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Abstract
Phenotypic adaptation, the ability of cells to change phenotype in response to external pressures,
has been identified as a driver of drug resistance in cancer. To quantify phenotypic adaptation in
BRAFV600E-mutant melanoma, we develop a theoretical model that emerges from data analysis of
WM239A-BRAFV600E cell growth rates in response to drug challenge with the BRAF-inhibitor enco-
rafenib. Our model constitutes a cell population model in which each cell is individually described by
one of multiple discrete and plastic phenotype states that are directly linked to drug-dependent net growth
rates and, by extension, drug resistance. Data-matched simulations reveal that phenotypic adaptation
in the cells is directed towards states of high net growth rates, which enables evasion of drug-effects.
The model subsequently provides an explanation for when and why intermittent treatments outperform
continuous treatments in vitro, and demonstrates the benefits of not only targeting, but also leveraging,
phenotypic adaptation in treatment protocols.

Keywords: Cell plasticity, heterogeneity, treatment schedules, mathematical model, individual-based
model.



Introduction
Over 50% of melanoma cases present with BRAFV600E mutations that result in constituent activation
of the Mitogen Activated Protein Kinase (MAPK) pathway and, by extension, uncontrolled cell growth
and division.1,2 Targeted small molecule therapies that selectively inhibit mutant BRAF signalling have
consequently been developed over the last decades and are now part of the standard of care for BRAF-
mutant melanoma. While these targeted therapies have lead to a remarkable increase in progression
free survival, treatment resistance inevitably develops and limits long-term survival.3 This drug resis-
tance in BRAF-mutant melanoma, and other solid tumours, is increasingly understood as a result of in-
tratumoural heterogeneity, which has long-been viewed through the lens of inter-clonal differences.4,5,6
However, a growing body of work implicates cell plasticity, i.e., phenotypic adaptation without associated
genetic mutations, as a key component of therapy resistance in melanoma.1,7,8

Advances in transcriptomics and multi-omics have led to the identification of reversible and adaptive
phenotype changes that confer treatment resistance and are mediated by a number of complex physi-
ological factors on the single-cell level.9,10,11 As systems-level experiments of the complex interactions
driving these adaptations are currently intractable, computational models have become increasingly
important to our understanding of how therapeutic selection pressure shape the epigenetic evolution of
malignant tumours.12,13,14 Many existing computational approaches leverage precise mechanistic repre-
sentations of the MAPK signalling pathway that are informed by extensive perturbation experiments.13,15
While these models permit a detailed description of the molecular signalling culminating in phosphory-
lated ERK, they are not directly linked with the cellular response. Further, due to the large number of
chemical reactions being modelled, these models are computationally expensive to train and simulate.
Here, we present a novel approach to understanding cell plasticity that is computationally inexpensive
and directly bridges cellular phenotype with net growth rates.

Specifically, we develop a computational model that is directly informed by growth rate analysis of
BRAFV600E-WM239Amelanoma cells exposed to the BRAF-inhibitor encorafenib (LGX818) in a recent
study by Kavran et al.9 In our model, each individual cell is described by a plastic phenotype state that
can take one of 𝑆 discrete values, where 𝑆 is an arbitrary integer larger than 0. Further, each phenotype
state is directly related to drug dose-dependent growth rates. Modelled phenotype states are thus math-
ematical abstractions that link cells to drug resistance. To investigate phenotypic adaptation in response
to drug exposure and removal, we propose four candidate cell-level phenotype adaptation strategies.
Subsequent comparisons of model-generated cell populations and in vitro cell count data reveal that
phenotypic adaptation is directed towards phenotype states with high net growth rates. As such, our
individual-based model demonstrates the emergence of drug resistance at the population-level as a re-
sult of directed phenotypic adaptation on the individual cell-level. Further, our modelling captures the
experimental observation that intermittent treatment strategies can outperform their continuous coun-
terparts in vitro, despite halved cumulative drug doses.9 Accordingly, our framework can identify when
intermittent treatments may be more effective than continuous treatments directly from multiple-dose
growth rate data from untreated and treated cells. Building on the above results, we perform further
simulation experiments to quantitatively assess the potential of not only targeting, but also leveraging,
cell plasticity in melanoma towards improved clinical outcomes.

