
HAL Id: hal-04851623
https://hal.science/hal-04851623v1

Submitted on 20 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multilevel and Distributed Physics-Informed Neural
Networks for the Helmholtz Equation

Stéphane Lanteri, Daria Hrebenshchykova, Victor Michel-Dansac, Victorita
Dolean

To cite this version:
Stéphane Lanteri, Daria Hrebenshchykova, Victor Michel-Dansac, Victorita Dolean. Multilevel and
Distributed Physics-Informed Neural Networks for the Helmholtz Equation. RR-9571, Inria & Uni-
versité Cote d’Azur, CNRS, I3S, Sophia Antipolis, France. 2024. �hal-04851623�

https://hal.science/hal-04851623v1
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
95

71
--

FR
+E

N
G

RESEARCH
REPORT
N° 9571
December 2024

Project-Teams ATLANTIS

Multilevel and
Distributed
Physics-Informed Neural
Networks for the
Helmholtz Equation
Daria Hrebenshchykova, Victorita Dolean,
Victor Michel-Dansac, Stephane Lanteri

RESEARCH CENTRE
Centre Inria d’Université Côte d’Azur

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

Multilevel and Distributed Physics-Informed
Neural Networks for the Helmholtz Equation

Daria Hrebenshchykova∗, Victorita Dolean†,

Victor Michel-Dansac ‡, Stephane Lanteri §

Project-Teams ATLANTIS

Research Report n° 9571 — December 2024 — 27 pages

Abstract: This report investigates the use of Physics-Informed Neural Networks (PINNs) and
their advanced extensions — Finite Basis PINNs (FBPINNs) and Multilevel Finite Basis PINNs
(MFBPINNs) — for solving the Helmholtz equation in one and two dimensions. Through nu-
merical simulations, we compare the efficiency, accuracy, and scalability of these methods. While
FBPINNs exhibit good performance for low-frequency problems, the multilevel method outper-
forms, especially for high-frequency wave propagation. This work also introduces neural network
architectures and training schemes, including single and multiple optimizers, integrated into the
ScimBa library. The results demonstrate the advantages of the multilevel approach for solving
complex wave propagation problems in computational mathematics and engineering.

Key-words: Helmholtz equation, Physics-Informed Neural Networks, multilevel decomposition,
deep learning

∗ Université Côte d’Azur, Inria, CNRS, LJAD, France
† Eindhoven University of Technology, Netherlands
‡ Inria Nancy - Grand Est, IRMA, France
§ Université Côte d’Azur, Inria, CNRS, LJAD, France

Réseaux neuronaux multi-niveaux et distribués pour l’équation
de Helmholtz

Résumé : Ce rapport étudie l’utilisation des réseaux neuronaux informés par la physique (PINN)
et de leurs extensions avancées — les PINN à base finie (FBPINN) et les PINN à base finie multi-
niveau (MFBPINN) — pour résoudre l’équation de Helmholtz en une et deux dimensions. Grâce à
des simulations numériques, nous comparons l’efficacité, la précision et l’évolutivité de ces méthodes.
Alors que les FBPINN présentent de bonnes performances pour les problèmes à basse fréquence, la
méthode multiniveau surpasse, en particulier pour la propagation d’ondes à haute fréquence. Ce travail
présente également des architectures de réseaux neuronaux et des schémas de formation, notamment
des optimiseurs simples et multiples, intégrés dans la bibliothèque ScimBa. Les résultats démontrent les
avantages de l’approche multiniveau pour résoudre des problèmes complexes de propagation d’ondes en
mathématiques computationnelles et en ingénierie.

Mots-clés : équation de Helmholtz, réseaux de neurones informés par la physique, décomposition
multiniveau, apprentissage profond

Contents
1 Introduction 3

1.1 Environment . 3

2 Theoretical Foundations of Methods and Problems 3
2.1 PINNs . 3
2.2 Hard-constrained PINNs . 4
2.3 FBPINNs . 5

2.3.1 Description of FBPINNs . 5
2.3.2 Single and multiple optimizers . 6

2.4 MFBPINNs . 7
2.4.1 Description of MFBPINNs . 7
2.4.2 Two different approaches . 8
2.4.3 Comparison of the approaches and conclusion . 9

3 Numerical Experiments and Results 10
3.1 Formulations of Problems . 10

3.1.1 Helmholtz problem in one dimension . 10
3.1.2 Helmholtz problem in two dimensions . 10

3.2 Testing methods overview . 10
3.3 Parameters . 11

3.3.1 Implementation details . 11
3.3.2 Window function . 12

3.4 Results . 13
3.4.1 Helmholtz problem in one dimension . 13
3.4.2 Helmholtz problem in two dimensions . 18

4 Conclusion 27

Multilevel and Distributed Physics-Informed Neural Networks for the Helmholtz Equation 3

1 Introduction

The accurate simulation of wave propagation is crucial in various fields of science and engineering, ranging
from acoustics to electromagnetism and seismic analysis. Numerical techniques such as finite element or
finite difference methods are commonly used to solve the partial differential equations (PDEs) governing
wave propagation, e.g. the Helmholtz equation. However, these approaches can become quite computa-
tionally challenging, especially in complex two-dimensional settings, when dealing with high-frequency
waves.
Lately, there has been a focus on creating surrogate models that can effectively estimate the solutions to
the underlying PDE problem, requiring less computational effort while still providing accurate results.
Among these approaches, Physics-Informed Neural Networks (PINNs) have emerged as a promising
solution. In this work, we focus on extending the PINNs framework to a multilevel and distributed
architecture, specifically applied to the Helmholtz equation in the frequency domain.
The primary goal of this work is to develop and assess the performance of Finite Basis Physics-Informed
Neural Networks (FBPINNs) and Multilevel Finite Basis PINNs, which aim to overcome these limitations
by decomposing the computational domain into smaller subdomains and use neural network architec-
tures. This report presents the numerical assessment of these NN-based physics-informed multilevel
surrogate models, evaluating their accuracy, efficiency and scalability for the Helmholtz equation in one-
and two-dimensional cases.
Throughout the following sections, the theoretical foundations of PINNs, FBPINNs and MFBPINNs for
the Helmholtz equation will be discussed, followed by a detailed description of the developed methodol-
ogy, numerical experiments and the resulting performance analysis. This work contributes to advancing
neural network-based modeling approaches for high-frequency wave-propagation problems, in particular
PINN-based approaches.

1.1 Environment

A significant part of the research involved implementing methods within the ScimBa library [1]. Based
on the existing implementation of PINNs method for the Helmholtz equation, we have developed and
investigated classical FBPINNs and MFBPINNs in several different variants.

2 Theoretical Foundations of Methods and Problems

2.1 PINNs

Before we define the method, let us introduce the concept of neural network. Here, we present the
definition of FBPINNs, following the methodology in [3]. For completeness, we summarize the primary
stages of the derivation. In our case, we perceive a neural network as a function with some changing
parameters

u(x,θ) : Rdx × Rdθ → Rdu

where x are some inputs to the network, θ are a set of learnable parameters, and dx, dθ and du are the
dimensions of the inputs, parameters, and outputs of the network.

