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Abstract

The capability of cells to form surface extensions, which enable them to non-locally probe
the surrounding environment, plays a key role in cell migration. The existing mathematical
models for collective migration of cell populations driven by this non-local form of environ-
mental sensing rely on the simplifying assumption that cells in the population share the same
cytoskeletal properties, and thus form surface extensions of the same size. To overcome this
simplification, we develop a modelling framework wherein a population of migrating cells is
structured by a continuous phenotypic variable that captures variability in structural prop-
erties of the cytoskeleton. The framework provides a multiscale representation of collective
cell migration, from single-cell dynamics to population-level behaviours, as we start with
a microscopic model that describes the dynamics of single cells in terms of stochastic pro-
cesses. Next, we formally derive the mesoscopic counterpart of this model, which consists of
a phenotype-structured kinetic equation for the cell distribution in each of phase and phe-
notype space. Then, considering an appropriately rescaled version of this kinetic equation,
we formally derive the corresponding macroscopic model, which takes the form of a partial
differential equation for the cell number density. To validate the formal procedure employed
to derive the macroscopic model from the microscopic one, we first compare the results of
numerical simulations of the two models. We then compare numerical solutions of the macro-
scopic model with the results of cell locomotion assays, to test the ability of the model to
recapitulate qualitative features of experimental observations.

1 Introduction

Biological background

Cell migration is at the heart of morphogenesis, is essential to ensure successful wound healing,
immune response, and tissue homeostasis in adult organisms, and is also central to the progression
of different pathologies, such as the metastatic cascade associated with cancer malignancy (Trepat
et al., 2012).

A key role in cell migration is played by the capability of cells to form surface extensions, which
enable them to probe the surrounding environment even multiple cell diameters away (i.e. to
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perform non-local environmental sensing) (Friedl and Gilmour, 2009; Friedl et al., 1998; Mitchison
and Cramer, 1996). The size and shape of such surface extensions depend on the cytoskeletal
properties of the cells, which have been shown to vary not only between cell populations but
also amongst cells within the same population, leading to intra-population heterogeneity in cell
locomotive phenotype. For instance, fibroblasts in wound healing have been observed to move
following the extension of short or long lamellipodia (Trepat et al., 2012); invading tumour cells
have been reported to display different morphologies and migratory abilities depending of whether
they are more epithelial-like or mesenchymal-like (Jolly et al., 2018); and it has been demonstrated
that myoblasts migrate via the extension of long pseudopods or short leading lamellae (Goodman
et al., 1989).

Changes in the cell locomotive phenotype can occur following external stimuli, being these
chemical or mechanical. For instance: fibroblasts involved in wound healing may increase their
lamellipodia size and speed of migration in response to different growth factors (Trepat et al., 2012);
epithelial-to-mesenchymal transition in cancer can be induced by both growth factors and increased
stiffness of the extracellular matrix (ECM) (Gkretsi and Stylianopoulos, 2018); and the locomotive
phenotype of myoblasts has been shown to depend on the adhesive glycoproteins present on the
substrate on which they move, likely due to mechanotransduction (Givant-Horwitz et al., 2005;
Goodman et al., 1989; Miyamoto et al., 1998; Rousselle and Scoazec, 2020). Independently of the
specific pathways responsible for such changes, it is clear that the cytoskeletal structure is not a
binary state and this translates into a range of different locomotive phenotypes, which are linked
to the characteristics of the surface extensions that are formed by the cells.

In the light of mounting evidence indicating that myoblast cytodifferentiation is deeply af-
fected by the molecular composition of the surrounding ECM, myoblasts locomotion over different
ECM components was examined in (Goodman et al., 1989) by means of in vitro stripe assays.
In each assay, parallel stripes of two different glycoproteins (i.e. laminin and fibronectin) were
absorbed onto the substrates. Myoblasts (i.e. murine myoblasts, cell line MM14dy) were plated
at similar densities at one end of the stripes and were allowed to migrate. Cell migration was then
tracked via videomicroscopy. Over laminin stripes, cells migrated generally more rapidly undergo-
ing consecutive cycles of long-pseudopod extension and rapid translocation following release from
the substrate. On the other hand, cells moved more slowly on fibronectin stripes (about three
times slower than over laminin) and mainly through the formation of short leading lamellae. In
(Goodman et al., 1989) it was noted that, along with different motile behaviours, cells adhering
to different ECM components displayed different cytoskeletal characteristics. In myoblasts mi-
grating over fibronectin, actin1 and α-actinin2 quickly organised into stress fibres and vinculin3

organised into focal contacts, while these proteins remain more sparsely distributed within the cy-
toskeleton of myoblasts migrating over laminin. Whilst the specific pathways through which cell
mechanosensing translates into cytoskeletal changes and different locomotive strategies are not
discussed in (Goodman et al., 1989), the experimental results therein presented highlight the im-
portant role that intra-population heterogeneity and environment-induced changes in locomotive
phenotype play in cell migration driven by non-local environmental sensing.

Mathematical modelling background and content of the paper

A variety of mathematical models for collective cell migration driven by non-local environmental
sensing have been proposed in the last twenty years – e.g. see the review (Chen et al., 2020)
and references therein. The majority of these models rely on the assumption that cells in the
population share the same cytoskeletal properties, which do not evolve in time, and thus sense
the surrounding environment by means of surface extensions of the same fixed size. In view of the
above biological background, this is clearly a simplification that limits the domain of application
of these models and their outputs.

1Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton.
2α-actinin is an actin-binding protein.
3Vinculin is a membrane-cytoskeletal protein in focal adhesion plaques, which is involved in linkage of integrin

adhesion molecules to the actin cytoskeleton.
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To overcome such a simplification, building upon previous work on phenotype-structured mod-
els of cell movement reviewed in (Lorenzi et al., 2024b), in this paper we generalise the non-local
kinetic modelling approach of (Loy and Preziosi, 2020a,b) by developing a modelling framework
wherein a population of migrating cells is structured by a continuous phenotypic variable that
captures variability in structural properties of the cytoskeleton. Cells with different values of the
phenotypic variable form surface projections of different length and can then probe the surrounding
environment over regions of different sizes.

The framework provides a multiscale representation of collective cell migration, from single-
cell dynamics to population-level behaviours, as we start with a microscopic model that describes
the dynamics of single cells in terms of stochastic processes. This model takes into account
both cell movement, wherein cell reorientation is driven by non-local sensing of the surrounding
environment, and environment-induced changes in the cytoskeletal structure. Next, extending the
limiting procedure employed in (Conte and Loy, 2024) to the phenotypically heterogeneous scenario
considered here, we formally derive the mesoscopic counterpart of this model, which consists of a
phenotype-structured kinetic equation for the distribution of cells in each of phase and phenotype
space. Then, considering an appropriately rescaled version of this kinetic equation, we formally
derive the corresponding macroscopic model, which takes the form of a partial differential equation
(PDE) for the cell number density.

To validate the formal procedure employed to derive the macroscopic model from the micro-
scopic one, we first compare the results of numerical simulations of the two models. We then
compare numerical solutions of the macroscopic model with the results of cell locomotion assays
from (Goodman et al., 1989), to test the ability of the model to recapitulate qualitative features
of experimental observations. We finally report on numerical solutions of a reduced macroscopic
model, and compare them with numerical simulations of the original model, in order to assess the
robustness of the observed patterns of collective cell migration.

Outline of the paper

In section 2, we formulate the microscopic model, whose mesoscopic and macroscopic counterparts
are then formally derived in section 3. In section 4, we report on Monte Carlo simulations of the
microscopic model and numerical solutions of the PDE that defines the macroscopic model. In
section 5, we conclude with a discussion and propose some future research directions.

2 A microscopic model for the migration of phenotypically
heterogeneous cell populations

We consider a phenotypically heterogeneous cell population, where cells may differ in structural
properties of their cytoskeleton which are implicated in cell migration. We focus on the case
where the environment surrounding the cells can affect both reorientation processes, which underly
cell movement, and mechanisms of phenotypic variation, which drive changes in the cytoskeletal
structure.

2.1 Mathematical modelling of the cell microscopic state

In order to provide a microscopic-scale description of the dynamics of the cell population, at time
t ∈ R+, where R+ is the set of non-negative real numbers, we describe the microscopic state of the
cells by the quadruplet (Xt, Vt, V̂t, Yt). The random vector Xt ∈ Rd, with d = 1, 2, 3 depending on
the biological problem under study, represents the spatial position of a cell. Moreover, denoting by
Vt = Vt V̂t the random vector that represents the cell velocity, V̂t ∈ Sd−1 is the unit vector in the
direction of Vt (i.e. the direction of cell polarity and thus of cell motion) and Vt ∈ [0, Vmax] is the
corresponding speed. Here, Sd−1 is the unit sphere boundary in Rd, Vmax ∈ R+

∗ is the maximal cell
speed, and R+

∗ := R+ \ {0}. In the remainder of the article, we will also use the compact notation
V := [0, Vmax] × Sd−1. Finally, the random variable Yt ∈ [0, 1] models the cell phenotypic state
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and captures inter-cellular variability in structural properties of the cytoskeleton. In particular,
motivated by the experimental results presented in (Goodman et al., 1989), we make the following
assumptions:

Assumption 1. Smaller values of Yt correlate with a stiffer cytoskeleton (i.e. a cytoskeleton
characterised by a higher level of organisation of actin and α-actinin into stress fibres and vin-
inculin into focal contacts), which leads to the formation of shorter cell surface extensions (i.e.
lamellae).

Assumption 2. Larger values of Yt correlate with a more flexible cytoskeleton (i.e. a cytoskele-
ton characterised by more sparsely distributed actin, α-actinin and vinculin), which leads to the
formation of longer cell surface extensions (i.e. pseudopods).

These assumptions imply that the movement of cells in phenotypic states close to 0 is driven by
the extension of short lamellae, whereas the movement of cells in phenotypic states close to 1 is
driven by the extension of long pseudopods (cf. the schematics in Fig. 1).

Figure 1: Schematics illustrating the relationships between the phenotypic state, y, and the char-
acteristics of the cells.