Results
Empirical growth rates are mapped to phenotype states and give rise to a theoretical
model
Our theoretical model formulation emerges from data analysis of drug dose-dependent growth rates of
BRAFV600E-mutant melanoma cells exposed to the BRAF-inhibior encorafenib. The growth rates are
shown in Figure 1a and are extracted from a recent experimental study by Kavran et al.9 in which cell
count numbers of WM239A-BRAFV600E melanoma cells were measured at 0 and 72 hours in response
to drug challenge following 0-4 weeks of 500 nM encorafenib incubation. Cell populations that have been
continuously incubated with drug for 1-4 weeks present dose-dependent net growth rates that are not
significantly different from each other. We therefore assume that cells reach a drug-adapted state within
1 week of encorafenib incubation and stratify the observed growth rates as belonging to one of two
extreme phenotypes: drug-naive cells and drug-adapted cells, i.e, cells that have been incubated in
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500 nM encorafenib for 0 and 1-4 weeks, respectively (Figure 1b). Further, upon drug removal, drug-
adapted cells in the regarded in vitro experiment resumed growth rates similar to those of drug-naive
cells9 (results not shown) hence we allow for bi-directional phenotype updates in the model.

Building on our growth rate stratification, we formulate a discrete adaptive phenotype model in which
each individual cell in a cell population is described by a discrete and plastic phenotype state that can
be updated in response to external pressures, here encorafenib presence or absence. We use the
variable 𝑥𝑖 to describe the phenotype state of cell 𝑖, where a cell’s phenotype state corresponds to its
sensitivity to the BRAF-inhibitor such that, arbitrarily, cells in state 𝑥 = 0 are the most drug-sensitive
and cells in state 𝑥 = 1 are the most drug-resistant. In our model, growth rates for these phenotypes
correspond to those for drug-naive and drug-adapted cells in Figure 1b, respectively. We further assume
that the cells can exist in 𝑛 (here 𝑛 = 9) intermittent phenotype states between the extrema 𝑥 = 0 and
𝑥 = 1, where each state is associated with drug dose-dependent net growth rates that are estimated
through linear interpolation of growth rate data and are mapped onto a fitness matrix (Figure 1c-d). In our
discrete adaptive phenotype model, positive values in the fitness matrix correspond to daily probabilities
that cells divide, whereas negative values correspond to daily probabilities that cells die. Our presented
growth rate-to-phenotype state mapping enables growth rate-driven phenotype characterisation of cells,
which we use to elucidate the directionality of phenotypic adaptation, predict treatment responses, and
investigate the possibility of both targeting and leveraging cell plasticity in treatments.

Phenotypic adaptation in BRAFV600E-mutant melanoma is directed towards high fitness
Curiously, it was observed that four weeks of intermittent (one week on/one week off) treatments with 500
nM encorafenib are more effective at suppressing WM239A-BRAFV600E cell counts than four weeks
of continuous treatments with the same dose in vitro.9 Here, we set out to elucidate the cell-level be-
haviour related to phenotypic adaptation that gives rise to this macroscopic, population-level result. To
investigate the directionality of phenotypic adaptation in the regarded melanoma cells in response to en-
corafenib exposure and removal, we present four candidate phenotype update strategies for describing
cell-level dynamics. These are illustrated in Figure 2a and are mathematically defined in the Methods
section.

With the no update strategy, cells never update their phenotype states. With the unbiased strategy,
cells propose to update their phenotype states to adjacent states with equal probability, unless at a
boundary, and subsequently move to the proposed state. With the semi-biased strategy, cells propose
to update their phenotype states to adjacent states with equal probability, but only accept the move if it
results in a higher fitness, i.e., net growth rate. This corresponds to the cells having a noisy measurement
of the fitness gradient. Finally, with the biased strategy, cells update their phenotype states to states of
higher fitness whenever possible. As such, phenotypic adaptation is non-directed in the first two (no
update and biased) strategies, but directed in the last two (semi-biased and biased) strategies. This
gamut of phenotype progression is highly studied in segments of the mathematical literature16 but, to
the best of our knowledge, has not been applied in the interpretation of experimental data. Moreover,
whilst the no update strategy suggests that the presence of drug-resistant cells that exist post treatment
arise purely from pre-exisiting phenotypic heterogeneity, the other three strategies allow drug-resistant
cells to arise through phenotypic plasticity.