The goal is to train the model by adjusting its parameters to fit the training data. This involves
minimizing a loss function that measures the difference between the model’s predictions and the actual
outputs in the training set. The model updates its set of learnable parameters θ = (θ, . . . ,θi, . . . ,θn))
to reduce this error over time.

We solely use feedforward fully connected networks (FCNs). In this case, the network function is
given by

u(x,θ) = fn ◦ · · · ◦ fi ◦ · · · ◦ f1(x,θ), (1)

where now x ∈ Rdx is the input to the FCN, u ∈ Rdn is the output of the FCN, n is the number of
layers (depth) of the FCN and fi(x,θ) = σi(Wix + bi) where θi = (Wi,bi), Wi ∈ Rdi×di−1 are known
as weight matrices, bi ∈ Rdi are known as bias vectors, σi are elementwise activation functions are
commonly chosen as sine, hyperbolic tangent or identity functions. Note that the nonlinear activation
functions σi consume that the network is not linear.

Now that we have introduced all the necessary notations for the neural network, we can begin to
define the method itself. Physics-informed neural networks (PINNs) are NN-based approaches which

RR n° 9571

4 Hrebenshchykova & Dolean & Lanteri & Michel-Dansac

help to solve various differential equations. we focus on solving a boundary problem without initial
conditions (i.e. a time-independent problem) in the form

N[u](x) = f(x), x ∈ Ω ⊂ Rd,

Bk[u](x) = gk(x), x ∈ Γk ⊂ ∂Ω
(2)

where N[u](x) is some differential operator, u(x) is the solution and Bk(·) is a set of boundary conditions
(BCs) that ensure the uniqueness of the solution. Equations (2) can describe many linear and non-linear
problems. In our case, we concentrate on the Helmholtz problem which is given by

−∆u− k2u = f

where k is a wave number and function f is a source term. Details of our problems we introduce later
in Chapter 3.1

To solve eq.(2), PINNs use a neural network to directly approximate the solution, i.e., u(x, θ) ≈ u(x).
Note that, for simplicity throughout this work, we use the same notation for both the true solution and
the neural network. The main advantages of PINNs are that they are mesh-free approaches and, unlike
conventional numerical methods, we end up with a functional approximation rather than a discretized
solution. Based on, [4] the following loss function is minimized to train the PINN,

L(θ) =
λI

NI

NI∑
i=1

(N[u](xi, θ)− f(xi))
2︸ ︷︷ ︸

PDE residual

+

Nk∑
k=1

λk
B

Nk
B

Nk
B∑

i=1

(
Bk[u](x

k
i , θ)− gk(x

k
i)
)2︸ ︷︷ ︸

BC residual

(3)

where {xi}NI
i=1 is a set of collocation points sampled in the interior of the domain, {xk

j }
Nk

B
j=1 is a set of

points sampled along each boundary condition, λI and λB are well-chosen scalar weights that ensure
the terms in the loss function is well balanced. It is also important to select collocation points for the
residual NI and for the boundary conditions Nk

B in such a way that the PINN can learn and train the
solution over the entire domain.

Along with that, it is important to notice that the minimization of the loss function refers to using
an optimization technique to adjust the network’s parameters in such a way that the loss function’s
value is reduced. The optimization algorithms work by updating the parameters (weights and biases)
of the network to minimize the loss. A commonly used option is to apply Stochastic gradient descent
(SGD) methods, such as the Adam optimizer, or quasi-Newton methods, such as the limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm.

For these methods, it is essential to compute the gradients of both the network output with respect
to its inputs and the loss function with respect to the network parameters. These gradients obtained
via automatic differentiation in modern Deep Learning libraries are then used to update the network’s
parameters and minimize the loss function.

2.2 Hard-constrained PINNs

As we note in eq.(3) the BC are softly enforced. The learned solution may deviate from the BCs, because
the BC term may not be fully minimized. To deal with this issue, we can enforce BCs in a hard fashion
by incorporating the neural network into a solution ansatz. More precisely, the solution to the differential
equation is instead approximated by [Cu](x, θ) ≈ u(x), where C is an appropriately selected constraining
operator that analytically enforces the BCs.

For instance, if we want to enforce u(x = 0) = 0 when solving a one-dimensional ordinary differential
equation (ODE), the constraining operator and solution ansatz could be chosen as [Cu](x, θ) = x(1−x).
Then the BCs are always satisfied and therefore the BC term in the loss function (3) can be removed.
This allows the PINN to be trained using the simpler unconstrained loss function

L(θ) =
1

N

N∑
i=1

(N[Cu](xi, θ)− f(xi))
2
, (4)

where {xi}Ni=1 is a set of collocation points sampled in the interior of the domain.
Note that of course this is not the only way to build a constraining operator, nevertheless there is no

single and universal method for building one. This can be a rather complex and difficult task.

Inria

Multilevel and Distributed Physics-Informed Neural Networks for the Helmholtz Equation 5

2.3 FBPINNs

The main reason we are moving forward in our research is because starting from a certain point, if we
increase the frequency and add the multi-scale features to the solution, the PINN method fails to solve
accurately the problem at hand. An intuitive continuation could be adding more neural networks.

For these problems, we use the already known domain decomposition method, but in the context of
neural networks. The main idea is that instead of one neural network that trains and searches for a
solution in the entire domain, we can divide the main domain into several small overlapping domains
and place a neural networks in each of them.

Thus, one neural network will be forced to solve a problem with low frequency and will be able
to cope with it better. The input coordinates of each network xx are normalized to the range [-1,1]
within their respective subdomains, which helps maintain numerical stability, especially when dealing
with subdomains of varying sizes, orientations, or physical properties. We can clearly see how this works
in Figure 1.

Figure 1: FBPINNs divisions for high to low frequency

2.3.1 Description of FBPINNs

This section defines FBPINNs by following [3]. For the sake of completeness, we recall the main steps
of the derivation. We now present the mathematical formulation of FBPINNs. First we have to split
our main domain Ω where the problem is defined into J subdomains {Ωj}Jj=1. As previously mentioned,
each of the subdomains will have a certain overlap with the others to get a smoother and more optimized
solution, avoiding issues related to subdomain boundaries, because without overlap, the subdomain
boundaries could introduce discontinuities or errors, as the networks might not have sufficient information
about their neighbors.

For each subdomain Ωj , we define a corresponding set of neural networks

Vj = {vj(x, θj) | x ∈ Ωj , θj ∈ Θj},

where vj(x, θj) represents the neural network associated with subdomain Ωj and the parameter set
Θj = Rdθj defines the trainable parameters of the network.

Each neural network within a subdomain is confined by a window function ωj(x), with supp(ωj) ⊂ Ωj .
This ensures that the network’s influence is restricted to its assigned subdomain, even though the neural
networks in Vj could have a global support. The role of the window functions is to limit each network
to its assigned subdomain. Importantly, these window functions must form a partition of unity, i.e.

J∑
j=1

ωj ≡ 1 on Ω.

RR n° 9571

6 Hrebenshchykova & Dolean & Lanteri & Michel-Dansac

Ω1 Ω2

Ω3 Ω4

Figure 2: example of overlap in the 2D case with a square subdomain and a rectangular decomposition.

With our definitions, now we can create a global space decomposition V as

V =

J∑
j=1

ωjVj .

