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Segmentation-Free Velocity Field Super-Resolution
on 4D Flow MRI

Sébastien Levilly, Saı̈d Moussaoui, Member, IEEE, and Jean-Michel Serfaty

Abstract—Blood flow observation is of high interest in cardio-
vascular disease diagnosis and assessment. For this purpose, 2D
Phase-Contrast MRI is widely used in the clinical routine. 4D flow
MRI sequences, which dynamically image the anatomic shape
and velocity vectors within a region of interest, are promising but
rarely used due to their low resolution and signal-to-noise ratio
(SNR). Computational fluid dynamics (CFD) simulation is consid-
ered as a reference solution for resolution enhancement. However,
its precision relies on image segmentation and a clinical expertise
for the definition of the vessel borders. The main contribution
of this paper is a Segmentation-Free Super-Resolution (SFSR)
algorithm. Based on inverse problem methodology, SFSR relies on
minimizing a compound criterion involving: a data fidelity term,
a fluid mechanics term, and a spatial velocity smoothing term.
The proposed algorithm is evaluated with respect to state-of-the-
art solutions, in terms of quantification error and computation
time, on a synthetic 3D dataset with several noise levels, resulting
in a 59% RMSE improvement and factor 2 super-resolution
with a noise standard deviation of 5% of the Venc. Finally, its
performance is demonstrated, with a scale factor of 2 and 3,
on a pulsed flow phantom dataset with more complex patterns.
The application on in-vivo were achievable within the 10 min.
computation time.

Index Terms—4D Flow MRI, super-resolution, inverse prob-
lems, segmentation-free, spatial regularization

I. INTRODUCTION

BLOOD flow cardiovascular imaging in clinical routine
relies mostly on 2D Phase-Contrast MRI. It allows to

measure the anatomic shape and the velocity component
normal to the 2D acquisition section along the cardiac cycle.
A 4D extension of this technique called 4D Flow MRI [1],
provides the anatomic shape from the magnitude data and
the three velocity components from the phase data within a
3D region of interest and along cardiac cycle. This powerful
tool produces a large amount of data which allows to observe
complex blood flow patterns and to better understand their
underlying effects [2]. Unfortunately, the spatial and time
resolutions of 4D Flow MRI data and their signal-to-noise ratio
(SNR) are limited due to the constrained clinical acquisition
protocol [1], [3]. Both limitations induce significant errors
in the quantification of biomarkers of interest such as the
wall shear stress (WSS) [4]–[6], the relative pressure [7] and
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the peak velocity [8]–[10]. Indeed, low resolution and noise
affect the assessment of biomarkers involving the computation
of spatio-temporal derivatives. In addition, the vessel wall
localization using the 4D Flow MRI anatomic signal can be
imprecise, and then cause quantification difficulties on wall-
related biomarkers. Based on the WSS study [5], an improve-
ment up to 10 % in RMSE has been observed for a resolution
difference between 1 mm and 0.7 mm ISO (leading to a scale
factor of 1.4). To alleviate theses limitations, this work is
focused on resolution enhancement and SNR improvement of
4D Flow MRI data.

Nowadays, Computational Fluid Dynamics (CFD) simu-
lation is considered as a reference approach to assess the
blow flow velocity, relative pressure and some fluid mechanic
biomarkers on a high resolution mesh [11]. Indeed, velocities,
pressure and blood biomarkers are finely described by fluid
mechanics laws, and more specifically with the non-linear
Navier-Stokes equations. However, CFD simulations rely on a
precise definition of the fluid domain and the description of the
blood velocity or flow at the inlet. Moreover, measured data
and CFD simulation matching can be challenging in clinical
routine due to a coarse segmentation or a degraded velocity
measurement [11]. To improve that matching, some contribu-
tions proposed to learn mechanics laws features from multiple
CFD simulations with different inflows or geometries [8],
[9], [12]–[15]. Recently, deep learning strategies proposed to
enhance the velocity field resolution through synthetic 4D
Flow MRI based on CFD simulations [10] and degraded 4D
Flow MRI datasets [16]. Similarly to the CFD simulation
based approach, the deep learning strategy implies a significant
clinical expertise and computation time to built a relevant
database.

Besides, other methods used directly the Navier-Stokes
equations as in computer vision field [17], [18], or inverse
problem theory [19]–[25]. In the first category, measured
velocities initiate streamlines, i.e. following mechanic laws,
which are cleaned to reduce noise influence. In inverse prob-
lem theory [26], the problem ill-posedness can be counterbal-
anced by the addition of prior information, e.g. the fluid me-
chanic laws. For 4D Flow MRI super-resolution (SR), Navier-
Stokes (NS) equations are often used as prior information by
solving a constrained problem [19]–[23], [25] or through a
penalized formulation of the optimized reconstruction [24].
Unfortunately, a pre-established segmentation is a prerequisite
in these solutions in order to make the velocity vanishing
on the vessel wall. The solution proposed in [24] requires
a preliminary step estimating the boundary voxels which are
not fully in the fluid or non-fluid domains. Thereby, these
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boundary voxels are not constrained during the reconstruction
to follow the fluid mechanics laws or the no-slip condition.
Actually, the segmentation surface and the vessel volume
meshing are time consuming steps which also require fluid
mechanic expertise and therefore reduce this SR approach
applicability in clinical routine. Some recent deep-learning
approaches [27], [28] present interesting performance in the
segmentation of cardiovascular imaging. Unfortunately, these
methods require a large annotated database of 4D flow MRI
in different acquisition conditions to fit the clinical routine.
These database are not in the public domain and lead to
the annotation of images by local experts. Therefore, the
application of the trained machine learning to clinical data
is not straightforward and may necessitate additional valida-
tion steps. In that context, a segmentation-free solution gives
the possibility to process dataset by minimizing the clinical
expertise time.