The four update strategies are implemented through a simple computational algorithm (Figure 2b)
and produce significantly different phenotype distributions in response to 300 nM encorafenib expo-
sure and removal following continuous and intermittent treatments (Figure 2c). Whilst the non-directed
strategies yield phenotype distributions that only moderately change over time in response to intermit-
tent treatments, the directed strategies yield phenotype distributions that markedly move between the
drug-sensitive (𝑥 = 0) and drug-resistant (𝑥 = 1) extrema. Simulation results pertaining to 0 and 300
nM treatment responses have been produced with dose-dependent net growth rates from the fitness
matrix (Figure 1d) and the probability factor 𝜌 = 1 (Figure 2a). Cells have a chance to update their
phenotype state 𝜂off and 𝜂on times per day in drug absence and presence, respectively, where we set
𝜂on = 𝜂off = 2, ensuring that cells can traverse phenotype space within a week (following observations
in Figure 1a). Comparing simulated cell counts in Figure 2d, our model predicts a distinct benefit in
using 300 nM encorafenib intermittent over continuous treatments for the directed phenotype update
strategies, but not for the non-directed strategies.
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Further simulation results with 500 nM demonstrate that only the directed strategies are able to
match in vitro data9 and reproduce cell population dynamics such that 500 nM encorafenib intermittent
treatments outperform continuous treatments, in terms of suppressing cell counts (Figure 2). Phenotype-
dependent net growth rates in response to 500 nM encorafenib are fit to data through a least-squares
parameter estimation for each update strategy, where net growth rates are bounded by those for the ad-
jacent drug doses for which data is available i.e., 300 nM and 1000 nM. The number of cellular phenotype
updates per day, 𝜂on and 𝜂off are also optimised.

Taken together, the results in Figure 2c-d suggest that phenotypic adaptation in the regardedWM239A-
BRAFV600E cells is directed towards phenotype states of high fitness through semi-biased or biased
update strategies (Figure 2e). With the used model and available data, we can not distinguish which of
the two directed strategies best describe the model system. However, the conclusion that phenotypic
adaptation is directed provides a growth rate data-driven explanation for why intermittent treatments
outperform continuous treatments at 500 nM encorafenib.

Moreover, with directed phenotypic adaptation, our model predicts that death events spike once
treatments resume after a drug holiday, when the cells have acquired drug-sensitive phenotype states,
in the intermittent treatments (Figure 2f). This simulation result is in qualitative agreement with Kavran
et al.’s9 experimental observation that the percentage of propidium iodide (PI) positive cells peak during
drug re-challenge, where PI is used as a cell death marker, giving further credence to our model formu-
lation and our simplifying model assumption that positive and negative net growth rates, respectively,
can be approximated to yield birth and death events on the cell-level.

Simulations demonstrate the benefits of targeting and leveraging cell plasticity in treat-
ments
Our results beg the question: Given directed phenotypic adaptation, when do intermittent treatments
outperform their continuous counterparts? To address this question, we perform a series of simulation
experiments in which output dynamics are quantified in response to variations of two model-inputs: the
number of times per day that a cell can update its phenotype state (𝜂), and the duration of treatment
on/off intervals (𝑇 ). Next, to enable biologically interpretable and mathematically tractable comparisons
of continuous and intermittent treatments, we introduce the effective net growth rate 𝜆eff as the average
(per cell and day) net growth rate that cells experiences over the course of a simulation. Using the
biased update strategy, we derive analytical approximations through ordinary differential equation for
𝜆eff in the limit of large total treatment times. For 300 nM and 500 nM encorafenib, simulation results
with instantaneous drug on/off switches and analytical expressions both identify pairings of 𝜂 and 𝑇
values that outperform continuous treatments, i.e., yield lower effective growth rates than those for fully
drug-adapted cells in drug presence. These pairings are highlighted by yellow regions in Figure 3b,e.
Throughout Figure 3, we have used phenotype-dependent net growth rates for 500 nM that are obtained
through log-linear interpolation between net growth rates for 300 and 1000 nM in the fitness matrix
(Figure 1a).

When all cells start in the most drug-sensitive phenotype state, the effective net growth rates increase
with the number of cell updates per day for the regarded doses and simulation inputs (Figure 3a-c). In
other words intermittent treatment becomemore effective when 𝜂 is decreased. As such, our simulations
highlight the therapeutic benefit of targeting phenotype adaptation by slowing it down.

