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Highlights
CA-SegNet: A channel-attention encoder-decoder network for histopathological image segmenta-
tion
Feng He,Weibo Wang,Lijuan Ren,Yixuan Zhao,Zhengjun Liu,Yuemin Zhu

• A novel deep learning-based CA-SegNet model for histopathological image segmentation.
• A channel-attention feature fusion module (CAFFM) that significantly improves shallow feature reuse.
• A bottleneck-structured decoder developed for better feature integration.
• Outstanding segmentation performance on both large and small-scale datasets.
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A B S T R A C T
Histopathological image segmentation based on encoder-decoder architectures has emerged as a piv-
otal research area in medical image analysis. However, due to the irrelevant information within multi-
channel representations from the encoder, the coarse reuse of shallow features in skip connections
may burden the learning and even adversely affect the decoder. While various variants have been
developed to cope with this issue, the performance remains unsatisfactory. In this work, we propose a
novel encoder-decoder architecture named CA-SegNet to address the above issue more effectively and
achieve advanced histopathological image segmentation. Our novelty is twofold: firstly, a bottleneck-
structured decoder is developed to improve the integration of multi-channel feature representations,
and secondly, a sequence of channel-attention feature fusion modules (CAFFMs) are developed to
adaptively guide the reuse of fine-grained shallow features in skip connections while learning the
channel-wise dependencies. Experimental results on different publicly available histopathological
image datasets demonstrate that our CA-SegNet outperforms existing state-of-the-art methods on both
large and small-scale datasets.

1. Introduction
Histopathological image analysis is of great importance

and the gold standard to assist medical professionals in diag-
nosing many diseases (e.g., breast cancer [1–3], colon cancer
[4–6], and lung cancer [7–9]) and monitoring treatment
progress. It encompasses a wide range of tasks and needs,
where histopathological image segmentation is significant
since it presents details such as the shape, volume, and
location of lesion regions, which reveal necessary diagnostic
indicators to support clinical decisions. However, the main-
stream of this segmentation task lies in the manual effort of
well-trained experts, which requires plenty of workloads and
suffers observer confusion caused by interclass similarities
and intraclass differences. Thus, automatic segmentation
methods that establish computer-aided diagnosis systems
and produce accurate and reliable segmentation results have
been widely explored, particularly the methods based on
deep learning [10–14].

Deep learning methods, especially convolutional neural
networks (CNNs), have made remarkable progress and have
been experimentally demonstrated to maintain state-of-the-
art performance in computer vision tasks [15–19] (including
medical image analysis) since the incredible success made
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by the VGG model [20]. Specifically, in image semantic seg-
mentation, it is well known that the fully convolutional net-
work (FCN) [21] emerged as a pioneering solution for end-
to-end image segmentation, soundly outperforming existing
methods of the year. The torch of innovation was carried for-
ward by SegNet [22], which features a basic encoder-decoder
architecture and proposes the ingenious idea of max-pooling
indices-based up-sampling to save more boundary features.
The encoder with deep convolutional layers meticulously
extracts intricate spatial features of targets and acquires
local and global feature representations containing semantic
information through the increasing receptive field produced
by down-sampling. The complementary decoder integrates
the feature representations output from the encoder and
constructs the segmentation results (i.e., pixel-level masks),
where the feature resolution is recovered via several max-
pooling indices-based up-sampling.

Notably, the above-mentioned networks are developed
for non-medical image segmentation and have an inevitable
flaw, i.e., requiring large-scale datasets, which poses a
formidable challenge for medical usage since the latter
mostly involves small-scale datasets. Despite this flaw, the
field of medical image segmentation has flourished mainly
due to the remarkable potential unlocked by U-Net [23],
which constructs the standard encoder-decoder architecture
and proposes the groundbreaking and ingenious concept of
skip connections between the encoder and decoder to reuse
the fine-grained information in shallow features. U-Net is
customarily considered the de facto standard in medical
image segmentation due to its ability to achieve impressive
segmentation results with relatively small-scale datasets.
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Although the skip connections of U-Net preserve fine-
grained spatial information contributing to higher segmenta-
tion accuracy, the crude concatenation of shallow and deep
feature representations may diminish the positive effect of
these skip connections on network performance. This is be-
cause an intrinsic expression for the encoder to extract target
features involves the separation of the foreground from the
background through multi-channel feature representations
and then progressively attenuating the background activa-
tion. Thus, the features obtained from shallow layers con-
tain irrelevant information (e.g., background noise) within
multiple channels, and the irrelevant information increases
with the forward of the decoder (since the features reused
in the skip connection become shallower as the decoder
forwards, and these features keep stacking up). This property
burdens the learning of the decoder and even produces
side effects to segmentation results, thereby decreasing the
expected efficacy of skip connections. Moreover, the fine-
grained feature representations of different channels focus
differently on target features, which yields channel-wise de-
pendencies between these representations. The channel-wise
dependencies are essential in refining the integration ability
of the decoder, which is not considered in standard encoder-
decoder networks. While numerous efforts [24–26] have
been devoted to addressing the above issues, histopatholog-
ical image segmentation performance remains a large room
for improvement.