Thanks to this, we can finally represent any function u ∈ V as a sum of neural networks multiplied
by a window function.

u(x, θ) =

J∑
j=1

ωjvj(x, θj) or u =

J∑
j=1

ωjvj . (5)

Therefore u is the FBPINNs’s solution to the problem that we want to solve.
To deal with the boundary problem we can follow a similar procedure which is described in Section

2.1 using the eq.(5) but in this work, we use hard-constrained boundary conditions which can be similarly
described as in Section 2.2. By combining the principle of hard-constrained BCs, loss function and our
formulation of the FBPINNs’s solution, the loss function takes the form

L(θ) =
1

N

N∑
i=1

N

C J∑
j=1

ωjvj

 (xi, θj)− f(xi)

2

. (6)

2.3.2 Single and multiple optimizers

It is now important to discuss the aspects of optimization of the loss function. As already mentioned
at the end of Section 2.1, we can use various techniques, such as gradient descent, to minimize the loss
function. In essence, FBPINNs works in the same way: the solution eq.(5) is substituted into the loss
function eq.(3) and the same iterative optimization scheme is used to learn the parameters {θj}Jj=1 of
each subdomain network.

But from the technical side viewpoint, we realized that several different optimization techniques can
be used here, namely, we can use a single optimizer for all networks or define separate optimizers for each
neural network. Next, we discuss this in more detail, compare and determine which of the two options
we use further.

Single optimizer In this case, we use a single common optimizer for all neural networks. In practice,
this optimizer updates the parameters (weights) of all networks simultaneously. When the loss function
is optimized, the gradients of all parameters θ (the parameters of all networks) are sent to one optimizer.
The optimizer views all weights θj as a single vector of size N × dθ, where N is the number of networks
and dθ is the number of parameters per network. This approach ensures that all networks are updated
synchronously and the learning is coordinated since the loss function accounts for the combined influence
of all networks through the sum

∑J
j=1 ωjvj(x, θj).

Multiple optimizers In this case, we use separate optimizers for each neural network. The loss
function is still defined as in the eq.(6) but now each optimizer is responsible only for minimizing
the loss associated with the parameters of its respective network. For example, for network functions

Inria

Multilevel and Distributed Physics-Informed Neural Networks for the Helmholtz Equation 7

v1(x, θ1), v2(x, θ2), . . . each optimizer receives gradients only for its network’s parameters and updates
only those. However, it is important to note that the gradients of the loss function are still computed
synchronously for all networks, meaning the loss is minimized across all networks at the same time.
Despite this, independent optimization may still lead to desynchronization between networks, as each
optimizer updates its parameters separately.

Comparison of the approaches and conclusion Comparing the two methods, as shown in Table
1, we can conclude that although multiple optimizers minimize the loss function simultaneously (since
the gradient is computed once), this approach takes significantly more time for training and can lead to
desynchronization between networks, especially as the number of networks increases, as seen in the case
of FBPINNs. This reduces efficiency and convergence. Therefore, for FBPINNs, it is recommended to
use a single optimizer for all neural networks. we examine the results of this approach in Chapter 3.

Parameter Single Optimizer Multiple Optimizers

Parameter update All parameters are updated syn-
chronously as a single vector

Each optimizer updates only its
network’s parameters, but gra-
dients are computed simultane-
ously

Loss minimization The entire loss is minimized syn-
chronously

The loss is minimized syn-
chronously, but each network
updates its parameters indepen-
dently

Network coordination Full coordination between net-
works

Networks may work indepen-
dently, leading to desynchro-
nization

Flexibility Less flexibility, as only one opti-
mizer is used

More flexibility due to indepen-
dent optimizers

Risks Harder to tune hyperparameters
for all networks at once

May lead to uncoordinated op-
timization and slower training

Table 1: Comparison between single optimizer and multiple optimizers

2.4 MFBPINNs

The article [3] introduces the concept of Multilevel Finite Basis Physics-Informed Neural Networks (MF-
BPINNs), which extends FBPINNs by adding multiple levels of domain decompositions (DDs) to their
solution ansatz. This multilevel approach is inspired by classical multilevel domain decomposition meth-
ods, where additive levels are introduced to improve scalability, particularly when using large numbers
of subdomains.

The main purpose of using a multilevel method is to solve high-frequency cases better. The idea is
to repeat FBPINNs at different levels to work with various frequencies. Additive levels help predict the
behavior of the function, making it easier to train the final level.

2.4.1 Description of MFBPINNs

We introduce a domain decomposition with L levels, where each level l defines an overlapping decompo-
sition of the global domain Ω into J (l) subdomains. This can be expressed as

D(l) = {Ω(l)
j }J

(l)

j=1, for j = 1, . . . , J (l), l = 1, . . . , L.

For simplicity, we assume that at the first level (l = 1), there is only one subdomain, meaning
J (1) = 1 and Ω

(1)
1 = Ω. Additionally, the number of subdomains increases with each level, such that

J (1) < J (2) < · · · < J (L).

RR n° 9571

8 Hrebenshchykova & Dolean & Lanteri & Michel-Dansac

Similar to the FBPINNs method, for each subdomain Ω
(l)
j we define a corresponding space of neural

network functions:

V
(l)
j = {v(l)j (x, θ

(l)
j) | x ∈ Ω

(l)
j , θ

(l)
j ∈ Θ

(l)
j }, j = 1, . . . , J (l), l = 1, . . . , L,

where θ
(l)
j is the set of trainable parameters for the network v

(l)
j (x, θ

(l)
j), which is associated with subdo-

main Ω
(l)
j .

Also, for each level we define a set of window functions with support in the corresponding subdomains.
These functions are individual for each level and, as before, adhere to the partition of unity condition

J(l)∑
j=1

ω
(l)
j = 1, on Ω, ∀l, , l = 1, . . . , L,

The overall space of network functions V is then defined as a sum across all levels

V =
1

L

L∑
l=1

J(l)∑
j=1

ω
(l)
j V

(l)
j .

Using this global space decomposition, we approximate the solution to the problem as

u(x, θ) =
1

L

L∑
l=1

J(l)∑
j=1

ω
(l)
j v

(l)
j (x, θ

(l)
j). (7)

This type of sum leads us to the conclusion that if we take L = 1 level, we get the original PINN or
FBPINN in case of J = 1 subdomain.

As we have already discussed in section 2.3.2 we have chosen the method of single optimizer and will
train the MFBPINN in the same way. To deal with BCs we also choose hard-constrained loss and using
(4) and taking (7) as u we obtain the loss function for hard-constrained BCs for a MFBPINN

L(θ) =
1

N

N∑
i=1

N

 1

L

L∑
l=1

J(l)∑
j=1

ω
(l)
j v

(l)
j (xi, θ

(l)
j)

− f(xi)

2

(8)

2.4.2 Two different approaches

As we already mentioned, we need additive levels to facilitate training at the last level, but it is worth
figuring out how exactly we act with a set of levels and how this can help us achieve better convergence.
To address this, we propose two different concepts and examine the differences between them.

First approach (Average) The first case is essentially similar to the initial version of FBPINNs
in [3], only with different sum management in the approximated solution. We create several levels with
separate neural networks and window functions, then sum up and average them.