Next, motivated by clinical studies in which drug re-challenge show anti-tumour activity in patients
who have previously been treated with BRAF-inhibitors,3,17,18 we investigate the impact of drug-holidays
on treatment responses. We thus perform a simulation experiment in which all cells start in the most
drug-resistant phenotype state (Figure 3d-f), as would follow from a period of continuous treatment. In
such cases, our model produces non-monotonic relationships between effective net growth rates and
the number of daily cell updates. This follows from the fact that cells may not have time to traverse
phenotype space into states that are susceptible to sudden changes in drug exposure or removal. In
an effort to push drug-resistant cells to drug-sensitive states in such cases, we can schedule a drug
holiday and delay the treatment restart time. The benefits of delaying intermittent treatments are shown
in Figure 3e, where the most effective treatment schedules are those that allow time for cells to traverse
phenotype space to reach drug-susceptible states. Our simulation results thereby highlight the benefit
of leveraging phenotypic adaptation in treatments.
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Figure 1: Empirical growth rates are mapped to phenotype states and give rise to a theoretical model. (a)
Growth rates for BRAFV600E-mutant melanoma cells from theWM239A cell-line are shown in response to various
doses of the BRAF-inhibitor encorafenib, as measured over 72 hours. The rates are extracted from quadruplicate
cell count assays by Kavran et al.9 Prior to drug challenge, the cells are incubated in 500 nMencorafenib for 0,1,2,3,
or 4 weeks (wks), with four replicates per incubation time. (b) Mean growth rates for drug-naive phenotypes (0
wks in a), and drug-adapted phenotypes (1-4 wks in a) are plotted over drug doses. Between the two extreme
phenotype states, 𝑛 intermediate states are introduced (here, 𝑛 = 9). Marker colours and sizes correspond to
phenotype state values and drug doses, respectively. (c) Net growth rates in (b) are mapped onto a discrete
phenotype-dose space, as is indicated by marker colours and sizes. (d) Points in phenotype-dose space in (c)
are mapped onto a fitness matrix (FM), in which the values of the left-most and right-most columns correspond
to the growth rates in for drug-naive and drug-adapted phenotype states, respectively. Other values in the fitness
matrix are obtained via linear interpolation between FM(𝑥 = 0, 𝑑𝑗) and FM(𝑥 = 1, 𝑑𝑗) for each of the 𝑗 doses.
Negative net growth rates are highlighted with yellow labels.
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Figure 2: Phenotypic adaptation in BRAFV600E-mutant melanoma cells is directed towards states of high
fitness. (a) We introduce four phenotype update strategies. The figure shows probabilities that a cell in state
𝑥0 at time 𝑡 updates to states 𝑥−, 𝑥0 and 𝑥+ at time 𝑡 + 1 whenever possible, i.e., ensuring that the phenotype
states lie between the extrema 𝑥 = 0 and 𝑥 = 1. Net growth rates increase with decreasing 𝑥-values in the top
row, and with increasing 𝑥-values in the bottom row. (b) A simple algorithm is used to implement our discrete
adaptive phenotype model with the update strategies in (a). Each simulated day, cells update their phenotype
states before/after the resolution of cell division and death with probabilities 0.5/0.5. (c) The histogram show how
cell population-wide phenotype distributions change over time in response to no, continuous and intermittent 300
nM BRAF-inhibitor treatments for the strategies in (a). Normalised cell counts are shown with 100 simulations
layered over each other (shaded regions) and means (solid bars). 28 days before the experiments start, cells
are seeded with uniformly distributed phenotype states. (d) The plots show normalised cell counts over time in
response to 300 and 500 nM continuous and intermittent treatments. Simulations start with 100 cells at day 1,
with initial phenotype distributions matching day 1 in panel (c). The yellow box highlights that only the directed
strategies (semi-biased and biased updates) are able to capture in vitro cell count dynamics. Mean (triangles) and
standard errors for 6 replicate experiments are shown. (e) The highlighted result in panel (d), together with panels
(a,c), suggest that phenotypic adaptation is directed towards states of high fitness, where this direction depends
on the applied drug dose. Drug doses included in the top and bottom arrows respectively induce phenotypic
adaptation in the direction of increasing and decreasing 𝑥-values. (e) The plots show the number of death events
per cell over time for the simulation experiments in (d) with directed update strategies in response to 500 nM
encorafenib. In (d,f) mean counts (solid/dashed lines) and standard deviations (shaded bands) are shown for 100
simulation runs.
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Figure 3: Simulations demonstrate the benefits of targeting and leveraging cell plasticity in treatments. (a) We con-
sider an initial condition in which all cells are in the most drug-sensitive phenotype state (𝑥 = 0) in (a-c). (b) Effective growth
rates in response to 8 week intermittent treatments with 300 nM (left) and 500 nM (right) encorafenib are obtained trough sim-
ulations with the biased phenotype update strategy. Mean values for 100 simulations are compared to effective growth rates
for continuous treatments to show which 𝜂 − 𝑇 pairings outperform continuous treatments in terms of suppressing effective
growth rates. Analytical results that identify these pairings are shown with dashed lines. (c) The plots show simulated cell
count dynamics in response to 1 and 4 cell updates per day and treatment intervals of 1 and 4 days, as marked by stars in
(b). These results demonstrate the benefit of targeting phenotypic adaptation in treatments by decreasing the number of cell
updates per day. (d)We consider an initial condition in which all cells are in the most drug-resistant phenotype state (𝑥 = 1) in
(d-e). (e) The experiments in (b) are repeated with the initial condition in (d). (f) The plots show simulated cell count dynamics
in response to 1 and 4 cell updates per day and treatment intervals of 1 day, as marked by stars in (d). Treatments commence
after a delay period of 1 (left), 4 (middle), or 10 (right) days. The results demonstrate the benefit of leveraging phenotypic adap-
tation in treatments by delaying treatments and allowing drug-resistant cells to desensitize by traversing phenotype space.
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Discussion
Cell plasticity is not listed as one of the original Hallmarks of Cancer which were famously collated in
2000.19 However, based on the last two decades’ research advances, an updated version of the work
identifies cancer cells’ ability to unlock phenotypic adaptation as an emerging hallmark, intended to
stimulate debate amongst researchers and inspire investigations that will improve our understanding
of cancer.8 The work presented in this article directly contributes to this understanding by evidencing
that phenotypic adaptation in BRAFV600E-mutant melanoma is directed to states of high fitness, and
demonstrating that this adaptation enables evasion of drug effects.