In order to incorporate into the model the influence of the surrounding environment on cell
dynamics, we introduce the functions

S : (t,x) ∈ R+ × Rd 7→ S(t,x) ∈ R+, S† : (t,x) ∈ R+ × Rd 7→ S†(t,x) ∈ R+,

S‡ : (t,x) ∈ R+ × Rd 7→ S‡(t,x) ∈ R+,

which are assumed to be given and describe the spatial distributions at time t of environmental
factors that may affect, respectively, the direction of polarity, the speed, and the phenotypic state
of the cells (e.g. the concentrations of abiotic components of the cell microenvironment such as
nutrients, growth factors, adhesion sites on the ECM, and adhesive glycoproteins like laminin and
fibronectin).

The microscopic state of the cells evolves in time due to cell movement, consisting of an
alternation of runs over straight lines and reorientations, and phenotypic changes, which we assume
to be independent processes. In particular, we model the evolution of the microscopic state
(Xt, Vt, V̂t, Yt) between time t and t + ∆t, with ∆t ∈ R+

∗ , through the following system (Conte
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and Loy, 2024; Pareschi and Toscani, 2013)

Yt+∆t = (1− Λ)Yt + ΛY ′t

V̂t+∆t = (1−M)V̂t + MV̂′t

Vt+∆t = (1−M)Vt + MV ′t

Xt+∆t = Xt + ∆t Vt V̂t .

(1)

In the system (1), Λ and M are independent Bernoulli random variables with parameters λ∆t and
µ∆t, respectively, where, as per the modelling strategies introduced in the next subsections, the
parameter λ ∈ R+

∗ is the rate of phenotypic changes and the parameter µ ∈ R+
∗ is the rate at

which cells change their velocity. Note that we are implicitly assuming ∆t to be small enough so
that λ∆t ≤ 1 and µ∆t ≤ 1. The equations in system (1) are such that:

• if Λ = 1 then a phenotypic change occurs and the cell transitions from the original phenotypic
state Yt to a new phenotypic state represented by the random variable Y ′t ∈ [0, 1], whereas
if Λ = 0 then no phenotypic change occurs and the cell remains in the phenotypic state Yt;

• similarly, if M = 1 then a velocity change occurs and the cell velocity switches from (Vt, V̂t)
to (V ′t , V̂

′
t) ∈ V, whilst if M = 0 then no velocity change occurs and the cell keeps its velocity

(Vt, V̂t);

• the cell position evolves according to a free-particle drift.

We assume Y ′t , V ′t , and V̂′t to be distributed according to the following probability density functions

Y ′t ∼ Ky′

y [S‡](t,x) , V ′t ∼ Ψv′ [S†](t,x, v̂′, y) , V̂′t ∼ Bv̂
′
[S](t,x, y) , (2)

on the basis of the modelling strategies and the notation introduced in the next subsections.

2.2 Mathematical modelling of phenotypic changes

Due to phenotypic changes, which occur at rate λ, cells at position x in the phenotypic state y can
transition to a new phenotypic state y′ with a probability that is given by the kernel Ky′

y [S‡](t,x),

which is a conditional probability of y′ given y. The dependence of the kernel Ky′

y on the distri-

bution of environmental factors S‡(t,x) captures the fact that phenotypic changes undergone at
time t by cells at position x may be affected by the local cellular microenvironment (Gkretsi and
Stylianopoulos, 2018; Goodman et al., 1989; Trepat et al., 2012). We assume the kernel Ky′

y to be
such that ∫ 1

0

Ky′

y [S‡](t,x) dy′ = 1 ,

∫ 1

0

y′Ky′

y [S‡](t,x) dy′ = ȳK [S‡](t,x, y) (3)

with ȳK : (t,x, y) ∈ R+ × Rd × [0, 1]→ [0, 1].

2.3 Mathematical modelling of cell reorientation

We model cell reorientation as a velocity-jump process (Othmer et al., 1988; Stroock, 1974),
whereby cells at position x in the phenotypic state y may change their velocity at rate µ and
acquire a new velocity (i.e. the post-reorientation velocity), which is prescribed by a turning kernel
T . In analogy with previous works on the mathematical modelling of cell movement (Chauviere
et al., 2007; Loy and Preziosi, 2020a,b), we assume the cell velocity acquired upon reorientation to
be independent from the previous one. Moreover, we let the post-reorientation velocity be affected
by cell sensing of the surrounding environment, which is mediated by membrane receptors located
along surface extensions that enable the cells to detect environmental factors within a finite sensing
radius, and adjust the direction of their polarity (i.e. their direction of motion) and their speed
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accordingly. In particular, here we generalise the modelling strategies presented in (Loy and
Preziosi, 2020a,b) so as to capture cell phenotypic variability by introducing a function

R : y ∈ [0, 1] 7→ R(y) ∈ [Rmin, Rmax] ⊂ R+
∗ , 0 < Rmin < Rmax

that represents the sensing radius of cells in the phenotypic state y. Since, under Assumptions 1
and 2, cells in phenotypic states modelled by larger (smaller) values of y exhibit longer (shorter)
surface extensions, and will thus sense environmental factors over a longer (shorter) distance, we
assume the function R to be such that

R(0) = Rmin, R(1) = Rmax,
d

dy
R(y) > 0 ∀ y ∈ [0, 1]. (4)

In this framework, we let the turning kernel T ≡ T ν′ [S,S†](t,x, y), which prescribes the
post-reorientation velocity ν′ = (v′, v̂′) acquired by cells at position x in the phenotypic state y
upon sensing of the distributions of environmental factors S and S† over a neighbourhood of x of
maximal radius R(y) (i.e. the sensing region), to be such that∫

V
T ν′ [S,S†](t,x, y) dν′ = 1 ,

∫
V

v′ T ν′ [S,S†](t,x, y) dν′ = uT [S,S†](t,x, y) , (5)

where v′ = v′v̂′ and uT : (t,x, y) ∈ R+×Rd× [0, 1]→ V. In particular, building on the modelling
strategies presented in (Loy and Preziosi, 2020a,b), we use the definition

T ν′ [S,S†](t,x, y) := Bv̂
′
[S](t,x, y) Ψv′ [S†](t,x, v̂′, y), (6)

where:

• the term

Bv̂
′
[S](t,x, y) :=

∫ R(y)

0

γS(r, y) T v̂′

r [S](t,x) dr∫
Sd−1

∫ R(y)

0

γS(r, y)T v̂′

r [S](t,x) dr dv̂′
(7)

is a probability density function that prescribes the direction of the post-reorientation ve-
locity v̂′ of a cell at position x in the phenotypic state y, based on the distribution of
environmental factors S in a neighbourhood of x of radius r ∈ [0, R(y)];

• the term

Ψv′ [S†](t,x, v̂′, y) :=

∫ R(y)

0

γS†(r
†, y)ψ(v′|S†(t,x + r†v̂′)) dr†∫ Vmax

0

∫ R(y)

0

γS†(r
†, y)ψ(v′|S†(t,x + r†v̂′)) dr† dv′

(8)

is a probability density function that prescribes the post-reorientation speed v′ of a cell at
position x in the phenotypic state y, based on the distribution of environmental factors S†
in a neighbourhood of x of radius r† ∈ [0, R(y)] along the post-reorientation direction of
motion v̂′.

In the definitions given by (7) and (8):

• γS : R+× [0, 1]→ R+ and γS† : R+× [0, 1]→ R+ are weight functions modelling how sensing
of the distributions of environmental factors S and S† over neighbourhoods of x of radii
r ∈ [0, R(y)] and r† ∈ [0, R(y)] affects the direction of cell polarity and the cell speed. For
instance, if the direction of polarity and the speed of cells in the phenotypic state y are
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affected only by the environment sensed at the edge of the sensing region, then the functions
γS and γS† can be defined as

γS(r, y) := δ(r −R(y)) and γS†(r
†, y) := δ(r† −R(y)) , (9)

where δ(·) is the Dirac delta. Alternatively, these functions may be defined: as Heaviside
step functions of r and r†, when the direction of polarity and the speed of the cells are
affected by the environmental conditions within the sensing region in a uniform manner; or
as monotonically decreasing functions of r and r†, so as to account for a reduced influence
of environmental cues closer to the edge of the sensing region (Loy and Preziosi, 2020a,b).

• T v̂′

r [S](t,x) is a non-negative function that describes how reorientation of cell polarity, driven
by the distribution of environmental factors S in a neighbourhood of x of radius r ∈ [0, R(y)],
leads the cells to move in direction v̂′. For additional details about this function, we refer
the reader to (Loy and Preziosi, 2020a).

• ψ(v′|S†(t,x + r†v̂′)) is a probability density function that prescribes the post-reorientation
speed v′, based on the distribution of the environmental factors S† in a neighbourhood of
x of radius r† ∈ [0, R(y)] along the post-reorientation direction of motion v̂′, which is such
that ∫ Vmax

0

ψ(v′|S†(t,x)) dv′ = 1 ,

∫ Vmax

0

v′ ψ(v′|S†(t,x)) dv′ = uψ[S†](t,x), (10)

with uψ : (t,x) ∈ R+ × Rd → [0, Vmax].

3 Corresponding mesoscopic and macroscopic models

In this section, we formally derive first the mesoscopic counterpart of the microscopic model
presented in the previous section and then the corresponding macroscopic model.

3.1 Preliminaries and notation

We let
(Xt, Vt, V̂t, Yt) ∼ f(t,x, v, v̂, y) , (11)

where the distribution function f : R+ × Rd × [0, Vmax] × Sd−1 × [0, 1] → R+, which represents
the cell distribution in each of phase and phenotype space, is a probability density function and
is thus such that ∫

Rd

∫ Vmax

0

∫
Sd−1

∫ 1

0

f(t,x, v, v̂, y) dy dv̂ dv dx = 1 . (12)

In the remainder of the article, we will use the more compact notation

f(t,x, v, v̂, y) ≡ f(t,x,ν, y), ν ≡ (v, v̂) ∈ V

along with the following definitions of the moments of f :

the number density of the cell population (i.e. the cell density)

ρ(t,x) :=

∫
V

∫ 1

0

f(t,x,ν, y) dy dν ; (13)

the normalised distribution of the cell population in the phase space

p(t,x,ν) :=
1

ρ(t,x)

∫ 1

0

f(t,x,ν, y) dy ; (14)
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the mean velocity of the cell population (i.e. the ensemble average velocity)

U(t,x) :=

∫
V

v p(t,x,ν) dν (15)

and the corresponding momentum

ρ(t,x) U(t,x) = ρ(t,x)

∫
V

v p(t,x,ν) dν ; (16)

the pressure tensor of the cell population

ρ(t,x) D(t,x) = ρ(t,x)

∫
V

(v −U)⊗ (v −U) p(t,x,ν) dν , (17)

being D(t,x) the variance-covariance matrix of p for each (t,x) fixed.