The proposed work contribution is focused on the de-
velopment of a segmentation-free (SF) spatial SR algorithm
reducing expert and physician intervention for the SR re-
construction. A previous study [29] introduced an inverse
problem based SR algorithm relying on the a priori velocity
standard deviation and Navier-Stokes equations. Although,
it demonstrated interesting performance with segmentation,
it became unstable in a SF framework. In the sequel, an
extension of that solution is proposed for the stabilization of
outflow velocities. More specifically, the optimized criterion,
detailed in section II, is made of three parts: a spatially
weighted data fidelity term, a penalization term based on
Navier-Stokes equations, and a weighted spatial smoothing
term promoting steady velocities on low magnetization areas.
The latter term is essential to bypass the fluid-domain estima-
tion and therefore allows to set a segmentation-free approach.
Besides, the proposed solution is designed to compute each
timeframe 3D volume separately on a Graphics Processing
Unit (GPU). In section III, three application cases used to
validate the proposed algorithm are introduced with a 3D
synthetic dataset, a pulsatile flow phantom dataset [30], and a
in-vivo dataset. These cases were compared to a state-of-the-art
solution [19] in terms of quantification error and computation
time. In section IV, the proposed method is evaluated with
respect to the initial SNR on the 3D synthetic dataset. Then,
the performance assessment is completed on a pulsatile flow
phantom and clinical dataset with complex flow patterns.
Finally, these results are discussed in section V in order to
point out applicability conditions and improvement strategies.

II. METHODS

A. Problem Formulation
Let’s define the vector Y containing the measured velocity
of the 3D volume voxels at a given timeframe. The velocity
components ud , vd and wd are stacked in the lexicographic
order such that Y = (ut

d ,v
t
d ,w

t
d)

t with common a dimension
by component of Nd. Specifically, the velocity components
vectors have the same dimension Nd = Nx × Ny × Nz
where Nx, Ny, and Nz define the field of view dimension.
An example of the data velocity vectors is illustrated by blue
component-wise vectors in the Figure 1.

Then, we define the velocity component vectors u, v , and
w and the pressure field p which contain the 3D volume
voxel values at the super-resolved grid resolution. The re-
sulting dimension of u, v , w , and p depend on the SR
scale factor s such that, for a staggered grid as depicted in
Figure 1, Nu = s3(Nx − 1)NyNz, Nv = s3Nx(Ny − 1)Nz,
Nw = s3NxNy(Nz − 1), and Np = s3NxNyNz. Each of
these components are organized in the lexicographic order.
Then, we define the vector X such that X = (ut,vt,wt,pt)t.
The proposed solution, called SFSR for Segmentation-Free
Super-Resolution, is based on solving the following criterion
minimization problem:

X̂ = argmin
X ∈RN

F(X,Y) + αNS (X) + βR(X) (1)

where N = Nu + Nv + Nw + Np is the X vector size, F
is the data fidelity term, NS is a regularization term using
the non-linear Navier-Stokes equations, and R is a velocity
smoothing term. These three ℓ2-norm criteria are detailed in
the following sections. The regularization terms are weighted
by two scalar parameters α and β.

B. Data Fidelity Term

As in [20], the data fidelity term involves the velocity
components discrepancy only. Although other contributions
like [24] preferred a more native writing through a complex
formulation, the proposed solution uses the a priori velocity
standard deviation as a weight to account for the magnetization
relationship with velocity error. Specifically, the criterion F
can be written as:

F(X,Y) = ∥Y −HX∥2W (2)

where W is a diagonal weight matrix of a priori velocity
variances [3], and H is the downsampling and filtering op-
erator [19], [20], [24] as depicted in Fig. 1. Besides, the
simplified forward model, modeled by the matrix H, considers
real-valued images instead of complex-valued ones in order to
remove the magnetization from the SR reconstruction.

Let’s highlight that super-resolution model simplification is
motivated by its applicability to images provided by multiple
clinical devices without the need to process the k-space data.
Moreover, a very precise model is not straightforward to
apply for MRI data obtained by accelerated or compressed
sensing strategies since the theoretical Point-Spread-Function
(PSF) is obtained under the hypothesis of fully sampled k-
space. Actually, this hypothesis has been successfully used in
several super-resolution algorithms [19], [20]. It also reduces
significantly the computation time and allows to reach a
satisfying performance level. For the sake of simplicity, the
current study has been led with a mean filter as in [30],
and could be extended to a cardinal sine kernel [19], or any
appropriate other kernel. More details about the operator H
design and implementation are given in the appendix A.

Each velocity component being encoded in the phase of
the measured signal, the velocity measurement error is not
identically distributed but spatially variant [3]. Particularly,
the error is higher in low magnetization areas, i.e. outside
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Fig. 1. Downsampling and filtering operator schematic description with the
(u, v) velocity represented on the staggered grid.

of potential fluid flow domain, as expressed by the a priori
standard deviation value [3]:

σv,i =

√
2

π

Venc

SNRi
(3)

where Venc designates the encoding velocity, and SNRi the
signal-to-noise ratio of the anatomical signal in the i-th voxel.
Then, the weight matrix appearing in the least squares data
fitting term F is then defined by W = diag

{
1

2σ2
v ,i

}
i=1···Nd

,

with Nd the data size. It can be noted that this weighting
scheme reduces the data influence on the solution outside the
expected fluid domain.

C. Fluid Mechanic Term

In most CFD simulations [11], [30] and for 4D flow MRI
SR applications [19], [20], [24], the blood is assumed to be
incompressible and homogeneous. Thus, the fluid density ρ
and dynamic viscosity µ are assumed to be time and spatially
invariant.

In such flows, the velocity at each position, is expressed by
its components (u, v, w), which are governed by mass and mo-
mentum conservation equations, also called the incompressible
Navier-Stokes equations:

ux + vy + wz = 0 (4)
ρ(uux + vuy + wuz) + px − µ(uxx + uyy + uzz) = 0 (5)
ρ(uvx + vvy + wvz) + py − µ(vxx + vyy + vzz) = 0 (6)

ρ(uwx + vwy + wwz) + pz − µ(wxx + wyy + wzz) = 0 (7)

where p denotes the blood pressure and the use of the subscript
(·)l implies the derivative in the l-direction. For instance, ux
stands for the derivative of the u-velocity component in the
direction x, and uxy for the second order derivative along y
and x directions.

In our approach, body forces and transient velocity terms
are voluntarily ignored in order to get a time-independent
design which facilitate computational parallelization in time.
The underlying effect of that assumption will be discussed
in section IV-B on the pulsatile Phantom application case.
Consequently, the problem (1) can be solved for each cardiac
phase separately.

