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Abstract

We measure the out-of-domain uncertainty in the prediction of Neural Networks
using a statistical notion called “Lens Depth” (LD) combined with Fermat Distance,
which is able to capture precisely the “depth” of a point with respect to a distribution
in feature space, without any distributional assumption. Our method also has no
trainable parameter. The method is applied directly in the feature space at test
time and does not intervene in training process. As such, it does not impact the
performance of the original model. The proposed method gives excellent qualitative
results on toy datasets and can give competitive or better uncertainty estimation on
standard deep learning datasets compared to strong baseline methods.

1 Introduction

We consider a multi-class classification problem with the input space X . In general, a classification
model consists of a feature extractor (backbone) Φθ1 and a classifier hθ2 : fθ “ hθ2 ˝ Φθ1 , where
θ “ pθ1, θ2q is the set of parameters of the model. The backbone transforms inputs into fixed-
dimension vectors in the so-called feature space F . The classifier h then maps the features to
predictions. The model fθ is trained on i.i.d. examples drawn from In-Distribution (ID) Pin. fθ̂
denotes the trained model.

OOD detection. Classification by neural networks has proved highly effective in terms of precision.
However, beside performance, in critical applications, one needs to detect out-of-distribution (OOD)
data for safety reasons. Indeed, at the inference stage, the model should only predict for data coming
from the ID and reject OOD samples. For this purpose, one needs to associate a confidence (or
uncertainty) score S with these data so that one can reject uncertain predictions. This is referred as
Out-of-domain uncertainty [5]. At the inference stage, x is considered as ID if Spxq ě ε (with some
threshold ε P R) and OOD otherwise. We develop a method applicable directly in the feature space
F of a trained model fθ̂. It yields a score function SF : Spxq :“ SF pΦθ̂1

pxqq. The high-level idea
is to measure directly “how central” a point is with respect to (w.r.t.) clusters taking into account
density and geometry of each cluster in the feature space. This provides an uncertainty score. For
this objective, standard methods consist in assuming some prior distribution such as GDA (Gaussian
Discriminant Analysis) based on Gaussian fitting [13]. However, the assumption that the data in a
cluster is Gaussian distributed or follow any particular distribution is quite restrictive. We will show
in our experiments section that the Gaussian assumption fails even in a very simple case (Section
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(a) Motivation example of two-moons.
GDA (left) fails completely to cap-
ture the distribution of dataset whereas
our proposed method (right) represents
very well how central a point is w.r.t.
clusters without prior assumption.

Model trained with in-distribution (ID) data

X

Φθ1

hθ2

Classification

Φθ1 pXq P F
(Features)

Lens depth
as Eq. (3.2)

Fermat distance
as Eq. (4.1)

Score
as Eq. (4.2)

(b) General scheme of our method. Given a set of features Φ,
the Fermat distance is a metric which respects and adapts to the
distribution of Φθ1 . Lens depth wraps the Fermat distance into a
probabilistic and interpretable score S. No additional supervised
training is needed.

Figure 1.1: Motivation example and general scheme of our method.

5.1). Let us take the example of a simple frame in the plane with 2 clusters corresponding to 2 classes
in form of two-moons (Fig. 1.1a). In this example, GDA fails totally to capture the distribution of
clusters. This motivates us to develop a non-parametric method that can measure explicitly how
“central” a point is w.r.t. a cluster without the need of additional training and prior assumption.
Furthermore, the method should accurately capture distribution with complex support and shape,
in order to be adapted to a variety of cases. To measure how central a point is w.r.t. a distribution,
we use the so-called notion of statistical Lens Depth (LD) [15], that will be presented in Section
3.1. Furthermore, for LD to correctly capture the shape of the distribution, an appropriate distance
must be adopted that adaptively takes into account its geometry and density. Fermat distance is a
good candidate for this purpose. However, it is not directly tractable as it stands on integrals along
rectifiable paths. A recent paper [6] proposes the use of an explicit sampled Fermat distance and
shows its consistency property (see also [2]). In our work, we make use of their results to compute
the LD. The general scheme is illustrated in Figure 1.1b. In our experiments, the classification model
is provided by a neural network, h is a softmax layer consisting of a linear transformation and a
softmax function, F is the output space of the penultimate layer right before the softmax layer.

Consistency of the uncertainty score. A consistent uncertainty score function should allow us to
detect OOD. Furthermore, when more samples are rejected based on this score, the accuracy of the
multi-class classification on the retained samples should increase. In other words, the fewer examples
retained (based on the score), the better the accuracy. Our method measures a natural "depth" of the
considered example. Consequently, the larger the depth of this example, the more typical this point is
(relative to the training set), and so the easier it is for the model to classify.

In summary, our contribution is at the following three levels:
• We are bringing to machine learning the mathematical tool of LD, combined with Fermat

distance. It proves particularly efficient for OOD uncertainty quantification. We also
propose improvements that avoid undesirable artifacts, and simple strategies for reducing
significantly the complexity in computing LD.

• The method we propose is non-parametric and non-intrusive. We do not have priors on the
distribution of data nor features. We do not require modifying the training algorithms.

• The method is almost hyperparameter-free, as we show that it is rather insensitive the only
parameter used to define Fermat distance.

Tables 5.1 and 5.2 give benchmarks. Our code can be found at LD-experiment-code.

2 Related Work

Intrusive approaches. One approach to construct a confidence score consists in fine-tuning the
model fθ̂ using some auxiliary OOD data so that the ID and OOD data are more separable in the
feature space [16]. One may even use very particular type of models and training mechanisms for
the original classification task such as Prior Networks in which the prior distribution is assumed on
the output of the model fθ [19]. More laborious methods to handle uncertainty in neural network is
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Bayesian modeling [17, 4]. Another approach is to train additional models such as Deep Ensembles
[9] or LL ratio [23]. In these approaches, one needs to carefully perform a supplementary training.
Otherwise one could reflect wrongly the true underlying distribution. Moreover, the performance
of the multi-class classification task could be impacted. For all these reasons, these methods can be
considered intrusive.