Moreover, we will use the following definitions of the counterparts of the above quantities for cells
in a given phenotypic state y:

the normalised distribution of the cell population in the phenotype space

n(t,x, y) :=
1

ρ(t,x)

∫
V
f(t,x,ν, y) dν , (18)

and thus ρ(t,x)n(t,x, y) is the number density of cells in the phenotypic state y;

the mean velocity of cells in the phenotypic state y

u(t,x, y) :=
1

ρ(t,x)n(t,x, y)

∫
V

v f(t,x,ν, y) dν (19)

and the corresponding momentum

ρ(t,x)n(t,x, y) u(t,x, y) =

∫
V

v f(t,x,ν, y) dν ; (20)

the pressure tensor of cells in the phenotypic state y

ρ(t,x)n(t,x, y) d(t,x, y) =

∫
V

(v − u)⊗ (v − u) f(t,x,ν, y) dν . (21)

Finally, we will use the following definition of the mean phenotypic state of the cell population

ȳ(t,x) :=

∫ 1

0

y n(t,x, y) dy , (22)

which corresponds to the average phenotype of the normalised distribution n.
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3.2 The corresponding mesoscopic and macroscopic models

As shown in Appendix A, starting from system (1) complemented with relations (2), using a
limiting procedure which generalises the one employed in (Conte and Loy, 2024) to the case of
phenotypically heterogeneous cell populations, it is possible to formally derive the mesoscopic
model corresponding to the microscopic model presented in section 2. This model takes the form
of a phenotype-structured kinetic equation for the probability density function f(t,x, v, v̂, y) ≡
f(t,x,ν, y) given in (11), the strong form of which reads as

∂tf + v · ∇xf = µ
(
ρT ν [S,S†]n− f

)
+ λ

(∫ 1

0

Ky
y′ [S

‡](t,x) f(t,x,ν, y′) dy′ − f
)
,

n(t,x, y) :=
1

ρ(t,x)

∫
V
f(t,x,ν, y) dν .

(23)

Remark 1. In (23), the term∫ 1

0

Ky
y′ [S

‡](t,x) f(t,x,ν, y′)dy′ − f(t,x,ν, y)

could also be rewritten as a differential term by using the quasi-invariant limit approach for tran-
sition probabilities, as similarly done in (Loy and Tosin, 2020).

In order to obtain a closed macroscopic model, different approaches could be adopted (see
Appendix B). Amongst these, in the light of the experimental results presented in (Goodman
et al., 1989) and the considerations made in Appendix C, introducing a small parameter ε ∈ R+

∗ ,
one can consider the following parameter scaling

λ =
1

ε
, µ =

1

ε
, (24)

which corresponds to scenarios where phenotypic changes and cell reorientation occur on similar
time scales, which are faster than the time scale of collective spatial dynamics of the cells. Under
this scaling, a closed PDE for the cell density can be derived through the hyperbolic limit of the
phenotype-structured kinetic equation (23).

To this end, denoting the solution to the phenotype-structured kinetic equation (23) under the
parameter scaling (24) by fε, we make the following expansion ansatz (i.e. the Chapman-Enskog
expansion)

fε = f0 + εf⊥, ρ0 :=

∫
V

∫ 1

0

f0dy dν = ρ, ρ⊥ :=

∫
V

∫ 1

0

f⊥dy dν = 0. (25)

The ansatz (25) implies that the mass is concentrated in the leading order term f0, while the
correction f⊥ carries no mass, and thus

ρε = ρ0 = ρ. (26)

From (25), one obtains analogous expansions for the marginals. In fact, integrating fε/ρ over [0, 1]
and using (25) gives the expansion for the marginal pε along with the mass of the corresponding
leading order term and of the correction, i.e.

pε = p0 + εp⊥, p0 =
1

ρ

∫ 1

0

f0 dy, p⊥ =
1

ρ

∫ 1

0

f⊥ dy,

∫
V
p0 dν = 1,

∫
V
p⊥ dν = 0. (27)

Similarly, integrating fε/ρ over V and using (25) allows one to obtain the expansion for the
marginal nε along with the mass of the corresponding leading order term and of the correction,
i.e.

nε = n0 + εn⊥, n0 =
1

ρ

∫
V
f dν, n⊥ =

1

ρ

∫
V
n⊥ dy,

∫ 1

0

n0 dy = 1,

∫ 1

0

n⊥ dy = 0. (28)
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Remark 2. We note that, under assumptions (3), the integral operator

K[g](t,x, y) =

∫ 1

0

Ky
y′ [S

‡](t,x) g(t,x, y′) dy′

admits a non-negative eigenfuction g1[S‡](t,x, y) associated with the eigenvalue 1, which satisfies
the following normalisation condition∫ 1

0

g1[S‡](t,x, y) dy = 1 .

Moreover, if the phenotypic transition kernel Ky
y′ satisfies also the following assumption (i.e. if

the new phenotypic states acquired by the cells upon phenotypic changes are independent of the
original ones)

Ky
y′ [S

‡](t,x) ≡ Ky[S‡](t,x) (29)

then
g1[S‡](t,x, y) = Ky[S‡](t,x) . (30)

In the remainder of this section, we let assumption (29) hold, so that the result (30) holds as well.

Under assumption (29), exploiting the result (30), we now employ a limiting procedure that
generalises the one used, for instance, in (Hillen, 2006), whereby only one reorientation operator
for the cell velocity is considered in the kinetic equation. We note that, compared to (Hillen, 2006),
since in our model there are two components of the microscopic state, whose evolution is governed
by two independent processes, here we need to introduce two different operators. Furthermore, in
the remainder of this section, we will be considering the distributions of environmental factors S,
S†, and S‡ to be constant in time, as we aim to determine a stationary equilibrium that nullifies
both the terms in the kinetic equation corresponding to cell reorientation and those corresponding
to phenotypic changes.

We define
Lν : L2(V × [0, 1]) −→ L2(V × [0, 1])

ϕ −→ T ν [S,S†](x, y)

∫
V
ϕ(ν, y) dν − ϕ,

so that Lν(f) = ρT ν [S,S†](x, y)n − f , and

Ly : L2(V × [0, 1]) −→ L2(V × [0, 1])

ϕ −→ Ky[S‡](x)

∫ 1

0

ϕ(ν, y) dy − ϕ

so that Ly(f) = ρKy[S‡](x) p − f . Note that we can define, on the same function space L2(V ×
[0, 1]), also the sum of the two operators L := Lν +Ly, which allows us to rewrite the phenotype-
structured kinetic equation (23) under the parameter scaling (24) as

∂tfε + v · ∇xfε =
1

ε
L(fε). (31)

Substituting (25) into (31), one finds a hierarchy of equations in ε. Specifically, in ε0

L(f0) = 0, (32)

while in ε1

∂tf0 + v · ∇xf0 = L(f⊥). (33)

From (32) one obtains

f0(t,x,ν, y) =
ρ(t,x)

2

(
T ν [S,S†](x, y)n0(x, y) +Ky[S‡](x)p0(x,ν)

)
,
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which requires the marginal stationary equilibria n0(x, y) and p0(x,ν) that nullify the respective
operators in order to be fully determined.

Integrating (31) with respect to y one recovers the evolution equation for the marginal pε, that
is,

∂t (ρpε) + v · ∇x (ρpε) =
1

ε
L̄ν(ρpε), (34)

where
L̄ν : L2(V × [0, 1]) −→ L2(V × [0, 1])

ϕ −→
∫ 1

0

T ν [S,S†](x, y)

∫
V
φ(ν, y) dν dy −

∫ 1

0

φ(ν, y) dy,

while the evolution equation for nε is

∂t(ρnε) +∇x · (ρnε uT ) =
1

ε
L̄y(ρnε) , (35)

where
L̄y : L2(V × [0, 1]) −→ L2(V × [0, 1])

ϕ −→ Ky[S‡](x)

∫
V

∫ 1

0

ϕ(ν, y) dy dν −
∫
V
ϕ(ν, y) dν.

At leading order in ε, from the equations for the marginals (34) and (35) complemented
with (27) and (28), one finds

p0(x,ν) =

∫ 1

0

T ν [S,S†](x, y)n0(t,x, y) dy, n0(x, y) = Ky[S‡](x),

i.e.

p0(x,ν) = T ν
K(x,ν), T ν

K(x,ν) :=

∫ 1

0

T ν [S,S†](x, y)Ky[S‡](x) dy. (36)

Therefore, the equilibrium f0, i.e. the solution of (32), is

f0(t,x,ν, y) = ρ(t,x)T (x,ν, y), T (x,ν, y) := T ν
K(x,ν)Ky[S‡](x), (37)

where T is a probability density function on V × [0, 1], since∫
V

∫ 1

0

T (x,ν, y) dy dν = 1, ∀x ∈ Ω,

because of (3) and (5). In (37) we have used (26) and we also stress the fact that the time
dependence of the kinetic equilibrium f0 is due exclusively to the time dependence of the number
density ρ, while the kinetic equilibria p0 and n0, which nullify the respective operators L̄ν and
L̄y, are time independent, as a result of the assumed stationarity of the spatial distributions of
environmental factors S, S†, and S‡. Substituting (37) into (33) and integrating over V × [0, 1]
gives, at leading order in ε, the PDE

∂tρ+∇x · (ρUT ) = 0 , (38)

where

UT ≡ UT [S,S†,S‡](x) :=

∫ 1

0

uT [S,S†](x, y)Ky[S‡](x, y) dy, (39)

with uT being defined via (5). We now seek the first order correction in ε for (38).
Considering (31) along with (25), and including only the terms up to order 1 in ε yields

∂tf0 + v · ∇x

(
f0 + εf⊥

)
=

1

ε
L(f0) + L(f⊥), (40)
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where the first term on the right-hand side vanishes uniformly in ε due to (32). From (33), as
ρ⊥ = 0 so that L(f⊥) = −f⊥, one obtains

f⊥ = −1

2
(∂tf0 + v · ∇xf0) +

1

2

(
ρKy[S‡](x)p⊥ + ρT ν [S,S†](x, y)n⊥

)
,

from which, using (37) and (38), one finds

f⊥ =
1

2
(∇x · (UT ρ)T − v · ∇x(ρT )) +

1

2

(
ρKy[S‡](x)p⊥ + ρT ν [S,S†](x, y)n⊥

)
. (41)

The same procedure can be applied to both (34) and (35) in order to determine p⊥ and n⊥. One
has

L̄y(ρp⊥) = ∂t(ρp0) + v · ∇xρp0, L̄y(ρp⊥) = −ρp⊥

and
L̄ν(ρn⊥) = ∂t(ρn0) +∇x · (n0 uT ) , L̄ν(ρn⊥) = −ρn⊥.