For example, if we take a case with L = 2, at the first level we have 1 network and at the 2nd level
4 networks, particulary level =[1,4] . Then in total, we train 5 networks and our loss function will look
like

L(θ) =
1

N

N∑
i=1

N

1

2

 1∑
j=1

ωjvj(xi, θj) +

4∑
j=1

ωjvj(xi, θj)

− f(xi)

2

. (9)

If we used FBPINNs for subdomains, the loss would look like

L(θ) =
1

N

N∑
i=1

N

 5∑
j=1

ωjvj(xi, θj)

− f(xi)

2

. (10)

As we can see they are very similar and it could lead to better communication between neural networks
and more accurate results. However, since we train our neural networks at different levels simultaneously,
the multi-level effect is lost, making the result very similar to what we found in FBPINNs.

Inria

Multilevel and Distributed Physics-Informed Neural Networks for the Helmholtz Equation 9

Second approach (Additive) The second method suggests that we use multilevel training not to
start with random parameters, but rather to help neural networks anticipate the behavior of the solution,
based on the training of previous (additive) levels. That is, we perform a small pre-training of all levels
except the last one. Thanks to this and the initial parameters from which the neural network begins
training, we can get a more accurate solution.

In essence, we use the same formula (7), but divide it into stages. For example, for the case where
L = 3 in 2D case with [1,4,16] we have

L = 1, u1(x, θ) = u1(x, θ),

L = 2, u2(x, θ) = u1(x, θ) +
∑5

j=2 ωjuj(x, θj),

L = 3, u3(x, θ) = u2(x, θ) +
∑21

j=6 ωjuj(x, θj).
The advantage of this method is that, in theory, it will be easier for neural networks to train, as they

will have a predefined starting point.
However, a major drawback is that each level requires the pre-training of the previous level before it

can start. As a result, instead of minimizing the loss function once, we must minimize it multiple times
(i.e., for each level), which we anticipate will require significantly more time.

2.4.3 Comparison of the approaches and conclusion

To compare the two methods, we refer to Table 2, but we also aim to summarize which method we chose
and the reasons behind our decision.

Even though the Average method initially appeared faster and appeared to be a more effective
adaptation of FBPINN, in practice, the results showed that the complex configuration of the sum slowed
the process and did not significantly improve loss minimization. On the other hand, the Additive method
demonstrated superior performance. Thanks to the pre-training of levels, the learning process did not
stagnate when moving to the final level but instead further decreased compared to what is typically
observed in PINNs. Furthermore, when working with higher frequencies, the Additive method performed
better. Therefore, for the final results, we decided to use the concept of the Additive level and we further
demonstrate the results using this method.

Approach Average Additive

Training process
Train all levels simultaneously;
the sum of solutions from all lev-
els is averaged.

Each level is trained sequen-
tially, with additive levels pre-
trained and finer levels trained
afterward.

Loss function

Weighted average of the sum of
solutions from multiple levels,
but complex sum configuration
may slow down minimization.

Sequentially adding solutions
from coars levels to the final
level, integrating them into the
final approximation, improving
the loss minimization.

Advantages
Faster initial setup and allowing
better communication between
neural networks across levels.

More effective training with pre-
trained levels, avoids stagnation
and works better for higher fre-
quencies.

Disadvantages

The complex sum configuration
can slow down training and does
not noticeably improve loss min-
imization.

Training is slower initially since
each level requires pre-training,
but this pays off in later stages.

Time efficiency Initially faster, but the complex
sum slows down the process.

Slower pre-training, but more
efficient overall, especially at
higher frequencies.

Table 2: Comparison of training approaches: Average vs. Additive

RR n° 9571

10 Hrebenshchykova & Dolean & Lanteri & Michel-Dansac

3 Numerical Experiments and Results
In this chapter, we describe the Helmholtz problem and determine which method performs best in
practice.

We investigate the problem from multiple angles to assess and decide which method is the most
suitable for application. We first define the problem, then examine the parameters and how they may
vary depending on the specific problem. We also describe the testing and evaluation methods that we
plan to use. This will be followed by the results, which are divided into 1D and 2D cases for ease of
comparison.

3.1 Formulations of Problems
3.1.1 Helmholtz problem in one dimension

Consider the Helmholtz equation in the domain Ω = [0, 1]

−∆u− k2u = f in Ω, (11)

where k is a scalar number. We set k = 16 for most tests, but k can be increased for higher frequency
cases.

Dirichlet boundary conditions are prescribed

u = 0 on ∂Ω. (12)

The source term f(x) is given by

f(x, y) = k2 · sin(kπx) +
(
k

2

)2

· sin
(
k

2
πx

)
(13)

For a value of k, the reference solution is calculated using the finite difference method.

3.1.2 Helmholtz problem in two dimensions

Consider the Helmholtz equation in the domain Ω = [0, 1]2

−∆u− k2u = f in Ω, (14)

where k is a scalar number, fixed at 4 to study the high-frequency case.

Dirichlet boundary conditions are prescribed

u = 0 on ∂Ω. (15)

The source term f(x) is given by

f(x) = k2 · sin(kπx) · sin(kπy) +
(
k

2

)2

· sin
(
k

2
πx

)
· sin

(
k

2
πy

)
, (16)

The reference solution for this problem is

u(x, y) = sin(kπx) · sin(kπy) + sin

(
k

2
πx

)
· sin

(
k

2
πy

)
(17)

3.2 Testing methods overview
To better understand the results, we use three different types of testing.

The first type is called ablation testing, which helps us determine which parameters of neural networks
we should use. For this type of testing, we fix the complexity of the task and vary parameters such as
overlap and the number of hidden units, which are the neurons in the hidden layers of the network that
process data between the input and output layers.

After selecting the optimal parameters, we proceed to the weak and strong scaling tests. These types
of testing are commonly used in Domain Decomposition methods, so it is natural to assess the success
of our methods this way. The main objectives of these tests are as follows.

Inria

Multilevel and Distributed Physics-Informed Neural Networks for the Helmholtz Equation 11

• Weak scaling: The complexity of the problem is not fixed. We increase the model capacity and the
problem complexity at the same rate. We expect that convergence and error will remain consistent
as we scale the parameters.

• Strong scaling: The complexity of the problem is fixed and we increase the model capacity. We
aim to observe improvements in convergence as the number of levels and neural networks increase,
though we understand that training time will also grow.

In our case, model capacity refers to the number of levels, number of subdomains and size of the
neural network in each subdomain. Increasing the complexity of the problem means increasing the wave
number, which in turn raises the frequency of the problems.

All tests were performed on a single GPU system.
To evaluate which method performs better, we compare not only the loss function results but also

the L2 error between the predicted solution and the reference solution. we also examine solution maps
for both methods.

we also consider the computational time required for each method. During our research, it became
evident that each method has varying training and optimization times. Beyond a certain point, it may
become impractical to use a method despite improvements in model convergence. Therefore, we also
take into account the time required for each method.

3.3 Parameters

3.3.1 Implementation details

Although we conducted various tests where we altered the properties and complexity of the model, there
were constant parameters and principles applied in all cases. These parameters were set during the
testing and were chosen as the most optimal for each method.

