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Abstract
1. Demographic and evolutionary modeling approaches are critical to understanding and pro-
jecting species responses to global environmental changes. Population matrix models have been
a favored tool in demography, but until recently, they failed to account for short-term evolution-
ary changes. Evolutionary-explicit demographic models remain computationally intensive, dif-
ficult to use, and have yet to be widely adopted for empirical studies. Researchers focusing on
short-term evolution often favor individual-based simulations, which are more flexible but less
transferable and computationally efficient. Limited communication between fields has led to dif-
fering perspectives on key issues, such as how life-history traits affect adaptation to environmental
change.
2. We develop a new Evo-Demo Hyperstate Matrix Population Model (EvoDemo-Hyper MPM)
that incorporates the genetic inheritance of quantitative traits, enabling fast computation of evo-
lutionary and demographic dynamics. We evaluate EvoDemo-Hyper MPM against individual-
based simulations and provide analytical approximations for adaptation rates across six distinct
scales in response to selection. We show that different methods yield equivalent results for the
same biological scenario, although semantic differences between fields may obscure these similar-
ities.
3. Our results demonstrate that EvoDemo-Hyper MPM provides accurate, computationally ef-
ficient solutions, closely matching outcomes from individual-based simulations and analytical
approximations under similar biological conditions. Adaptation rates per generation remain con-
stant across species when selection acts on fertility but vary with other vital rates. Adaptation
per time decreases with generation time unless selection targets adult survival, where intermedi-
ate life histories adapt fastest. Rates per generation, defined as the relative change in individual
fitness, remain constant across species and vital rates.
4. We discuss that no general prediction emerges about which species or life-history traits yield
higher adaptation rates, as outcomes depend on life cycles, vital rates, and the definition used. We
provide Matlab and R code to support the application of our EvoDemo-Hyper MPM.

Key-words:Adaptive evolution; Evolutionary demography; Hyperstate matrix model; Life-history
strategies; Quantitative genetics; Slow-fast continuum.
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Introduction
Understanding how populations respond to environmental changes is essential for effective con-
servation. Both demographic and evolutionary processes influence the dynamics of the popula-
tion, but the integration of these perspectives remains a challenge. Bridging these perspectives is
crucial to making accurate predictions about species’ responses to global change.
Integral Projection Models (IPMs) based on continuous-variable matrix modeling have been widely
used to model population responses to selection acting on continuous phenotypic traits in terms of
future phenotypic distribution and stage abundance [Easterling et al., 2000]. IPMs allow efficient
computation of population properties, but their original formulation did not account for evolution
or include explicit genetic dimensions. Recent advances introduced inheritance and evolutionary
dynamics into IPMs [Childs et al., 2016; Coulson et al., 2017]. However, these improvements in-
volve nonlinear iterative steps (e.g., multiple for-loops) that reduce computational efficiency and
limit their applicability.
Incorporating adaptive evolution into matrix population models (MPMs) requires additional di-
mensions to capture both phenotypic traits and genetic inheritance. Multitrait population projec-
tion matrices (MPPMs) address genetic variance and multiple vital rates [Coste & Pavard, 2020].
However, they often lack explicit trait inheritance within a quantitative genetic framework, limit-
ing their applicability for evolutionary research. Here, we propose using hyperstate matrix mod-
els [Roth & Caswell, 2016], which extend vec-permutation models [Hunter & Caswell, 2005] to
efficiently incorporate evolutionary processes and develop a new Evo-Demo Hyperstate Matrix
Population Model (EvoDemo-Hyper).
In parallel, evolutionary ecologists and quantitative geneticists have focused on predicting phe-
notypic changes through genetic processes, using Individual-Based Models (IBMs) [Rees & Ellner,
2019]. Although IBMs can accommodate complex demographic processes, they are time consum-
ing to develop, less transferable, and computationally demanding compared to matrix models.
These two modeling approaches, Individual-Based Models (IBMs) versus matrix-based approaches
(MPMs and IPMs) have evolved independently, often appearing in conflict [Coulson et al., 2017;
Pelletier, 2019]. Demographers emphasize the structure of the life cycle and the position along the
slow-fast continuum, as the vital rates under selection determine adaptive responses [Salguero-
Gómez et al., 2016]. Faster-lived species with shorter generation times and rapid population
growth rates are expected to adapt more quickly to environmental change [Vedder et al., 2013]. In
contrast, evolutionary ecologists focus on predicting adaptation through the variance-covariance
properties of traits and individual fitness, using tools such as the breeder’s equation, the sec-
ondary theorem of selection, or Fisher’s fundamental theorem of natural selection [Queller, 2017].
Although these approaches may seem different, quantitative evolutionary genetics inherently
incorporates life cycle dynamics [Barfield et al., 2011] and aligns with demographic principles
[Fisher, 1930]. However, semantic differences between fields can cause confusion and hinder col-
laboration.
A key distinction between these frameworks lies in the time units used. Quantitative geneticists
typically predict responses to selection per generation [Lynch & Walsh, 1998], whereas demogra-
phers focus on population dynamics over intervals corresponding to life-stage transitions, often
annually [Caswell, 2000]. This difference comes from the tools used: the breeder’s equation pre-
dicts changes from generation to generation, while Leslie matrices track life-stage transitions and
reproductive events over time. Although converting between these time units is straightforward,
it is not always applied in the academic literature, leading to misinterpretations.
Another difference involves how selection is quantified. In quantitative genetics, selection is ex-
pressed on the scale of relative fitness, defined as individual fitness divided by mean fitness. In
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contrast, demography uses regression parameters to relate traits to vital rates (e.g., survival, fer-
tility), treating the regression slopes as indicators of selection. Additionally, non-Gaussian link
functions (e.g., logit or Poisson) complicate the back-transformation of regression parameters to
relative fitness scales, adding further discrepancies between the fields [de Villemereuil et al., 2016].
In this study, we integrate perspectives from demography, evolutionary genetics, and mathemat-
ics by developing a matrix population model that explicitly incorporates evolutionary processes:
EvoDemo-Hyper (Evo-Demo Hyperstate Matrix Population Model). Our model predicts genetic
adaptation rates for five species along the slow-fast life history continuum, highlighting how evo-
lutionary responses vary depending on which vital rate is under selection, with life history influ-
encing both generation time and adaptation rates. We compare the predictions of our model with
those of a similarly parameterized Individual-Based Model (IBM) and analytical approximations.
Additionally, we express adaptation rates using six definitions, capturing different time frames
and selection measures across research communities. Our findings indicate that the matrix model,
IBM, and analytical approaches give similar results on a common scale, but no general prediction
can be made on which species or life-history trait adapts faster; it depends on the life cycle, vital
rates under selection, and definition choice.