Non-intrusive approaches. Independently from above methods, a non-intrusive approach is to work
directly in the feature space F of the trained model fθ̂. This is non-intrusive in the sense that there
is no need of changing the model nor supplementary training. Besides, model performance is not
impacted. One of the simplest method is to use the k-nearest neighbor distance [24]. It is simple but
has the drawback of ignoring the global cluster geometry and density as it considers only the nearest
neighbors. A more sophisticated approach is GDA [13] that uses minimum Mahalanobis distance 1

[18] based on Gaussian prior. Despite taking the distribution into account, Gaussian modeling is
restrictive as it leads to an ellipsoid for shaping each cluster.

Single forward-pass uncertainty. A popular work which yields uncertainty score in a single forward
pass is DUQ [27]. In this method, one needs to train particular models, namely RBF models [12],
with some carefully fine-tuned penalty to encourage sensitivity. This makes the training process
more difficult, hence impacting negatively the classification performance. [14] proposes SNGP
using a distance-aware output layer, based on Gaussian Processes, with Spectral Normalization
(SN) in training. Again, these additionnal constrains can decrease the overall performance of model
(compared to standard softmax model). More recently, [20] proposes DDU, which is based on a
GDA approach, but one adds SN to encourage smoothness. [7] proposes Nonparametric Uncertainty
Quantification (NUQ) using a kernel-based method. Although this method is non-parametric, it is
highly dependent on the choice of kernel and the kernel bandwidth.

3 Background

3.1 Lens Depth

Lens depth (LD) [15] is a specific notion of a more general quantity called Depth [26]. A depth is a
score measure of the membership of a point w.r.t. a distribution in a general space. The greater the
depth, the more central the point is to the distribution. LD of a point w.r.t a distribution PX is defined
as the probability that it belongs to the intersection of two random balls. These balls are centered at
two independent random points X and Y , both having the distribution PX and a radius equal to the
distance between X and Y . More formally, if we work on Rd, the LD of a point x P Rd w.r.t. PX is
defined as follows,

LDpx, PXq :“ Ppx P B1 X B2q . (3.1)

Here, D is a given distance on Rd; X1,X2 are i.i.d with law PX ; Bpp, rq is the closed ball centered
at p with radius r; Bi “ BpXi, DpX2, X1qq, i “ 1, 2. Let ApX1, X2q “ B1 X B2. Equation (3.1)
naturally gives rise to the following empirical version of LD,

yLDnpxq :“

ˆ

n

2

˙´1
ÿ

1ďi1ăi2ďn

1ApXi1
,Xi2

qpxq . (3.2)

Note that for the empirical version, the intersection set can be rewritten as

ApX1, X2q “ tx : max
i“1,2

Dpx,Xiq ď DpX1, X2qu . (3.3)

Obviously, a crucial question is the choice of the distance D. A naive choice is the Euclidean one.
Examples of yLD using Euclidean distance are depicted in Fig. 3.1. We see that in the Gaussian case,
the level curves of yLD rather well capture the distribution. However, for the moon distribution they
fail miserably. This is not surprising as the Euclidean distance does not take into account the data
distribution PX . This gives rise to a natural problem as stated by [6]: How to learn a distance that
can capture both the geometry of the manifold and the underlying density? The Fermat distance
allows us to solve this problem and it is presented in the following section.

1The Mahalanobis distance from a point x P Rδ to a given probability Q (with mean µ and covariance matrix
Σ) is defined as dpx,Qq “

a

px ´ µqTΣ´1px ´ µq.
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(a) Gaussian (b) Moon

Figure 3.1: yLD using Euclidean distance. Using Euclidean distance cannot capture correctly the distribution.

(a) α “ 1 (b) α “ 1.2 (c) α “ 3 (d) α “ 7

Figure 3.2: Sample Fermat path between two randomly chosen points with different values of α.

3.2 Fermat distance

Following [6], let S be a subset of Rd. For a continuous and positive function f : S Ñ R` , β ě 0
and x, y P S, the Fermat distance Df,βpx, yq is defined as

Df,βpx, yq :“ infγTf,βpγq , with Tf,βpγq :“

ż

γ

f´β . (3.4)

The infimum is taken over all continuous and rectifiable paths γ contained in S̄, the closure of S, that
start at x and end at y.

Sample Fermat Distance. Let Q be a non-empty, locally finite, subset of Rd, serving as dataset. |x|

denotes Euclidean norm of x, qQpxq P Q is the particle closest to x in Euclidean distance – assuming
uniqueness2. For α ě 1, and x, y P Rd, the sample Fermat distance is defined as

DQ,αpx, yq :“ min
!

k´1
ÿ

j“1

|qj`1´qj |α : pq1, . . . , qkq P Qk with q1 “ qQpxq, qk “ qQpyq, k ě 1
)

.

(3.5)

The paper [6] shows that the sample Fermat distance when appropriately scaled converges to the
Fermat distance. For sake of brevity, we refer to Appendix A for exact statement. More theoretical
insight of Fermat distance and applications to clustering can be found in [25].

Intuition behind Sample Fermat Distance. The sample Fermat distance searches for the shortest
path relating the points. The length of each path is the sum of the Euclidean distances of consecutive
points in the path powered by α. With α “ 1, the shorted path between x and y is simply the line
relating qQpxq and qQpyq (Fig. 3.2a). However, with a sufficiently large α, this definition of path
length discards consecutive points with a large Euclidean distance instead favoring points that are
closely positioned in terms of Euclidean distance. So, this will qualify the path passing through high
density areas. Moreover, as this distance depends also on the number of terms in the sum in Eq. (3.5),
this enforces a path to be smooth enough. These two remarks show that Fermat distance naturally
captures the density and geometry of the dataset.