In this work, we explore a refined and effective atten-
tion mechanism to avoid the detrimental impact caused by
irrelevant information within multi-channel representations
of shallow features in skip connections. Specifically, we
propose a channel-attention encoder-decoder model (CA-
SegNet) for histopathological image segmentation. The net-
work encoder is built upon VGG16, which enables leverag-
ing ImageNet-trained parameters based on transfer learning
to avoid network overfitting. The decoder is designed with a
bottleneck structure having a better ability to integrate fea-
ture representations. A sequence of novel channel-attention
feature fusion modules (CAFFMs) that consider the channel-
wise dependencies and eliminate irrelevant information are
developed in skip connections. We validate the performance
of our CA-SegNet on two different histopathological image
segmentation tasks, i.e., breast cancer and colon cancer.

The main contributions of this paper are summarized as
follows:

• We propose a novel encoder-decoder architecture
called CA-SegNet incorporated with an elaborated
attention mechanism to achieve accurate histopatho-
logical image segmentation.

• We develop a CAFFM to guide the skip connection
between the encoder and decoder, which discredits
undesired information in multi-channel representa-
tions of the fine-grained shallow features. It utilizes
a weighted average pooling (WAP) method to sub-
tly compute channel scores according to the weights
of feature activation in each channel while learning

the channel-wise dependencies through a convolu-
tional scaling operation that produces refined channel-
attention coefficients.

• We design a bottleneck-structured decoder to inte-
grate multi-channel feature representations from the
encoder, where each convolutional unit constitutes
a bottleneck structure. It is more effective than the
standard decoder structure.

• We demonstrate the effectiveness of our CA-SegNet
and its superior performance compared to existing
state-of-the-art segmentation networks on two differ-
ent histopathological image datasets with large and
small scales.

The rest of this article is organized as follows. Section
2 gives a review of the related work. Section 3 describes
the proposed CA-SegNet in detail. Section 4 provides ex-
periments and results. Section 5 gives relevant discussion.
Finally, Section 6 gives the conclusion of this paper.

2. Related work
This section first briefly reviews many typical segmen-

tation networks developed for medical image analysis and
then focuses on some relevant works attempting to leverage
attention mechanisms to perfect skip connections between
the encoder and decoder so as to improve the segmentation
performance.
2.1. Medical image segmentation

Many efforts [27–30] based on deep learning have been
made to achieve outstanding performance in medical image
segmentation. The variants of U-Net were the most pop-
ular and successful outcomes. For instance, UNet++ [31]
introduced a series of nested and dense skip connections
in the encoder-decoder network to reduce the semantic gap
between shallow and deep features and the deep supervision
to facilitate better convergence during training. R2U-Net
[32] leveraged the strengths of U-Net, residual networks,
and recurrent CNNs to obtain better feature representation.
MultiResUNet [33], with the encoder and decoder layers
replaced by inception-like blocks with residual connections,
introduced a chain of convolutional layers with residual
connections into skip connections to alleviate the disparity
between the encoder-decoder features. DoubleU-Net [34]
combined two U-Net architectures stacked on top of each
other and adopted atrous spatial pyramid pooling (ASPP)
to improve its performance on various segmentation tasks.
SMU-Net [35] adopted U-Net as a main network and in-
corporated it with an additional middle stream and an aux-
iliary network to learn foreground-salient and background-
salient representations under the guidance of saliency maps
to rich textural information for breast lesion segmentation
in ultrasound Images. KiU-Net [36] parallelly connected an
overcomplete convolutional network, which projects input
images into a higher dimension, with U-Net through a series

Feng He et al.: Preprint submitted to Elsevier Page 2 of 12



CA-SegNet: A channel-attention encoder-decoder network for histopathological image segmentation

Figure 1: Architecture details of the proposed CA-SegNet.

of novel cross-residual feature blocks to identify smaller
structures and segment boundary regions precisely.

While these methods have made impressive progress
in medical image segmentation, they either mainly focus
on reducing the semantic gap of feature maps between
the encoder and decoder or improving the network fea-
ture representation to increase the network generalization
and the response to tiny structures. The adverse impact of
background noise-relevant information in shallow features
on the segmentation performance has not been seriously
considered.
2.2. Medical image segmentation based on

attention mechanisms
Due to the properties of emphasizing regions of interest

(ROIs) and filtering irrelevant features, attention mecha-
nisms have brought considerable gains in the performance
of deep learning models in medical image segmentation.
In particular, researchers are keen to incorporate attention
mechanisms into skip connections of encoder-decoder ar-
chitectures to optimize feature fusion between shallow and
deep layers. Attention U-Net [37] proposed a spatial-wise
attention gate for skip connections to encourage the network
to focus on target features of varying shapes and sizes while
suppressing the activation of irrelevant regions. Multi-Res-
Attention UNet [38] developed a hybrid skip connection-
based architecture with the optimal placement of respaths,
attention gates, and the usage of multi-res blocks to reduce
the semantic gap between feature maps of shallow and deep
layers. R2AU-Net [39] switched the basic convolutional unit
of the general U-Net into a recurrent residual convolutional
unit and introduced a series of attention gates into skip con-
nections. AACA-MLA-D-UNet [40] proposed an adaptive
atrous channel attention module in skip connection to sort
the importance of each feature channel for retinal vessel

segmentation. CFU-Net [41] embedded two U-Nets, consist-
ing of a partly shared encoding path and paired coarse-fine
decoding paths, and designed a multilevel attention module
(MLAM) that executes the multilevel information interac-
tion to refine the feature propagation in skip connection.