As a consequence
ρp⊥ = [∇x · (UT ρ)T ν

K − v · ∇x(ρT ν
K)] ,

and
ρn⊥ =

[
∇x · (UT ρ)Ky[S‡](x)−∇x · (ρuTKy[S‡](x))

]
,

from which, substituting into (41), using (38), and rearranging terms, one obtains

f⊥ = ∇x · (UT ρ)T − v · ∇x (ρT )

+
1

2
[∇x · (UT ρ)T νKy − ρT ν

Kv · ∇xK
y −∇x · (ρuTKy)T ν ] . (42)

Finally, substituting (42) into (40) yields

∂tρ+∇x · [ρUT (1− ε∇x ·UT )] = ε∇x · ∇x · (DT ρ) , (43)

where UT is the average of T , which is defined via (39), while DT is the variance-covariance matrix
of T , i.e.

DT ≡ DT [S,S†,S‡](t,x) :=

∫
V

∫ 1

0

(v −UT )⊗ (v −UT )T ν [S,S†](x, y)Ky[S‡](x) dy dν . (44)

Note that, by virtue of (26), the PDE (43) is an equation for ρ = ρ0 and not for ρε, and provides
a first order in ε correction to the PDE (38).

Remark 3. At the macroscopic level, the last three terms in (42) vanish and only the first two
terms contribute to the first order correction, which depends on the average of T and the variance-
covariance matrix of T , as if T was to define a single operator for both the velocity and phenotypic
component of the microscopic states.

Remark 4. The probability density function T is the one that makes it possible to define a scalar
product on L2(V × [0, 1]) as

h, g ∈ L2(V × [0, 1]) 〈h, g〉 :=

∫
V

∫ 1

0

h(ν, y)g(ν, y)T−1(x,ν, y) dy dν,

in such a way that, being
Ker(L) = 〈T 〉,

L is inverted on the orthogonal to its kernel, that is, 〈T 〉⊥ – i.e. the subspace of functions that are
orthogonal to T according to the definition of scalar product. This is the subspace of functions with
no mass. In fact, formally, in order to determine the correction f⊥ whose mass is zero, in (33)
one needs to determine the pseudo-inverse L−1 and to apply it to the right-hand side of (33),
whose mass (i.e. the integral on V × [0, 1]) is also equal to zero. The same holds for the operators
L̄ν and L̄y, which one needs to invert to determine the corrections p⊥ and n⊥.
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4 Numerical simulations

In this section, we present the results of numerical simulations of the microscopic model intro-
duced in section 2, which is defined by the system (1)-(2), under the parameter scaling (24), and
numerical solutions of the corresponding macroscopic model formally derived in section 3, that is,
the PDE (43) complemented with definitions (39) and (44).

4.1 Set-up of numerical simulations of the macroscopic model

Preliminaries We pose the PDE (43) on a bounded spatial domain Ω and complement it with
the following zero-flux boundary conditions

{ρUT − ε [DT∇xρ+ ρ (∇x · DT + UT∇x ·UT )]} · n = 0 on ∂Ω . (45)

where n is the outer unit normal on ∂Ω. These boundary conditions can be derived from ap-
propriate zero-flux kinetic boundary conditions as similarly done in (Loy and Perthame, 2024).
We carry out numerical simulations both in a one-dimensional setting and in a two-dimensional
setting. In the one-dimensional setting we take x ≡ x ∈ Ω := [−Lm, LM ], while in the two-
dimensional setting we take x ≡ (x1, x2)ᵀ ∈ Ω := [0, LM ] × [−Lm, LM ], with Lm, LM ∈ R+

∗ . In
particular, coherently with the experimental set-up employed in (Goodman et al., 1989, Figure
1A), we take Lm = 0.06cm and LM = 0.06cm. As for the scaling parameter ε in (43), in the
one-dimensional setting we explore the effect of considering different values of this parameter by
taking ε ∈ {10−2, 10−3, 10−4}, while in the two-dimensional setting simulations are carried out
with ε = 10−3.

Moreover, consistently with subsection 3.2, we focus on the case where the phenotypic transition
kernel Ky

y′ satisfies assumption (29) (i.e. Ky
y′ ≡ Ky) so that the result (30) holds and, therefore,

expressions (39) and (44) hold as well.
Finally, to reproduce the experimental set-up of Figure 1A in (Goodman et al., 1989), assuming

the concentrations of the adhesive glycoproteins laminin and fibronectin and the ECM density in
the system to be fixed, we introduce the non-negative, real functions CL(x) and CF (x) to model
the concentrations (in non-dimensional form) of laminin and fibronectin, respectively, and the
non-negative, real function M(x) to model the ECM density (also in non-dimensional form). We
then use these functions to define the model functions related to cell reorientation and phenotypic
changes, as detailed in the following paragraphs.

Definitions of the model functions related to cell reorientation We assume, for simplicity,
that the reorientation of cell polarity is solely dependent on the sensed ECM density; hence, we set
S(t,x) ≡M(x) in (6) and (7). Note that, coherently with the assumption made in subsection 3.2,
this implies that S is constant in time. Moreover, we assume that the direction of polarity of the
cells is biased towards the direction where they sense a higher ECM density, phenomenon known
as haptotaxis (Smith et al., 2004). Under these assumptions, we define the function T v̂′

r in (7) as

T v̂′

r [S](t,x) ≡ T v̂′

r [M ](x) := M(x + rv̂′). (46)

Moreover, we let the cell post-reorientation speed be determined by the amount and strength
of adhesion sites sensed by the cells, which we assume to be directly linked to the concentrations
of laminin and fibronectin. Hence, we set S†(t,x) ≡ (CL(x), CF (x)) in (6) and (8), which implies,
coherently with the assumption made in subsection 3.2, that S† is constant in time. In particular,
we let the probability density function ψ

(
v|S†

)
≡ ψ

(
v|CL, CF

)
in (8) be such that the mean

post-reorientation speed acquired by cells at position x, which is defined via (10), is

uψ[S†](t,x) ≡ uψ[CL, CF ](x) = wL[CL, CF ](x) v̄L + wF [CL, CF ](x) v̄F . (47)

Here 0 ≤ v̄F ≤ v̄L ≤ Vmax denote, respectively, the mean post-reorientation speeds preferentially
acquired by cells adhering to laminin and fibronectin. The assumption that v̄F ≤ v̄L follows from
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experimental results in (Goodman et al., 1989). Specifically, in order to match the corresponding
cell velocities measured in (Goodman et al., 1989), we take

v̄L = 2cm/h and v̄F = 0.6cm/h . (48)

The weights wL[CL, CF ] and wF [CL, CF ] in (47) provide a measure of the adhesive strength of
cells to laminin and fibronectin, and we define them as the local fractions of these two proteins,
i.e.

wL[CL, CF ](x) :=
CL(x)

CL(x) + CF (x)
, wF [CL, CF ](x) :=

CF (x)

CL(x) + CF (x)
. (49)

Furthermore, we define the probability density function ψ
(
v|CL, CF

)
as a Dirac delta distri-

bution centered in v = uψ[CL, CF ], i.e.

ψ
(
v|CL, CF

)
:= δ ( v − uψ[CL, CF ] ) .

Finally, in line with assumptions (4), we define the sensing radius of cells in the phenotypic
state y as

R(y) := Rmin + y (Rmax −Rmin ) . (50)

Consistently with (Sen et al., 2009), we set Rmin = 5× 10−4cm and Rmax = 5× 10−3cm.

Definitions of the model functions related to phenotypic changes We assume pheno-
typic changes undergone by the cells to be influenced by the local environmental conditions,
which are determined by the concentrations of laminin and fibronectin. Hence, we set S‡(t,x) ≡
(CL(x), CF (x)) in the phenotypic transition kernel, that is, Ky[S‡] ≡ Ky[CL, CF ]. Again, note
that this implies that S‡ is constant in time, which is coherent with the assumption we made in
subsection 3.2.

We let the kernel Ky be such that the phenotypic state in which cells enter, on average, at
position x as a result of phenotypic changes, which is defined via (3), is

ȳK [S‡](t,x) ≡ ȳK [CL, CF ](x) = wL[CL, CF ](x) ȳLK + wF [CL, CF ](x) ȳFK . (51)

Here 0 ≤ ȳFK ≤ ȳLK ≤ 1 are, respectively, the phenotypic states in which, on average, cells are
preferentially led to enter by phenotypic changes driven by signalling cascades triggered by laminin
and fibronectin binding to cell surface receptors, and the assumption that ȳFK ≤ ȳLK follows from
experimental evidence on cytoskeletal organisation reported in (Goodman et al., 1989). Moreover,
the weights wL[CL, CF ] and wF [CL, CF ], which are defined via (49), provide a measure of the
strength of the mechanotransductive signals of laminin and fibronectin.