In Fig. 3.2, we go back to the moon example where Q is a moon-shaped cluster of points. We
randomly choose 2 points and compute the Fermat path. We see that with α “ 1, we recover the
Euclidean distance and so the Fermat path is simply a line. For α larger than 1 but not large enough
(for instance, α “ 1.2, Fig. 3.2b), the Fermat path still does not capture the orientation of the dataset.
However, as α gets larger, the Fermat path rapidly tracks the orientation of the dataset. For instance,
with α “ 3, the path follows very well the distribution shape.

2Of course, uniqueness is generically achieved, for example almost surely for random points sampled
according to a diffuse measure.
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(a) Before (b) Before (c) After (d) After

Figure 4.1: yLD with Sample Fermat Distance on moon and spiral datasets. (a) and (b) are results of using
directly sample Fermat distance in Eq. (3.5). This produces undesirable artifacts where we observe zones of
constant value of LD. This phenomenon is explained by Proposition 1. (c) and (d) use our modified version in
Eq. (4.1): it captures perfectly the distributions.

4 Combining LD and Fermat Distance

4.1 Artifacts from classical Fermat distance

In the computation of the depth, instead of using Euclidean distance, we use sample Fermat distance.
The results for the moon and spiral datasets are depicted in Fig. 4.1a and 4.1b. We see that the
shape of datasets is much better captured. However, we also observe some zones having constant LD
value (represented by the same color). The existence of such zones are explained by the following
proposition:

Proposition 1. For x P Rd, yLDpxq “ yLDpqQpxqq. In other words, the empirical lens depth is
constant over the Voronoï cells3 associated to Q.

The proof of Proposition 1 is in Appendix E. The consequence of the last proposition is that, even
for a point far removed from Q, the value of yLD remains the same as that of its nearest point in Q.
Consequently, yLD does not vanish at infinity. This is totally undesirable, as an ideal property of any
depth is to vanish at infinity. To avoid this undesirable artifact, we need to modify the sample Fermat
distance so that it takes into account the distance to Q.

4.2 Modified Sample Fermat Distance

The modified distance is defined, for y P Q, x P Rd as follows:

Dmodif
Q,α px, yq :“ min

qPQ
t|x ´ q|α ` DQ,αpq, yqu . (4.1)

Here, DQ,αpq, yq has been defined in Eq. (3.5).

Interpretation. In the original definition in Eq. (3.5), the path always starts by the closest point in the
dataset. Consequently, the distance to this closest point is totally ignored. To eliminate this drawback,
the distance to a potential starting point lying in Q is added. Note that the optimization problem for
calculating Dmodif

Q,α is of the same type as that for calculating DQ,α with only a change of starting
point. Hence, the consistency of this empirical distance towards the theoretical Fermat distance
remains true. Indeed, in the new formulation (4.1), the point q P Q is not fixed at qQpxq but remains
free and is a part of the optimization problem. Notice further that our modified version enjoys two nice
properties. Firstly, if x P Q then Eq. (4.1) coincides with Eq. (3.5) (Dmodif

Q,α px, yq “ DQ,αpx, yq).
Secondly, Dmodif

Q,α px, yq increases to infinity when x is going far away from Q. Consequently, in this

case, the corresponding yLD w.r.t Q tends to 0. The yLD using this modified version of the distance is
displayed on two examples in Fig. 4.1c and 4.1d. With our modification, the undesirable artifact of
constant-valued zone is erased. Furthermore, for points far away from the dataset, yLD tends quickly
to 0. In conclusion, our method captures the shape of distributions perfectly.

4.3 Qualitative evaluation of stability

We experiment and evaluate the stability of our method on the spiral dataset. This is a tricky dataset,
and a standard method like the Gaussian one cannot capture its shape.

3Definition of the Voronoï cells is in Appendix J.
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(a) LD applying different values of hyperparameter
α in Sample Fermat Distance. From left to right,
α P t3, 5, 10, 15u. For different values of α, the
method always captures really well the distribution.

(b) LD using only 20% of points (200 points) on
simulated spiral dataset of 1000 points. The contours
of LD level changes slightly between different tries,
but in general, the proposed method captures well
the general shape of distribution.

Figure 4.2: Stability with respect to number of training points and α.

4.3.1 Stability with respect to number of training points

When running a statistical algorithm, it is desirable to have as large a sample as possible. However, in
many cases, only a very small amount of data is available. This motivates the study of the stability of
our method in a small data regime. Here, we simulate the spiral dataset with 1000 points. Then, we
choose randomly only 20% of the simulated points (i.e. 200 points) as the sample dataset to compute
LD. We perform different runs for different random samples with α “ 5 for a visual evaluation.
For the sake of brevity, only the results of four tests are shown in Fig. 4.2b. More replications are
displayed in Appendix C. We see that in the 4 tries, our method gives slightly different estimation of
LD. This small fluctuation is to be expected, as we take only 20% of the points at random each time.
Nevertheless, the method captures the shape of the dataset really well (the full sample of 1000 points
is displayed in the figures). Besides, we also perform an experiment where we reduce the number of
points until the method fails to capture the shape of the distribution. This helps us to have a better
idea how our method works at small-data regime. We refer to Appendix D for results.

4.3.2 Stability with respect to the hyperparameter α

In our method, only one hyperparameter (α), governing the Fermat distance needs to be chosen. It is
therefore important to assess the stability of the method w.r.t. α. For this purpose, we experiment
with different values of α ą 1 (recall that α “ 1 corresponds to the Euclidean distance). For each
α P t3, 5, 10, 15u, we test our method on the spiral dataset. Results are shown in Fig. 4.2a. The
conclusion is that our method is very stable through different values of α. Indeed, in the 4 cases, it
always captures almost perfectly the dataset support, which implies a strong stability of the method.
Of course this stability is only achieved in the proper range when α is large enough (See Fig. 3.2).

