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Abstract.
Respiratory motion, cardiac motion and inherently low signal-to-noise ratio (SNR)

are major limitations of in vivo cardiac diffusion tensor imaging (DTI). We propose
a novel enhancement method that uses unsupervised learning based invertible wavelet
scattering (IWS) to improve the quality of in vivo cardiac DTI. It starts by
extracting nearly transformation-invariant features from multiple cardiac diffusion-
weighted (DW) image acquisitions using multi-scale wavelet scattering (WS). Then,
the relationship between the WS coefficients and DW images is learned through a multi-
scale encoder and a decoder network. Using the trained encoder, the deep features of
WS coefficients of multiple DW image acquisitions are further extracted and then fused
using an average rule. Using the fused WS features and trained decoder, the enhanced
DW images are finally derived. We evaluate the performance of the proposed method
by comparing it with several methods on three in vivo cardiac DTI datasets in terms of
SNR, contrast to noise ratio (CNR), fractional anisotropy (FA), mean diffusivity (MD)
and helix angle (HA). Comparing against the best comparison method, SNR/CNR of
diastolic, gastric peristalsis influenced, and end-systolic DW images were improved by
1%/16%, 5%/6%, and 56%/30%, respectively. The approach also yielded consistent FA
and MD values and more coherent helical fiber structures than the comparison methods
used in this work. In addition, the ablation results verify that using the transformation-
invariant and noise-robust wavelet scattering features enables us to effectively explore
the useful information from the limited data, providing a potential mean to alleviate
the dependence of the fusion results on the number of repeated acquisitions, which is
beneficial for dealing with the issues of noise and residual motion simultaneously and
therefore improving the quality of in vivo cardiac DTI.
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1. Introduction

Diffusion tensor imaging (DTI) is a promising technique for investigating noninvasively
the microstructure of both normal and diseased hearts [1–5]. It has been demonstrated
that several cardiac diseases such as myocardial infarction, hypertrophic cardiomyopathy
and accurate ischemia are highly related to the change of diffusion metrics in DTI [6–12],
showing that DTI may provide meaningful imaging biomarkers for early diagnosis of
cardiac diseases. However, DTI of in vivo hearts is sensitive to motions, not only can
breathing or/and respiratory motions cause significant signal loss in diffusion weighted
(DW) images, but some physiologic motions, such as gastric peristalsis, can also cause
bulk motion artifacts, thus making it difficult to explore exactly the microstructure of
in vivo hearts. Therefore, reducing the influence of motions on in vivo cardiac DTI is
important for research.

Currently, two main kinds of imaging sequences are used for in vivo cardiac
DTI, which are simulated echo acquisition mode (STEAM) sequence [13] and motion
compensated spin echo (MCSE) sequence [14], respectively. STEAM assumes that the
heart position and cardiac motion state keep unchanged during two cardiac cycles, in
this case, distributing the diffusion encoding/decoding gradients over two consecutive
heart beats enables it to minimize the effects of cardiac bulk motion. Since STEAM
does not require high-performance gradient hardware, it has been widely used in both
healthy and diseased hearts. However, due to the long acquisition time, it suffers from
low signal-to-noise ratio (SNR). In addition, even with breath-holding, the influence
of cardiac strain on the diffusion weighted signal is still not avoidable [15]. MCSE
is an alternative to STEAM, which makes it possible to perform in vivo cardiac DTI
during free breathing with the assistance of the first, second or higher order motion
compensated diffusion gradient waveforms. The MCSE sequence can produce higher
SNR than STEAM. However, since the heart motion is complex, namely the velocity
or acceleration of the motion during the diffusion encoding is not constant, the signal
attenuation caused by residual motion still exists. Despite the advances in sequence
design, achieving a high quality in vivo cardiac DTI remains a challenge due to low
SNR and the residual motion.

To deal with this issue, postprocessing-based methods for in vivo cardiac DTI have
been proposed. For instance, PCATMIP integrates the principal component analysis
(PCA) and temporal maximum intensity projection (TMIP) methods to recover signal
loss in DW images caused by breath motion from multiple acquisitions [16]. WIF
uses the wavelet transform to recover lost signals and remove noise by fusing the
effective information extracted from multiple DW images under free breathing [17].
With the emergence of deep learning models, using the network to fuse the images for
promoting the quality has received intensive attention [18–20]. In the field of cardiac
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DTI, Ferreira et al. proposed an automatic in vivo cardiac diffusion tensor post-
processing framework, in which DW images are firstly denoised and segmented and
then fused by registration with UNet. However, due to the varying contrast and the
intrinsically low SNR of DW images, registration-based fusion may introduce additional
errors in the tensor estimation [21]. To address this problem, Weine et al. proposed a
parameterized pipeline to generate synthetic in vivo cardiac DW images, and then used
the synthetic data to train a residual convolutional neural network for fusing DW images
from multiple acquisitions without the prerequisite of registration [22]. As ground-truth
about diffusion tensors of in vivo hearts is not available, the above-mentioned supervised
learning-based methods are not feasible in practice. Accordingly, unsupervised learning-
based methods were proposed. For example, Xu et al. [23] presented a U2Fusion
network to fuse magnetic resonance images and PET images in an unsupervised learning
manner, which can adaptively preserve the useful information of different source images
by training the network with structural similarity and continue learning losses [23].
Jung et al. proposed a DIF-NET, in which the intensity fidelity and structure tensor
losses are combined to allow the fused image to preserve the overall contrast of different
inputs [24]. These fusion based methods have potential to deal with the signal loss or
noise problems of in vivo cardiac DW images.