In particular, we set
ȳFK = 0 , (52)

which corresponds to the scenario where cells on fibronectin are induced to enter phenotypic states
corresponding to a stiffer cytoskeleton and thus a smaller sensing radius (cf. definition (50)), which
is consistent with what reported in (Goodman et al., 1989). Furthermore, we investigate two cases
for the phenotypic state in which, on average, cells are preferentially led to enter by phenotypic
changes driven by signalling cascade triggered by laminin in (51):

• the case where
ȳLK = 0 , (53)

which corresponds to the null-hypothesis scenario where also cells on laminin are induced
to enter phenotypic states corresponding to a stiffer cytoskeleton and thus a smaller sensing
radius (cf. definition (50));

• the case where
ȳLK = 1 , (54)

which corresponds to the scenario, consistent with experimental evidence of (Goodman et al.,
1989), where cells on laminin are induced to enter phenotypic states corresponding to a more
flexible cytoskeleton and thus a larger sensing radius (cf. definition (50)).
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Building on the modelling strategies presented in (Conte and Loy, 2024; Loy and Preziosi,
2020b), we consider two possible definitions of the phenotypic transition kernel Ky[CL, CF ]:

• a Dirac delta distribution centered in ȳK [CL, CF ], i.e.

Ky[CL, CF ] := δ ( y − ȳK [CL, CF ] ) ; (55)

• a unimodal von Mises distribution with concentration parameter ky (specifically, we take
ky = 2) and circular mean ȳK [CL, CF ], i.e.

Ky[CL, CF ] :=
1

I0(ky)
exp

[
ky cos ( 2π(y − ȳK [CL, CF ]) )

]
, (56)

where I0 is the modified Bessel function of the first kind.

Definition (55) translates into mathematical terms the idea that cells exposed to the same envi-
ronmental conditions are led by phenotypic changes to enter exactly the same phenotypic state.
On the other hand, definition (56) takes into account the fact that, even if the environmental con-
ditions are the same, due to variability in intra-cellular regulatory dynamics amongst cells, there
can be variability in the phenotypic state acquired by the cells undergoing phenotypic changes.

Definitions of the laminin and fibronectin concentrations and the ECM density Con-
sistently with the experimental set-up employed in (Goodman et al., 1989, Figure 1A), in the
two-dimensional setting, we let laminin and fibronectin be distributed along parallel stripes which
run along the x2 direction (see Appendix D).

Initial condition for the cell number density We complement the PDE (43) with initial
conditions that are in line with the experimental set-up employed in (Goodman et al., 1989, Figure
1A). Specifically, in the two-dimensional setting, we use the following initial condition

ρ0(x1, x2) :=



ρ̄0

(
1−

(
−Lm + 2lm − x2

lm

)2
)
−Lm + lm ≤ x2 < −Lm + 2lm ,

ρ̄0 −Lm + 2lm ≤ x2 ≤ −lm ,

ρ̄0

(
1−

(
x2 + lm
lm

)2
)

−lm < x2 ≤ 0 ,

0 x2 < −Lm + lm ∨ x2 > 0 ,

(57)

for all x1 ∈ [0, LM ], where ρ̄0 ∈ R+
∗ and lm ∈ (0, Lm). Similarly, in the one-dimensional setting we

use the following initial condition

ρ0(x) :=



ρ̄0

(
1−

(
−Lm + 2lm − x

lm

)2
)
−Lm + lm ≤ x < −Lm + 2lm ,

ρ̄0 −Lm + 2lm ≤ x ≤ −lm ,

ρ̄0

(
1−

(
x+ lm
lm

)2
)

−lm < x ≤ 0 ,

0 x < −Lm + lm ∨ x > 0 .

(58)

In particular, we set lm = 0.01cm and ρ̄0 = 2× 103cells/cm2.

Numerical methods Numerical solutions are constructed on a uniform grid by using a mixed
finite-difference and finite-volume scheme, as detailed in Appendix E. The numerical scheme is
implemented in MATLAB® and the source code is available on GitHub4.

4https://github.com/ChiaraVilla/LorenziEtAl2024Modelling
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4.2 Set-up of numerical simulations of the microscopic model

For consistency with the macroscopic model (43), which is formally obtained under the parameter
scaling (24) and making assumption (29), numerical simulations of the microscopic model defined
by the system (1)-(2) are carried out letting assumptions (24) and (29) hold and using a set-up
corresponding to the one employed for the macroscopic model. To carry out numerical simulations,
we implement a Nanbu-Babovski Monte Carlo scheme, as similarly done in (Conte and Loy, 2024;
Loy and Tosin, 2021). We use a sufficiently large number of particles (i.e. 106 particles) and a
sufficiently small time-step (i.e. ∆t = 10−5), so as to ensure that the implemented Monte Carlo
scheme can provide a good numerical approximation of the solution to the phenotype-structured
kinetic equation (23). The Monte Carlo scheme is implemented in MATLAB® and the source
code is available on GitHub4.

4.3 Main results of numerical simulations

4.3.1 Comparison between the microscopic and the macroscopic models

Figure 2: Comparison between the microscopic and the macroscopic models in 1D.
Plots of the cell number density, normalised with respect to ρ̄0, obtained from 1D numerical
simulations of the microscopic model (red dots) and the numerical solution of the corresponding
macroscopic model (blue lines), also normalised with respect to ρ̄0, at t = 0h, t = 12h, and t = 24h
(decreasing transparency levels). The microscopic model consists of the system (1)-(2) subject to
the parameter scaling (24), while the macroscopic model comprises the PDE (43) complemented
with definitions (39) and (44). Numerical simulations are carried out under the set-up detailed in
subsections 4.1 and 4.2, in the one-dimensional setting, with definition (55), assumption (54), and
the scaling parameter ε = 10−4 (top row), ε = 10−3 (middle row) or ε = 10−2 (bottom row). The
variable x in the plots is in units of 10−2cm.

The plots in Fig. 2 present a comparison between the cell number density obtained from
numerical simulations of the microscopic model and the numerical solution of the macroscopic
model in the one-dimensional setting corresponding to the set-up described in subsections 4.1
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Figure 3: Comparison between the microscopic and the macroscopic models in 2D.
Plots of the cross-sections of the cell number density, normalised with respect to ρ̄0, obtained
from 2D numerical simulations of the microscopic model (red dots) and the numerical solution of
the corresponding macroscopic model (blue lines), also normalised with respect to ρ̄0, at t = 0h,
t = 24h, and t = 48h (decreasing transparency levels). Longitudinal cross-sections at x1 =
0.975 × 10−2cm (top) and x1 = 3.025 × 10−2cm (bottom) – i.e. over laminin and fibronectin,
respectively – are displayed on the left, while transversal cross-sections at x2 = −0.225× 10−2cm
are displayed on the right. The full plot of the numerical solution of the macroscopic model at
t = 48h is displayed in Fig. 4B. The microscopic model consists of the system (1)-(2) subject to
the parameter scaling (24), while the macroscopic model comprises the PDE (43) complemented
with definitions (39) and (44). Numerical simulations are carried out under the set-up detailed in
subsections 4.1 and 4.2, in the two-dimensional setting, with definition (55), assumption (54), and
the scaling parameter ε = 10−3. The variables x1 and x2 in the plots are in units of 10−2cm.

and 4.2, for different values of the scaling parameter ε. These plots demonstrate that there is
an excellent quantitative agreement between the two models, for all the values of the scaling
parameter ε here considered. Note that, as it can be expected from the form of the PDE (43),
larger values of ε lead to broader spatial distributions of cells.

An excellent quantitative agreement between the microscopic and the macroscopic models is
also observed in the two-dimensional setting corresponding to the set-up described in subsec-
tions 4.1 and 4.2, as shown by the plots in Fig. 3, which display cross-sections of the cell number
density resulting from numerical simulations of the microscopic model along with cross-sections
of the numerical solution of the corresponding macroscopic model, when ε = 10−3. Note that
the agreement between the two models deteriorates slightly in the regions where the cell number
density undergoes sharper changes, as it can be expected due to the histogram method through
which the cell number density for the microscopic model is reconstructed from the results of Monte
Carlo simulations.

Taken together, these results validate the formal procedure that we employed to derive the
macroscopic model comprising the PDE (43) complemented with definitions (39) and (44) from
the microscopic model consisting of the system (1)-(2) under the parameter scaling (24).

4.3.2 Comparison between the macroscopic model and experimental results

The plots in Figs. 4 and 5 display numerical solutions of the macroscopic model defined by the
PDE (43) complemented with definitions (39) and (44), under the set-up detailed in subsection 4.1,
in the two-dimensional setting mimicking the experimental set-up of the stripe migration assay
of (Goodman et al., 1989). In more detail, Fig. 4 refers to the case where the phenotypic transition
kernel, Ky, is defined via (55), while Fig. 5 refers to the case where Ky is defined via (56).
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Figure 4: Numerical solutions of the macroscopic model in 2D under definition (55).
Plots of the numerical solution of the macroscopic model, normalised with respect to ρ̄0, at t = 0h
(left column) and at t = 48h (central and right columns). The macroscopic model comprises the
PDE (43) complemented with definitions (39) and (44). Numerical simulations are carried out
under the set-up detailed in subsection 4.1, in the two-dimensional setting, with definition (55),
assumption (53) (central column) or assumption (54) (right column), and the scaling parameter
ε = 10−3. The variables x1 and x2 in the plots are in units of 10−2cm. Laminin and fibronectin
stripes are highlighted by LN and FN, respectively.

Moreover, the results in Figs. 4A and 5A are for the case where the phenotypic states in which,
on average, cells are preferentially led to enter by signalling cascades triggered by fibronectin, ȳFK ,
and laminin, ȳLK , are defined via (52) and (53), while the results in Figs. 4B and 5B are for the
case where ȳFK is defined via (52) and ȳLK is defined via (54).

Numerical solutions in Fig. 4A correspond to the null-hypothesis scenario where phenotypic
changes driven by signalling cascades lead all cells on both fibronectin and laminin to enter the
phenotypic state corresponding to the smallest sensing radius, Rmin (cf. definition (50)). These
numerical solutions are to be compared with the numerical solutions presented in Fig. 4B, which
correspond to the scenario consistent with the experimental study in (Goodman et al., 1989),
where cells adhering to fibronectin are led by phenotypic changes to enter the phenotypic state
corresponding to the smallest sensing radius, Rmin, while cells adhering to laminin are led to enter
the phenotypic state corresponding to the largest sensing radius, Rmax (cf. definition (50)).