4.4 From LD to OOD uncertainty score

Our ultimate objective is to use LD to provide an OOD uncertainty score. To do so, we apply
LD to the feature space F of our classification model. Let C be the number of separate clusters.
Now, there are two ways for computing LD of a new point: (1) All the clusters are considered as
a sole distribution to compute LD; (2) Compute LD w.r.t. the different clusters and then take the
max among the LD’s (i.e. LD w.r.t. the nearest cluster). It turns out that the first approach gives
unsatisfying result as explained in Appendix F. So, we adopt the second approach in this paper. More
formally, let us denote yLDpΦpxq, Ciq the empirical LD of x w.r.t. the ith cluster formed by training
examples of class i (in the feature space) (i.e. the clustering is given by the labeling as we have labels
here). Then, the confidence score of x is defined as

Spxq :“ max
i

yLDpΦpxq, Ciq . (4.2)

4.5 Computational complexity: the main limitation of LD and how to be more efficient

From Eq. (3.2), we can deduce that the complexity of calculating LD for a given point is OpCN2q

(C is the number of classes, N is number of examples in each class). It is therefore useful to reduce
the number of inner points N used to calculate LD while maintaining good precision. Keeping only
n inner points among the N initial ones, we then have 3 different straightforward strategies:

• I. Random. Randomly sample without replacement n points among N intial points.
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• II. K-mean/center. We want the n points to cover well the support of the initial sample.
Hence, we first apply a K-mean clustering with n centroids on the N points. Then, the n
resulted centroids are used as inner points.

• III. K-mean/center+. Same as strategy II, but instead of using directly the centroids, we
use the inner point closest to each centroid.

We test and discuss about these strategies in Appendix G. It turns out that K-mean / Center outperforms
the two other strategies with a very small number of inner points n. We refer to Appendix G for more
discussion and detailed experiment. So, for the rest of this paper, we use strategy III.

5 Experiments on Neural Networks

We first evaluate our method on the two-moon dataset. Then, we evaluate on 2 benchmarks
FashionMNIST-MNIST and CIFAR10-TinyImageNet/CIFAR100/SVHN the ability of our method
for the detection of OOD. Besides, we also evaluate the consistency property of our uncertainty score
as presented in introduction section (shown in Fig. 5.2). Without further mention, we fix α “ 7 for
all experiments. For a fair comparison, we use the same model architectures as in the previous work
of [27]. More details about the models and the training schemes can be found in the Appendix B.

5.1 How is the input distribution represented in the feature space of softmax model?

We first perform experiment on the two-moon dataset consisting of 2 classes, each having a moon
shape. We train a neural network with 2 hidden layers for classification (more details can be found in
the Appendix B). After training, the model parameters are fixed and different methods for uncertainty
evaluation are applied in the feature space F of this model. One popular way to provide an uncertainty
score is to use the predictive distribution entropy4. It is maximized when the distribution is uniform.
In this example, predictive distribution entropy is high only in a boundary zone (Fig. 5.1f). This is to
be expected, as the model is trained to learn a boundary between the two classes. Nevertheless, it is
desired to assign a high uncertainty to the region without training data. Indeed, it might be too risky
to make decision in these zones, especially in critical applications.

Is Gaussian prior suitable? We consider the methods of Euclidean distance (Fig. 5.1d) and GDA
[13] (Fig. 5.1e). For the Euclidean distance method, we compute the distance to the centroids of
the different clusters (in F) and then we take its minimum. Surprisingly, in this example, the crude
use of Euclidean distance seems to better capture the input distribution than GDA (failing miserably
on this dataset). This suggests that the distribution of clusters in feature space is more complicated
than the Gaussian one. This remark shows the necessity to have a method able to capture better the
distribution. LD can capture impressively well the zone where we have training data (Fig. 5.1a,
5.1b and 5.1c corresponding to α “ 3, 10 and 15). Hence, LD is able to pin down clusters with a
complex support shape in the feature space. Furthermore, we intentionally use 3 values for α with
large gaps to show the stability w.r.t. α.

(a) LD,α “ 3 (b) LD,α “ 10 (c) LD,α “ 15 (d) Euclidean (e) GDA (Gaussian) (f) Predictive entropy

Figure 5.1: Methods for uncertainty estimation applied on the same neural net trained to classify 2 classes in
moon-shape (represented by yellow and black points respectively). Uncertainty estimations are computed based
solely on the feature space of the model without seeing directly the inputs. Red represents high uncertainty. Our
method (Fig. 5.1a, 5.1b and 5.1c) gives excellent results and much better than other methods.

5.2 FashionMNIST vs MNIST

We perform five different runs to train classification models on the dataset FashionMNIST [28]. Firstly,
we evaluate our method by studying the separation capacity between the test set of FashionMNIST

4The entropy of a predicted probability p P RC is calculated as Hppq “ ´
řC

i“1 pi logppiq, with
řC

i“1 pi “

1 and 0 ď pi ď 1.
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Table 5.1: Results on FashionMNIST, with MNIST as OOD set. Results marked by (l) are extracted from [23]
and (△) are extracted from [27]. Deep Ensembles by [9], Mahalanobis Distance by [13], LL ratio by [23], DUQ
by [27].

Charateristics Method AUROC

No impact on original model
LD (our method) 0.971˘0.001

Euclidean Distance 0.943˘0.009

Mahalanobis Distance 0.942
Use particular type of model difficult to train DUQ (△) 0.955
Need to train many models Deep Ensembles (5 Models) (△) 0.861
Need to train extra generative models LL ratio (△) 0.994

and of MNIST [11] based on AUROC score. Results are reported in Table 5.1. We first compare
our method to Euclidean and GDA method [13]. Notice that our method outperforms these two
distance-based methods. A more sophisticated method called DUQ [27] stands on a devoted neural
architecture (RBF network). This particular type of model is much more difficult to train and so
generally does not preserve the accuracy of the main classification task (compared to standard softmax
models). Once again, our method outperforms this method. This indicates that our method measures
a natural “depth” directly in the feature space without the need of changing completely the model
as in DUQ method. Another popular method is Deep Ensembles in which one trains and applies
many independently-trained models for the same task. Despite its heavy demanding of resource,
our method outperforms this approach in this experiment. A more advanced method for density
estimation is LL ratio [23]. In this method, one needs to train two supplementary generative models
to estimate distributions. This method needs an adequate noise and really careful training of these
2 generative models so that they can reflect the true underlying input density. With this complex
process 5, this method gives better AUROC score than ours in this experiment.