The Navier-Stokes equations are applied on the whole
super-resolved 3D volume and Dirichlet conditions are set
for velocities on the borders of that volume, as depicted
in Fig. 1 in orange. By default, the borders velocities are
fixed by linear interpolation of the measured 4D Flow MRI
data. However, if no flow cross a specific border, a no-slip
condition can be enforced, i.e. u = v = w = 0. Partial
Derivative Equations (4), (5), (6), and (7) are discretized by a
finite-volume method (FVM) involving the upwind integration
scheme [19], [31], [32]. In FVM , estimated velocities are
localized on the borders of each cell. In this work, the super-
resolved voxels are considered as cells which led us to use
a staggered grid [31], [32] as depicted in Fig. 1 by a blue
circle for the cell center and by red and green vectors for
each velocity component. Equations (4), (5), (6), and (7) are
integrated over the super-resolved voxels which led to their
linearization in the vicinity of any velocity state Xk. The
subscript k stands for the iteration k of the super-resolved
velocity field. Consequently, the regularization term NS (X)
becomes the squared L2 norm of the linearized mass and
momentum conservation equations such as:

NSk(X) = ∥SXk
X − b∥22 (8)

where SXk
is the convection-diffusion matrix computed from

Xk and b contains the boundary conditions. Using matrix
SXk

is consistent with coupled velocity-pressure solving, in
opposition to the segregated scheme adopted by Rispoli et
al. [19]. For more details on the construction of SXk

, an
exhaustive introduction of finite-volume method can be found
in Chapters 5 and 6 of [31], and Chapter 4 of [32]. In addition,
the appendix B presents briefly the Navier-Stokes equations
integration by FVM.

Numerically, the operation SXk
X is a kernel-variant con-

volution of the current velocity X with the finite-volume
coefficients associated with each voxel faces, i.e. connecting
with 6 neighbours. In terms of implementation, SXk

being
extremely sparse, the proposed solution does not create the
matrix itself but only its coefficients. Consequently, the SXk

operator applies element-wise multiplication and summation
which are particularly suitable for GPU computation.

D. Velocity Smoothing Term

In our previous study [29], a solution based on a two terms
criterion, i.e. a data fidelity term and fluid mechanic term,
demonstrated its efficiency to enhance the resolution when the
fluid domain segmentation is known. However, its application
in a SF framework showed instabilities and degradation in the
interface in/out fluid due to the velocities estimated outside
the potential fluid domain area. Indeed, these velocities were
mainly influenced by the fluid mechanic term, since the weight
on the data is lower and no fluid borders is encoded within
the boundary variable b appearing in the term NSk(X).

To alleviate this effect, the proposed solution regularize
the spatial evolution of velocity components and particularly
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in low magnetization areas. The regularization term R is
therefore defined as:

R(X) = ∥GxX∥2W + ∥GyX∥2W + ∥GzX∥2W (9)

= X tMX (10)

with M = Gt
xWGx + Gt

yWGy + Gt
zWGz where Gx, Gy and

Gz are finite-difference matrices along each space direction,
and W is a diagonal matrix filled with the a priori standard
deviation such as W = diag

{
2σv

2
i

}
i=1···N . That super-

resolved a priori standard deviation is computed from (3)
with the anatomic SNR being estimated thanks to the tri-
linear interpolation of the magnetization [33]. Thus, outer
velocities are significantly smoothed by both NS and R
terms. Meanwhile, the fluid domain velocities are mainly
regularized by Navier-Stokes equations and softened to a lesser
extent by R.

E. Optimization Algorithm

Thanks to the first order approximation induced by the finite-
volume integration of the fluid mechanic term, the non-linear
problem (1) can be reformulated at each iteration as the solving
of a linear weighted least-squares problem in the vicinity of
any Xk:

min
X ∈RN

∥Y −HX∥2W + α ∥SXk
X − b∥22 + β X tMX (11)

whose solution X̂ is obtained by solving the following linear
system:(

HtWH + α St
Xk

SXk
+ β M

)
X =

(
HtWY + α St

Xk
b
)

(12)

using a preconditioned linear conjugate gradient (PLCG) algo-
rithm. This iterative resolution scheme efficiency is optimized
thanks to the construction of dedicated operators instead of
large sparse matrices for H, SXk

, M, and W. Furthermore,
the extensive use of GPU (Nvidia RTX A4000, 8 Gb) and
RAM (64 Gb) helped reducing the computation time. The
non-linear optimization algorithm is assumed to be converged
once the normalized evolution of X̂ between two successive
iterations, ∥X̂k−X̂k−1∥2

2/∥X̂k−1∥2
2, reaches a tolerance threshold

(ϵx = 10−6). This non-linear optimization problem solving
procedure is summarized in the Algorithm 1. This algorithm
has been already tested on 2D synthetic and phantom datasets
relying on steady fluid flows [34]. Even if the unsteady term in
the Navier-Stokes equation is neglected, we will demonstrate
the effectiveness of this algorithm on a fluid with pulsatile
flow and 3D complex flow patterns. The whole pipeline of the
proposed solution is illustrated in Fig. 2.

III. VALIDATION PROTOCOL

This section aims to introduce the three applications with
synthetic, phantom, in-vivo datasets with respectively a steady
flow, i.e. Poiseuille flow, a pulsatile flow with complex
flow patterns, and a cardio-thoracic 4D Flow MRI acquisition.
Then, we assess the performance of the proposed SFSR
algorithm by comparing the indicators defined in section III-D
with three state-of-the-art solutions:

Fig. 2. Illustration of the proposed SFSR solution pipeline.

Algorithm 1 SFSR Algorithm applied on a 3D volume at a
given cardiac phase

1: Y ← (ut
d ,v

t
d ,w

t
d)

t % contains the measured velocities
2: X0 ← (ut

0,v
t
0,w

t
0,p

t
0)

t % filled by tri-linear interpolation
of Y on the SR grid and p0 is set to zero

3: W % data weight matrix from equation (3)
4: b % contains Dirichlet conditions on image borders
5: k ← 1 ; ε← 1 ; kmax ← 100 ; tol← 10−6

6: while (k ≤ kmax and ε ≥ tol) do
7: SXk−1

% computed by FVM on velocity X̂k−1

8: X̂k % obtained by solving the linear problem (12) using
PLCG optimization

9: ε← ∥X̂k−X̂k−1∥2
2/∥X̂k−1∥2

2 % stopping rule test
10: k ← k + 1
11: end while

• the algorithm introduced in [19], called SbSR for
SIMPLER-based Super-Resolution, which relies on a
constrained formulation for the mass conservation equa-
tion, and a pre-established segmentation.