In both scenarios, as a result of the fact that cell reorientation is driven by non-local sensing
of the surrounding environment, there are cells near the boundary between the fibronectin stripe
and the laminin stripes that eventually move to the laminin stripes, since there they can move at
a higher speed (cf. assumption (48)). However, as shown more precisely by the insets of Fig. 4, in
the case consistent with the experimental study in (Goodman et al., 1989) (cf. Fig. 4B) there is
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Figure 5: Numerical solutions of the macroscopic model in 2D under definition (56).
Plots of the numerical solution of the macroscopic model, normalised with respect to ρ̄0, at t = 0h
(left column) and at t = 48h (central and right columns). The macroscopic model comprises the
PDE (43) complemented with definitions (39) and (44). Numerical simulations are carried out
under the set-up detailed in subsection 4.1, in the two-dimensional setting, with definition (56),
assumption (53) (central column) or assumption (54) (right column), and the scaling parameter
ε = 10−3. The variables x1 and x2 in the plots are in units of 10−2cm. Laminin and fibronectin
stripes are highlighted by LN and FN, respectively.

a more pronounced accumulation of cells over laminin stripes than in the null-hypothesis scenario
(cf. Fig. 4A). In this case, cells adhering to laminin undergo appreciably faster collective migration
than cells adhering to fibronectin, an emergent property that was also experimentally observed
in (Goodman et al., 1989).

As demonstrated by the numerical solutions displayed in Fig. 5, similar conclusions hold in the
case where variability in the phenotypic state acquired by the cells undergoing phenotypic changes
is incorporated into the model (i.e. when the kernel Ky is defined via (56)). However, compared
to the case in which cells exposed to the same environmental conditions are led by phenotypic
changes to enter exactly the same phenotypic state (i.e. when the kernel Ky is defined via (55),
as it is the case for the numerical solutions of Fig. 4), in this situation collective cell migration
may be slightly faster both on fibronectin and on laminin. This can be explained in the light
of phenotypic variability, as it is especially evident in the scenario where ȳFK and ȳLK are defined
via (52) and (53).

In fact, under this scenario, in the case of definition (55) (cf. Fig. 4A), cells have a tendency
to enter the phenotypic state y = 0 (which corresponds to a stiffer cytoskeleton) both on laminin
and fibronectin, and thus their movement is overall driven by the extension of short lamellae. As
a result, in this case collective cell migration is much slower than in the case of definition (56) (cf.
Fig. 5A), where, due to phenotypic variability, cells may also enter phenotypic states y > 0 (which
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correspond to a more flexible cytoskeleton), and thus their movement may also be driven by longer
surface projections. These enable cells on the fibronectin stripe to reach more easily the laminin
stripes, where they move, on average, at a higher speed, which leads to the emergence of faster
collective migration. This is slightly less apparent in the scenario where ȳFK and ȳLK are defined
via (52) and (54), since, whilst cells on fibronectin still have a tendency to enter the phenotypic
state y = 0, cells on laminin preferentially enter the phenotypic state y = 1.

4.3.3 Comparison between the original macroscopic model and a reduced model

Figure 6: Numerical solutions of the reduced macroscopic model in 2D under defi-
nition (55). Plots of the numerical solution of the reduced macroscopic model, normalised with
respect to ρ̄0, at t = 0h (left column) and at t = 48h (central and right columns). The reduced
macroscopic model comprises the PDE (59) complemented with definition (39) and subject to
the boundary conditions (60). Numerical simulations are carried out under the set-up detailed
in subsection 4.1, in the two-dimensional setting, with definition (55), assumption (53) (central
column) or assumption (54) (right column), and the scaling parameter ε = 10−1. The variables
x1 and x2 in the plots are in units of 10−2cm. Laminin and fibronectin stripes are highlighted by
LN and FN, respectively.

In the framework of the macroscopic model defined by the PDE (43), cell dynamics result
from the superposition of inhomogeneous, anisotropic diffusion, with diffusion tensor εDT , and
advective transport, with velocity field UT (1− ε∇x ·UT ). In particular, the transport term
represents the effect, at the cell-population level, of the interplay between directional migration,
which is led by cell reorientation driven by non-local sensing of the surrounding environment, and
environment-induced changes in the cytoskeletal structure. In order to assess the robustness of the
patterns of collective cell migration produced by the macroscopic model, we investigate whether
features qualitatively similar to those displayed by the numerical solutions presented in Figs. 4
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Figure 7: Numerical solutions of the reduced macroscopic model in 2D under defi-
nition (56). Plots of the numerical solution of the reduced macroscopic model, normalised with
respect to ρ̄0, at t = 0h (left column) and at t = 48h (central and right columns). The reduced
macroscopic model comprises the PDE (59) complemented with definition (39) and subject to
the boundary conditions (60). Numerical simulations are carried out under the set-up detailed
in subsection 4.1, in the two-dimensional setting, with definition (55), assumption (53) (central
column) or assumption (54) (right column), and the scaling parameter ε = 10−1. The variables
x1 and x2 in the plots are in units of 10−2cm. Laminin and fibronectin stripes are highlighted by
LN and FN, respectively.

and 5 can emerge when the transport term in (43) is left unchanged whilst the inhomogeneous,
anisotropic diffusion term is replaced by a linear diffusion term with diffusion coefficient ε. Hence,
we consider the reduced macroscopic model defined by the following PDE

∂tρ+∇x · [ρUT (1− ε∇x ·UT )] = ε∆xρ , (59)

where UT is still defined via (39). This simplified model is obtained from the original model by
replacing the variance-covariance matrix of T , DT , in the PDE (43) by the identity matrix. In
analogy with what done to solve numerically the PDE (43), we pose the PDE (59) on the spatial
domain Ω and complement it with the following zero-flux boundary conditions

[ρUT − ε (∇xρ+ ρUT∇x ·UT )] · n = 0 on ∂Ω . (60)

Moreover, we carry out numerical simulations under the set-up detailed in subsection 4.1, in
the two-dimensional setting mimicking the experimental set-up of the stripe migration assay
from (Goodman et al., 1989). Numerical solutions are constructed using numerical methods similar
to those employed to solve numerically the PDE (43), which are detailed in Appendix E.

Figs. 6 and 7 display numerical solutions of the reduced macroscopic model (59) under def-
inition (55) and definition (56), respectively, of the phenotypic transition kernel, Ky. These
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numerical solutions display the same key qualitative features as those of the numerical solutions in
Figs. 4 and 5 (i.e. emergence of higher cell density and faster collective cell migration on laminin
stripes), which testifies to the robustness of the patterns of collective cell migration produced by
the macroscopic model.

5 Discussion and research perspectives

We developed a modelling framework for collective migration of heterogeneous cell populations
driven by non-local environmental sensing. In the vein of previous work on phenotype-structured
models of cell movement reviewed in (Lorenzi et al., 2024b), this framework generalises the mod-
elling approach proposed in (Loy and Preziosi, 2020a,b) by incorporating a continuous phenotype
structure that makes it possible to take into account: inter-cellular variability in structural prop-
erties of the cytoskeleton, and thus in the length of the surface projections through which the cells
sense the surrounding environment; the occurrence of environment-induced changes in structural
properties of the cytoskeleton, which result in dynamical changes in the length of the cells’ surface
projections.

We started by formulating a microscopic model in which single cell dynamics are described by
means of stochastic processes, which represent cell movement and environment-induced changes
in structural properties of the cytoskeleton. Through a limiting procedure, we formally derived
a phenotype-structured kinetic equation that governs the dynamics of the cell distribution in
the phase and phenotype spaces, which constitutes the mesoscopic counterpart of the microscopic
model. From the mesoscopic model we formally derived a closed PDE for the cell density, which de-
fines the corresponding macroscopic model. Such a PDE comprises an inhomogeneous, anisotropic
diffusion term and an advective transport term, with the latter modelling the interplay between
environment-induced changes in the cytoskeletal structure and directional migration led by cell
reorientation, which is driven by non-local sensing of the surrounding environment.

We compared numerical solutions of the PDE defining the macroscopic model and the results
of Monte Carlo simulations of the microscopic model, and showed that there is an excellent quan-
titative agreement between them, under a simulation set-up which reproduces the experimental
set-up of the cell locomotion assays of (Goodman et al., 1989). We also showed that numerical
solutions of the macroscopic model recapitulate qualitative features of experimental observations
presented in (Goodman et al., 1989) by demonstrating that the interplay between cell reorientation
driven by non-local sensing of the surrounding environment and environment-induced changes in
the cytoskeletal structure lead to faster collective migration of cells adhering to laminin stripes.
To corroborate the robustness of the patterns of collective cell migration emerging in numerical
solutions of the macroscopic model, we showed that qualitatively similar patterns are displayed by
numerical solutions of a reduced model, wherein the advective transport term is left unchanged
while the inhomogeneous, anisotropic diffusion term is replaced by a linear diffusion term.

We conclude with an outlook on possible research perspectives. Informed by the numerical
solutions presented in Figs. 4-7, it would be interesting to investigate the existence of travelling
wave solutions for the PDE (43) or the PDE (59) in the form of travelling pulses. Moreover,
we carried out numerical simulations under assumption (29) on the phenotypic transition kernel,
which facilitates the explicit identification of UT (t,x) and DT (t,x) thanks to the result (30), but it
would also be relevant to explore how the patterns of collective cell migration presented here may
change when this assumption is relaxed. Furthermore, while our theoretical study has eschewed
specific mechanisms driving phenotypic changes, consistently with the fact that these are not de-
tailed in the experimental study of (Goodman et al., 1989), modelling more precisely the effect of
chemical or mechanical external stimuli that drive cytoskeletal changes would be another avenue
for future research. Although, guided by the experiments of (Goodman et al., 1989), in this work
we focused on the microscopic model under the parameter scaling (24) and the corresponding
macroscopic model defined by the PDE (43), another track to follow would be to integrate the re-
sults of our simulation-based study with Monte Carlo simulations of the microscopic model under
different parameter scalings, and complement these with numerical solutions of the correspond-
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ing macroscopic models. Finally, while our attention has been focused on the microscopic and
macroscopic models, it would certainly be relevant to consider also the mesoscopic model defined
by the phenotype-structured kinetic equation (23). In this regard, it would be interesting to in-
vestigate whether such a kinetic equation admits travelling wave solutions that exhibit phenotype
structuring, whereby cells with different cytoskeleton properties dominate different parts of the
wave (Lorenzi et al., 2024b); for this, combining techniques similar to those employed in (Bouin
and Caillerie, 2019; Bouin and Calvez, 2014; Bouin et al., 2012, 2015) and (Lorenzi et al., 2024a;
Lorenzi and Painter, 2022; Lorenzi et al., 2022) may prove useful. This would allow for further in-
vestigation into how phenotypic heterogeneity affects collective cell migration driven by non-local
environmental sensing.