Despite the fact that attention mechanisms have become
increasingly popular for medical image segmentation, works
on enhancing the performance of deep learning networks
for histopathological image segmentation based on attention
mechanisms remain scarce. Moreover, few attention mecha-
nisms have focused on effectively discrediting the irrelevant
information within multi-channel representations of shallow
features in skip connections and considering channel-wise
dependencies.

3. Methodology
Fig. 1 shows the overall architecture of the proposed

CA-SegNet. Our CA-SegNet consists of a VGG16-based
encoder, a bottleneck decoder, and a sequence of CAFFMs.
Given the input of medical image 𝐼 ∈ ℝ3×𝐻×𝑊 with the
spatial size of 𝐻 × 𝑊 , the encoder gradually extracts the
target features in a down-sampling manner, where the fea-
tures are halved in spatial resolution and doubled in channels
after each down-sampling layer to expand the receptive field
and enrich feature combinations and representations. The
resulting multi-scale feature maps 𝐹𝑒 ∈ ℝ(𝐻∕ 2𝑒×𝑊 ∕ 2𝑒)×𝐶

with channels 𝐶 (𝐶 ∈ {64, 128, 256, 512, 512}) of encoder
layer 𝑒 (𝑒 ∈ {0, 1, 2, 3, 4}) are stacked into a feature pyramid
𝐹 =

{

𝐹0, 𝐹1, 𝐹2, 𝐹3, 𝐹4
} (as shown in the encoder pipeline

of Fig. 1). The bottleneck decoder takes the highest fea-
ture maps 𝐹4 of the feature pyramid as the first input and
gradually integrates multi-channel feature representations to
construct the segmentation result (i.e., pixel-level mask with
target regions annotated as 1 and background as 0) in an up-
sampling manner, where the remaining multi-scale feature
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maps of the feature pyramid are correspondingly input to the
decoder after each up-sampling operation with the guide of
a sequence of CAFFMs.
3.1. VGG16-based encoder

We adopt all five convolution units (see more details in
Table 1) of VGG16 as our encoder. The motivation mainly
falls into two benefits: 1) leverage the ImageNet-trained
parameters (publicly available) to initialize the encoder so
as to avoid small dataset overfitting and accelerate model
convergence; 2) leverage its well-designed target feature
extraction structure (since a good enough feature extraction
structure is necessary to achieve accurate classification per-
formance of VGG16). Inspired by SegNet [22], the inverse
max-pooling (i.e., max-pooling indices-based up-sampling)
is used to conduct the up-sampling operation in our CA-
SegNet, which experimentally achieved better performance
than the interpolation up-sampling and has much lower
computational complexity than the transposed convolution
(which introduces additional parameters requiring training).
Thus, the max-pooling indices (i.e., the locations of the max-
imum feature value in each pooling window) of each down-
sampling process of the encoder are saved and later used in
the corresponding up-sampling process in the decoder.

Table 1
VGG16-based encoder

Convolution Unit Structure

0 [Conv 3 × 3 + BN + ReLU,C = 64] × 2

1
Maxpool 2 × 2
[Conv 3 × 3 + BN + ReLU,C = 128] × 2

2
Maxpool 2 × 2
[Conv 3 × 3 + BN + ReLU,C = 256] × 3

3
Maxpool 2 × 2
[Conv 3 × 3 + BN + ReLU,C = 512] × 3

4
Maxpool 2 × 2
[Conv 3 × 3 + BN + ReLU,C = 512] × 3
Maxpool 2 × 2

3.2. Bottleneck decoder
Different from standard encoder-decoder networks, such

as U-Net [23], SegNet [22], and MultiResUNet [33], where
the decoder is constructed symmetrically to the encoder,
we develop a bottleneck-structured decoder (as shown in
the bottleneck decoder pipeline of Fig. 1) with reduced
parameters that account for computational complexity and
increased network depth (and nonlinearity) that enhances the
feature representation.

The more detailed structure of the bottleneck decoder
is given in Table 2. The decoder contains five bottleneck
units, each of which up-samples its input to twice the original
resolution through “Maxunpool 2 × 2" (i.e., inverse max-
pooling) with a stride of 2 at the beginning. The inverse

Table 2
Bottleneck decoder

Bottleneck Unit Structure

0

Maxunpool 2 × 2
Conv 1 × 1 + BN + ReLU,C = 64
[Conv 3 × 3 + BN + ReLU,C = 64] × 3
Conv 1 × 1 + BN + ReLU,C = 512

1

Maxunpool 2 × 2
Conv 1 × 1 + BN + ReLU,C = 64
[Conv 3 × 3 + BN + ReLU,C = 64] × 3
Conv 1 × 1 + BN + ReLU,C = 256

2

Maxunpool 2 × 2
Conv 1 × 1 + BN + ReLU,C = 64
[Conv 3 × 3 + BN + ReLU,C = 64] × 3
Conv 1 × 1 + BN + ReLU,C = 128

3

Maxunpool 2 × 2
Conv 1 × 1 + BN + ReLU,C = 32
[Conv 3 × 3 + BN + ReLU,C = 32] × 2
Conv 1 × 1 + BN + ReLU,C = 64