• a previous study [29], called PSR for Penalized Super-
Resolution, which is based on a two-fold penalized crite-
rion with a data fidelity term and a fluid mechanic term,
and the a priori knowledge of the fluid domain.

• a naive option to increase spatial resolution is the linear
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Fig. 3. 3D Synthetic dataset based on Poiseuille Flow.

interpolation of the velocity field, i.e. called LISR.
For sake of balance, the SbSR and PSR algorithms have
been also implemented in order to use the full potential of
GPU computation. Finally, we introduce the methodology to
determine the hyper-parameters in section III-E.

A. Synthetic Dataset

A synthetic dataset has been designed in order to control
the noise level in the data and to discuss its impact on the
algorithm performance. The field of view in this dataset is set
to 15 cm×8.6 cm×4.4 cm and divided between two regions:
a non-fluid area where the magnetization is low in opposition
to an other one with fluid circulation and high magnetization.
Fig. 3 illustrates these two regions with a 2D section of the
magnetization in gray-scale and velocity norm in color-scale.
The fluid domain is defined as a straight 15◦-tilted tube with
a radius of 1.5 cm leading to a parabolic velocity field, called
Poiseuille, with a top value of 1 m/s. The synthetic fluid
model uses a dynamic viscosity µ of 0.0032 Pa.s and a
fluid density ρ of 1060 kg/m3. A high resolution reference
velocity field, set to an isotropic (ISO) spatial resolution of
1 mm, is obtained by computing the analytical solution of
the Poiseuille flow. The latter is used as a phase in a complex-
valued magnetization which is then filtered by a 7×7×7 sinc-
kernel function introducing partial volume effect and leading
to a synthetic 4D Flow MRI dataset with a spatial resolution of
2 mm. A zero-mean complex-valued Gaussian noise is added
and the velocity is consequently extracted from the resulting
phase.

For the sake of simplicity, the resulting velocity noise
standard deviation will refer to a percentage of the Venc in
the fluid domain (which is defined as 120% of the maximum
theoretical velocity). According to [5], [35], a percentage of
5% corresponds to the highest noise level encountered with a
1.5 T MRI (no contrast enhancement). In order to represent
highly degraded acquisitions, SFSR is evaluated with four
values of Venc percentage: 2.5%, 5%, 7.5% and 10%

B. Phantom Dataset

This study uses the phantom dataset developed by Puiseux et
al. [30]. Its geometry is consistent with cardiovascular vessel
shapes with an arch of 26 mm diameter and a central connec-
tion with a swelling representing an aneurysm. That configura-
tion helps measuring complex flow patterns within a pulsatile

flow context. Puiseux et al. acquisition were performed on a
1.5 T MRI (Siemens Magnetom Avantado, Siemens Medical
Systems, Erlangen, Germany) with prospective gated. Here,
only the isotropic 2 mm resolution dataset is used with a Venc
of 0.5 m/s in the three directions.

In addition, this phantom dataset and the super-resolved
solutions were compared to a CFD simulation, using the
YALESBIO solver [36]. It exploits a Large-Eddy-Simulation
strategy in order to better represent small scale turbulent flow.
Specifically, the CFD simulation mesh is made of cells with
a characteristic size of 0.7 mm. The cinematic viscosity ν
and the fluid density ρ are set to 4.02 × 10−6 m2/s and
1020 kg/m3. The CFD simulated velocity was phase-averaged
in order to be consistent with the 4D flow MRI acquisition
which measures over multiple cardiac cycle. More details
about the experimental setup and the CFD simulation can be
found in the full paper study [30].

C. In-vivo dataset

The in-vivo dataset presented in section IV-C has been mea-
sured on a healthy volunteer with a 4D flow MRI sequence
from the 1.5 T MRI system (Siemens Aera, Siemens Medical
Systems, Erlangen, Germany). The research was carried out
following the principles of the Declaration of Helsinki. The
echo and repetition times were set respectively to 2.22 ms and
38.16 ms with a flip angle of 15◦. The voxel image resolution
is set to 2.2 mm× 2.2 mm× 2 mm with a velocity encoding
Venc of 200 cm/s. The full matrix acquisition has a size of
[144, 130, 40, 30] to account for the thoracic volume over the
cardiac cycle. For a sake of efficiency, the SFSR algorithm has
been applied on a reduced matrix of dimension [71, 91, 40, 30]
which focus on the main circulatory area: heart and aorta.
Besides, hemodynamic parameters ρ and ν were respectively
set to 1060 kg/m3 and 0.0034 Pa.s. Finally, the background
phase error were corrected in order to avoid any smooth bias
within the fluid domain [37].

D. Performance Indicators

The retained performance indicators are the Root-Mean-
Square-Error (RMSE), Pearson’s correlation, and computation
time. Each SR reconstruction algorithm performance indicator
is evaluated by considering the theoretical or the numerically
computed velocity field as a reference. Most hemodynamic
biomarkers rely on the velocity within the vessel, and conse-
quently the performance indicators are restricted to the fluid
domain. The RMSE is defined as:

RMSE(r) =

√
ΣN

i=1(ri−ri)
2
/N (13)

where r contains the super-resolved reference velocity
field. In order to quantify the improvement, let’s define the
normalized Root-Mean-Square Error, denoted by nRMSE,
as the RMSE divided by data RMSEd which is equal to√

1
Nd

∑Nd
i=1

(
Yi − Yi

)2
with Y for the low resolution unfil-

tered reference velocity field.
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Finally, we have also calculated the Pearson correlation
value r between the estimated velocity magnitudes c and their
respective reference ones c∗:

rc =

 N∑
j=1

νjν
∗
j

 N∑
j=1

ν2j

N∑
j=1

(ν∗j )
2

−1/2

(14)

where νj and ν∗j are statistically centered velocity magnitudes.