Besides the fusion based methods, several denoising methods dedicated to the
diffusion MRI based on single acquisition have also been proposed, such as MPPCA
[25, 26], Patch2Self [27] and DDM2 [28]. MPPCA is currently the best traditional
DW image denoising method. It first maps the multi-directional DW images onto a
set of principal component orthogonal basis, and then uses the properties that the DW
signals along multiple directions have a low rank and the eigenvalues of noise   conform to
the Marchenko-Pastur distribution to threshold the principal components for denoising.
When the noise level is higher or the number of diffusion gradient directions is fewer,
the low rank property of the DW signal and the noise distribution are not satisfied,
thereby its denoising performance decreases. In Patch2Self, it uses patches of DW
images along other diffusion gradient directions to fit the DW signal of a certain pixel
in the current direction. Since the noise along different directions are not correlated,
Patch2Self can denoise using a fitting method. However, when there are fewer gradient
directions, the denoising performance of Pacth2Self decreases significantly. DDM2 is a
kind of generative method based on diffusion model to denoise DW images, it involves
three steps of noise estimation, forward diffusion state matching and reverse diffusion
reconstruction. This multi-stage learning method is easily affected by multiple factors
and may generate false structures in the denoised images, especially when the sample
size is not large enough. The above mentioned methods are designed to denoise, their
potential in signal loss compensation is unknown. How to deal with signal loss caused by
motion and the noise influence simultaneously in diffusion MRI is still not well explored.

In view of the noise robustness of wavelet scattering and its superiority in multi-
scale image decompositions without signal loss, as well as the merits of deep learning
for feature extraction and fusion, we propose an invertible wavelet scattering fusion
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method based on multi-scale convolutional neural network (WS-MCNN) to obtain high
quality in vivo human cardiac DW images. The proposed method first calculates the
nearly transformation-invariant (hereinafter referred to as transformation-invariant for
simplicity) coefficients of in vivo cardiac DW images using multi-scale wavelet scattering.
Then the deep features of these multi-scale wavelet scattering coefficients of multiple
acquisitions are extracted with an encoder and then fused based on an average fusion
rule. From the fused feature maps, inverse wavelet scattering transform via CNN is
finally performed to recover the high quality images. To evaluate the effectiveness of
WS-MCNN, we trained it with systole cardiac DTI acquired from one site, and tested on
three datasets acquired from other sites, including end-systolic and end-diastolic cardiac
DTI, as well as cardiac DTI affected by gastric peristalsis.

2. Methods

2.1. Basic principle and properties of wavelet scattering

Wavelet transform is a common method for extracting image features via the following
transformation

Wx =
[
x∗ψj,r(u)

x∗φj(u)

]
, (1)

where ∗ is the convolution operator, φj(u) is a scaling function, and ψj,r(u) is a direction
wavelet function. The x ∗ φj(u) represents the low-frequency information of image x
at the scale j, and x ∗ ψj,r(u) the high-frequency information at the scale j and in the
direction r.

Although the wavelet transform can restore the details of the image, it allows
obtaining only high-frequency components in three directions (vertical, diagonal,
longitudinal) and does not have translation invariance due to convolution operation
of wavelet. To deal with these issues, wavelet scattering was proposed by Mallat [29],
which which allows us to extract transformation-invariant and noise-robust features at
multi-scale without information loss. It can be expressed as

W̃x =
[
Um
Sm

]
, (2)

where W̃x means the wavelet scattering transform for image x. The subscript m

designates the wavelet scattering level that indicates the number of decomposition
operations on the high-frequency information. Um represents the scattering propagation
operator and Sm the scattering coefficients, which are calculated as

Um =

{
x m = 0{

Um
j,r, j=1,2,...,J, r=1,2,...,L

}
m ≥ 1

Sm = Um ∗ φJ(u)
, (3)

where J indicates the maximum wavelet decomposition scale, L the number of directions
for directional wavelet transform, φJ(u) is a low-pass filter at the maximum scale J ,
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formulated as φJ(u) = 2−2Jφ(2−Ju), and
{
Um
j,r, j=1,2,...,J, r=1,2,...,L

}
is the set of scatter

propagation operators at m-th scattering level. When m ≥ 1, Um
j,r is formulated as:

Um
j,r =

∣∣∣∣∣∣x ∗ ψ1
j,r(u)

∣∣ ∗ ψ2
j,r(u)

∣∣ · · · ∗ ψmj,r(u)∣∣ (4)

where | · | represents the modulus operation, ψmj,r(u) a directional wavelet function at
the scale j in the direction r used in the mth scattering level. For any m, the directional
wavelet function is the same and expressed as

ψ1
j,r(u) = ψ2

j,r(u) = · · · = ψmj,r(u) = ψj,r(u) = 2−2jψr(2
−ju). (5)

where ψr(·) indicates implementing the function ψ(·) along the direction r. In Equations
(3) and (5), ψ(·) and φ(·) can be any wavelet function and scaling function used in
wavelet transform. From Equation (4), we can summarize that the scattering coefficients
are calculated by smoothing the modulus of high-frequency information decomposed at
different scattering levels.
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Figure 1. Comparing the multi-scale features derived from wavelet scattering and
wavelet transform for the images before and after deformation. I and Î represent
the original and deformed image, respectively. IWS and ÎWS are the wavelet
scattering coefficient maps at three scales for images I and Î, while IWT and ÎWT

are the corresponding wavelet decomposition coefficient maps. ResWS and ResWT

show respectively the residuals of wavelet scattering coefficient maps and wavelet
decomposition coefficient maps at three scales before and after the transformation.

To gain a more intuitive understanding of the translation- and rotation-invariant
of WS coefficients, Figure 1 compares the changes of wavelet transform coefficients and
those of WS coefficients at different scales when the image deformed slightly. Here,
I represents the original image, and Î the image obtained by rotating I clockwise by
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10 degrees and then shifting it downward by 10 pixels. We performed discrete wavelet
decomposition and WS decomposition on both I and Î at three scales, and computed
the residuals of the coefficient maps of I and Î. It can be observed that the residual
maps obtained from WS have smaller values than those obtained from the discrete
wavelet transform when j = 2 and j = 3, indicating the stability of WS to rotation and
translation.

2.2. Principle of WS-MCNN for improving the quality of in vivo cardiac DTI

The overall workflow of the proposed WS-MCNN for improving the quality of in vivo
cardiac DTI is depicted in Figure 2. During the training stage, the cardiac DW images
were used as the input of WS-MCNN. Then, the multi-scale WS coefficient maps of
the input DW images were extracted using wavelet scattering. After that, both WS
coefficient maps and original DW images were fed into the Encoder of WS-MCNN to
further extract deep features. Finally, the deep features were concatenated and input
into the Decoder of WS-MCNN to reconstruct the original DW images. During the
fusion or test stage, the in vivo cardiac DW images acquired with multiple trigger delays
(TDs) or multiple repetitions, and the corresponding wavelet scattering coefficient maps
were respectively input into the trained Encoder of WS-MCNN. Following that, the deep
features of multiple DW images extracted by Encoder are fused based on an average
fusion rule. Finally, the fused features were input into a trained Decoder of WS-MCNN
to generate the final fused image with high quality.