Our model emerges from growth rate data analysis of BRAFV600E-mutant melanoma cells exposed
to the BRAF-inhibitor encorafenib. Our conclusion that phenotypic adaptation in the regarded cells is di-
rected towards state of high fitness is obtained through a model-selection procedure, in which a gamut of
phenotype update strategies on the cell-level are evaluated against dynamic cell count data in response
to intermittent and continuous encorafenib treatments. One notable consequence of our results is that
dynamic phenotypic adaptation alone suffices to explain why intermittent treatments can outperform con-
tinuous treatments. This explanation offers an alternative to variations of the more common inter-clonal
competition-models in which two or more distinct subpopulations of cells, such as a drug-resistant and
drug-sensitive clones, interact with each other and compete for resources.20

The model developed in this paper is simple by design to enable direct mappings between phe-
notype states and growth rates. This simplicity, together with the informative results produced by the
model, inspires and informs the design of further model-in vitro integrated research towards more de-
tailed quantitative insight into phenotypic adaptation. For instance, data that clearly distinguishes cell
division and death events could be used to refine our model to include growth and death rates, as op-
posed to net growth rates only. Further, our methodology to linearly interpolate between drug-naive
and drug-adapted growth rates to assign fitnesses to intermediate phenotype states could be refined by
further drug challenge experiments. These would chart out growth rates in phenotype-dose parameter
space through cell counts measured at multiple time points after the pre-assay drug incubation, and
ideally include pre-assay drug incubation performed at multiple doses. It would also be informative to
have data revealing if and when drug-adapted cells can fully recover the growth rates of drug-naive cells.
This would allow us to assess dose-dependent velocities of phenotypic adaptation.

Whilst our results clearly indicate that phenotypic adaptation is directed towards state of high fitness,
we can not determine if the semi-biased or biased update strategy best describes the regarded cells.
This follows from the fact that we only consider mean growth rates in the model and do not have access
to data that reveal population-level phenotype distributions. The observation that cell count data alone
can not be used to distinguish between semi-biased and biased phenotype adaptation opens up for a
broader question: what type of experimental data is needed to identify phenotypic heterogeneity in cell
populations and quantify how biased phenotypic adaptation is? To address this question, we suggest
moving from our individual-based model to, for instance, a differential equation model in order to allow
for rigorous mathematical analysis.