Consistency curve. Following some previous works (e.g. [9], [27]), we compound test set of
FashionMNIST and MNIST together and all the data from MNIST are considered to be incorrectly
predicted by the model. Then, a certain percentage of data is rejected based on their LD. If LD is
an appropriate indicator for prediction uncertainty, then accuracy on the retained data has to be an
increasing function of the rejection percentage. We call the resulted curve consistency curve. The
results for five runs are depicted in Fig. 5.2a. We see that the curves are always increasing over 5
runs. Hence, LD is a good measure for uncertainty estimation.

(a) FashionMNIST/MNIST (b) CIFAR10/SVHN (c) CIFAR10/CIFAR100 (d) CIFAR10/Tiny-ImageNet

Figure 5.2: Consistency curves for FashionMNIST/MNIST, CIFAR10/SVHN, CIFAR10/CIFAR100 and
CIFAR10/Tiny-ImageNet over 5 runs (each curve corresponds to an independently trained model).

5.3 CIFAR10 vs SVHN/Tiny-ImageNet/CIFAR100

In this section, we compare LD to popular deterministic single-forward pass methods for uncertainty
quantification (UQ). We also compare with Deep-Ensemble, as it stays a de facto method for UQ. We
train the models on the training set CIFAR10 [8] and then the test set of CIFAR10 is considered as
in-distribution (ID) data. We use test sets of 3 datasets SVHN [21], CIFAR100 and Tiny-ImageNet
[10] as OOD data. AUROC scores are reported in Table 5.2. We first compare LD with GDA
using ResNet18 (the first two lines). We see that LD consistently outperforms GDA on 3 OOD
sets. Next, we compare our method with DDU [20]. This method is basically GDA but one adds
spectral normalization (SN) in the model. Using ResNet18, our method outperforms on CIFAR100
and SVHN. An interesting remark is that using SN seems to improve AUROC on CIFAR100 and
SVHN. This is expected as SN encourages more smoothness. However, for Tiny-ImageNet, AUROC
gets worse using SN. That is, somehow SN makes the features of TinyImageNet closer to those of
CIFAR10. Using WideResNet, DDU seems to be a little better than ours on CIFAR100 and SVHN
but on TinyImagNet, our method is better. Next, we compare LD with DUQ. Our method consistently

5See Appendix H for more details.
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outperforms DUQ on all the benchmarks. Besides, our method also outperforms energy-based
method [16]. Considering the method SNGP [14], it is based on a Gaussian process layer with SN,
making itself a very intrusive method. In spite of this, LD outperforms this method on the two pairs
CIFAR10/Tiny-ImageNet and CIFAR10/CIFAR100. On CIFAR10/SVHN, this method performs a
little better than ours. Finally, we observe that Deep Ensemble (with 5 models) seems to perform very
well on the 3 pairs. This is to be expected, as it uses 5 models instead of one single model. However,
surprisingly, on CIFAR10/Tiny-ImageNet, LD outperforms this latter method.

Besides, to see if our method scales well when number of classes of ID data increases, we also
experiment with CIFAR100 as ID data. The results are shown in Fig. 5.3. Overall, through
experiments with CIFAR10 and CIFAR100 as ID data, we see that our method performs very well
and outperforms many strong baseline UQ methods. This proves that LD is a useful tool to capture
the underlying distribution to provide an OOD uncertainty score.

Consistency curve. We plot the consistency curves over the 5 runs as in Section 5.2 for 3 pairs (Fig.
5.2b, 5.2c and 5.2d). Once again, accuracy is always an increasing function of the rejected percentage
of the data based on LD. This confirms again that LD is an appropriate indicator for uncertainty
estimation and so it is useful for decision making.

Table 5.2: Results on CIFAR10 with Tiny-ImageNet, CIFAR100 and SVHN as OOD sets. SN: Spectral
Normalisation, JP: Jacobian Penalty.

Source Method Model Penalty AUROC Tiny-ImageNet AUROC CIFAR100 AUROC SVHN

ours LD (ours) ResNet18 No 0.965˘0.003 0.892˘0.002 0.936˘0.006

ours GDA ([13]) ResNet18 No 0.945˘0.005 0.864˘0.003 0.914˘0.014

ours LD (ours) ResNet18 SN 0.927˘0.003 0.900˘0.001 0.950˘0.008

ours DDU (GDA + SN) ([20]) ResNet18 SN 0.937˘0.009 0.872˘0.005 0.947˘0.015

[27] DUQ ([27]) ResNet18 JP ´ ´ 0.927˘0.013

ours LD (ours) Wide-ResNet-28-10 SN 0.926˘0.002 0.906˘0.001 0.939˘0.007

[20] DDU (GDA + SN) ([20]) Wide-ResNet-28-10 SN 0.9107˘0.0005 0.913˘0.0004 0.979˘0.002

[20] DUQ ([27]) Wide-ResNet-28-10 JP 0.868˘0.001 0.859˘0.003 0.937˘0.006

[20] SNGP ([14]) Wide-ResNet-28-10 SN 0.899˘0.002 0.911˘0.002 0.940˘0.001

[20] Energy-based ([16]) Wide-ResNet-28-10 No 0.881˘0.0006 0.889˘0.0007 0.945˘0.005

[20] 5-Ensemble ([9]) Wide-ResNet-28-10 No 0.9006˘0.0003 0.921˘0.0002 0.977˘0.003

Table 5.3: AUROC score with CIFAR100 as ID data and Tiny-Imaget as OOD data. Results of other methods
are extracted from [20] where all the methods were experimented on the same Wide-ResNet-28-10 model.