Acknowledgements

This project has received funding from: the European Union’s Horizon 2020 research and innova-
tion programme under the Marie Sk lodowska-Curie grant agreement No 945298; the Paris Region
under the Paris Region fellowship Programme; the Italian Ministry of University and Research
(MUR) through the grant PRIN 2020 project (No. 2020JLWP23) “Integrated Mathematical Ap-
proaches to Socio-Epidemiological Dynamics” (CUP: E15F21005420006) and the grant PRIN2022-
PNRR project (No. P2022Z7ZAJ) “A Unitary Mathematical Framework for Modelling Muscular
Dystrophies” (CUP: E53D23018070001) funded by the European Union - Next Generation EU.
TL gratefully acknowledges support from the Istituto Nazionale di Alta Matematica (INdAM) and
the Gruppo Nazionale per la Fisica Matematica (GNFM). All authors gratefully acknowledge sup-
port from the CNRS International Research Project ‘Modélisation de la biomécanique cellulaire
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Appendix

A Formal derivation of the mesoscopic model

Starting from system (1) complemented with relations (2), we now formally derive the mesoscopic
counterpart of the microscopic model presented in section 2. The procedure relies on classical
limiting procedures of kinetic theory for multi-agent systems, as detailed, in the context of velocity-
jump processes for cell migration, in (Conte and Loy, 2024).

Since the components of the quadruple (Xt+∆t, Vt+∆t, V̂t+∆t, Yt+∆t) are given by the sys-
tem (1), for any observable φ : Rd × V × [0, 1] → R, in the asymptotic regime ∆t → 0+, the
expectation 〈

φ
(
Xt, Vt, V̂t, Yt

)〉
=

∫
Rd

∫
V

∫ 1

0

φ(x,ν, y) f(t,x,ν, y) dy dν dx (61)

formally satisfies, see for example (Pareschi and Toscani, 2013), the following differential equation

d

dt

〈
φ
(
Xt, Vt, V̂t, Yt

)〉
+∇x ·

〈
VtV̂t φ(Xt, Vt, V̂t, Yt)

〉
=

µ
〈
φ
(
Xt, V

′
t , V̂

′
t, Yt

)
− φ

(
Xt, Vt, V̂t, Yt

)〉
+ λ

〈
φ
(
Xt, Vt, V̂t, Y

′
t

)
− φ

(
Xt, Vt, V̂t, Yt

)〉
(62)

with〈
φ
(
Xt, V

′
t , V̂

′
t, Yt

)〉
=

∫
Rd

∫
V

∫ 1

0

∫
V

Ψv′ [S†](t,x, v̂′, y)Bv̂
′
[S](t,x, y)φ(x,ν′, y) dν′ f(t,x,ν, y) dy dν dx

=

∫
Rd

∫
V

∫ 1

0

∫
V
Tν′ [S,S†](t,x, y)φ(x,ν′, y) dν′ f(t,x,ν, y) dy dν dx , (63)

where the kernel T is defined via (6), and〈
φ
(
Xt, Vt, V̂t, Y

′
t

)〉
=

∫
Rd

∫
V

∫ 1

0

∫ 1

0

Ky′
y [S‡](t,x)φ(x,ν, y′) dy′ f(t,x,ν, y) dy dν dx , (64)
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with the kernel K satisfying assumptions (3). By using (61), (63), and (64), we rewrite (62) as

d

dt

∫
Rd

∫
V

∫ 1

0
φ(x,ν, y) f(t,x,ν, y) dy dν dx +

∫
Rd
∇x ·

∫
V

∫ 1

0
φ(x,ν, y) vv̂ f(t,x,ν, y) dy dν dx =

µ

∫
Rd

∫
V

∫ 1

0

(∫
V
Tν′ [S,S†](t,x, y)φ(x,ν′, y) dν′ − φ(x,ν, y)

)
f(t,x,ν, y) dy dν dx

+ λ

∫
Rd

∫
V

∫ 1

0

(∫ 1

0
Ky′

y [S‡](t,x)φ(x,ν, y′) dy′ − φ(x,ν, y)

)
f(t,x,ν, y) dy dν dx .

Then, using the fact that∫
V

∫ 1

0

∫
V
T ν′ [S,S†](t,x, y)φ(x,ν′, y) dν′ f(t,x,ν, y) dy dν =∫
V

∫ 1

0

∫
V
T ν [S,S†](t,x, y)φ(x,ν, y) dν f(t,x,ν′, y) dy dν′

and ∫
V

∫ 1

0

∫ 1

0

Ky′

y [S‡](t,x)φ(x,ν, y′) dy′ f(t,x,ν, y) dy dν =∫
V

∫ 1

0

∫ 1

0

Ky
y′ [S

‡](t,x)φ(x,ν, y) dy f(t,x,ν, y′) dy′ dν

along with definition (18) of the number density of cells in the phenotypic state y, ρ(t,x)n(t,x, y),
and the notation v = vv̂, choosing φ(x,ν, y) := ξ(x)ϕ(ν, y), where ξ(x) and ϕ(ν, y) are test
functions, we obtain a weak formulation (in the physical space) of the following weak form of the
phenotype-structured kinetic equation (65) for the probability density function f(t,x,ν, y), that
is, 

∫
V

∫ 1

0

ϕ(ν, y) ∂tf(t,x,ν, y) dy dν +∇x ·
∫
V

∫ 1

0

ϕ(ν, y) v f(t,x,ν, y) dy dν =

µ

∫
V

∫ 1

0

ϕ(ν, y)
(
ρ(t,x)T ν [S,S†](t,x, y)n(t,x, y)− f(t,x,ν, y)

)
dy dν

+λ

∫
V

∫ 1

0

ϕ(ν, y)

(∫ 1

0

Ky
y′ [S

‡](t,x) f(t,x,ν, y′)dy′ − f(t,x,ν, y)

)
dy dν ,

n(t,x, y) :=
1

ρ(t,x)

∫
V
f(t,x,ν, y) dν ,

(65)

which in the strong form is (23).

B Additional considerations on macroscopic models

From the weak form (65) of the phenotype-structured kinetic equation for f , under suitable choices
of the test function ϕ(ν, y), one can formally derive the governing equations for the moments of
f , which provide a macroscopic counterpart of the underlying microscopic model. In summary:

• choosing ϕ(ν, y) := 1V(ν) ζ(y), where 1(·) is the indicator function of the set (·) and ζ(y)
is a test function, we obtain a weak formulation of the following governing equation for the
number density of cells in the phenotypic state y, which is defined via (18),

∂t (ρn) +∇x · (ρnu) = λρ

(∫ 1

0

Ky
y′ [S

‡](t,x)n(t,x, y′) dy′ − n
)
, (66)

where u is the mean velocity of cells in the phenotypic state y, which is defined via (19);
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• choosing ϕ(ν, y) := v ζ(y), with v = v v̂, we obtain a weak formulation of the following
governing equation for the momentum of cells in the phenotypic state y, which is defined
via (20),

∂t (ρnu) +∇x · (ρnu⊗ u + ρn d) = µρ (nuT − nu)

+λρ

(∫ 1

0

Ky
y′ [S

‡](t,x)n(t,x, y′) u(t,x, y′) dy′ − nu

)
, (67)

where uT is defined via (5) and ρnd is the pressure tensor of cells in the phenotypic state y,
which is defined via (21);

• choosing ϕ(ν, y) := 1V(ν) 1[0,1](y), we obtain the following governing equation for the cell
number density, which is defined via (13),

∂tρ+∇x · (ρU) = 0 , (68)

where U is the mean velocity of the cell population, which is defined via (15);

• choosing ϕ(ν, y) := v 1[0,1](y), we obtain the following governing equation for the momentum
corresponding to the mean velocity of the cell population, which is defined via (16),

∂t (ρU) +∇x · (ρU⊗U + ρD) = µ (ρUT − ρU) , (69)

where

UT ≡ UT [S,S†](t,x) :=

∫ 1

0

uT [S,S†](t,x, y)n(t,x, y) dy , (70)

with uT defined via (5), and ρD is the pressure tensor of the cell population, which is defined
via (17).

In order to obtain a closed macroscopic model, we can consider appropriately rescaled versions
of the system (66)-(70) corresponding to different biological scenarios. We first focus on biological
scenarios where phenotypic changes and cell reorientation occur on different time scales. Under
these scenarios, introducing a small parameter ε ∈ R+

∗ , we consider the case where phenotypic
changes occur more frequently than cell reorientation by assuming

λ =
1

ε
, µ = O(1) for ε→ 0+ , (71)

and the opposite case, i.e. we alternatively assume

µ =
1

ε
, λ = O(1) for ε→ 0+ . (72)

Then we consider biological scenarios where phenotypic changes and cell reorientation occur on
similar time scales, which are faster than the time scale of collective spatial dynamics of the cells,
i.e. we assume

λ =
1

ε
, µ =

1

ε
. (73)

Throughout this section, we denote by f the limit of fε (i.e. the solution to the phenotype-
structured kinetic equation (23) under one of the parameter scalings (71)-(73)) as ε → 0+, with
the corresponding macroscopic quantities being defined via (14)-(17) and (18)-(21). Moreover, we
refer to (2) for the definition of g1[S‡](t,x, y).
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Closure of the macroscopic model under the parameter scaling (71) Under the param-
eter scaling (71), in the asymptotic regime ε→ 0+:

• from (66) one formally finds

n(t,x, y) = g1[S‡](t,x, y) ; (74)

• from (68)-(70), using the expression for n given by (74), one formally obtains the following
system 

∂tρ+∇x · (ρU) = 0 ,

∂t (ρU) +∇x · (ρU⊗U + ρD) = µ (ρUT − ρU) ,

(75)

where

UT ≡ UT [S,S†,S‡](t,x) :=

∫ 1

0

uT [S,S†](t,x, y) g1[S‡](t,x, y) dy (76)

with uT being defined via (5).