Mathematical models, analysis and simulations, especially those integrated with data, have made
significant contributions to our understanding of cancer dynamics and treatment responses.21,22 To high-
light a few contributions pertaining to BRAFV600E-mutant melanoma, Gerosa et al.15 integrated pro-
teomics and modelling to show that exposure to drugs that target the BRAFV600E-MEK-ERK pathway
can cause non-genetic drug resistance by signal rewiring in the targeted pathway. Such rewiring was
also identified as a mechanism of drug resistance by Fröhlich et al.,13 in an extension of the Gerosa
et al. model, together with proteomic, transcriptomic and imaging data, to uncover that drug resistance
can be mediated by the co-existence of two functionally distinct channels upstream of ERK, one initiated
BRAFV600E monomers and the other by RAS. Whilst these models describe subcellular mechanisms
that drive phenotypic adaptation, our model describes how cell-level phenotype traits, in the form of drug-
dependent growth rates, change in response to BRAF-inhibitor exposure and removal. Comparing all
three models which complement each other, ours reveals less detailed subcellular information but is, on
the other hand, considerably less data-intensive and therefore more accessible. Other data-integrated
mathematical models of melanoma have been used to identify dose combinations of BRAFV600E, MEK,
and ERK inhibitors that yield synergistic treatment responses,23,24 predict initial treatment responses to
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BRAFV600E-inhibitors in xenografts,25 and demonstrate phenotypic plasticity and multi-stability.26 Be-
yond melanoma, cell plasticity, and its impact on treatment responses and the evolution of therapy resis-
tance, has been studied mathematically through structured partial differential equation models27,28,29,30
which, notably, can be used to suggest model-informed treatment strategies that impede the evolution
of resistance.

Treatment scheduling and responseswere also investigated in our current study. Ourmodel-generated
simulation results suggest that phenotypic adaptation can be both targeted and leveraged in an effort
to suppress in vitro cell counts. These results support the development of molecular inhibitors that tar-
get mechanisms that drive cell plasticity.31 Furthermore, strategies that leverage phenotypic adaptation,
and in other words use cancers’ ability to adapt against itself, can implicitly or explicitly be implemented
through intermittent treatments and adaptive treatments.32,33 We remark that the treatment-related re-
sults presented in this study are based on data-driven models of in vitro systems, and that appropriate
model extensions, as well as in vivo or clinical data, are needed to draw any conclusions about the role
of phenotypic adaptation in xenografts or clinical tumours. However, one of the major benefits of mod-
elling in vitro systems to study cell plasticity is the access to temporal and easy-to-interpret data that
reveal how cancer systems change over time. Such data are paramount to understanding dynamical
aspects of cancer. Importantly, our limited understanding of cancer dynamics has been proposed as
one of the main factors that hinder the development of efficient targeted therapy protocols34,35 and whilst
most cancer treatments target genomic cancer aberrations without consideration for evolutionary tumour
aspects, clinical trials that are informed by mathematical models and account for tumour dynamics have
started to emerge.36

The growth rate-to-phenotype modelling pipeline presented in this work can be used to quantify
phenotypic adaptation velocities, i.e., directions and rates, in any cell lines for which cell counts can
be measured. Our pipeline can thus be used to estimate such velocities in cancerous, non-cancerous
and mutated cell lines, and thereby quantitatively assess to what extent phenotypic adaptation stratifies
cancer cells, mutated or not, from other cells. This functionality of our pipeline is of significant value to
contemporary cancer research, as an emerging body of work has identified non-genetic resistance as
a reason for drug resistance in multiple cancer types, including melanoma,7 neuroblastoma37 and lung
cancer.38 Onewell-studied examplemechanism of non-genetic resistance is the Epithelial-Mesenchymal
Transition (EMT),8,31,39 although a multitude of other mechanisms have been reported.1,9,40,41,42,43 Our
growth rate-driven methodology is agnostic to these subcellular mechanisms and can therefore be used
to directly examine phenotypic adaptation in its role as an emerging hallmark of cancer in melanoma
and beyond.