Method AUROC

LD (ours) 0.8310˘0.0013

Softmax Entropy 0.8153˘0.0005

Energy-based 0.8133˘0.0006

SNGP 0.7885˘0.0004

DDU 0.8313˘0.0006

5-Ensemble 0.8295˘0.0009

5.4 On the limitations of the Gaussian assumption: LD vs GDA

In Table 5.2, we see that in some cases, GDA performs a little better than LD. Does this mean the
distribution in the feature space is Gaussian? In fact, if the OOD set is sufficiently far from the ID
one, then OOD data lies outside the smallest ellipsoid containing the ID data. In this case, Gaussian
fitting can perfectly separate ID and OOD, even if the distribution is not Gaussian. That is, a good
AUROC score by GDA does not necessarily imply that the distribution is Gaussian. However, if OOD
and ID sets get closer, sharper detection boundaries between ID and OOD data become necessary.

To assess this, we perform an experiment with OOD more similar to ID data, thanks to hold-one-out
experiments. For each of the two datasets MNIST and CIFAR10, we train model on the 9 classes and
hold out one class as OOD data. In this way, ID set is more similar to OOD one as they come from
the same dataset. Results are shown in Table 5.4. In this setup, the gap in terms of AUROC score
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between LD and GDA is much larger than in Table 5.2. As such, LD seems to be adaptively finding a
sharper boundary than the Gaussian method. This is to be expected, as the boundaries obtained from
Gaussian fitting are necessarily elliptical.

Table 5.4: AUROC score for OOD data that are close to ID data

Data pair Hold-one-out MNIST Hold-one-out CIFAR10

LD (ours) 0.969˘0.007 0.806˘0.015

GDA 0.898˘0.019 0.759˘0.032

6 Discussion

As one property of Fermat distance is being able to adapt itself to the manifold, one could think of
alternative methods following manifold learning literature. However typical methods in manifold
learning do not have the property of yielding shorter distances in high density areas. Moreover, LD
allows the choice of any distance, unlike other typical depths (Half-space depth or Simplicial depth...).
As such, the choice of combining LD with Fermat distance is synergistic and not independent at all.

The main advantage of our method is that we make no prior distribution assumption. However, there
are still extreme cases where our method would not work well. Indeed, let us consider the case
where there is a class with 2 clusters in the feature space. From theoretical viewpoint, for the Fermat
distance to be well defined, it is crucial for the density f to remain bounded from above and away
from zero - see Appendix A. Hence, in between clusters, we need “very small density” but not “zero
density”. However, from a practical viewpoint, in such cases, one could argue that 2 clusters of
the same class should not be too distinct. Indeed, if the main model in trained to classify properly,
semantically similar inputs should be close to each other, leading to connected clusters for each class.
But in general, the cluster of each class should be sufficiently connected to yield an ideal result. This
also explains why we propose to work in the feature space instead of using directly raw data points.
Indeed, feature spaces help us to extract the low dimensionality of the data more efficiently at a
semantic level, and to have proper clusters in the feature space.

Besides, note that the aim of LD is to measure the Out-of-domain uncertainty, which is due to zones
in feature space that are scarce in data. As the model is not trained in these zones, one should be
cautious with the model’s predictions on these zones as it can behave very randomly due to scarcity
of training data. Consider for example the two-moons experiment where the two moons have more
spread (and even overlap). In such cases, we have enough data in the zone between the 2 classes.
Hence, LD should not be able to detect the uncertainty in this case. Other metrics such as predictive
entropy should be a good candidate in this case.

Finally, an interesting use–case is to apply our method on pre-trained models. This is because SOTA
models become often too large to retrain ourselves. If we have no idea about the data distribution,
we are convinced that our method should be a useful tool, at least as a starting point, for better
understanding the data scarcity in feature space.

7 Conclusion

In this work, we use Lens Depth combined with a modified version of the sample Fermat distance.
This combination captures naturally the shape and density of the input distribution. This is not the
case with many previously proposed methods, which assume a prior distribution or use additional
models with trainable parameters, or even modify the mechanism of the training process. Our method
is non-parametric and non-intrusive. Through a toy dataset as well as experiments conducted on Deep
Neural Networks, we show that our method adapts very well to many cases. Hence, our work opens
new venues for non-parametric methods capturing the input distribution to quantify uncertainty in the
context of Deep Learning. For future work, it would be interesting both to have an efficient algorithm
for computing Lens Depth with some error bound and to mathematically investigate the impact of the
hyper-parameter α. Finally notice that, while we were focused on neural networks, any classification
model with a feature space, e.g. kernel methods, can benefit from our framework.

10



Broader impact statement

Our Out-of-Distribution (OOD) uncertainty quantification holds implications for enhancing safety in
critical applications. By effectively addressing uncertainty beyond the training data, our approach
contributes to robust decision-making, particularly in scenarios where reliability is crucial. Moreover,
our method can play a role in ensuring fairness by recognizing and mitigating potential biases that
may arise when the training data lacks sufficient representation.
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A Convergence of rescaled Sample Fermat Distance to Population Fermat
Distance

Theorem 2.3 in [6] proves convergence of rescaled sample FD to population FD, with rescaling nβ

with β “ pα ´ 1q{d. More precisely, there exists a constant µ such that

lim
nÑ8

nβDQn,αpx, yq “ µDf,βpx, yq

when the samples Qn “ pX1, X2, . . . q are sampled either as n i.i.d. with density f or as a Poisson
point process with intensity nf . It is crucial for f to remain bounded from above and away from zero.

B Experimental Details

All experiments related to neural networks are implemented in Pytorch 2.0.1+cuda, with its default
initialization.