• Loss function and optimization. All methods use a hard-constrained loss function and all problems
were trained using the L2 or Mean Square Error (MSE) loss. Additionally, we employed the ADAM
optimizer with a learning rate of 0.8×10−2. We fix the number of collocation points at 5000 across
all methods for consistency in the comparisons.

• Network architecture. We utilized fully connected feedforward networks (FCNs) and for all methods,
we normalized the input x for each subdomain network to the range [−1, 1] along each dimension
within their respective subdomains. In the case of PINNs, we normalize it to the range [−1, 1] over
the entire domain. Regarding network architecture, we used 4 hidden layers and the number of
hidden units was varied during testing. For both 1D and 2D problems, the sine activation function
is employed. It is also important to introduce a notation for the architecture of the levels. We know
that a MFBPINN is equivalent to a FBPINN when only one level is used. To better understand the
structure of our tests, we represent the number of neural networks at each level in square brackets.
For example,[4] it refers to a FBPINN with one level and 4 networks, while [1, 2, 4] represents a
FBPINN with three levels, with a different numbers of neural networks at each level, indicating a
MFBPINNs architecture.

• Domain Decomposition and level structure. Each method utilizes domain decomposition. All
MFBPINNs use an exponential level increase, namely J (l) = 2d(l−1). The structure at each level
is illustrated in Figure 3. While the division in multilevel cases can theoretically continue to any
number of levels, in this paper we limit testing to 4 levels due to the complexity and computation
time, which we find to be sufficient. For FBPINNs, we divide the domain into a comparable number
of subdomains to ensure a relevant comparison with the multilevel case. All subdomains have a
uniform rectangular shape at each level of decomposition, resulting in 2(l−1) subdomains in each
dimension.

RR n° 9571

12 Hrebenshchykova & Dolean & Lanteri & Michel-Dansac

Ω
(1)
1level 1

Ω
(2)
1 Ω

(2)
2level 2

Ω
(3)
1 Ω

(3)
2 Ω

(3)
3 Ω

(3)
4level 3

Ω
(4)
1 Ω

(4)
2 Ω

(4)
3 Ω

(4)
4 Ω

(4)
5 Ω

(4)
6 Ω

(4)
7 Ω

(4)
8level 4

Ω

Figure 3: Multi-level decomposition of domain Ω for a 1D problem.

3.3.2 Window function

For the window function, we chose a cosine window function. Here is the definition for the 1D case.
We define the subdomains

Ω
(l)
j =

{
[0.5− δ/2, 0.5 + δ/2] if l = 1,[
(j−1)−δ/2

l−1 , (j−1)+δ/2
l−1

]
if l > 1,

where δ is defined as the overlap ratio and is fixed at a value of δ = 1.5 for each case. Here l corresponds
to the number of subdivisions. The subdomain window functions are given by

ω
(l)
j =

ω̂
(l)
j∑l

j=1 ω̂
(l)
j

,

where ω̂
(l)
j (x) is defined as

ω̂
(l)
j (x) =

1 if l = 1,[
1 + cos

(
π(x− µ

(l)
j)/σ

(l)
j

)]2
if l > 1,

where µ
(l)
i = j−1

l−1 and σ
(l)
j = δ/2

l−1 represent the center and half-width of each subdomain, respectively.
For the 2D case, we modify the formulas slightly. To be more precise, now Ω represents the 2D

domain and each Ω
(l)
ij is a 2-dimensional subdomain. Thus, we have

Ω
(l)
ij =

{
[0.5− δ/2, 0.5 + δ/2]× [0.5− δ/2, 0.5 + δ/2] if l = 1,[
(i−1)−δ/2

l−1 , (i−1)+δ/2
l−1

]
×

[
(j−1)−δ/2

l−1 , (j−1)+δ/2
l−1

]
if l > 1,

Additionally, our window function remains unchanged, but we have the formula for ω̂
(l)
ij (x)

ω̂
(l)
ij (x) =

1 if l = 1,∏2
k

[
1 + cos

(
π(xk − µ

(l)
ij)/σ

(l)
ij

)]2
if l > 1.

where µ
(l)
ij = (i−1)(j−1)

(l−1)2 and σ
(l)
ij = δ/2

l−1 represent the center and half-width of each subdomain,
respectively.

Inria

Multilevel and Distributed Physics-Informed Neural Networks for the Helmholtz Equation 13

3.4 Results

3.4.1 Helmholtz problem in one dimension

Ablation test
During the ablation test, we check two parameters and evaluate them using quantities such as the

minimum loss function, absolute L2 error between the reference solution and the solution produced by
the method and of course the computational time.

1. Overlap

As we have already expected earlier, the overlap is one of the important factors that can affect
the speed and accuracy of training. Moving forward, we vary the overlap, starting from 1.1 and
increasing to 2.7 in increments of 0.4. Recall that an overlap of less than 1 means that the
subdomains do not overlap, which does not correspond to the main idea of the methods and can
only worsen the process because as a result we have areas in which we do not consider the solution.
We fix the wave number to k = 2 to generally understand from which overlap it is worth starting.
We test the methods using the following architectures: [4] for FBPINNs and [1, 2, 4] for the
multilevel case.

From these studies, we expect that increasing the overlap will generally improve performance, but
only within reasonable limits. It will be interesting to identify the point where a further increase
no longer provides benefits or even leads to worse results due to excessive overlap.

(a) FBPINNs [4] (b) MFBPINNs [1,2,4]

Figure 4: comparison of FBPINNs and MFBPINNs by varying the overlap

As we can see from the plots in Figur 4 for the two methods, overlap values of 1.9, 2.3 and 2.7 are
good options from the perspective of minimizing the loss function. Let us examine the L2 error
and time performance. Table 3 compares the two methods when k = 2 .

The L2 errors are almost the same, but the multilevel case performs better and as we can see that
the error is minimized for an overlap of 2.7.

Overlap FBPINNs MFBPINNs
1.1 11.20 0.0303
1.5 0.0381 0.0222
1.9 0.0364 0.0279
2.3 0.0222 0.0183
2.7 0.0232 0.0135

Table 3: L2 error with k = 2 for FBPINNs and MFBPINNs in 1D.

RR n° 9571

14 Hrebenshchykova & Dolean & Lanteri & Michel-Dansac

When we look at the elapsed time form Table 4, we can see that the difference in overlap does not
significantly affect the process. However, what is interesting is that with an increase in overlap,
the most attractive option is 2.7.

It is worth noting that although the total training time of the two methods is almost the same,
FBPINNs performed 1,000 epochs, while the multilevel method performed 2,500 epochs (including
the training of additive levels). Therefore, the average training time per epoch differs significantly,
which is important to consider. It can be concluded that the multilevel method achieves the same
accuracy much faster.

Overlap FBPINNs MFBPINNs
1.1 609.98 559.64
1.5 583.68 753.22
1.9 585.27 707.61
2.3 581.13 688.08
2.7 601.8 667.66

Table 4: elapsed time in second with k = 2 for FBPINNs and MFBPINNs in 1D.

2. Hidden units

The number of hidden units can significantly affect both convergence and elapsed time. Too few
units may result in the neural network not being sufficiently trained, while too many units can lead
unnecessary computations. To find the optimal number of hidden units, we conduct tests using 4,
8, 16, 32 and 64 units. The number of hidden layers is set as 4.