4

Maxunpool 2 × 2
Conv 1 × 1 + BN + ReLU,C = 32
[Conv 3 × 3 + BN + ReLU,C = 32] × 2
Conv 1 × 1,C = 1

max-pooling is achieved by mapping the pixels of the low-
resolution feature map to the saved positions from the en-
coder, which produces a sparse high-resolution feature map,
and it recovers more details of the target information (such
as boundaries) due to the saved position information. The
first three bottleneck units then reduce the channels of up-
sampled features to 64 via a 1 × 1 convolution operation,
followed by a 3 × 3 convolution operation repeated three
times to integrate the complex features of different chan-
nels and transform the sparse up-sampled feature maps into
dense maps. This 1 × 1 convolution operation constructs
the bottleneck structure, which increases the information
interaction between different channels and reduces the pa-
rameters required for subsequent computations. As for the
last two bottleneck units, the feature channels after the first
1 × 1 convolution operation are reduced to 32, and the
3 × 3 convolution operation is repeated twice. To output
the feature maps having the dimension corresponding to
the saved max-pooling indices that decide the up-sampling
operation, another 1×1 convolution operation is added at the
end of each bottleneck unit to increase the feature channels,
except for the last unit where the 1×1 convolution operation
with a single output channel is used to construct the pixel-
level mask. All the above-mentioned convolution operations
(except the last layer) are followed by batch normalization
to reduce the internal covariate shift and a ReLU activation
function to introduce nonlinearity.
3.3. Channel-attention feature fusion module

Since the features produced by the encoder are rather
shallower in feature extraction level and less global in con-
textual semantic information as they are computed earlier
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Figure 2: The details of the CAFFM structure.

than the features in the decoder, the multi-channel repre-
sentations of these shallow features have a high probability
of containing irrelevant information, such as background
noise. In order to discredit this irrelevant information in
the multi-scale features of the feature pyramid before fusing
them with the decoder features, we develop a CAFFM (i.e.,
channel-attention feature fusion module) to guide the skip
connection.

The structure of the CAFFM is detailed in Fig. 2.
Let 𝐹𝑒 =

{

𝑓𝑒,𝑐
}𝐶
𝑐=0 be the shallow feature maps from

the encoder unit 𝑒 ∈ {0, 1, 2, 3}, where each 𝑓𝑒,𝑐 =
{

{

𝑥𝑒,𝑐𝑚𝑛
}𝑀
𝑚=0

}𝑁

𝑛=0
represents the feature map in channel 𝑐 ∈

{0, ..., 𝐶}. 𝑥𝑒,𝑐𝑚𝑛 is the element in 𝑚th (𝑚 ∈ {0, ...,𝑀}) row
and 𝑛th (𝑛 ∈ {0, ..., 𝑁}) column of the feature map 𝑓𝑒,𝑐 .We first use a weighted average pooling (WAP) method to
calculate the channel score 𝑢𝑒,𝑐 of each feature map in 𝐹𝑒,which is formulated as:

𝑢𝑒,𝑐 =
𝑀
∑

𝑚=0

𝑁
∑

𝑛=0
𝑤𝑒,𝑐

𝑚𝑛𝑥
𝑒,𝑐
𝑚𝑛 (1)

where 𝑤𝑒,𝑐
𝑚𝑛 is a self-produced weight coefficient that filters

each element 𝑥𝑒,𝑐𝑚𝑛 in 𝑓𝑒,𝑐 , and it is computed as:

𝑤𝑒,𝑐
𝑚𝑛 =

exp
(

𝑥𝑒,𝑐𝑚𝑛
)

𝑀
∑

𝑖=0

𝑁
∑

𝑗=0
exp

(

𝑥𝑒,𝑐𝑖𝑗
)

(2)

Similarly, given the up-sampled deep feature maps 𝐹𝑑 =
{

𝑓𝑑,𝑐
}𝐶
𝑐=0 from the decoder unit 𝑑 ∈ {1, 2, 3, 4}, where

𝑓𝑑,𝑐 =
{

{

𝑥𝑑,𝑐𝑚𝑛

}𝑀

𝑚=0

}𝑁

𝑛=0
, the channel score 𝑢𝑑,𝑐 of each

feature map in 𝐹𝑑 can also be computed according to Eq.(1)
and Eq.(2). Inspired by Attention U-Net [37] where additive
attention was used to produce the attention coefficients, the
resulting channel scores of shallow and deep feature maps
are then summed as:

𝑢̂𝑒,𝑐 = 𝑢𝑒,𝑐 + 𝑢𝑑,𝑐 (3)
which leads to a coarse channel-wise attention coefficient
vector 𝑈 =

[

𝑢̂𝑒,0, 𝑢̂𝑒,1, ..., 𝑢̂𝑒,𝐶
].

To encourage the CAFFM to learn the channel-wise de-
pendencies between multi-channel feature representations,
we propose to use a convolutional scaling operation to refine
the coarse coefficient vector, which is composed of two
steps. The first step is a downscaling operation:

𝑢′𝑒,𝑔 = ReLU
(

𝑊 𝑒,𝑔
1×1𝑈 + 𝑏𝑒,𝑔

)

(4)
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where 𝑢′𝑒,𝑔 is the 𝑔th element in the downscaled vector 𝑈 ′ =
[

𝑢′𝑒,0, 𝑢′𝑒,1, ..., 𝑢′𝑒,𝐺
], 𝐺 < 𝐶 (𝐺 = 𝐶∕4 in our work).