B.1 Two-moons

For generating two-moon dataset, we use package scikit-learn [22], with noise 0.07, random state 1,
and 1000 samples.

For model, we construct a simple fully connected network with 2 hidden layers, each gives output of
dimension 20. First hidden layer is followed by non-linearity ReLU. We train model for 160 epochs
using Adam optimizer, learning rate 10´3, other parameters are set by default of Pytorch package.

B.2 FashionMNIST

For a fair comparison, we follow exactly the same CNN architecture proposed in [27] and the same
training scheme with only one minor modification: the dimension of penultimate layer is 25 instead of
256 for efficient computation related to LD. We observe this modification has no impact on accuracy
of model. We refer reader to [27] for details. From training set, we randomly split 80:20 to have
training data and validatation. We choose the best model based on accuracy on validation set. Test
accuracy after training over 5 runs is 92.35% ˘ 0.19.

For estimating yLD, we use 1500 training examples for each class based on results of the experiment
in Section G. We observed that applying the method on normalized feature vectors (L2-norms) (which
is the reported result) gives slightly better result than applying directly on the feature vectors. The
method is applied on the test set of FashionMNIST consisting of 10,000 images and the test set of
MNIST also consisting of 10,000 images).

B.3 CIFAR10

For ResNet18 without spectral normalization (SN), we use ResNet-18 model implemented by [3]
with a minor modification and training scheme of the same authors. More specifically, after Global
Average Pooling layer of CNN, we add a layer of output dimension of 25 instead of 256 proposed
by [27] before softmax layer. For training model, we use SGD optimizer with nesterov momentum,
learning rate 0.1 (decayed by factor of 5 at epochs 60,120 and 160), momentum 0.9, weight decay
5 ¨ 10´4.Model is trained for 200 epochs. We train model on the full training set (i.e. no validation
set) and save the last model, i.e. the model at epoch 200. Test accuracy after training over 5 runs is
0.950 ˘ 0.001.

For ResNet18 and Wide-ResNet-28-10 with SN, we use exactly the same model and training scheme
proposed in [20] for fair comparisons. We refer readers to the concerned paper for details.

CIFAR10/SVHN: As there are many more images to test compared to the previous experiment, we
use only 1000 training images in each class for estimate LD using K-mean/Center strategy to have a
reasonable run time. We tested the method on normalized and non-normalized feature vectors and

13



observed no significant difference. The reported result is on non-normalized vectors. Notice that the
method is applied on test sets of CIFAR10 consisting of 10,000 images and of SVHN consisting of
26,032 images.

CIFAR10/Tiny-ImageNet and CIFAR10/CIFAR100: we use only 500 points for each class to
evaluate LD. We observe that increasing number of points for more than 500 points gives no significant
improvement.

As in [27], at test time, we use the statistics (mean and standard deviation) of the training set
(i.e. FashionMNIST or CIFAR10 in our case). Indeed, these statistics are used both in the Batch
normalization layers and in the data normalization process (both for OOD and for ID set).

B.4 Hold-one-out MNIST and CIFAR10

We training models on the hold-one-out MNIST and CIFAR10. Hence, each training set is now of 9
classes. We perform 5 runs for each set and evaluate AUROC score using LD and GDA. The model
and training scheme for hold-one-out MNIST is exactly the same as in Appendix B.2. The model and
training scheme for hold-one-out CIFAR10 is exactly the same as in Appendix B.3. For evaluate LD,
we use 500 points for each class.

B.5 Models with Spectral Normalization

We train ResNet18 with SN (for CIFAR10) and WideResNet with SN (for CIFAR100) using the code
provided by [20].

To evaluate LD on CIFAR100/TinyImageNet, we apply directly on the training set of CIFAR100, as
it have only 500 training examples for each class.

C More qualitative results of Fermat Lens Depth on spiral dataset using 20%
points

We use LD using only 20% of points (200 points) on simulated spiral dataset of 1000 points over 10
runs for qualitatively evaluating stable of the method w.r.t. number of points.Results in Fig.C.1.

(a) 1st try (b) 2nd try (c) 3rd try (d) 4th try (e) 5th try

(f) 6th try (g) 7th try (h) 8th try (i) 9th try (j) 10th try

Figure C.1: LD using only 20% of points (200 points) on simulated spiral dataset of 1000 points
over 10 runs. We see that the contours of LD level changes slightly between different tries, but in
general, the proposed method captures well the general form of distribution. Note that the points
presented in the plot are the full dataset of 1000 points.
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D More qualitative results of Fermat Lens Depth on spiral dataset using a
portion of point until failing

We perform an experiment where we reduce the number of points until the method fails to capture
the shape of the distribution. This helps us to have a better idea how our method works at small-data
regime. The results are shown in Fig. D.1.

(a) 200 randomly sampled points (20% of original points)

(b) 100 randomly sampled points (10% of original points)

(c) 80 randomly sampled points (8% of original points)

(d) 60 randomly sampled points (6% of original points)

(e) 50 randomly sampled points (5% of original points)

Figure D.1: LD using only a certain portion of points until LD fails to capture the shape of the distribution.
Each row represents a fixed percentage,for which we performs 5 independent runs. Notice that the points
displayed on the figure is the full dataset of 1000 points, so that we can observe how well yLD captures the
original data distribution. Please also note that we randomly sample a small portion of the original points. Hence,
the sampled points can be concentrated in a small region instead of being distributed along the spiral. So, the
sampled points can represent not very correctly the original distribution. Therefore, it is not surprising that LD
fails to capture the original support at around 5 ´ 6% of the original size. (Note that we use 20% for results in
Fig.4.2.b in the main paper.)

E Proof of Proposition 1

Proof. By definition, qpqpxqq “ qpxq and qpyq “ y as qpxq, y P Q, so the closest point to them in
Q is themselves. Hence, according to Eq.3.5, it is obvious that DQ,αpx, yq “ DQ,αpqpxq, yq,@x P

Rd and y P Q. Applying this sample Fermat distance to Eq.3.2 to compute empirical LD, we
obtain yLDpxq “ yLDpqpxqq.
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F One or multiple clusters?