E. Hyper-parameter setting

The proposed method SFSR and its related criterion depend on
two types of parameters: the penalization weights (α,β) and
the hemodynamic parameters (ρ,µ). The aim of this section
is to demonstrate the existence of optimal values of these
parameters that improve the RMSE. We highlight that the
unsupervised tuning of these parameters would require further
developments that are not discussed in this paper.

The coefficients α and β control respectively the weight of
the fluid mechanic regularization and the spatial smoothing
whereas ρ and µ define the hemodynamic fluid regime in
the Navier-Stokes model. The penalization weights have been
set in a way to minimize the RMSE in each configuration.
For instance, Fig. 4(a), shows the evolution of the RMSE
with respect to α and β for the Phantom dataset (a 13x25
grid search takes about 12 h). One can see that retaining
non-zero values for both parameters lead to RMSE decrease.
Moreover, it can be noted that an adequate parameter values
can be found to balance the two regularization terms (Navier-
Stokes and Smoothing) and lead to a significant decrease of the
nRMSE. Indeed, the fluid mechanic regularization fully benefit
to the solution only when the spatial smoothing is sufficient
to discriminate flow and no-flow areas.

An analysis of the influence of the hemodynamic parameters
on the proposed algorithm performance was conducted with
consistent range values provided by [38] for the dynamic
viscosity and by [39] for the blood density. These parameters
define the blood flow regime through the Reynolds number
representing the ratio between the inertial and viscous forces.
Although the variation of the hemodynamic parameters on the
studied range values induces a Reynolds number change up
to a 3.5 factor, these parameters impact is negligible in term
of nRMSE with a standard deviation of 0.41%. Besides, the
SFSR criterion convergence is shown in Fig. 4(b) for each
application case. One can see that only few iterations are
needed before reaching algorithm convergence.

IV. RESULTS

Three kinds of performance analysis are presented in this
section. First, both SR solutions are applied to a synthetic
dataset with different noise levels. Then, SR applicability is
demonstrated on a pulsatile phantom dataset with complex
flow patterns. Finally, we will observe the SR improvement
on a in-vivo dataset and focus on specific regions of interest.

(a) Penalization weights influence on SFSR nRMSE (limited to 120 %)

(b) SFSR criterion as function of iterations (systolic time)

Fig. 4. Hyper-parameters influence on SFSR RMSE on the Phantom dataset
at the systolic time and illustration of the SFSR criterion decrease.

A. Performance Analysis on a Simulated Dataset

In 4D Flow MRI, SNR is the result of a compromise with two
other factors: the spatio-temporal resolution and the acquisi-
tion time. According to [35], the maximum σv encountered in
clinical routine is about 5 % of the Venc. To account for partic-
ularly noisy data, obtained with higher acceleration factor for
instance, four noise standard deviations were tested with 2.5,
5, 7.5, and 10 % of the Venc. Table I shows the average and the
standard deviation of the performance indicators over 20 noise
realizations. The results gather the performance of three state-
of-the art approaches and the proposed SFSR solution with
a SR factor of 2 on the synthetic dataset, i.e. a resolution
enhancement from 2 mm ISO to 1 mm ISO.

In terms of quantification, SFSR leads to better performance
than SbSR with a RMSE improvement ratio between 2
and 3.6. According to the SbSR nRMSE indicator, the SR
reconstruction is beneficial only for a σv ≥ 5 % of the Venc.
The SbSR nRMSE for the 2.5 and 5 % noise cases is above
100 % which means here that the error level is 113.8 and
10.1 % higher after super-resolution than in the initial dataset.
Meanwhile, SFSR solution is able to reduce the nRMSE to
58.6 % even in low noise cases, i.e. representing an error
reduction of at least 41.4 %. One can notice the increase of
the RMSE for the PSR, LISR, and SFSR methods along with
the noise standard deviation. In case of a standard deviation
exceeding 5 % of the Venc, PSR algorithm RMSE is degrading
faster than SFSR and slower than LISR.

Besides, the Pearson’s correlation between SbSR solution
and the reference velocity magnitudes are higher than 87.9 %
in all cases while SFSR outperforms with values exceeding
99.4 %. In addition, SFSR is more efficient for a larger range
of standard deviation σv in comparison to PSR correlation
which slightly decrease. Moreover, LISR correlation is even
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(a) SbSR solution (b) SbSR Error Map (c) SbSR Bland-Altman

(d) SFSR solution (e) SFSR RMSE (f) SFSR Bland-Altman

Fig. 5. SFSR and SbSR solutions along with their respective error maps and Bland-Altman graphs represented in the xOy plane. The SR algorithms enhance
the synthetic dataset resolution from 2 mm ISO to 1 mm ISO.

σv 2.5 %×Venc 5 %×Venc 7.5 %×Venc 10 %×Venc
Method RMSE (cm/s)
SbSR 9.7 (0.21) 9.2 (0.21) 8.9 (0.29) 16.5 (1.51)
PSR 3.5 (0.10) 5.5 (0.04) 7.7 (0.13) 10.1 (0.18)
LISR 3.9 (0.02) 6.6 (0.04) 9.5 (0.06) 12.6 (0.08)
SFSR 3.2 (0.01) 3.4 (0.08) 4.4 (0.03) 4.5 (0.05)
Method nRMSE (%)
SbSR 213.8 (4.9) 110.1 (2.6) 71.0 (2.3) 96.3 (8.6)
PSR 75.9 (2.2) 65.0 (0.4) 61.3 (1.0) 58.6 (1.0)
LISR 85.4 (0.4) 78.7 (0.3) 75.9 (0.3) 73.5 (0.3)
SFSR 69.8 (0.3) 41.0 (1.0) 34.8 (0.2) 26.0 (0.3)
Method Pearson’s correlation (%)
SbSR 95.8 (0.268) 96.7 (0.236) 96.7 (0.336) 87.9 (2.295)
PSR 99.6 (0.027) 99.1 (0.015) 98.3 (0.079) 97.2 (0.146)
LISR 99.5 (0.007) 98.6 (0.022) 97.2 (0.049) 95.1 (0.102)
SFSR 99.6 (0.004) 99.6 (0.039) 99.4 (0.012) 99.4 (0.020)
Method Computation Time (s)
SbSR 2136 (342) 2750 (114) 1573 (229) 1290 (903)
PSR 581 (465) 493 (346) 516 (338) 665 (385)
LISR 0.03 (0.007) 0.03 (0.004) 0.03 (0.004) 0.03 (0.004)
SFSR 154 (5) 648 (134) 63 (3) 565 (55)