(a) FBPINNs [4] (b) MFBPINNs [1,2,4]

Figure 5: comparison of FBPINNs and MFBPINNs by varying the number of hidden units.

As we can see from the plots of loss function convergence in Figure 5, 32 hidden units effectively
minimize the loss function without causing too frequent or chaotic updates to the approximation.

The L2 errors in Table 5 are almost the same. For hidden units value, we do not expect a direct
influence on the convergence, but the multilevel case performs better and as we can see the minimal
error is near the 32 hidden units value.

Inria

Multilevel and Distributed Physics-Informed Neural Networks for the Helmholtz Equation 15

Hidden units FBPINNs MFBPINNs
4 0.0164 0.0186
8 0.0276 0.0123
16 0.0215 0.0252
32 0.0396 0.0161
64 0.0492 0.0251

Table 5: L2 error with k = 2 for FBPINNs and MFBPINNs in 1D.

Due to the increase in computational time, the number of units directly impacts the total time.
Therefore, it is important to carefully select an approximately average value where the convergence
is sufficiently good, but the training time does not become excessive. Thus, 32 is a great fit here.

Hidden units FBPINNs MFBPINNs
4 382.54 402.29
8 423.86 649.57
16 585.34 735.42
32 1122.24 760.89
64 2091.26 1050.23

Table 6: elapsed time in seconds with k = 2 for FBPINNs and MFBPINNs in 1D.

Weak scaling
Under weak scaling conditions, we increase both the complexity of the problem and the size of the

model.
In the 1D case, increasing complexity means scaling the wave number from 2 to 16, specifically 2, 4,

8 and 16.
Increasing the model size in the case of FBPINNs involves increasing the number of neural networks

and use [1], [2], [4] and [8] and raising the number of hidden units to 8, 16, 32 and 64.
For MFBPINNs, we increase the number of levels from 1 to 4, where the number of neural networks

at each level is set as 2level−1. We also increase the number of hidden units to 8, 16, 32 and 64.
It is important to note that each level is trained for a different number of epochs, defined as 500×level.

However, at this stage, this is sufficient, as even with such a small number of epochs, we can observe the
convergence trend.

Now, let us move on to the results, starting with the approximate solutions.
Figure 8 shows the reference solution in blue and our approximated solution by one of the methods

in orange.
As we can see, both methods perform well for either parameter. However, when the complexity of the

problem increases with the capacity of the model, then the convergence should remain approximately
the same. To understand this in more detail, let us examine the other criteria.

At the plots of the loss functions and L2 errors we also can see that both methods work equally well
under the concidered conditions, as expected from our scaling.

Since we can trace the trend of multilevel FBPINNs method and compare it with FBPINNs we can
see that their loss functions converge to approximately the same value for any of the wave numbers. The
same can be said about the L2 error presented in Table 7, as we get approximately the same results for
each of the parameters. This is interesting for us because we could assume that the Multilevel method
will work better.

In order to understand the real difference between the methods it is also necessary to pay attention
to the computational time. The results are presented in Table 8. Measurements are made in seconds per
epoch to compare the speed of the methods more relevantly.

As we can see the MFBPINNs method is much faster, which only confirms our assumption that
pre-training helps to speed up the algorithm. As a conclusion, scaling model capacity and increasing
complexity does keep convergence about the same but the difference in training time is significant. In
order to understand the models in more detail in future studies, we can have a look at more difficult
problems and this is one of the reason why we move to 2D case.

RR n° 9571

16 Hrebenshchykova & Dolean & Lanteri & Michel-Dansac

k = 2 (a) FBPINNs [1] (b) MFBPINNs [1]

k = 4 (c) FBPINNs [2] (d) MFBPINNs [1,2]

k = 8 (e) FBPINNs [4] (f) MFBPINNs [1,2,4]

k = 16 (g) FBPINNs [8] (h) MFBPINNs [1,2,4,8]

Figure 6: comparison of FBPINNs and MFBPINNs for different value of k.

Inria

Multilevel and Distributed Physics-Informed Neural Networks for the Helmholtz Equation 17

(a) FBPINNs (b) MFBPINNs

Figure 7: comparison of FBPINNs and MFBPINNs loss function in the weak scaling regime.

k FBPINNs MFBPINNs
2 0.0194 0.0102
4 0.0275 0.0318
8 0.0695 0.0673
16 0.0647 0.0634

Table 7: L2 errors for FBPINNs and MFBPINNs in the weak scaling regime.

k FBPINNs MFBPINNs
2 0.118 0.063
4 0.310 0.109
8 0.854 0.334
16 2.814 1.157

Table 8: elapsed time per epoch for FBPINNs and MFBPINNs in the weak scaling regime.

Strong scaling
As described in Section 3.3.1 we now fix the complexity of the problem and increase the capacity of

the model.
After the result of the weak scaling, we fix the wave number k = 16. We scaled the capacity of the

model in the same way as in weak scaling.

We start by plotting the results of the approximation of the two methods. As we can see both meth-
ods do quite well despite the complexity. An unpleasant exception is Multilevel FBPINN method with
L = 1, in this case we have only one neural network and despite the fact that this is essentially a PINN
method after 10 tests we got the same result and we can conclude that perhaps this is due to the ar-
chitecture of neural networks here negatively influenced by the insufficient number of epochs at this level.

By comparing the loss functions in Figure 9 and L2 errors in Table 10, we see that convergence
increases with the number of neural networks, but also note that [4] and [8] for FBPINNs (analogically,
[1,2,4] and [1,2,4,8] for MFBPINNs) show approximately the same result in both cases. It is also inter-
esting that the multilevel FBPINNs and FBPINNs methods show the same convergence.

From the point of view of elapsed time in Table 9, as expected it coincides with the time of calcu-
lations of the weak scaling and this means for us that the time of each of the methods in the 1D case

RR n° 9571

18 Hrebenshchykova & Dolean & Lanteri & Michel-Dansac

depends only on the number of neural networks and does not rely on the complexity of the problem.

We can conclude that selecting L = 3 for multilevel FBPINNs and [4] for FBPINNs is preferable, as
it achieves comparable convergence to L = 4 and [8], while requiring at least 50% less computational
time in each case.

(a) FBPINNs (b) MFBPINNs

Figure 9: comparison of FBPINNs and MFBPINNs in the context of strong scaling test.

Levels FBPINNs FBPINNs Levels MFBPINNs MFBPINNs

[1] 0.180 [1] 0.070
[2] 0.353 [1,2] 0.109
[4] 0.819 [1,2,4] 0.251
[8] 1.956 [1,2,4,8] 1.590

Table 9: elapsed time per epoch for FBPINNs and MFBPINNs in the context of strong scaling test.

Levels FBPINNs FBPINNs Levels MFBPINNs MFBPINNs
[1] 0.2127 [1] 11.7303
[2] 0.2121 [1,2] 0.1985
[4] 0.0718 [1,2,4] 0.0974
[8] 0.0641 [1,2,4,8] 0.0601

Table 10: L2 errors for FBPINNs and MFBPINNs in the context of strong scaling test.