In the following subsections, the feature extraction with wavelet scattering, the
WS-MCNN training and the image fusion with trained WS-MCNN will be described in
detail.

2.2.1. Extracting WS coefficient maps In the present study, the maximum scattering
level m = 1, wavelet decomposition scales J =1, 2 and 3, respectively, and the number
of directions L = 10. When m = 0, wavelet scattering outputs three transformation-
invariant coefficient maps S0 =

{
SJ=1
0 , SJ=2

0 , SJ=3
0

}
, with SJ=1

0 = x ∗ ϕ1(u), SJ=2
0 =

x ∗ ϕ2(u) and SJ=3
0 = x ∗ ϕ3(u); when m = 1, using Equation (3) and (4) results in 10

scattering coefficients SJ=1
1 , 20 scattering coefficients SJ=2

1 , and 30 scattering coefficients
SJ=3
1 . Thus, if setting the maximum scattering level as m = 1, 11 scattering coefficient

maps will be obtained when the wavelet decomposition scale is J = 1, 21 coefficients
when J = 2, and 31 coefficients when J = 3. In other words, wavelet scattering yields a
total of 63 multi-scale deformation-invariant and noise-robust coefficient maps, in which,
not only low-frequency information extracted by traditional wavelet transformation are
included, but also low-frequency components encoded in high-frequency information
along multiple directions are taken into account. This provides more useful texture
features for image fusion. If the original input image size is w×h, the size of scattering
coefficient maps at scales of J = 1, J = 2 and J = 3 is w

2
× h

2
, w

4
× h

4
, and w

8
× h

8
,

respectively.
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Figure 2. Overall workflow of the proposed WS-MCNN for improving the quality of in
in vivo cardiac DTI. During the training stage, WS-MCNN uses an encoder-decoder
architecture to learn the feature representations of a given DW image. The input and
target of WS-MCNN during the training is the same DW image. During the test stage,
the multiple acquisitions of one subject are input into the trained encoder to extract
their features; these features are then fused with an average rule. The fused features
are finally input into the trained decoder to obtain the high-quality DW image.

2.2.2. High-quality DW image reconstruction based on WS-MCNN Image fusion-
based quality improvment is usually implemented by feature fusion and feature-to-image
reconstruction. Since the features used in this work are derived from WS that is not
exactly invertible [30], we propose to use WS-MCNN to achieve the inverse wavelet
scattering transform by mapping feature maps into original DW images.

As shown in Figure 2, WS-MCNN consists of an encoder and a decoder. The
encoder adopts the idea of Laplacian pyramid [31], which processes the inputs with
different sizes through four different streams. The first stream is composed of three
Enblocks (the stride of the Conv layer is 2), which is responsible for extracting features
from original DW images. The second stream is also composed of three Enblocks, but the
strides for three Conv layers are 1, 2 and 2 respectively; it is used for extracting features
from the 1st scale wavelet scattering coefficients. The third stream is composed of two
Enblocks (the strides for two Conv layers are 1 and 2 respectively); it extracts features
from the 2nd scale wavelet scattering coefficients. The fourth stream is also composed of
two Enblocks with strides of Conv layers equal to 1; it is used to extract deep features
from the 3rd scale wavelet scattering coefficients. Such pyramid-like encoder enables
us to extract more diverse texture information at multi-scales. These multi-scale deep
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features are concatenated and input into the decoder. The latter is composed of 2
Deblocks and 1 Outblock, which are employed to double the spatial size of feature maps
and reduce the number of channels gradually. Notice that, in our network, the kernel
size of convolutions in all the layers is set as 3, and the channel number is noted above
each block.

Once the WS-MCNN was trained, we first extracted the deep features of the
DW images acquired with multiple TDs or multiple repetitions along a given gradient
direction using the trained encoder of WS-MCNN. Subsequently, the fused feature maps
were obtained by averaging the encoded feature maps derived from multiple acquisitions
(average fusion rule). Finally, these fused feature maps were fed into the trained decoder
of WS-MCNN, yielding the desired DW image, which is recalibrated by a linear intensity
transform to recover its original intensity range.

3. Experiments

3.1. In vivo cardiac datasets and preprocessings

3.1.1. Training dataset End-systolic cardiac DTI of 6 healthy volunteers and early
systolic cardiac DTI of 8 healthy volunteers were downloaded from https://med.
stanford.edu/cmrgroup/data/myofiber_data.html [32]. The DW images were
acquired on 3T MRI scanner (Prisma, Siemens). The second-order (M1-M2) motion
compensated diffusion encoding gradients were incorporated into the spin-echo echo-
planar imaging (SE-EPI) to minimize signal dropout induced by cardiac motion. To
precisely determine which cardiac phases were suited for cardiac diffusion imaging, a
prospective trigger delay (TD) scout acquisition was implemented. At each trigger
TD, 12 diffusion directions with a b-value of 350 s/mm2 were acquired. For each
subject and a given diffusion gradient direction, the acquisition was repeated 5∼ 8 times
for one mid-ventricular short-axis slice during diastole. The acquisition parameters
are: TE/TR=61/120 ms, spatial resolution=1.6 × 1.6 × 8 mm3, acceleration rate=2
(GRAPPA), partial Fourier=6/8, and matrix size = 128 × 104. A total of 1152 DW
images (not including images with b=0) were used for training WS-MCNN.

3.1.2. Testing dataset We used three kinds of datasets to test the proposed method,
detailed as follows.

(1) End-diastolic cardiac DTI of 6 healthy volunteers downloaded also from
https://med.stanford.edu/cmrgroup/data/myofiber_data.html was used as a test
dataset. The acquisition parameters were the same as those in the training set but with
different trigger delays. A total of 504 DW images were included.