TABLE I
PERFORMANCE INDICATORS OF BOTH SR SOLUTIONS FOR DIFFERENT
NOISE LEVELS. EACH VALUE IS THE MEAN PERFORMANCE INDICATOR

OVER 20 REALIZATIONS WITH THEIR RESPECTIVE STANDARD DEVIATION
BETWEEN BRACKETS.

more impacted in case of high noise. Finally, the computation
time is clearly in favour of the LISR method. Unfortunately,
this option has poor quantification performance and naturally,
SFSR approach becomes the best solution in term of compu-
tation time and quantification performance. One can notice the

acceleration factor of SFSR between 2.3 and 25 in comparison
to SbSR. Let’s notice that the computation time standard
deviations are also significantly lower for the SFSR approach.

These performance indicators represent the quantification
error over the whole fluid domain and need to be completed
by local observations. Fig. 5 illustrates the SR results of SbSR
and SFSR applied to a synthetic dataset with a standard
deviation of 5 % of the Venc, along with their voxel-wise
RMSE maps and Bland-Altman graphs on velocity magni-
tudes. One can notice the strict nullity of velocities outside
the fluid domain for SbSR in Fig.5(a) while SFSR ones are
following a smooth gradient in Fig.5(d). Error maps for both
solutions are represented by Fig. 5(b) and 5(e) for SbSR and
SFSR respectively. As depicted in the velocity field figures,
the error maps outside the fluid domain is much higher for
SFSR than SbSR. However, SFSR performs particularly well
in the region of interest, i.e. the fluid domain. Fig. 5(c)
and 5(f) shows the Bland-Altman graphs of SbSR and SFSR
respectively between the solutions’ velocity magnitudes and
the reference ones. SbSR error discrepancy is smaller for
low magnitudes velocities, i.e. near wall velocities, and
its error increase significantly as function of the magnitude.
Meanwhile, SFSR performs better in higher velocities with a
confidence interval 2.7 times smaller than SbSR. As expected
from the design of SFSR, which does not enforce the no-
slip condition on the fluid domain borders, the velocity is
slightly overestimated near the vessel wall (but in an order
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Fig. 6. Performance indicators during the cardiac cycle.The 4D Flow MRI has a spatial resolution of 2 mm ISO. A SR factor of 2 and 3 lead respectively
to an effective resolution 1 mm ISO and 0.66 mm.

Fig. 7. LISR, PSR, and SFSR super-resolved velocity (1 mm ISO) and error maps during the cardiac cycle. The colored bars of the error maps are
represented using a logarithmic scale to clearly indicate the most complex regions to process.

of magnitude smaller than the SbSR approach).
As a consequence of these observations, the SbSR solution

is no longer considered in the following analysis, in particular
because of its high computation time and the challenge of
converging the solution.

B. Evaluation on a Pulsatile Flow Phantom Dataset

In cardiovascular imaging, lower limb blood flow can be
modeled by a Poiseuille flow since the pulse is significantly
reduced. But, the aorta blood flow is much more complex
due to its particular shape and to its pulsatile nature. The
proposed solution is tested on the Phantom dataset developed
by Puiseux et al. [30] which has most of the complexity

observed in the aorta with a U-tube representing an arch
and a swelling inducing complex flow similarly to aneurysm.
Akin to the previous analysis, SFSR algorithm is evaluated
by assessing its performance indicators within the blood flow
domain. The observation of error maps over different phases
of the cardiac cycle provide insight about the complex regions
to solve.

Fig. 6 shows the RMSE, Pearson’s correlation and compu-
tation time over the 17 phases. These indicators are calculated
for the 4D Flow MRI dataset, LISR, and the SFSR and PSR
reconstructions for two SR factor: 2 and 3 by dimension.
Due to the resolution of the 4D Flow MRI (2 mm ISO),
the resulting SR resolution is 1 mm ISO for the factor
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2 SR and 0.66 mm ISO for the SR factor 3. The CFD
reference resolution being of 0.7 mm, we did not considered
higher SR factors. In term of RMSE, one can notice the
significant improvement of the proposed algorithm with a gain
between 35.9 and 48.5 % in comparison to 4D Flow MRI data
and between 24 and 37.5 % to LISR. The SFSR Pearson’s
correlation is beneficial to the original 4D Flow MRI one with
an increase between 12.6 and 35.8 % and to LISR with the
improvement interval 5.5-23.8 %. PSR solution provides better
performance than LISR but remains lower than SFSR in term
of RMSE and correlation, especially in the lower flow rate
phases. Indeed, 4D Flow MRI correlation, as long as LISR
and PSR, are severely influenced by the flow variation whereas
the SFSR correlation is more stable. Finally, the computation
time of the factor 2 SFSR reconstruction is 15 mins by phase
in average for data and SR matrices size of [94,114,28], and
[187,227,55]. This time is much smaller than in the case of
factor 3 (about 65 mins per phase on average).

In order to complete these performance indicators, Fig. 7
illustrates the velocity maps of the LISR, PSR and the SFSR
reconstruction with a factor 2 by dimension ( i.e. 1 mm
ISO resolution), for three phases, along with their respective
error maps. These figures are set with a logarithmic color
scale to better represent the error localization. One can observe
the expected reconstruction fidelity between SFSR, LISR and
PSR solutions. Furthermore, SFSR velocities outside the fluid
domain are significantly smoothed by the term R without
degrading inside velocities. Local error remains high in the
aneurysm shape region whereas the error is moderate within
the arch. A detailed examination of these results led to the
conclusion that the improvement is not localized on specific
areas but more uniformly distributed. As a complement, Fig. 8
represents the LISR, PSR, and SFSR Bland-Altman graphs
with respect to the CFD reference. It appears that the interpo-
lated data and PSR overestimate the CFD reference for a large
range of velocity magnitudes whereas SFSR underestimates
more values of 20 cm/s. Besides, SFSR outperforms LISR
and PSR approaches on two aspects: the bias is reduced from
1.78 and 1.16 to -0.19 cm/s and the 95 % confidence interval
is diminished from 19.74 and 15.84 to 15.38 cm/s.