3.4.2 Helmholtz problem in two dimensions

Ablation test
As in 1D case during the ablation test we check overlap and hidden units values and compare them

using the minimum loss function, L2 error between the reference solution and the solution made by the
method and of course the computational time.

1. Overlap

As previously anticipated, overlap is crucial in determining training speed and accuracy. To start,
we set the wave number at k = 2. Next, we adjust the overlap from 1.1 to 2.7, increasing it by 0.4
increments, similar to the 1D case. To assess the influence overlap, we fixed the number of hidden
units at 16, the average of the test range, to ensure experimental consistency.

Inria

Multilevel and Distributed Physics-Informed Neural Networks for the Helmholtz Equation 19

(a) FBPINNs [1] (b) MFBPINNs [1]

(c) FBPINNs [2] (d) MFBPINNs [1,2]

(e) FBPINNs [4] (f) MFBPINNs [1,2,4]

(g) FBPINNs [8] (h) MFBPINNs [1,2,4,8]

Figure 8: comparison of FBPINNs and MFBPINNs for different levels in the context of strong scaling
test.

RR n° 9571

20 Hrebenshchykova & Dolean & Lanteri & Michel-Dansac

For the multilevel case, we selected L = 2 so we use [1,4] structure and accordingly use the same
number of neural networks as in the last level for FBPINNs [4]. We expect that increasing the
overlap will enhance the results, but our goal is also to determine the point where a further increase
no longer offer benefits or even begin to degrade performance due to excessive overlap.
By examining the convergence of the loss function in Figure 10 and the L2 error in Table 11,
we observe that for both methods, overlaps of 1.9 and 2.7 perform equally well. In the case of
FBPINNs, these two overlaps are significantly better than the others, showing greater convergence.
Interestingly, unlike FBPINNs, the multilevel method performs reasonably well even with the
smallest overlap and in general, any overlap in the range of 1.9 to 2.7 works well.

(a) FBPINNs (b) MFBPINNs

Figure 10: comparison of FBPINNs and MFBPINNs by varying the overlap size.

Overlap FBPINNs MFBPINNs
1.1 1.2584 0.0304
1.5 0.0030 0.0058
1.9 0.0030 0.0041
2.3 0.0029 0.0070
2.7 0.0025 0.0048

Table 11: performance L2 error for FBPINNs and MFBPINNs in 2D for overlap ablation test

When comparing the training time in Table 12, it is evident that the multilevel method is nearly
twice as fast, except in the case of overlap 2.7. For this overlap, both methods require a significant
time for calculations. It appears that this is the point where the results remain good, but further
increase of the overlap leads to redundant recalculations, which hinders efficient and fast training.
In conclusion, we can say that an overlap of 1.9 is the most suitable, as the difference in convergence
is minimal, but it significantly reduces the calculation time.

overlap FBPINNs MFBPINNs
1.1 2134.22 1113.92
1.5 1850.35 856.26
1.9 1708.95 866.50
2.3 1775.71 867.32
2.7 1810.57 2081.39

Table 12: elapsed time in seconds for FBPINNs and MFBPINNs in 2D by varying the overlap size.

2. Hidden units

Inria

Multilevel and Distributed Physics-Informed Neural Networks for the Helmholtz Equation 21

Now that we are considering a 2D case, making the task more complex and demanding, let us
analyze the performance of the number hidden units with the following values: 8, 16, 32, 64 and
128 units. As before, we set the wave number to k = 2 and fix the overlap at 1.9, which we know
from previous tests is the optimal overlap value. Also we set the number of hidden layers as 4.

For both methods, we choose the same level structure as in overlap ablation test. We expect that
this experiment will not significantly impact convergence, but it may help identify the hidden unit
value that leads to more optimal and faster training.

By examining the L2 error in Table 13 and the loss function in Figure 11, we can see that our
expectations are confirmed. At first glance, it appears that values of 128 and 64 yield the best
results, but they also exhibit the most instability and their error is not significantly better than the
other values. On the other hand, 32 hidden units produce slightly worse results but demonstrate
much more stable behavior.

(a) FBPINNs (b) MFBPINNs

Figure 11: comparison of FBPINNs and MFBPINNs by varying the hidden units amount.

Hidden units FBPINNs MFBPINNs
8 0.0025 0.0038
16 0.0022 0.0054
32 0.0026 0.0056
64 0.0023 0.0051
128 0.0022 0.0045

Table 13: performance L2 error with k = 2 for FBPINNs and MFBPINNs in 2D for hidden units ablation
test.

When we analyze the timing data in Table 14, it becomes clear that we are paying a high price for
a minimal improvement. In the case of FBPINNs, the training time increases at an exponential
rate. For the Multilevel method, the time only becomes critical with 128 units, but it is still lower
than that of FBPINNs.

Here, we need to find a balance and reach a compromise. If we compare the results of both methods
and consider our conclusions about convergence, 32 units stand out as the most reasonable middle-
ground option.

RR n° 9571

22 Hrebenshchykova & Dolean & Lanteri & Michel-Dansac

Hidden units FBPINNs MFBPINNs
8 1005.39 507.92
16 1246.01 579.24
32 2206.85 717.15
64 3977.31 850.41
128 7528.46 1387.17

Table 14: elapsed time with k = 2 for FBPINNs and MFBPINNs in 2D for hidden units ablation test.

Weak scaling
Now that we have selected the optimal overlap, we can begin analyzing the performance of the

methods using a weak scaling. We increase the complexity of the problems by using wave numbers of 2,
4 and 8.

For the levels, we use levels 1, 2 and 3. In particular in the 2D case, the number of neural networks at
each level is calculated as 22·(level−1). Consequently, for FBPINN, we use [1],[4] and [16]. For MFBPINNs
case: [1], [1,4] and [1,4,16]. Also after weak scaling we set overlap = 1.9. In this test, the same situation
regarding epochs will apply as described in the weak scaling for the 1D case,so we similarly compare the
time in seconds per epoch.

An important detail to mention is that we have reduced the range of wave numbers from 4 to 3. This
is because for k = 16 and level 4 (64 neural networks), both methods produced poor results and the time
to perform a test for each method exceeded one day on the equipment used for testing. Therefore, we
conclude that L = 4 is not relevant for evaluation in the context of our study.

If we analyze the results from Figures 12, 13 and 14, along with the L2 error in Table 15, we can
observe that the multilevel method performs better overall, especially as the frequency increases. The
error graphs, which compare the reference solution to the approximated solution, further confirm that
the multilevel method generally exhibits greater convergence. Looking at the loss convergence in Figure
15, the results are nearly the same for both methods. If we continue to project the trend for the multilevel
method, both methods appear equivalent, as we initially assumed.

However, the time difference shown in Table 16 suggests that the Multilevel method is preferred
due to its faster performance. Thus, we conclude that as the complexity of the problem scales and the
method’s parameters increase, FBPINNs perform well up to a certain frequency. Beyond that, Multilevel
demonstrates better results. This differs from the 1D case, where both methods performed similarly. It is
promising to see the advantages of the improved multilevel method in handling high-frequency problems.