Methods

Extracting growth rates from cell count data

Our growth rate data are extrapolated from cell count assays performed by Kavran et al.9 Cells are
incubated with 500 nM encorafenib prior to a drug challenge experiment in which cells are exposed to
various doses of encorafenib. Fold changes in cell counts after 72 hours are reported for four replicates
for each dose, relative to fold changes in 500 nM encorafenib. To estimate effective growth rates from
the relative fold change data, we assume population growths over the 72 h period to be exponential.
Given a relative fold change measurement of FCrel

72, the per-day growth rate 𝜆 is given by

𝜆 = log(FCrel
72)

3
+ 𝜆∗. (1)

As the fold change data is reported as relative to a standard treatment, for which FCrel
72 = 1, we normalise

by 𝜆∗, the estimated growth rate for cells on a standard treatment. We estimate 𝜆∗ using reported cell
count data following a 7 day period of 500 nM treatment, applying linear regression on the log-scale
under the assumption that growth is approximately exponential.
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Using growth rates to parameterise phenotype and drug dose-dependent fitnesses
To assign dose-dependent growth rate values to the intermediate phenotypes 𝑥 ∈ (0,1) for all doses
included in the fitness matrix (Figure 1d) we linearly interpolate between the extrema 𝑥 = 0 and 𝑥 = 1.
Since we do not have access to three-day cell count fold changes for 500 nM encorafenib, growth rates
at this dose are instead estimated through a least-squares parameter fit evaluated against fold change
data for 500 nM continous and intermittent treatments (Figure 2d). In the fit, four free model parameters
are estimated:

• FM(0,500 nM): the growth rate for drug-naive cells in 500 nM encorafenib.

• FM(1,500 nM): the growth rate for drug-adapted cells in 500 nM encorafenib.

• 𝜂on: the number of times per day that cells have a chance to phenotype updates their phenotype
when the drug is on.

• 𝜂off: the number of times per day that cells have a chance to phenotype updates their phenotype
when the drug is off.

The parameter combination 𝐶∗
ℓ that minimise the sum of squared distances between mean data values

and model simulations (for 100 simulation runs) for continuous and intermittent treatments simultane-
ously are obtained for all phenotype update strategies ℓ. The fit is bounded by growth rates for the fitness
matrix-adjacent drug doses 300 and 1000 nM between which 10 linearly interpolated values are tested,
and by daily chances to update at integers between 0 and 10. The parameter combinations that best
match the in vitro data

𝐶ℓ∗ = (FM(0,500 nM),FM(1,500 nM), 𝜂on, 𝜂off)
are used to produce the simulation results in Figures 2d,f for the 500 nM sub-panels, where

𝐶∗
1 = ( − 0.20228 day-1,0.17132 day-1,0 updates day-1,0 updates day-1),

𝐶∗
2 = ( − 0.20228 day-1,0.17132 day-1,1 updates day-1,3 updates day-1),

𝐶∗
3 = ( − 0.3347 day-1,0.14587 day-1,3 updates day-1,4 updates day-1),

𝐶∗
4 = ( − 0.26849 day-1,0.17132 day-1,1 updates day-1,3 updates day-1).

Modelling cell-level phenotypic adaptation with different update strategies
The four phenotype update (PU) strategies in Figure 2a are formalised below. In order, these are the
no, unbiased, semi-biased and biased update strategies. We let 𝑥0 denote the current phenotype state
of an arbitrary cell. The probabilities of updating to higher (𝑥+) and lower (𝑥−) states, if possible with the
restriction 𝑥 ∈ [0,1], are given below.

PU1: 𝑝(𝑥+) ∶= 0, 𝑝(𝑥−) ∶= 0. (2a)

PU2: 𝑝(𝑥+) ∶= 𝜌
2

, 𝑝(𝑥−) ∶= 𝜌
2

. (2b)

PU3: 𝑝(𝑥+) ∶= 𝜌
2

𝐻(FM(𝑥+, 𝑑) − FM(𝑥0, 𝑑)), 𝑝(𝑥−) ∶= 𝜌
2

𝐻(FM(𝑥−, 𝑑) − FM(𝑥0, 𝑑)). (2c)

PU4: 𝑝(𝑥+) ∶= 𝐻(FM(𝑥+, 𝑑) − FM(𝑥0, 𝑑)), 𝑝(𝑥−) ∶= 𝐻(FM(𝑥−, 𝑑) − FM(𝑥0, 𝑑)). (2d)