𝑊 𝑒,𝑔
1×1 and 𝑏𝑒,𝑔 are kernel parameters of a 1 × 1 convolution

operation that learns the dependencies between each channel
score in 𝑈 . The second step is an upscaling operation:

𝜉𝑒,𝑐 = Sigmoid
(

𝑊 𝑒,𝑐
1×1𝑈

′ + 𝑏𝑒,𝑐
)

(5)
where 𝜉𝑒,𝑐 is the 𝑐th coefficient in the refined channel-wise
attention coefficient vector 𝜉𝑒 =

[

𝜉𝑒,0, 𝜉𝑒,1, ..., 𝜉𝑒,𝐶
] that

filters the multi-channel representations of shallow features
and preserves only the channel activation relevant to the tar-
get. Sigmoid (⋅) represents the Sigmoid function. 𝑊 𝑒,𝑐

1×1 and
𝑏𝑒,𝑐 are kernel parameters of a 1 × 1 convolution operation
that expands the vector 𝑈 ′ to match the channel dimension
of 𝐹𝑒, i.e., the feature maps from the 𝑒th encoder unit.

Afterward, the shallow feature maps are multiplied with
the refined channel-wise attention coefficient vector, and the
resulting filtered feature representations are concatenated
with the deep feature maps, followed by a 1 × 1 convolution
operation to produce the output of the CAFFM, i.e.,𝐹CAFFM.
It is formulated as:

𝐹CAFFM = ΦReLU
(

Concat
(

𝜉𝑒𝐹𝑒, 𝐹𝑑
)) (6)

where ΦReLU (⋅) represents the 1 × 1 convolution operation
with ReLU activation function that halves the input chan-
nels. Concat (⋅) is the concatenation function.

It is worth mentioning that the values of 𝑒 are taken
opposite to that of 𝑑 due to the contracting-to-expanding
structure. Theoretically, the global average pooling equally
considers all feature pixels and thus is insensitive to the fea-
ture category. The max pooling only considers the maximum
feature pixel, which causes a loss of relevant information.
However, the proposed WAP adaptively considers feature
pixels according to the weights of their activation, thus
producing channel scores more sensitive to relevant features
and, in turn, leads to channel attention more effectively
suppressing irrelevant information while keeping all relevant
ones in shallow features during the skip connection.

4. Experiments and results
We used two publicly available histopathological image

datasets with a large and small scale, respectively, to evaluate
the performance of our CA-SegNet. In addition, several rel-
evant state-of-the-art segmentation models were selected as
baselines in our comparative experiments, including U-Net
[23], SegNet [22], UNet++ [31], R2U-Net [32], Attention
U-Net [37], MultiResUNet [33], DoubleU-Net [34], R2AU-
Net [39], ComBiNet (containing ComBiNetS, ComBiNetM,
and ComBiNetL) [42], FANet (containing FANet18 and
FANet34) [24], and UCTransNet [43].
4.1. Datasets
4.1.1. Camelyon16 patch-based dataset

This dataset (large-scale) is produced from the Came-
lyon16 dataset [44] based on the protocol proposed in [45].

It is a patch-based dataset cropped from 159 whole-slide
metastatic breast cancer images with a size of 65000×45000
pixels. The resulting dataset has about 12532 patches for
training, 4429 patches for validation, and 7639 patches for
testing. All the patches with a size of 512 × 512 pixels
have pixel-level annotations (i.e., binary masks) produced
by experts. Fig. 3a provides some examples of the images
and their corresponding pixel-level annotations in the Came-
lyon16 patch-based dataset.

Figure 3: Examples of images in two datasets. (a) The
Camelyon16 patch-based dataset. (b) The GlaS dataset. The
upper row is original samples, and the bottom row is pixel-level
annotations.

4.1.2. GlaS dataset
It is a dataset (small-scale) of colon cancer images (with

large variations in gland shape and size) with a size of 775×
522 pixels obtained from hematoxylin and eosin (H&E)-
stained histology sections [46]. This dataset contains 85
images (20% of which were assigned to the validation set
for 5-fold cross-validation) for training and 80 images for
testing. All the images have both image-level (i.e., benign or
malignant) and pixel-level annotations. Some examples of
the GlaS dataset are shown in Fig. 3b.
4.2. Experimental settings
4.2.1. Evaluation metrics

To thoroughly measure the similarity between the pre-
dicted mask and the ground truth for our CA-SegNet and
existing state-of-the-art methods, three commonly used eval-
uation metrics were calculated in the comparative experi-
ments, including the mean intersection over union (mIoU),
mean dice coefficient (mDice), and mean precision (mPre-
cision). Furthermore, the pixel-level precision-recall (P-R)
curve was computed.
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4.2.2. Implementation details
To demonstrate the effectiveness of the proposed CA-

SegNet architecture and make fair comparisons with existing
state-of-the-art methods, the commonly used binary cross-
entropy loss function was selected for all networks. The
Adam optimizer with 𝛽1 = 0.9, 𝛽2 = 0.999, and a weight
decay of 1 × 10−4 was used to train networks. Inspired
by the work in [47], we froze the first convolutional layer
and fine-tuned all the pre-trained layers with a learning
rate initialized at 1 × 10−5 for the transfer learning-based
methods, i.e., the proposed CA-SegNet, SegNet, DoubleU-
Net, and FANet. For network layers without pre-training
and other networks, the learning rate was initialized at 1 ×
10−3. We set a batch size of 32 and a training epoch of
60 for the Camelyon16 patch-based dataset while a batch
size of 8 and a training epoch of 500 for the GlaS dataset.
All the images were resized to 256 × 256 pixels before
input to networks. In addition, random rotation with an
angle in {0◦, 90◦, 180◦, 270◦}, random vertical and horizon-
tal flips with a probability of 0.5, and random color jit-
tering (brightness = 0.5, contrast = 0.5, saturation = 0.5,
and hue = 0.05) were performed to each image for data
augmentation. Both datasets were trained with 5-fold cross-
validation, and the final results were obtained through the
average of the best results from these five groups of experi-
ments.
4.3. Results on the Camelyon16 patch-based