(2) End-systolic cardiac DW images of 10 subjects acquired from the Royal
Brompton Hospital of London in UK were used as another test set. They were acquired
using a Skyra 3T MRI scanner (Siemens AG) with STEAM echo planar imaging
(STEAM-EPI) sequence under breath hold. DTI of a short-axis slice in the mid-left

https://med.stanford.edu/cmrgroup/data/myofiber_data.html
https://med.stanford.edu/cmrgroup/data/myofiber_data.html
https://med.stanford.edu/cmrgroup/data/myofiber_data.html
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ventricle was performed with prescribed b-values of 50, 150, 350, 550, 750, and 950
s/mm2 along 6 diffusion gradient directions (8 repetitions). The acquisition parameters
are as follows: TR = 2 cardiac cycles, FOV =360×135 mm2, in-plane spatial resolution
= 2.8 × 2.8 mm2, slice thickness =8 mm, matrix size = 256 × 96. When b-value was
950 s/mm2, TE=24 ms, the diffusion gradient magnitude was 35 mT/m, ramp time was
660 µs and the flat top time was 1680 µs. Lower b-values were achieved by reducing the
gradient magnitude while keeping the other timing parameters unchanged. Note that,
all frames were examined visually to identify and reject frames corrupted by motion,
the detailed acquisition strategies can be found in the work of Scott et al. [33]. This
dataset contains a total of 1560 selected DW images.

(3) To deal with the influence of gastric peristalsis on cardiac DTI while minimizing
the effects of cardiac and respiratory motions, we also used the same dataset as in the
work of [34] for testing, which were acquired on a 3T MRI scanner (Philips Ingenia
system) from Harbin Medical University Cancer Hospital in China with trigger delay
at end-diastolic. One midventricular short-axis slice of 8 subjects was scanned using
a single-short SE-EPI sequence with monopolar diffusion-encoding gradients along 6
directions. At the same time, spectral pre-saturation with inversion recovery technique
was used for fat suppression. The detailed acquisition parameters are as follows:
TR=2 heart beats, TE=66.87 ms, flip angle = 90◦, FOV= 260 × 200 mm2, voxel
size=3.13 × 3.41 × 10 mm3, matrix size = 224 × 224, and b-value=400 s/mm2. A
baseline b-value of 50 s/mm2 was used instead of b = 0. For each subject and a given
diffusion gradient direction, the DTI acquisition was executed repeatedly 8 times, and
each of the 8 acquisitions was achieved in 2 cardiac cycles. The total acquisition time
was about 25 mins when the heart rate of the subject was about 60 beats/min. In this
dataset, there are 228 DW images.

Before training and testing, the DFT-based sub-pixel registration algorithm [35] was 
applied to align DW images from different acquisitions. Specifically, for each diffusion 
gradient direction, taking its corresponding DW image from the first acquisition as the 
fixed image, and then the DW images of subsequent acquisitions were registered to the 
fixed image one by one to ensure that the DW images from multiple acquisitions along a 
given direction are spatially aligned. The registration results can be found Figure A5 in 
the supplementary file. After registration, all the DW images were resized to 128 × 128 
with crop or padding operations.

3.2. Experimental settings

To validate the superiority of the proposed method, we compared it with several
methods, including PCATMIP [16], MPPCA [25, 26], WIF [17], U2Fusion [23] and
DIF-net [24], Patch2Self [27] and DDM2 [28]. All the comparative models maintained
their default settings. Since MP-PCA, Patch2Self, and DDM2 were designed to denoise
the DW images from one single acquisition, to keep the fairness of comparison, their
processing results for multiple acquisitions were averaged as the final results. U2Fusion
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and DIF were trained using PyTorch on an NVIDIA Tesla P40 GPU. Where U2Fusion
was trained using the RMSProp optimizer with a learning rate 10−4 and converged
after 40 epochs. DIF was trained using the Adam optimizer with a learning rate 10−3

and converged after 150 epochs. DDM2 was trained using PyTorch on an NVIDIA
RTX A6000 GPU for 100,000 iterations with an Adam optimizer and a learning rate
10−4. The proposed model was implemented with Tensorflow and the mean square error
(MSE) between input DW images and output DW images was used as the loss function
of WS-MCNN. The Adam optimizer was applied to train our network, its parameters
were set as: learning rate=10−4, β1 = 0.9, β2 = 0.999 and ε = 10−8, respectively. After
45 epochs, the network was converged.

3.3. Analysis of potential influencing factors

In WS-MCNN, we used wavelet scattering to extract multi-scale features. To investigate
the influence of different wavelet scattering settings on the fusion results, we compared
the models without using wavelet scattering (w/o WS), with 1-scale, 2-scale and 3-scale
(WS-MCNN) wavelet scatterings, respectively. In the model without using wavelet
scattering, the vanilla convolution layer (kernel=3, and stride=2) was used to replace
the wavelet scattering at different scales of the encoder, the remaining structures in
decoder are the same as those in WS-MCNN.

In addition, WS-MCNN is a kind of fusion method, its performance may depend on
the acquisition times. To further investigate the influence of the number of acquisitions
on the fusion results, we have varied the number of acquisitions from at least of 2 to the
possible maximum acquisitions and then compared their fusion results with the simple
averaging method.

3.4. Evaluation criteria

DW images were evaluated using SNR and contrast to noise ratio (CNR), which
are calculated with several selected small ROIs within the myocardium and several
homogeneous regions (without any texture information) in the background, formulated
as:

SNR = 1
m

∑m
i=1

1
n

∑n
j=1

mean(SROIi
)√

2
4−π

σ(Sbackj
)

CNR = 1
m

∑m
i=1

1
n

∑n
j=1

mean(SROIi
)−mean(Sbackj

)

σ(Sbackj
)

(6)

where m = n = 6 in this work, indicating the number of selected small ROIs in the left
ventricle and the number of homogenous background regions. SROIi and Sbackj represent
the set of signals in the i-th selected ROI and j-th background region, mean(·) and
σ(·) indicates the averaging and standard deviation operation, respectively,

√
2

4−π is a
correction factor.

