Thm. 2.3] (originally proved in [7]), there exist c = cg > 0 such that, for n large enough

P[〈g|µn〉 ≤ ε] ≤ P
[
|〈g|µ̄n〉| ≥

m

2

]
≤ exp

(
−cn2

)
.

In this case, in the regime ε ≥ e−kn where k is some constant to be fixed later, we have

e−cn
2

= (e−kn)n
c
k ≤ εn

c
k .
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The free energy regime. Let us work in the regime ε ≤ e−kn, where we recall that we have the
freedom to choose k. By the explicit form of the density for the β-ensemble, we find that

P[〈g|µn〉 ≤ ε] ≤ P[g(λi) ≤ εn, ∀i ∈ [1, n]]

=
1

Zn,β

∫
Rn

n∏
i=1

1{g(λi)≤nε}e
−βHn(λ1,...,λn)dλ1 . . . dλn.

Thus applying Cauchy–Schwarz inequality and using the α−regular condition on ξ hence g, we
obtain

P[〈g|µn〉 ≤ ε] ≤
Z

1/2
n,2β

Zn,β
(nε)nα/2.

By the large deviations principle, see for example [36, Thm. 2.3], we know that

1

n2
logZn,β −−−→

n→∞
−β

2
IV (µV ).

In particular, there exists a constant a(β) such that

Z
1/2
n,2β

Zn,β
≤ en

2a(β).

As a result, we have
P[〈g|µn〉 ≤ ε] ≤ (nε)nα/2ea(β)n2

.

We can assume that a(β) ≥ 0 otherwise the claim is trivial. In this regime, we have

ea(β)n2 ≤ ε−a(β)n/k, nnα/2 ≤ ε−α/(2k) logn.

It follows that
P[〈g|µn〉 ≤ ε] ≤ εn(α/2−a(β)/k)−α/(2k) logn.

Choosing k large enough so that α/2 − a(β)/kr > 0 then yields and upper bound for the
probability of order εcn, for some c > 0. �

Recall that if X =
∑n

i=1 ξ(λi) is a linear statistics, then we have Γ[X,X] =
∑n

i=1 ξ
′(λi)

2. As a
result, given an exponent α > 0, we can write

E

[
1

Γ[X,X]α

]
=

∫
R+

P

[
1

Γ[X,X]α
> t

]
dt =

∫
R+

P

[
Γ[X,X] <

1

t1/α

]
dt.

As a result, the last Lemma 4.1 indeed ensures that Γ[X,X] admits negative moments.

4.4.2. Regularity and super convergence. The proof of Theorem 1.4 now follows from a well-known
integration by parts procedure see [22, §2.1], or [23, §3.2.2], for details. We only recall the first
part of the proof to highlight that, in the setting of β-ensemble, the correct quantities to control
are the negative moments of Γ[X,X]/n, and not those of Γ[X,X], as it is the case in [22, 23].
Take ϕ ∈ C 1

c (R) and write

(4.11) E
[
ϕ′(X)

]
= E

[
ϕ(X)

(
Γ[X,Γ[X,X]]

Γ[X,X]2
− LX

Γ[X,X]

)]
.

By Equation (4.2), we find that

Γ[X,X] = 〈(ξ′)2|νn〉, Γ[X,Γ[X,X]] = 2〈(ξ′)2ξ′′|νn〉.

As a result, as n goes to infinity, we have

Γ[X,Γ[X,X]]

Γ[X,X]2
→ 0.

Now in view of the master equation (3.6), we have the decomposition
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Γ

[
LX

n
,
X

n

]
=

2− β
2

1

n
〈ξ(3)ξ′|µn〉+

1

β
〈(ΘV ξ

′)′ξ′|µn〉

− 1

2β
Γ

[
〈(TV − Tn)ξ′|νn〉,

X

n

]
.

(4.12)

Using again the Fourier splitting, by the chain rule, dominated convergence, and (4.2), we find
that

Rn := Γ
[
〈(Tn − TV )ξ′|ν̄n〉, 〈ψ|µn〉

]
= i

∫
R
ξ̂′′(t)t

∫ 1

0
u〈eiu•ψ′|µn − µV 〉〈eit(1−u)•|µn − µV 〉dudt

+ i

∫
R
ξ̂′′(t)t

∫ 1

0
(1− u)〈eit(1−u)•ψ′|µn − µV 〉〈eitu•|µn − µV 〉dudt.

By Lemma 3.6, we then obtain that Rn → 0 in L2. By Lemma 2.3, this shows that LF/n
converges to a Gaussian with respect to W2. In particular, its variance is of order 1. Thus
re-writing, the last term in (4.11) as the product

LX

n

n

Γ[X,X]
,

the need to control the negative moments of Γ[X,X]/n is more obvious. It implies in particular
that for some constant C > 0 and any φ ∈ C 1 we have |E [φ′(X)]| ≤ C‖φ‖∞. This argument can
be iterated and for any p > 1 one would get similarly for n large enough that

∣∣E [φ(p)(X)
]∣∣ ≤

C‖φ‖∞. The latter combined with the convergence in law proved in Theorem 1.1 entails the
announced super-convergence, see [23] for more details.
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