dataset
The quantitative comparison results of the proposed CA-

SegNet and existing state-of-the-art methods on the Came-
lyon16 patch-based dataset are presented in Table 3, It shows
that our CA-SegNet has achieved the best performance with
approximately 72.14% in mIoU, 81.49% in mDice, and
83.95% in mPrecision among all the segmentation mod-
els. Compared to the U-Net series, i.e., U-Net, UNet++,
R2U-Net, Attention U-Net, MultiResUNet, DoubleU-Net,
and R2AU-Net, our CA-SegNet achieves an improvement
of 0.64% to 10.82% in mIoU, 0.42% to 9.36% in mDice,
and 0.48% to 5.39% in mPrecision. Compared to attention-
based CNNs, i.e., Attention U-Net, R2AU-Net, FANet18
and FANet34, the CA-SegNet achieves an improvement
of at least 1.15% in mIoU, 1.01% in mDice, and 0.88%
in mPrecision. Finally, compared to the transformer-based
UCTransNet, our CA-SegNet leads to an improvement of
0.30% in mIoU, 0.11% in mDice, and 0.56% in mPreci-
sion, suggesting the competitive performance of our CA-
SegNet against the transformer-based method in terms of
histopathological image segmentation. The same results can
be observed in Fig. 4, where the P-R curve of our CA-
SegNet is more toward the top right corner, indicating better
performance.

The visual comparison results of different methods on
the Camelyon16 patch-based dataset are shown in Fig. 5,
where we can observe that our CA-SegNet has a more
powerful ability to identify metastatic tissues and produces
the segmentation prediction closer to the ground truth. Note

Table 3
Quantitative comparisons to existing state-of-the-art networks
on the Camelyon16 patch-based dataset. The best and second-
best results are marked in red and blue, respectively.

Methods mIoU mDice mPrecision

U-Net [23] 67.09±0.51 76.91±0.55 81.64±0.33
SegNet [22] 67.63±0.29 77.25±0.32 81.62±0.28
UNet++ [31] 66.03±0.47 76.11±0.46 81.14±0.27
R2U-Net [32] 62.79±1.16 73.85±1.03 78.56±0.61
Attention U-Net [37] 67.09±0.37 76.99±0.39 81.46±0.20
MultiResUNet [33] 67.38±0.43 77.31±0.47 81.24±0.19
DoubleU-Net [34] 71.50±0.36 81.07±0.25 83.47±0.24
R2AU-Net [39] 61.32±0.55 72.13±0.49 78.75±0.61
ComBiNetS [42] 71.42±0.29 81.14±0.25 82.79±0.16
ComBiNetM [42] 71.61±0.23 81.30±0.17 82.90±0.30
ComBiNetL [42] 71.59±0.22 81.23±0.15 83.10±0.29
FANet18 [24] 70.14±0.39 79.79±0.35 82.60±0.21
FANet34 [24] 70.99±0.41 80.48±0.42 83.07±0.13
UCTransNet [43] 71.84±0.05 81.38±0.06 83.39±0.21
CA-SegNet (ours) 72.14±0.18 81.49±0.19 83.95±0.34

Figure 4: P-R curve of different methods on the Camelyon16
patch-based dataset.

that only the best versions of ComBiNet (i.e., ComBiNetM)
and FANet (i.e., FANet34) are presented. In addition, it can
be seen from rows 2, 3, and 5 that our CA-SegNet is more
precise in dealing with target boundaries. The CA-SegNet
also keeps better integrity of the target tissues, as seen from
rows 1 and 6.
4.4. Results on the GlaS dataset

To evaluate the effectiveness and demonstrate the
superior performance of our CA-SegNet on small-scale
histopathological image datasets, all the comparative net-
works, including the CA-SegNet, were performed on the
GlaS dataset.

The quantitative comparison results are given in Table
4. We can observe that our CA-SegNet outperforms all
the state-of-the-art methods with approximately 85.06% in
mIoU, 91.43% in mDice, and 91.78% in mPrecision, which
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Figure 5: Segmentation results of images in the Camelyon16 patch-based dataset. Regions highlighted by the dashed boxes are for
better visualization of the prediction differences. AU-Net, MRUNet, DU-Net and GT represent Attention U-Net, MultiResUNet,
DoubleU-Net and the ground truth, respectively.

Table 4
Quantitative comparisons to existing state-of-the-art networks
on the GlaS dataset. The best and second-best results are
marked in red and blue, respectively.