To further evaluate the proposed method in terms of in vivo cardiac DTI, the binary
mask of left ventricular myocardium was first delineated by an experienced radiologist,
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and then the resulted DW images from different methods were segmented and registered 
to the segmented b0 image for the following diffusion tensor calculation (the registration 
results can be found in FigureA5 (b) in the supplementary file). Note that, the diffusion 
tensor images of myocardium were fitted u sing weighted l east s quare ( WLS) method 
provided by DIPY [36] library in python, from which the fractional anisotropy (FA), 
mean diffusivity (MD) and helix-angle (HA) [37] maps for myocardium were calculated.

In addition, to verify whether the DW images along different directions obtained 
by different methods are consistent with the DTI model, based on the diffusion tensor 
images obtained by different method, the corresponding DW images along different 
directions were fitted with a physical DTI model. After that, the residual maps and 
root-mean-square error (RMSE) between DW images obtained by different methods and 
the corresponding fitted DW images are calculated.

RMSE =
√

1
N

∑N
i=1(yi − fi)2 (7)

where yi denotes the processed DW image signal with different methods and fi is the 
fitted signal from the diffusion tensors obtained by different methods, N denotes the 
number of voxels.

4. Results

4.1. Inverse wavelet scattering reconstruction results

To verify the effectiveness of the proposed encoder-decoder architecture for inverse
wavelet scattering reconstruction, Figure 3 compares the input and reconstructed DW
images from wavelet scattering features using the proposed model.

In addition to the residual map between the input and reconstructed DW images,
the p-value between each input-reconstructed DW image pair is also calculated using
a paired t-test and given below the corresponding residual map in Figure 3. It can be
noticed that the p-values of all the DW image pairs are greater than 0.05, indicating
that there is no statistically significant difference between the input and reconstructed
DW images. Moreover, to further demonstrate the differences between the input and
reconstructed DW signals, we also plotted the signal profiles along one line (yellow line)
in input and reconstructed DW images in Figure 3, we can clearly see that they are
almost the same, illustrating the feasibility of WSMCNN in approximating the inverse
wavelet scattering reconstruction.

4.2. Comparisons against the existing methods

4.2.1. Comparisons in terms of DW images Figure 4(a) shows the original and
corrected DW images obtained by different methods (where “original” shows DW image
randomly selected from any one acquisition). The top row gives the free-breathing
(diastolic) short-axis DW images for b=350 s/mm2. Although the M1-M2 motion-
compensated diffusion gradient can decrease the sensitivity to bulk motion, its long TE
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Figure 3. Input and reconstructed DW images of WS-MCNN network (without fusion)
on three test datasets, as well as the residual maps between them.

increases also the noise level. By comparing the zoomed-in regions in the rectangular box
of the left ventricle, we found that the noise in the DW images obtained by WS-MCNN
appears to be the lowest. The third row shows the corrected results for DW images
acquired with b=400 s/mm2 with the influence of gastric peristalsis. A heterogeneous
signal was obviously found in the inferior segment of the LV (indicated by the yellow
rectangular box) due to the effect of gastric peristalsis. Visually, the lost DW signal can
be recovered to some extent after WS-MCNN processing. The fifth row shows the DW
images acquired at the end-systolic with b=750 s/mm2. We notice that the original
signal does not present severe loss since it was acquired with breath-hold. However, it
had a low SNR due to the STEAM sequence acquisition [14, 38], especially in the cyan
rectangular box. Clearly, the WS-MCNN method reduced indeed the effect of noise.

To quantitatively assess the performance of different methods in enhancing the
quality of in vivo cardiac DW images, we computed the SNRs for cardiac DW images of
multiple subjects in different datasets. In Figure 4(b), the height of each rectangular bar
represents the mean SNR of DW images along multiple diffusion directions for a given
subject, while error bar denotes the standard deviation of SNRs. Our proposed method
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(a)

(b)

(c)

Figure 4. (a) The DW images and local zoom-in maps obtained with different methods
on three datasets. SNR (b) and CNR (c) plot of DW images along different diffusion
directions for all subjects on three datasets. Different colored bars represent different
subjects; the height of the rectangular bars indicates the mean value of SNRs or CNRs;
the length of error bars designates the standard deviations of SNRs or CNRs along
different directions. GP: gastric peristalsis. ES: end systole.
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consistently achieves the highest average SNR for almost all subjects across the three
datasets. Furthermore, the standard deviations of the SNRs across different diffusion
directions are comparatively low (especially on end diastolic and end systolic datasets),
showing the excellent intra-subject (along different directions) and inter-subject stability
of the proposed method. Regarding the CNR (Figure 4(c)), except for Patch2Self and
DDM2 methods, our method achieves almost the best CNR on all datasets. On GP
dataset, in the DW images restored by Patch2Self, the intensity of myocardium region
is much higher while the intensity of background much lower (Figure 4(a)), accordingly,
the CNR of Patch2Self on this dataset is extremely high. As to the method DDM2, it
generates many false structures and its restored DW image experiences severe distortion
(the shape of myocardium changes in Figure 4(a)), consequently, its CNR cannot be
considered as a solid measure.

Figure 5 shows the residual maps (a) and curves of RMSE (b) between the 
original/processed DW images and the fitted DW images from their corresponding 
diffusion tensors with DTI model. We notice that, our WS-MCNN achieves the 
smallest RMSE on three datasets and the residual maps obtained by WS-MCNN contain 
less structural information, which suggests that DW images processed by WS-MCNN 
method are more consistent with DTI model than the others.