C. Application on a in-vivo 4D Flow MRI dataset

The proposed algorithm SFSR has been applied to a in-
vivo dataset in order to demonstrate the SR applicability in
a clinical routine context. Fig. 9 shows the LISR and SFSR
results over the cardiac cycle with a focus on four regions
of interest: the aortic valve (red), the ascending aorta in
proximity of the pulmonary trunk (green), the aortic arch
(blue), and the heart right ventricle (yellow). Although no
prior segmentation were used to compute the super-resolved
velocity field, one can observe a clear separation between the
fluid domain and its surroundings. Besides, SFSR and LISR
are efficient to distinguish two close disjoints fluid domains
like the aorta and the pulmonary trunk as depicted in the green
frame in Fig. 9. Complex fluid flow can be observed in the
ascending aorta and the heart left ventricle. SFSR velocity
field patterns in the ascending aorta are close to LISR ones

whereas the velocity patterns in the right ventricle are more
complex after super-resolution. Fig. 10 represents the velocity
norm along the cardiac phases of four points in different
regions of the aorta (cf. Fig. 9 on the top-left). Velocity
peaks are important biomarkers in cardiovascular imaging and
Fig. 10 demonstrates that the maximum values are preserved
and even restored in the case of the point 1.

Finally, the computation time is 9 min by timeframe on
average which makes SR applicability feasible in clinical
routine. For note, the anatomic signal is a key information
for the segmentation-free strategy, and thus the image contrast
is determinant for SFSR reconstruction. PSR and SbSR solu-
tions have not been used on this dataset since the segmentation
is not available for the full cardiovascular system.

V. DISCUSSION

This paper introduces a new super-resolution solution which
reaches high quantification performance on synthetic and
phantom 4D Flow MRI datasets. In addition, the segmentation-
free design of that solution along with its reduced computation
time are strong arguments towards clinical application.

The proposed algorithm is computationally efficient due to
several aspects. First, the construction of large sparse matrices
has been avoided by the use of adequate operators minimizing
the memory cost. Then, these operators were applied to large
3D arrays through a GPU which reduces significantly the
computation time. For the sake of balance, the reproduction of
SbSR benefit also from this architectural design. Akin to the
previous contribution PSR [29], SFSR smaller computation
time is mainly due to the penalization formulation and the
use of the a priori standard deviation. Indeed, the mass
conservation equation constraint in SbSR involves the solving
of a Poisson problem which is complex and time-consuming.
SFSR formulation implies to use an implicit velocity-pressure
coupling and not a segregated framework as in SbSR. The
velocity-pressure coupling advantage over segregated scheme
for CFD simulation has been detailed in [32]. Besides, the
cardiac phase independent design of SFSR is also an asset
since each phase can be computed in parallel. Although that
phase independent architecture implies fluid mechanic laws
approximation with the transient term omission, its impact on
pulsatile flow were moderate.

On the other hand, the proposed solution SFSR achieves
two major objectives which are the resolution enhancement
and noise reduction even in the context of a pulsatile flow.
In term of quantification, SFSR algorithm demonstrated high
performance with an error reduction of a least 44.1 % in term
of RMSE while improving the resolution of a factor 2 by
dimension. The Pearson’s correlation were superior to 82 %
for both synthetic and phantom datasets. Furthermore, SFSR
quantification performance are still interesting for a SR factor
of 3 although the computation cost increase slightly. Finally,
SFSR solution outperforms the SbSR strategy for all the
performance indicators despite the use of a pre-established
segmentation to define the vessel wall. In addition to these
performance improvement, we demonstrate the possibility to
estimate a super-resolved velocity map without any prior fluid
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(a) Interpolated 4D Flow MRI (b) PSR (c) SFSR

Fig. 8. LISR, PSR, and SFSR solution Bland-Altman graphs with respect to the CFD reference at the systolic time t = 322.4 ms.

Fig. 9. LISR and SFSR super-resolved velocity during the cardiac cycle with a focus on four regions of interest, shown in red, blue, green and yellow
frames.

domain knowledge where the anatomic signal acts as a soft-
segmentation. Consequently, the anatomic images contrast has

to be good enough to distinguish fluid area from non-fluid
region. Then, 4D Flow MRI acquisitions obtained with the
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Fig. 10. LISR and SFSR velocity norm with a super-resolution of factor 2 during the cardiac cycle for the four points depicted in Figure 9.

use of contrast agent will help SFSR to perform better.
Besides, SbSR and PSR use a pre-established segmentation

in order to define precisely the vessel wall and ensure the
velocity nullity on the border whereas SFSR fluid domain
borders are implicitly deduced. Actually, SFSR velocities at
the vessel wall does not converge to zero but to a smoothed
areas. Although these regions’ values are generally small, the
residual error close to the borders might slightly affect wall-
related biomarkers such as the wall shear stress. Since RMSE
is smaller for SFSR than SbSR within the whole fluid domain
and also in the near-wall regions (as depicted in Fig. 5), the
impact of that non-zero areas needs to be investigated directly
in relation with biomarkers of interest. A recent study [40]
demonstrated the correlation between wall shear stress and
biomarkers of inflammation in aortic dilation, while the WSS
were calculated from 4D flow MRI data with their original
noise level and resolution. With SFSR, the near-wall error is
reduced and then one can expect a quantification improvement
of the WSS, as demonstrated in [5].

The proposed solution can be challenged by many other so-
lution using a pre-established segmentation. Actually, segmen-
tation methods already exist with efficient performance [27],
[28]. Unfortunately, most of these segmentation methods’ use
a large amount of labeled data unavailable in the public do-
main. A segmentation-free strategy aims to reduce the labeling
cost. In addition, a segmentation tool is generally designed for
a specific region of interest and a segmentation-free option
might allow to explore new regions or vessel malformations.

Based on the comparison between solutions using or not a
prior segmentation, one can discuss the utility to determine
that fluid-domain. The SFSR approach outperforms the PSR
solution, even though it uses the Navier-Stokes term and
exact segmentation as a priori. The study of PSR without
any segmentation [29] demonstrated that a smoothing term is
essential to build a segmentation-free approach. Besides, that
smoothing term, which embeds fluid prior information, helps
the reconstruction with more flexibility than a strict constraint.
In addition, that flexibility allows to perform significantly
better even when the acquisition model is over-simplified. Let
notice that the acquisition model can be degraded by the use
of acceleration process or because of measured artifacts such
as velocity aliasing.