Methods mIoU mDice mPrecision

U-Net [23] 83.73±0.40 90.51±0.30 90.84±0.20
SegNet [22] 83.32±0.45 90.32±0.34 90.72±0.30
UNet++ [31] 84.08±0.21 90.77±0.10 90.96±0.26
R2U-Net [32] 75.99±0.54 85.51±0.34 86.32±0.45
Attention U-Net [37] 83.58±0.32 90.38±0.26 90.80±0.17
MultiResUNet [33] 77.98±0.78 86.71±0.47 87.24±0.38
DoubleU-Net [34] 83.58±0.28 90.58±0.18 90.70±0.28
R2AU-Net [39] 76.52±1.37 85.79±1.02 86.79±0.59
ComBiNetS [42] 82.51±0.53 89.71±0.40 89.75±0.31
ComBiNetM [42] 83.19±0.25 90.18±0.19 90.27±0.24
ComBiNetL [42] 83.19±0.23 90.22±0.14 90.24±0.21
FANet18 [24] 77.60±0.28 86.68±0.16 86.95±0.24
FANet34 [24] 77.19±0.37 86.35±0.24 86.56±0.33
UCTransNet [43] 83.40±0.32 90.24±0.20 90.38±0.27
CA-SegNet (ours) 85.06±0.22 91.43±0.17 91.78±0.19

indicates the better robustness of the CA-SegNet to small-
scale datasets. Some subsequent variants of the general U-
Net, i.e., MultiResUNet, DoubleU-Net, ComBiNet, FANet,
and UCTransNet, perform worse than the U-Net, which is
opposite to that on the Camelyon16 patch-based dataset,
suggesting their strong dependencies on the dataset scales.
Furthermore, our CA-SegNet leads to an improvement of ap-
proximately 0.98% in mIoU, 0.66% in mDice, and 0.82% in
mPrecision compared to the second-best network UNet++.
The P-R curves of our CA-SegNet and other networks on the
GlaS dataset are shown in Fig. 6. Similarly, CA-SegNet is
always toward the top right corner. Fig. 7 provides the visual
comparison of different networks on the GlaS dataset. It is

Figure 6: P-R curve of different methods on the GlaS dataset.

observed that our CA-SegNet still achieves the segmentation
results closest to the ground truth.

5. Discussion
5.1. Ablation study

To analyze the individual contribution of the key com-
ponents (i.e., bottleneck encoder and CAFFM) to our CA-
SegNet in histopathological image segmentation. We con-
ducted the ablation study on the two datasets. We started
with the standard encoder-decoder segmentation structure
(E-SD) without skip connection and with the encoder and
decoder symmetrical to each other. Afterward, the standard
decoder of the E-SD was modified to the bottleneck decoder,
and this structure is named E-BD. The basic FFM that
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Figure 7: Segmentation examples of images in the GlaS dataset. Regions highlighted by the dashed boxes are for better visualization
of the prediction differences. AU-Net, MRUNet, DU-Net and GT represent Attention U-Net, MultiResUNet, DoubleU-Net and
the ground truth, respectively.

achieves the skip connection in U-Net was then added to
the E-BD structure (E-BD+FFM). Finally, the FFM was
replaced with the CAFFM, which constructs the proposed
CA-SegNet, i.e., E-BD+CAFFM.

Table 5
Quantitative segmentation results on two datasets, i.e., the
Camelyon16 patch-based (CPB) dataset and the GlaS dataset.
The best results are highlighted in bold.

Dataset Methods mIoU mDice mPrecision

CPB

E-SD 68.04±0.42 77.57±0.45 82.01±0.29
E-BD 68.45±0.50 77.95±0.55 81.99±0.29
E-BD+FFM 68.45±0.44 77.96±0.41 82.14±0.32
CA-SegNet 72.14±0.18 81.49±0.19 83.95±0.34

GlaS

E-SD 83.44±0.53 90.43±0.35 90.82±0.38
E-BD 83.71±0.40 90.53±0.32 91.00±0.17
E-BD+FFM 84.81±0.31 91.24±0.23 91.68±0.20
CA-SegNet 85.06±0.22 91.43±0.17 91.78±0.19

Table 6
Computational complexity of structures with different compo-
nents in ablation study

Methods Parameters (M) MACs (G)

E-SD 34.94 50.40
E-BD 20.74 32.97
E-BD+FFM 21.44 35.15
CA-SegNet 21.62 35.15

The quantitative segmentation results and computational
complexity of structures with different components are pro-
vided in Table 5 and Table 6, respectively. The segmentation
performance improves with the addition (or modification)

Figure 8: Segmentation examples of images in the Camelyon16
patch-based dataset (upper) and the GlaS dataset (bottom) in
the ablation study. GT represents the ground truth.

of each component. More specifically, the E-BD structure
exhibits an improvement of approximately 0.41% in mIoU
on the Camelyon16 patch-based dataset and 0.27% in mIoU
on the GlaS dataset compared to E-SD, as well as dis-
tinctive decreases in parameters and MACs, suggesting the
better feature integration ability and lower computational
complexity of our bottleneck decoder. Compared with the
E-BD structure, the additional CAFFM in our CA-SegNet
achieves an improvement of 1.35% to 3.69% in mIoU, 0.90%
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to 3.54% in mDice, and 0.78% to 1.96% in mPrecision on
the two datasets while having a slight increase in compu-
tational complexity. In addition, compared with the basic
FFM of the E-BD+FFM structure, the CAFFM reaches an
improvement of up to 3.69% in mIoU, 3.53% in mDice, and
1.81% in mPrecision with the same MACs. We believe these
improvements are gained owing to the fact that our channel-
wise attention coefficients filter undesired information in
multi-channel representations of the shallow features. The
visual results of the ablation study on two datasets are shown
in Fig. 8, which further confirms the effectiveness of each
proposed component. It is observed that the segmentation
results approach the ground truth with the addition of our
bottleneck decoder and CAFFM, such as the first and third
rows.
5.2. Interpolation vs. max-unpooling

Apart from the ablation study in the above section
studying the proposed key components, we also conducted
a comparative experiment between the commonly used in-
terpolation (i.e., bilinear) up-sampling operation and the
max-unpooling operation to investigate their effects on the
segmentation performance. The evaluation results are given
in Table 7. We can observe that the max-unpooling operation
yields better results in terms of all three evaluation metrics
on both datasets. We believe this superior performance ben-
efits from the saved locations of the maximum feature values
that define targets.