(a) 

(b) 

Diastolic GP ES

R
M

S
E

Figure 5. Residual maps (a) and curves of RMSE (b) between the original/processed 
DW images and the fitted DW images from their corresponding diffusion tensors with 
DTI model. In the plots of RMSE curves, the circle indicates the average RMSE between 
original/processed and fitted DW images along all diffusion gradient direction from all 
subjects, and the orange error bars indicate the standard deviation of RMSE. GP: gastric 
peristalsis. ES: end systole.
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4.2.2. Comparisons in terms of diffusion metrics Figure 6 provides FA and MD
maps for different methods (in all the figures related with diffusion metrics, “Original”
represents the diffusion metrics fitted using original noisy DW images and b0 images
from all repeated acquisitions). For the diastolic dataset (b=350s/mm2), the FA or MD
maps from the original DW images present more outliers (i.e, FA values close to 1 and
MD values larger than 3×10−3 mm2/s). After processing with PCATIP, WIF, DIF and
U2Fusion, these outliers are not effectively removed. Regarding Patch2Self and DDM2,
although they can remove the influence of noise, their resulted FA and MD maps are
not normal, with FA much smaller in Patch2Self and MD much higher in DDM2. As to
the proposed method WS-MCNN, it achieves comparable performance with averaging
and MPPCA methods but with less grainy FA and MD maps. For dataset affected by
gastric peristalsis (b=400s/mm2), most of the original FA values in the left ventricle
are close to 1, and the MD value in the region affected by gastrointestinal peristalsis
was very low. Among comparison methods, only the averaging approach can solve these
problems to a certain extent, but it is observed that the FA values at inferior segment
are still much larger. In contrast, WS-MCNN can successfully correct FA values at
this region. As for the end-systolic dataset (b=750 s/mm2), most comparison methods
cannot handle outliers in FA maps, while with WS-MCNN, the FA and MD maps are
much smoother and less impacted by noise.
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Figure 6. FA and MD maps obtained from in vivo DW images using different methods.
GP: gastric peristalsis. ES: end systole. The number below each subfigure indicates the
mean ± std of FA or MD values.
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To further quantitatively assess the effectiveness of different methods for DTI
quality enhancement, we also compared the inter-subject distribution of FA and MD
values on three datasets, as shown in Figure 7. For each line plot, the horizontal axis
indicates the transmural locations from endocardium to epicardium, the vertical axis
indicates the values of FA or MD, the red line is the average of FA or MD values of all
voxels from all subjects in the region of interest (different transmural regions), and the
red shadow region around the red line shows the interquartile range. It can be observed
that in all datasets, FA values corrected with WS-MCNN peaks in the midmyocardium
compared with endocardium and epicardium, while there is no such trend in FA values
obtained by other methods. Regarding MD values, our method generates fewer outliers,
showing that our method can effectively remove the influence of motion or noise on MD
maps. In addition, our method achieves the narrower shadowed regions, implying that
the performance of WS-MCNN is stable for all the subjects.
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Figure 7. Line plots of FA and MD values in LV obtained with different methods. The
horizontal axis indicates the transmural locations changing from endocardium through
mid-myocardium to epicardium. The vertical axis indicates FA or MD values. The red
line is the average of FA or MD values of all voxels from all subjects in the region of
interest (different transmural regions), the red shadow region around the red line shows
the interquartile range (IQR, between the first quartile (Q1) and the third quartile
(Q3)), and the blue points indicate the outliers which out of the range of [Q1-1.5×IQR,
Q3+1.5×IQR]. GP: gastric peristalsis. ES: end systole.

4.2.3. Comparisons in terms of myocardial fiber structure Figure 8(a) shows
the corrected fiber orientations accompanied by HA maps obtained with different
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(a)

(b)

Figure 8. (a) Comparing the fiber orientation and HA maps obtained from one of original
acquisitions against those corrected ones with different methods. (b) The boxplots of
HA values for different subjects at different transmural locations. The red curves in
(b) reflect the variations of the median helix angles from endocardium to epicardium.
ENDO: endocardium, MID: midmyocardium, EPI: epicardium; GP: gastric peristalsis.
ES: end systole.

methods. For diastolic dataset, Patch2Self and DDM2 generate totally erroneous fiber
orientations, while PCATMIP, WIF, U2Fusion and DIF cannot overcome the influence
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of noise, resulted in the disarranged fiber orientations at inferior segment. Although
averaging multiple acquisitions can restore the helical structure, WS-MCNN method
produces a better HA distribution in the endocardium, that means the HA values in
endocardium derived from our method do not have outliers (comparing the second
column against the last column in Figure 8 (b)). As to MPPCA method, it achieves
comparable performance as our method. For the GP dataset, due to the influence of
gastric peristalsis and breath motion, the helical structure of myocardium fibers derived
from the original acquisitions were disrupted. Although all the methods can restore
the fiber orientations at the free lateral segment, most of them are not able to restore
the fiber orientations in the inferoseptal segment (red rectangles). As to our proposed
WS-MCNN method, it yields the best corrected HA map with the HA values varying
almost continuously and smoothly through myocardial walls. For the ES dataset, since
it was acquired with breath-hold, the noise instead of the motion is the main factor for
image quality degradation. Accordingly, averaging simply the multiple acquisitions also
leads to desirable result. However, the fiber orientations obtained with our WS-MCNN
are more coherent and HA maps are much smoother. In addition, except for DDM2
and Patch2Self, all the other comparison methods can restore the fiber orientations to
a certain level, but a little noisy. More quantitatively (Figure 8(b)), with WS-MCNN,
the mean HA values at midmyocardium for all the datasets are close to zero, and the
variation trend from endocardium to epicardium is more coherent with respect to the
other methods. In addition, the interquartile range of HAs at all the locations are almost
the smallest, illustrating that HA values obtained by our method did not change too
much across different subjects.

4.3. Evaluating the results obtained with different settings

4.3.1. Influence of different wavelet scattering settings In Figure 9 are shown
the original DW images, fiber orientations, FA, MD, and HA maps from multiple
acquisitions (Acquisition 1 to Acquisition 5), as well as those obtained from averaging
and WSMCNN models with different wavelet scattering settings (the last four columns).
Noise and signal loss caused by motion in the original DW images can be clearly seen
(indicated by yellow arrows), even though using traditional CNN (w/o WS) to fuse
multiple acquisitions are able to deal with motion and noise problems to a certain level,
they are not better than simply averaging and there are still some residual noise and
outliers in FA (extremely high FA values) and HA maps. Using wavelet scattering
features of multiple scales (from scale1_WS to scale3_WS (WS-MCNN)) can improve
gradually the fusion quality, with the increment of mean SNR and CNR for multiple
directional DW images being up to 99% and 93%, respectively. In terms of fiber
orientation, increasing wavelet scattering scales can make the fiber orientations more
coherent and the transitions of helix angles much smoother.
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CNR: 8.16±2.38 6.57±1.28 7.71±1.78 7.45±1.33 7.39±1.33 10.72±2.29 12.29±2.42 13.84±2.49 20.64±3.84

SNR:

13.62±2.43

Figure 9. Original DW images from multiple acquisitions and the fusion results obtained
with averaging and WSMCNN models with different wavelet scattering settings, as well
as the corresponding diffusion metric maps. w/o WS means using the convolution layers
to replace the multi-scale wavelet scattering in WS-MCNN; scale1_WS and scale2_WS
represent using one-scale and two-scale wavelet scattering, respectively; WS-MCNN is
the proposed model where wavelet scattering at three scales is used.