In order to close the system (75), we need to find a closed-form expression for D. To this end,
building on a moment closure method that is commonly used for transport models of cell migration
– see, for instance, the review (Hillen and Painter, 2013) – we make the ansatz

p(t,x,ν) =

∫ 1

0

T ν [S,S†](t,x) g1[S‡](t,x, y) dy , (77)

which follows from assuming that the normalised distribution of the cell population p is fully
determined by the environmental conditions. Substituting this ansatz into (17) gives the following
closed-form expression for the variance-covariance matrix

D(t,x) :=

∫
V

(v −U)⊗ (v −U)

∫ 1

0

T ν [S,S†](t,x, y) g1[S‡](t,x, y) dy dν , (78)

which makes it possible to close system (75).

Closure of the macroscopic model under the parameter scaling (72) Under the param-
eter scaling (72), in the asymptotic regime ε→ 0+:

• from (67) and (69) one formally finds, respectively,

u(t,x, y) = uT (t,x, y) (79)

and
U(t,x) = UT (t,x) , (80)

where uT and UT are defined via (5) and (70);

• from (66) and (68), using the expressions for u and U given by (79) and (80), one formally
obtains the following closed system

∂t (ρn) +∇x · (ρnuT ) = λρ

(∫ 1

0

Ky
y′ [S

‡](t,x)n(t,x, y′) dy′ − n
)
,

∂tρ+∇x · (ρUT ) = 0 .

(81)
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Closure of the macroscopic model under the parameter scaling (73) Under the param-
eter scaling (73), in the asymptotic regime ε→ 0+:

• from (66) and (69) one formally finds, respectively, (74) and (80), where UT is defined
via (76);

• from (68), using the expression for U given by (80) and (76), one formally obtains

∂tρ+∇x · (ρUT ) = 0 , (82)

with UT being defined via (76).

Remark 5. Note that, under the parameter scaling (73), in the asymptotic regime ε → 0+

from (65) one formally finds the expression for p given by (77) – i.e. if assumptions (73) hold
then (77) is the actual expression for p and not only a closure approximation – which makes it
possible to compute explicitly all moments of the normalised distribution of the cell population p,
including the average velocity and the variance-covariance matrix defined via (15) and (17). More-
over, note that, under the parameter scaling (72), making the ansatz (74) – i.e. assuming that the
normalised distribution of the cell population in the phenotype space n is fully determined by the
local environmental conditions – one could formally reduce the model (81) to the model (82).

Hyperbolic limit of the phenotype-structured kinetic equation Under the parameter
scaling (73), it is also possible to derive a more accurate closed macroscopic model through the
hyperbolic limit of the phenotype-structured kinetic equation (23). This model consists of a first
order in ε correction to the PDE (82) (i.e. the PDE (38)), which is derived by means of an
asymptotic procedure whereby one starts from the phenotype-structured kinetic equation (23)
under the parameter scaling (73) and makes the Chapman-Enskog expansion (25) for fε – see
subsection 3.2.

C Considerations about the parameter scaling (24)

Denoting by t0 and L some characteristic time and length scales of the system and by V and ρ̄
some reference values of the cell speed and the cell density, letting

t→ t

t0
, x→ x

L
, v→ v

V
, ρ→ ρ

ρ̄
, f → f

ρ̄/V d

and

T ν [S,S†]→ T ν [S,S†]
V d

,

we obtain the following non-dimensionalised form of the phenotype-structured kinetic equation (23)
for the probability density function f(t,x,ν, y)

St ∂tf + v · ∇xf =
1

Knν

(
ρ T ν [S,S†]n− f

)
+

1

Kny

(∫ 1

0

Ky
y′ [S

‡](t,x) f(t,x,ν, y′) dy′ − f
)
, (83)

where the Strouhal number, St, and the Knudsen numbers, Knν and Kny, are defined as

St :=
L

V t0
, Knν :=

V

Lµ
, Kny :=

V

Lλ
.

Consistently with the experiments corresponding to Figure 1A in (Goodman et al., 1989), we
choose t0 = 48h, V = 0.5cm/h, L = 10cm, and µ = 0.5h−1, and we also consider phenotypic
changes and spatial movement of cells to occur on similar time scales (i.e. λ ≈ µ). Hence

L

V t0
≈ 1 ,

V

Lµ
= 10−1 ,

V

Lµ
≈ V

Lλ
.
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It is then natural to introduce a small parameter ε ∈ R+
∗ and set

St = 1 , Knν = ε , Kny = ε .

Substituting into (83) yields

∂tf + v · ∇xf =
1

ε

(
ρ T ν [S,S†]n− f

)
+

1

ε

(∫ 1

0

Ky
y′ [S

‡](t,x) f(t,x,ν, y′) dy′ − f
)
,

which corresponds to (23) under the parameter scaling (24), thus indicating that, in the light of
the experiments of (Goodman et al., 1989), it is reasonable to consider the parameter scaling (24).

D Additional details of the set-up of numerical simulations

Definitions of the laminin and fibronectin concentrations and the ECM density Con-
sistently with the experimental set-up employed in (Goodman et al., 1989, Figure 1A), in the
two-dimensional setting, we let laminin and fibronectin be distributed along parallel stripes which
run along the x2 direction. Specifically, we use the following definitions, corresponding to the
situation where two stripes of laminin are separated by one stripe of fibronectin:

CL(x1, x2) :=

{
C̄L x1 ∈

[
0, 1

3LM
]
∪
(

2
3LM , LM

]
,

0 otherwise ,
∀x2 ∈ [−Lm, LM ] , (84)

CF (x1, x2) :=

{
C̄F x1 ∈

(
1
3LM ,

2
3LM

]
,

0 otherwise ,
∀x2 ∈ [−Lm, LM ] , (85)

with C̄L, C̄F ∈ R+
∗ . Moreover, we assume the ECM density to be uniformly increasing in the x2

direction, and thus use the following definition

M(x1, x2) := Mmin +Mgr(x2 + Lm) ∀x1 ∈ [0, LM ] , (86)

with Mmin,Mgr ∈ R+
∗ .

Analogously, in the one-dimensional setting we use the following definitions

CL(x) ≡ C̄L , CF (x) ≡ 0 , M(x) := Mmin +Mgr(x+ Lm) . (87)

Since the laminin and fibronectin concentrations and the ECM density are in non-dimensional
form, we set C̄L = 1, C̄F = 1, Mmin = 0.1, and Mgr = 1/cm.

E Numerical methods used for solving the PDE (43)

We begin by rewriting the PDE (43) as

∂tρ+∇x · (ρUε
T ) = ∇x · (∇x · (DεT ρ)) , (88)

where
Uε
T = UT (1− ε∇x ·UT ) and DεT = εDT , (89)

and, under the set-up of numerical simulations described in subsection 4.1, UT and DT are defined
via (39) and (44) with

S(t,x) ≡M(x) , S†(t,x) ≡ (CL(x), CF (x)) , S‡(t,x) ≡ (CL(x), CF (x)) .

Hence, UT (t,x) ≡ UT (x) and DT (t,x) ≡ DT (x), which also imply that Uε
T (t,x) ≡ Uε

T (x) and
DεT (t,x) ≡ DεT (x).
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We discretise the spatial domain with a uniform grid of step ∆x = 0.05 and solve numerically
the PDE (88) using an explicit first-order in time mixed finite-difference and finite-volume scheme.
We choose the time-step ∆t such that the following CFL condition is satisfied

∆t ≤ min

 ∆x

max
x∈Ω

Uε
T (x)

,
(∆x)2

2 max
x∈Ω

DεT (x)


so as to ensure stability of the scheme.

The numerical approximation of the advection term in (88) relies on a finite-volume scheme
with a first-order upwind approximation for the advective flux ρUε

T . This is implemented within
a MUSCL scheme (Van Leer, 1979) by setting the flux limiter function to zero. Since here Uε

T

does not depend on t, the scheme includes a correction term obtained from employing the average
flux between the current time-step and the next one – see (Dullemond, 2008) for details. The
numerical approximation of Uε

T relies on a first-order central finite-difference approximation of
the first-order spatial derivatives of UT .

The right-hand side of the PDE (88) is treated with second-order central finite-difference
approximations of the second-order derivatives of the product DεT ρ. The resulting scheme requires
a three-point stencil for the approximation at each grid point for simulations in 1D, while a nine-
point stencil for the approximation at each grid point is required for simulations in 2D – this is due
to the presence of second-order mixed derivatives in space, the approximation of which requires
the value of DεT ρ at the centres of the diagonal neighbouring cells.

The zero-flux boundary conditions (45) are implemented with the use of ghost points.
This scheme requires the approximation of UT , defined via (39), at the grid cell interfaces

and the approximation of DT , defined via (44), at the grid cell centres. For both terms, we
employ a uniform discretisation of step ∆y = 0.1 for the phenotypic domain and a uniform
discretisation for the sensing region, which consists of Nθ = 60 points for θ ∈ [0, π], and then
approximate integrals using a midpoint double Riemann sum. For consistency with the zero-flux
boundary conditions (45), we replace the points within a sensing region that fall outside the spatial
domain Ω with the nearest boundary points. For further details and numerical optimisation of
the computation of non-local terms like those in (39) and (44), we refer the interested reader
to (Gerisch, 2010).

Simulations are performed in MATLAB® and the numerical tests carried out include: mass
conservation check; employing different flux limiters in the MUSCL scheme (superbee, Lax-
Wendroff, minimod, ospre, Koren, MC, and van Leer); investigating numerical convergence by
varying grid step for the spatial variable as well as discretisation step for the phenotypic domain
and the sensing region; verifying stability by comparison with the numerical solution obtained
using the MATLAB function ode45, which is based on an explicit Runge-Kutta method of higher
order with time-step dynamically adjusted to control accuracy.
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