Table 7
Performance of CA-SegNet based on different up-sampling
methods on two datasets, i.e., the Camelyon16 patch-based
(CPB) dataset and the GlaS dataset. The best results are
highlighted in bold.

Dataset Methods mIoU mDice mPrecision

CPB
Interpolation 71.74±0.29 81.17±0.27 83.81±0.30
Max-unpooling 72.14±0.18 81.49±0.19 83.95±0.34

GlaS
Interpolation 84.37±0.27 91.01±0.14 91.39±0.10
Max-unpooling 85.06±0.22 91.43±0.17 91.78±0.19

5.3. Effect of image resolution
We conducted a comparative experiment involving three

image resolutions, i.e., 128×128 pixels, 256×256 pixels, and
512 × 512 pixels, to study the effect of the input resolution
on the performance of our CA-SegNet. Table 8 provides the
evaluation results, where we can observe that the segmen-
tation performance changes according to input resolutions.
Interestingly, the 256 × 256 case achieves the best results
compared to the other two resolution cases, suggesting that
higher input resolutions do not necessarily produce better
performance for the proposed CA-SegNet. We believe this is
because a fixed network structure with a constant receptive
field determines the limit of the ability to capture contextual
semantic information of input images.

Table 8
Performance of CA-SegNet with input images of different
resolutions on two datasets, i.e., the Camelyon16 patch-based
(CPB) dataset and the GlaS dataset. The best results are
highlighted in bold.

Dataset Input Resolution mIoU mDice mPrecision

CPB
128×128 72.14±0.19 81.40±0.15 83.79±0.19
256×256 72.14±0.18 81.49±0.19 83.95±0.34
512×512 71.37±0.19 81.00±0.20 83.50±0.14

GlaS
128×128 81.31±0.17 88.93±0.13 89.37±0.26
256×256 85.06±0.22 91.43±0.17 91.78±0.19
512×512 85.04±0.19 91.38±0.11 91.75±0.10

5.4. Effect of network depth
In this section, we conducted a comparative experiment

to study the effect of network depth on segmentation perfor-
mance. In addition to VGG16, the other networks based on
VGG11 and VGG19 were constructed as the shallower and
deeper versions of our CA-SegNet. Note that the decoder
layers of these two versions were changed accordingly. The
comparison results are provided in Table 9. It is shown that
the performance improves with the addition of the network
layers on the Camelyon16 patch-based dataset, while the
VGG16-based CA-SegNet achieves the best results (except
for the mPrecision) on the GlaS dataset. We believe this is
because the small-scale dataset GlaS leads to the overfitting
of the deeper network.

Table 9
Performance of CA-SegNet with different network depths on
two datasets, i.e., the Camelyon16 patch-based (CPB) dataset
and the GlaS dataset. The best results are highlighted in bold.

Dataset Methods mIoU mDice mPrecision

CPB
VGG11-based 71.81±0.35 81.26±0.34 83.62±0.32
VGG16-based 72.14±0.18 81.49±0.19 83.95±0.34
VGG19-based 72.24±0.15 81.53±0.09 84.05±0.43

GlaS
VGG11-based 84.73±0.36 91.23±0.27 91.47±0.27
VGG16-based 85.06±0.22 91.43±0.17 91.78±0.19
VGG19-based 84.92±0.25 91.29±0.18 91.82±0.19

5.5. Limitation analysis
Despite the outstanding performance of our CA-SegNet

compared to existing segmentation models, there is a lim-
itation in segmenting multiple objects with tiny gaps. As
seen in Fig. 9, our CA-SegNet fails to identify boundaries
of some tightly distributed glands, which may be caused by
the lack of data volume and diversity in the GlaS dataset.
The failure to retain relevant information from shallow layers
during skip connection may be another reason.
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Figure 9: Segmentation examples with limitation in the GlaS
dataset.

6. Conclusion
We proposed a channel-attention encoder-decoder archi-

tecture named CA-SegNet to segment histopathological im-
ages. Our CA-SegNet was built on top of the final convolu-
tional layer of the ImageNet-trained VGG16 model to avoid
network overfitting and reduce convergence duration, where
the pre-trained layers form the encoder. We reconsidered
the standard decoder structure and developed a bottleneck-
structured decoder to integrate relevant contextual informa-
tion in multi-level features from the encoder more effec-
tively. In addition, we designed a sequence of CAFFMs
in skip connections between the encoder and decoder to
eliminate irrelevant information (e.g., background noise)
within multi-channel feature representations from shallow
layers, where a WAP method was proposed to compute
the channel scores to produce attention coefficients and a
convolutional scaling operation was adopted to learn the
channel-wise dependencies. Extensive experiments on two
public histopathological image datasets demonstrated the
effectiveness of the bottleneck decoder and CAFFM and
the superior performance of our CA-SegNet compared to
existing state-of-the-art segmentation methods. For future
work, it would be interesting to incorporate more attention
mechanisms into our network to avoid limitations and con-
sider the network for more medical image modalities.
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