4.3.2. Influence of the number of acquisitions From Figures 6-9, we notice that, when
the repeated acquisition number is large (8, 6 and 5 times for diastolic, GP and ES
datasets, respectively), there is no significant difference between averaging and our
method WS-MCNN. To test the influence of acquisition times on their performance,
Figure 10 compares the results derived from averaging and our method when varying the
acquisition times from 2 to 5. We can observe that the performance of averaging method
is sensitive to the number of repeated acquisitions. When the number of repeated
acquisition is less than 3, it cannot suppress noise effectively. In contrast, the proposed
WS-MCNN method is more robust to the number of the repeated acquisitions, when
the acquisition number changes from 2 to 5, its fused DW images, FA and MD maps
are almost the same, illustrating the superiority of the proposed method. It means that
using the transformation-invariant and noise-robust wavelet scattering features enables
us to get the better fusion results from the limited data.

5. Discussion

In the present work, we have proposed to combine multi-scale wavelet scattering
coefficients and CNN model (WS-MCNN) to improve the quality of in vivo cardiac
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Figure 10. Influence of the number of repeated acquisition on the results of averaging
and WS-MCNN methods on ES dataset. The acquisition number varies from 2 to 5.

DTI. Through the experiments on three test datasets, we demonstrated that WS-
MCNN allowed us to clearly restore the helical structure of myocardial fibers from
the DW images degraded by residual motion and noise, with a circumferential zero
contour at mid-myocardium and a smooth positive-negative transmural transition from
endocardium to epicardium.

We used two kinds of cardiac DW images acquired at diastole under free breathing.
The one was acquired with b =350 s/mm2 and low SNR, and the other with b =400
s/mm2 without severe signal loss but with obvious influence of gastric peristalsis. For
these two datasets, after the correction with WS-MCNN, DW image details were well
restored, with the highest SNR and CNR (Figure 4(b) and (c)), and the helical structure
of cardiac fibers were also recovered. The corrected mean FA (FAb350 = 0.36±0.01) and
mean MD values (MDb350 = 1.64 ± 0.18 10−3mm2/s) were similar to those obtained in
the previous studies in diastole using M1-M2 motion-compensated gradients (FA = 0.35

and MD = 1.64 10−3mm2/s) [32]. However, FA (FAb400 = 0.46 ± 0.01) and MD
(MDb400 = 1.62 ± 0.15 10−3mm2/s) obtained by WS-MCNN were different from those
calculated from IVIM data (FAIVIM = 0.37 ± 0.03,MDIVIM = 1.78 ± 0.21 10−3mm2/s),
acquired using the same acquisition protocol by Zhang et al [34]. This may be due to
the fact that DTI model takes into account direction information in the calculation of
diffusion coefficient but not in the case of IVIM bi-exponential model [39].

For the DW images acquired at end systole with breath-hold, the main problem
is noise influence rather than motion effect. Although almost all the post-processing
methods can reduce the noise to a certain level, our proposed method achieved the
best performance in terms of SNR of corrected DW images (Figure 3) and HA
maps (Figure 8(a)), which validates the superiority of the WS-MCNN. Regarding
the corrected mean FA and MD values, the range of FA and MD values (FAb750 =
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0.37 ± 0.01,MDb750 = 0.99 ± 0.01 10−3mm2/s) was also consistent with the previous
findings (FAb750 = 0.39 ± 0.02,MDb750 = 0.93 ± 0.037 10−3mm2/s) [33]. Since this
dataset was acquired with several b-values, the correction results for the cardiac DTI
with other b-values can be found in the supplementary files. The ranges of the corrected
FA values for other b-values were also consistent with the previous studies [33]. This
demonstrates the reliability of our proposed method.

To the best of our knowledge, it is the first time that multi-scale transformation-
invariant features and deep learning model were combined to improve the quality of
in vivo cardiac DW images. Although there are a few acquisition techniques aimed
at reducing the effects of bulk motion in in vivo cardiac DW images, such as bipolar
diffusion encoding gradient pulses [40], simulated echoes over two cardiac cycles or
a single short acquisition with navigator-based gating [41], and diffusion encoding
schemes that compensate for the first-, second- or high-order motion [40, 42, 43], our
method provided a post-processing alternative to deal with the residual motion and noise
issues that have not yet been solved with current acquisition sequences. Compared to
existing post-processing methods of compensating for motions in in vivo cardiac DTI,
such as PCATMIP [16] and WIF [17], the proposed WS-MCNN method worked on
transformation-invariant and noise-robust wavelet scattering coefficient maps extracted
from multiple repeated DW images, which enabled us to overcome influence of irrelevant
information in multiple DW images on the fusion result, accordingly, achieved the best
performance, even compared with several CNN-based fusion methods (U2Fusion and
DIF). Comparing against the state-of-the-art denoising methods for diffusion MRI, such
as MPPCA [25,26], Patch2Self [27] and DDM2 [28], our method still obtained superior
performance. As can be seen from the Figure 4, the MPPCA and Patch2Self methods
generate satisfactory results on the diastolic dataset. On the GP and ES datasets, the
results of MPPCA are similar to the original data, with no appreciable improvement.
This can be attributed to the inherent limitations of the MPPCA method, which uses
principal component analysis for denoising and relies on the redundancy of DW images.
When the number of diffusion gradient directions is insufficient, DW images no longer
exhibit redundancy Similarly, in the Patch2Self method, it uses the neighboring signal
along other diffusion gradient directions to fit the clean signal of a given voxel along
current diffusion gradient direction. When the number of the diffusion gradient direction
is lower, the fitting error becomes larger. This is why Patch2Self does not perform well
on GP and ES datasets. As to the diffusion model based method DDM2, it generated the
worst results on all datasets, with severe artifacts and distortions. This can be caused
by the influences of both sample size and processing flow of DDM2. DDM2 is kind
of generative diffusion models which involves three steps for denoising, including noise
estimation, forward diffusion state matching and reverse diffusion reconstruction. This
multi-stage learning method is easily affected by multiple factors and may generate false
structures in the denoised images, especially when the sample size is not large enough.