Our ultimate objective is to use LD for finding out-of-distribution data associated with an uncertainty
(or equivalently confidence) score. For this purpose, we apply LD in feature space of softmax model.
More concretely, we apply in the activation of penultimate layer right before softmax layer. In this
setup where we have different separate clusters, one important question is: Can we simply consider
them as one distribution for computing LD?

To answer this question, we simulate a dataset composed of 3 separate Gaussian clusters and then we
compute LD w.r.t this dataset by consider them as one distribution. The result is shown in Fig.F.1a.
We see that the result is not good: value of LD is large for zones lying between clusters whereas in
this case, we want LD to be large only in 3 cluster and NOT in the zones lying between them. So, the
solution for this problem is quite straightforward: we compute LD of a points w.r.t different clusters,
than the final LD of that point is considered as its LD w.r.t to the closest cluster, i.e. we take the max
among computed LD’s. The result is shown in Fig.F.1b. We see that the result now is much bette:
LD is only large in the zones of dataset which are 3 clusters.

(a) Consider 3 clusters as
one distribution

(b) Max of LD w.r.t to dif-
ferent clusters

Figure F.1: LD computed by 2 ways: (a)Consider 3 clusters as one distribution w.r.t which one
compute LD and (b) Compute LD w.r.t 3 separate clusters than final LD is computed as the max
among the 3 LD’s computed

G Effectiveness of Reduced Lens Depth

In this section, we evaluate the effectiveness of the 3 strategies discussed in Section 4.5 to reduce the
computing complexity of LD. We evaluate the quality of each strategy by measuring how well the
ID can be separated from OOD set in term of the AUROC metric6. The pair FashionMNIST/MNIST
is used to assess the suitability of the three strategies. This pair is much more difficult to handle
than MNIST/NotMNIST as argued in previous works (e.g. [27]). For each strategy, we use n P

t500, 1000, 1500u points for each class (each class contains 6000 training examples). Results are
reported in Table G.1. In all cases, strategy II always gives the best result. Remarkably, with only
500 points, K-mean / Center is already better than the two other strategies with 1500 points. K-mean
/ Center has a regularization effect from averaging points (for calculating centroids). We conjecture
that this effect makes the method much more stable, and also facilitates the capture of the overall
shape of the cluster by avoiding certain irregular points that could have a negative impact on the
estimate of LD.

Moreover, as number of points are increased from 500 to 1500, we observe no significant improvement
in AUROC score. This reinforces our conjecture about the impact of irregular points on estimation of
LD and furthermore, this remark implies that if the n chosen points cover well enough the initial
space occupied by the N original points, then we only need to choose a very small percentage of
points for a good estimation of LD. So, for the rest of this paper, we use strategy K-mean / Center.

Finally, we note that this could lead to some change in the original density. However, at the end,
our objective is to measure how "central" a point is w.r.t. our data and only LD matters. So, our
motivation for using reduced methods is to find a configuration of points that cover well the support
of the original data. If this is the case, even if there is change in density, the change of LD is minimal

6AUROC is equal to 1 when the data are perfectly separable.
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Table G.1: Comparing AUROC performance of strategies for reducing complexity of LD on Fashion-
MNIST/MNIST

NO. OF TRAINING EXAMPLES 500 1000 1500

I. RANDOM 0.9368 0.9426 0.9436
II. K-MEAN / CENTER 0.9543 0.9548 0.9553
III. K-MEAN / CENTER+ 0.9475 0.9536 0.9537

and the ordering of points by LD is not really impacted. That is, points that are "central" will remain
with large LD and points near the the frontier of the original support should still have small value of
LD.

H LL ratio method

In this method, instead of using directly the main model, one needs to train two supplementary
generative models to estimate distributions. A first model is trained on ID data and a second one
is trained on perturbed inputs. So that, the second model captures only the background statistics.
Under suitable assumptions, authors show that the ratio between these two likelihoods cancels out
the background information. Consequently, the LL ratio focuses on the semantic part of the input and
so can be used as a score to distinguish ID from OOD data. This method needs an adequate noise in a
way that the perturbed inputs contain only background information. This process itself is complicated
as we need some supplementary dataset to choose the noise. Moreover, one needs to really carefully
train these 2 generative models so that they can reflect the true underlying input density.

I Rejection curve for In-distribution Data of CIFAR10

We use only test set of of CIFAR10, i.e. in-distribution data to evaluate consistency curve. Result in
Fig. I.1. As expected, the curve is increasing, which implies that LD in a consistent indicator for
confidence level.

Figure I.1: Rejection curve CIFAR10 over 5 runs (each curve corresponds to an independently trained
model).

J Voronoï cells

Suppose we have a finite number of distinct points in the plane, referred as sites, seeds or generators.
Each seed has a corresponding region, called a Voronoï cell, made up of all the points in the plane
closer to that seed than to any other. We refer to [1] for more details.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
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Answer: [Yes]
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Guidelines:
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made in the paper.
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much the results can be expected to generalize to other settings.
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are not attained by the paper.
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Question: Does the paper discuss the limitations of the work performed by the authors?
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Justification: the main limitation of our method is the computational complexity compared
to standard methods as clearly shown in Section 4.5. However, we proposed a method to
reduce the complexity.
Guidelines:
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: For each theoretical result, the paper provides the full set of assumptions and a
complete proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.

18



• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: the paper fully discloses all the information needed to reproduce the main
experimental results of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: the paper provide open access to code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: the paper specifies all the training and test details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: the results are accompanied by confidence intervals over different independent
runs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [No]
Justification: we have provided theoretical complexity of our method. Hence, the execution
time can be easily deduced from the performance parameters of devices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: we have reviewed the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: we have discussed about the broader impact of our paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: the paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: the paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: the paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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