Probabilities to remain at the current state 𝑥0 are implied from the above equations through the relation-
ship 𝑝(𝑥+) + 𝑝(𝑥0) + 𝑝(𝑥−) = 1. The value FM(𝑥, 𝑑) can be read from the fitness matrix in Figure 1d,
and denotes the net growth rate of a cell in phenotype state 𝑥 that is exposed to drug dose 𝑑. In Eqs.
2a-d, 𝐻(⋅) is the Heaviside function and 𝜌 denotes the probability at which a cell updates it phenotype
state in a random direction at update time (Figure 2a).
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Deriving analytical expressions to identify intermittent treatment regimes that outper-
form their continuous counterparts
To predict when intermittent treatments with regular on/off intervals of equal lengths outperform contin-
uous treatments with twice the drug exposure time, we derive an analytical expression for the solution
to the model under the biased phenotype update strategy. We let 𝑇 denote the interval length (i.e., the
amount of time that cells are either on or off drug), and 𝜔 denote the phenotype adaptation velocity such
that 𝜔/Δ gives the number of phenotype updates per day, where Δ = 0.1 is the step size arising from the
choice 𝑛 = 9 (Figure 1b). Implicit to the biased update rule is that, at any time in a simulation, there is
no phenotypic heterogeneity between cells (Figure 2c). As such, all cells have an identical phenotype,
denoted by 𝑥(𝑡), the dynamics of which are governed by

𝑑𝑥
𝑑𝑡 =

⎧{
⎨{⎩

𝜔𝑡, 𝑥 < 1 and drug is on,
−𝜔𝑡, 𝑥 > 0 and drug is off,
0 otherwise.

(3)

for drug doses 300 and 500 nM.
Over a time period 2𝑇 , the cell count 𝑁(2𝑇 ) for cells on intermittent treatments is given by

𝑁(2𝑇 ) = 𝑁(0)e𝜆eff⋅2𝑇 , (4)

where the effective growth rate, 𝜆eff, is

𝜆eff = 1
2𝑇 (∫

𝑇

0
FM(𝑥(𝑡), 𝑑)𝑑𝑡 + ∫

2𝑇

𝑇
FM(𝑥(𝑡),0)𝑑𝑡) . (5)

We here assume that cells are initially sensitive so that 𝑥(0) = 0 and that the adaptation rate is identical
in both the sensitisation and desensitization directions so that 𝜂 = 𝜂on = 𝜂off from which it follows that
𝑥(2𝑇 ) = 0. Finally, we must consider two cases depending on whether the cells are able to fully traverse
phenotype space between the extrema 𝑥 = 0 and 𝑥 = 1 within a treatment interval or not. When they
do, 𝑇 𝜔 ≥ 1. Solving Eq. 5 yields the effective growth rate for cells on intermittent treatment to be

𝜆eff =
⎧{
⎨{⎩

(1 − 𝑇 𝜔
2

)FM(𝑥,0) + 𝑇 𝜔
2
FM(𝑥, 𝑑), if 𝑇 𝜔 < 1,

FM(0,0) + FM(1, 𝑑)
2

+ 1
4𝑇 𝜔 (ΔFM(𝑥,0) − ΔFM(𝑥, 𝑑)) , if 𝑇 𝜔 ≥ 1,

(6)

where
FM(𝑥, 𝑑) = FM(0, 𝑑) + FM(1, 𝑑)

2
(7)

and
ΔFM(𝑥, 𝑑) = FM(1, 𝑑) − FM(0, 𝑑). (8)

Eqs. 7 and 8 respectively correspond to the average growth rate and fitness difference for drug-sensitive
and drug-resistant cells. To draw a fair comparison between cells on continuous and intermittent treat-
ments, we compare the long-term effective growth rate of cells under each regime. To avoid effects
of the initial drug desensitization for cells undergoing continuous treatments, we consider the effective
growth rates to simply be given by FM(1, 𝑑). Thus, we expect intermittent treatment to outperform con-
tinuous treatment if 𝜆eff is lower than FM(1, 𝑑). We highlight here that the effective growth rate depends
only on the product 𝑇 𝜔, and not each parameter individually. Figure 3 is produced with net growth rates
obtained through log-linear interpolation between FM(𝑥,300 nM) and FM(𝑥,300 nM) so that FM(0,500
nM) = -0.2866 day−1 and FM(1,500 nM) = 0.0741 day−1. Inserting this choice into Eq. 6 for 𝑇 𝜔 ≥ 1,
we find that intermittent treatment will outperform continuous treatment if 𝑇 𝜔 < 3.3748 or, equivalently,
𝑇 𝜂 < 33.748.

Implementing the discrete adaptive phenotype model and performing simulation exper-
iments
The model is implemented in MATLAB. Information on how to access, run and modify the code files is
available on the public GitHub repository https://github.com/SJHamis/phenotype_adaptation.
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