The proposed solution’s tuning depends on penalization
weights and hemodynamic parameters. Both penalization pa-

rameters α and β are essential to guarantee an efficient RMSE
while controlling the fluid mechanic and smoothing terms’
weights. The hemodynamic parameters modification has a
negligible effect on the RMSE performance. Consequently,
SFSR is mainly dependent on the two penalization weights.
For a clinical use, these parameters need to be estimated
over a larger amount of data with different MRI strength,
reconstruction algorithm, and noise levels in order to obtain a
generalization set of parameters.

Finally, SR solutions were evaluated according to the veloc-
ity accuracy whereas the relative pressure estimation is a by-
product. Relative pressure is known as one the most complex
biomarker to estimate [7]. In the case of SbSR, PSR, and
SFSR, the relative pressure results were in most situations
too noisy and inconsistent. SbSR could get the expected
linear gradient of a Poiseuille flow only with a extremely low
noise level. SFSR estimation might be impacted by the non-
definition of the fluid domain. However, SFSR could be used
as a entry for a dedicated relative pressure mapping algorithm.

Further investigations will be led on the optimization
strategy with the use of descent algorithms allowing faster
convergence rate and less computation time. Besides, fluid
segmentation, being a tedious task, might benefit from the
construction of a joint estimator providing both the super-
resolved velocity field and the segmentation. In order to
characterize the environment change, a different norm might
be used to introduce sparsity in the smoothing term.

VI. CONCLUSION

This paper introduced a new segmentation-free algorithm
to compute efficiently a super-resolved solution of velocity
vectors from 4D Flow MRI data. The proposed SFSR solution,
based on inverse problem theory, relies on two additional
prior: one term using the Navier-Stokes equations ensuring
realistic fluid flow reconstruction and one term smoothing the
velocity outside the potential fluid domain enabling a reliable
segmentation-free approach. Using penalization in contrast to
hard constraint on the Navier-Stokes equations provides a
computationally efficient solution which is also demonstrated
by satisfying RMSE performance.
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APPENDIX A
POINT SPREAD FUNCTION COMPUTATION OVER A

STAGGERED GRID

The operator H applies a convolution over the velocity field
as depicted by the Fig. 1. Since FVM requires the use of a
staggered grid to describe the velocity, each vector in u, v ,
and w is positioned at the borders between two voxels. In
Fig. 1, these staggered vectors are represented in red for the
u-component of the velocity and green for the v-component.
In order to express each velocity components at the center
of the voxel, a 1D linear interpolation has been applied in
each specific direction. The resulting velocity is represented in
cyan in Fig. 1. Once the super-resolved velocity components
are defined on a common grid, the averaging Point Spread
Function, with a kernel size equal to 2s+ 1, is applied on the
whole image. Finally, a decimation operator is applied in order
to maintain the PSF convolution centered on the data positions.
To conclude, the operator H is the succession of three linear
operations: interpolation, convolution, decimation.

APPENDIX B
NAVIER-STOKES LINEARIZATION BY FVM

In FVM, a partial differential equation is integrated over a
given volume. In this work, the considered volume is a voxel
defined at the super-resolved resolution. Contrary to irregular
mesh, the super-resolved grid is regular and implies the use of
a staggered grid description of the velocity. It means that the
volume of interest to integrate has to be shifted in the velocity
component direction. Both Figures 11.(a) and 11. (b) illustrate
the shift applied with respect to the direction of interest. For
sake of clarity, only a 2D example is represented in Fig. 11.

(a) Staggered grid in the u-direction (b) Staggered grid in the v-direction

Fig. 11. Illustration of the 2D staggered grid for the computation of the
momentum equations.

Thanks to the FVM in a 3D context, one can express the
partial differential equations of Navier-Stokes as:

aPuP= asuS + anuN + aeuE + awuW + afuF + aruR

bP vP = bsvS + bnvN + bevE + bwvW + bfvF + brvR

cPwP= cswS + cnwN + cewE + cwwW + cfwF + crcR

where the coefficients, in the Upwind integration scheme, are
equal to:

ae = max(−0.5 ρ δy δz ue, 0) + µδy δz/δx

aw = max(0.5 ρ δy δz uw, 0) + µ δy δz/δx

as = max(−0.5 ρ δx δz vs, 0) + µ δx δz/δy

an = max(0.5 ρ δx δz vn, 0) + µ δx δz/δy

ar = max(−0.5 ρ δxδy wr, 0) + µ δx δy/δz

af = max(0.5 ρ δx δy wf , 0) + µ δx δy/δz

aP = ae + aw + as + an + ar + af

be = max(−0.5 ρ δy δz ue, 0) + µ δy δz/δx

bw = max(0.5 ρ δy δz uw, 0) + µ δy δz/δx

bs = max(−0.5 ρ δx δz vs, 0) + µ δx δz/δy

bn = max(0.5 ρ δx δz vn, 0) + µ δx δz/δy

br = max(−0.5 ρ δx δy wr, 0) + µ δx δy/δz

bf = max(0.5 ρ δx δy wf , 0) + µ δx δy/δz

bP = be + bw + bs + bn + br + bf

ce = max(−0.5 ρ δy δz ue, 0) + µ δy δz/δx

cw = max(0.5 ρ δy δz uw, 0) + µ δy δz/δx

cs = max(−0.5 ρ δx δz vs, 0) + µ δx δz/δy

cn = max(0.5 ρ δx δz vn, 0) + µ δx δz/δy

cr = max(−0.5 ρ δx δy wr, 0) + µ δx δy/δz

cf = max(0.5 ρ δx δy wf , 0) + µ δx δy/δz

cP = ce + cw + cs + cn + cr + cf

All these coefficients need to be computed for each voxel and
are the non-zero elements of the sparse SX matrix. Moreover,
these coefficient are different across voxels since their values
depend on the velocity at each voxel position. Numerically,
these coefficients have been stored in 3D arrays and used
through element-wise primitive operation that are particularly
suitable for GPU computing.
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