The superiority of wavelet scattering was further verified by ablation experiments,
which demonstrated the importance of multi-scale invariant features for image fusion.
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Since the wavelet scattering features are robust to noise and transformations, they are
beneficial for image restoration. Simply using CNN without the wavelet scattering
did not allow us to effectively compensate for motion or noise effects (Figure 9 (w/o
ws)). This explains why the DIF-net and U2Fusion did not restore well cardiac fiber
orientations (Figure 8). In addition, the wavelet scattering transform itself being non-
invertible, to reconstruct the fused DW images from scattering coefficient maps, we
used a CNN-based network to learn the relationship between the wavelet scattering
coefficients and the corresponding DW images. In the present work, a total of 1152
samples acquired early-systole and end-systole were used for training. Such a dataset
size was enough to guarantee that our network can learn accurately the relationship
between the nearly-invariant wavelet scattering coefficients and DW images, this can be
verified by the Figure 3, where the difference between the input and reconstructed DW
images is not significant. Accordingly, using such network to restore DW images from the
fused features extracted from wavelet scattering maps is reliable. Moreover, the ablation
results in Figure 10 verify that the performance of the proposed WS-MCNN method is
more robust to the number of the repeated acquisitions, it can achieve the comparable
or even better results than averaging method only with fewer repeated acquisitions,
illustrating that using the transformation-invariant and noise-robust wavelet scattering
features enables us to effectively explore the useful information from the limited data
to fuse, providing a potential mean to alleviate the dependence of the fusion results on
the number of repeated acquisitions.

It was commonly recognized that respiratory and cardiac motions are two main
sources of signal loss, even with good cardiac triggering and motion compensation, there
may be slight cardiac deformation or rotation which can cause signal loss. Meanwhile,
the presence of gastric peristalsis may also be a source of signal loss. In our present
study, for each subject in GP dataset and a given diffusion gradient direction, the DTI
acquisition was executed repeatedly 8 times, and each of the 8 acquisitions was achieved
in 2 cardiac cycles. Consequently, gastric peristalsis was certainly present. In the future,
it would be interesting to design appropriate acquisition strategies to avoid the impact
of any organ motion including gastric peristalsis. In addition, in the dataset acquired
with STEAM sequence, we did not adjust the b-values on heart rate to calculate the
subsequent diffusion metrics, which may bring some influence on FA and MD values.
Moreover, the acquisition protocols involved in the present study allowed acquiring only
one slice along a few diffusion directions. If the few diffusion gradient directions are
not optimally distributed, the fitted diffusion metrics will be influenced (such as on
GP datasets, all the methods cannot generate the satisfactory helix angle map, which
may be caused by diffusion gradient directions.) Besides, only one slice is not sufficient
for expressing the diffusion properties of the entire heart, which is a limitation of our
method. In the future, it would be interesting to develop post-processing methods
allowing augmenting dataset through obtaining more slices or more directions, which
could enable us to recover possible missing fiber structure details and compensate for
motion and noise effect simultaneously. Furthermore, bulk motion also influences the
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phase image. The proposed motion compensation and noise removing method was
implemented only on magnitude images. Performing motion compensation and noise
reduction on complex data (if available in advanced sequences) containing both phase
and magnitude would constitute an interesting future work. Besides, we validated the
performance of WS-CNN on end-systolic and diastolic datasets, further validations on
datasets acquired at other cardiac phases would also be required. Lastly, to guarantee
the performance of all methods, the acquisitions with severe signal loss (such as ROI
is invisible or most of ROI disappears) were excluded from all the methods. Therefore,
even though our method can achieve the best performance on the dataset with exclusion,
it should be noted that all the existing methods, including the proposed one, are still
not capable of recovering images with complete or severe signal loss. Restoring the DW
images completely or highly corrupted by motion remains a great challenge.

6. Conclusion

We have proposed a novel method WS-MCNN to compensate for the effects of motion
and noise in in vivo cardiac DTI. The WS-MCNN consists of extracting and fusing
multi-scale wavelet scattering features of DW images acquired at different times or
different repetitions, and reconstructing high quality DW images using a CNN-based
invertible wavelet scattering. The experimental results on three kinds of in vivo cardiac
DTI datasets, including diastolic, gastric peristalsis influenced, and end-systolic cardiac
DTI, showed that the proposed WS-MCNN method effectively compensates for motion-
induced signal loss and removes the noise, producing better DW image quality and
more coherent fiber structures. Compared to three traditional methods (PCATMIP,
MPPCA and WIF) and several learning-based methods (U2Fusion, DIF-net, Patch2Self
and DDM2), WS-MCNN outperforms them for dealing with the effects of motion and
noise in in vivo cardiac DTI.
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Appendices

Figure A1 FA and MD maps obtained from in vivo DW images with b=150, 350, 550 
s/mm2 using different methods.
Figure A2 HA maps obtained from in vivo DW images with b=150, 350, 550 s/mm2 

using different methods.
Figure A3 FA and MD lineplots obtained from in vivo DW images with b=150, 350, 
550 s/mm2 for all subjects using different methods.
figure A4 HA boxplots obtained from in vivo DW images with b=150, 350, 550 s/mm2 

for all subjects using different methods.
figure A5 (a) Align multiple DW image acquisitions to the first acquisition before net-
work training and testing. This alignment is performed for each given diffusion gradient 
direction separately. (b) After network testing, align the processed DW images along 
different diffusion gradient directions to b0 image for calculating the diffusion metrics. 
Note that only the left ventricular myocardium was considered during this registration.
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