(a) FBPINNs [1] (b) MFBPINNs [1]

Figure 12: k = 2

Inria

Multilevel and Distributed Physics-Informed Neural Networks for the Helmholtz Equation 23

(a) FBPINNs [4] (b) MFBPINNs [1,4]

Figure 13: k = 4

(a) FBPINNs [16] (b) MFBPINNs [1,4,16]

Figure 14: k = 8

RR n° 9571

24 Hrebenshchykova & Dolean & Lanteri & Michel-Dansac

(a) FBPINNs (b) MFBPINNs

Figure 15: Comparison of FBPINNs and MFBPINNs in the weak scaling regime.

k FBPINNs MFBPINNs
2 0.0093 0.0227
4 0.0975 0.0345
8 4.7865 0.0850

Table 15: L2 errors for FBPINNs and MFBPINNs in the weak scaling regime.

k FBPINNs MFBPINNs
2 0.986 0.226
4 1.803 0.587
8 8.178 5.99

Table 16: elapsed time per epoch for FBPINNs and MFBPINNs in the weak scaling regime.

Strong scaling
For strong scaling, we fix the wave number at an average complexity of k = 4. Although we have

previously seen good results with this wave number, we are still interested in exploring the impact of
increasing the capacity of the methods.

We rank the model sizes in the same way as in the weak scaling, meaning the test will be conducted
with [1], [4] and [16] neural networks for FBPINNs and [1], [1,4], [1,4,16] for MFBPINNs. Also, in the
multilevel method, there is again a consideration regarding the difference in the number of epochs, so we
evaluate the time in terms of seconds per epoch.

By observing the approximation results in Figures 16, 17 and 18, along with the L2 error in Table
17, we can see that at each level, the multilevel method performs significantly better for any number of
neural networks and convergence improves as the number of levels increases.

Referring to the behavior of the loss functions in Figure 19b, we observe that level 2 and [4] for
FBPINNs show the best results in terms of convergence. Regarding the computation time from Table
18, it seems prudent to aim for a balanced approach, as the time difference between the use of neural
networks [4] and [16] is substantial, while the improvement in convergence is not as critical for either
method.

Inria

Multilevel and Distributed Physics-Informed Neural Networks for the Helmholtz Equation 25

(a) FBPINNs (b) Multilevel

Figure 16: FBPINNs level [1] MFBPINNs level [1]

(a) FBPINNs (b) MFBPINNs

Figure 17: FBPINNs level [4] MFBPINNs level [1,4]

RR n° 9571

26 Hrebenshchykova & Dolean & Lanteri & Michel-Dansac

(a) FBPINNs (b) MFBPINNs

Figure 18: FBPINNs level [16] MFBPINNs level [1,4,16]

(a) FBPINNs (b) MFBPINNs

Figure 19: Comparison of FBPINNs and MFBPINNs Strong Test

levels FBPINNs FBPINNs levels MFBPINNs MFBPINNs
[1] 0.3480 [1] 0.3220
[4] 0.0732 [1,4] 0.0158
[16] 0.0496 [1,4,16] 0.0125

Table 17: L2 errors for FBPINNs and MFBPINNs in Strong Test

Inria

Multilevel and Distributed Physics-Informed Neural Networks for the Helmholtz Equation 27

levels FBPINNs FBPINNs levels MFBPINNs MFBPINNs
[1] 0.804 [1] 0.299
[4] 1.811 [1,4] 0.612
[16] 6.591 [1,4,16] 4.534

Table 18: Elapsed time per Epochs for FBPINNs and MFBPINNs in Strong Test

In general, based on the results of all tests, we conclude that both methods provide good convergence
at lower frequencies. However, when moving to higher frequencies, the multilevel method clearly out-
performs. It is also important to note that computation time differs significantly between the methods,
which further highlights the advantage of the multilevel method.

4 Conclusion
In this thesis, we explored the application of Finite-Based Physics-Informed Neural Networks (FBPINNs)
and MFBPINNs to solve the Helmholtz equation in both one- and two-dimensional cases.

Our results revealed important insights into the behavior of the two methods in different dimensions.
In the one-dimensional case, the differences between FBPINNs and MFBPINNs were minimal. This
outcome can be attributed to the lower complexity and frequency of the 1D problem, where both methods
performed similarly well. The simplicity of the problem did not fully challenge the potential advantages
of the multilevel structure, and FBPINNs were able to provide good performance without requiring the
more complex multilevel setup.

However, in the two-dimensional case, the MFBPINNs began to show their strengths. As the complex-
ity and frequency of the problem increased, the multilevel approach demonstrated better performance,
particularly in terms of convergence and accuracy. By breaking down the domain into multiple levels and
utilizing pre-training on additive subdomains, the MFBPINNs were able to handle high-frequency prob-
lems more effectively. This allowed for faster training and more accurate results compared to FBPINNs,
highlighting the potential of multilevel architecture to solve complex wave propagation problems.

An equally important part of the work was the development of the code and the application of the
ScimBa library. Based on existing methods, we were able to expand the library to include FBPINNs and
MFBPINNs. We created an environment for the application of both single and multiple optimizers. It
was also interesting to examine the multilevel method from two perspectives, and we were able to create
and develop an additive levels version that showed significantly better results compared to the FBPINNs
method.

In conclusion, while the difference between FBPINNs and MFBPINNs was not noticeable in the one-
dimensional case, the two-dimensional experiments highlighted the advantages of the multilevel approach,
particularly for higher-frequency problems. The development of code and improvements in the ScimBa
environment were essential to achieving these results and we believe this provides a solid foundation
for further exploration of neural network-based methods in solving partial differential equations. Future
work will focus on solving more complex problems, testing and creating newer and more efficient methods
based on MFBPINNs.

References
[1] Franck E., Boileau M. , Michel-Dansac V. ScimBa, URL https://gitlab.inria.fr/scimba/scimba

[2] Hrebenshchykova D. PINNs and another code for article, URL https://gitlab.inria.fr/
dhrebens/helmholtzpinns

[3] Dolean V., Heinlein A., Mishra S. , Moseley B. Multilevel domain decomposition-based architectures
for physics- informed neural networks, URL https://arxiv.org/pdf/2306.05486

[4] Raissi M., Perdikaris P., Karniadakis G. E. Physics-informed neural networks: A Deep Learning
framework for solving forward and inverse problems involving nonlinear partial differential equations,
Journal of Computational Physics 378 (2019) 686–707. URL https://doi.org/10.1016/j.jcp.
2018.10.045

RR n° 9571

https://gitlab.inria.fr/scimba/scimba
https://gitlab.inria.fr/dhrebens/helmholtzpinns
https://gitlab.inria.fr/dhrebens/helmholtzpinns
https://arxiv.org/pdf/2306.05486
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045

RESEARCH CENTRE
Centre Inria d’Université Côte d’Azur

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Environment

	Theoretical Foundations of Methods and Problems
	PINNs
	Hard-constrained PINNs
	FBPINNs
	Description of FBPINNs
	Single and multiple optimizers

	MFBPINNs
	Description of MFBPINNs
	Two different approaches
	Comparison of the approaches and conclusion

	Numerical Experiments and Results
	Formulations of Problems
	Helmholtz problem in one dimension
	Helmholtz problem in two dimensions

	Testing methods overview
	Parameters
	Implementation details
	Window function

	Results
	Helmholtz problem in one dimension
	Helmholtz problem in two dimensions

	Conclusion