Methods
In the following sections, we present methods for the construction of the evolutionary matrix pop-
ulation model: EvoDemo-Hyper (Evo-Demo Hyperstate Matrix Population Model). Appendix S1
describes a corresponding Individual-Based Model. Both models are based on the same basic life
cycle from which we simulated five different species with contrasted life histories.

Life cycle
The stage-structured life cycle (Figure 1 ) consists of juveniles (J) and adults (A). Annual transi-
tions occur from time t to t + 1. The survival probabilities of juveniles and adults are SJ and SA.
Juveniles at time t mature and become adults with probability γ at time t+ 1, or remain juveniles
with probability (1− γ) at time t+1, both given survival. For a post-breeding census, fertility (F )
indicates the per capita rate of contribution from adults to juveniles annually (Appendix S2). An
equal offspring sex ratio at birth is assumed.

Figure 1: Life cycle graph of the population models
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This life cycle simulates species with diverse life history strategies [Neubert & Caswell, 2000]. We
model five species with increasing generation time (Table 1), mapping them along the slow-fast life
history continuum [Salguero-Gómez et al., 2016]. They vary in age at first reproduction (early vs.
late) and lifespan (short vs. long) [Neubert & Caswell, 2000]. We also consider differences in repro-
ductive strategies (semelparous vs. iteroparous) [Neubert & Caswell, 2000; Salguero-Gómez et al.,
2016]. These species illustrate a range of lifespan and reproductive variations (Table 1). Species
1 features rapid development, a single lifetime reproductive event, and high fecundity, akin to
annual plants and insects. Species 2 is a short-lived iteroparous species with limited offspring
per time unit, similar to small mammals and birds. Species 3 spans several years, producing one
offspring per time unit, like some deer. Conversely, species 4 and 5 are long-lived with delayed
reproduction and low breeding output, resembling small primates or larger species like whales
and albatross.

Phenotypic Variation, heritability, and selective pressure on vital rates
Under a simple quantitative genetic infinitesimal model, the phenotype of an individual, z, can be
decomposed into a population mean, an additive genetic deviation, termed the breeding value,
and an environmental deviation [Falconner & Mackay, 1996]. The change in mean breeding val-
ues over time represents the genetic evolution of the quantitative trait considered. The variance
in breeding values is the additive genetic variance (Va), whereas the variance in environmental
deviations is the environmental variance (VE). The sum of the two is the phenotypic variance
of a trait (VP ), with VP = Va + VE . Narrow-sense heritability, denoted h2, is the proportion
of the phenotypic variance that can be attributed to inherited genetic factors, and is calculated as
h2 = Va/VP .

We explore four selection pathways targeting specific vital rates: juvenile survival SJ , adult sur-
vival SA, fertility F , and maturation γ. Selection on juvenile survival SJ , adult survival SA, or
maturation γ is modulated by parameter β following a logit distribution (Appendix S3, Figure
S4). For fertility F , selection is modulated by parameter β using a Poisson distribution, except for
long-lived species with one offspring annually, for which fertility is modeled with logit functions.
In both scenarios, parameter β indicates the strength of selective pressure on the link scale (logit
or log).

Parameter values
Vital rate values (Table 1) ensured stable equilibrium growth rates for each species (λ = 1) before
selective pressures. We projected the population assuming a phenotypic variance of 1, additive
genetic variance 0.2, and selective pressure 0.15. These values for VP and Va suggest moder-
ate heritability per studies [Postma, 2014]. The value of β isn’t directly comparable to empirical
standardized selection gradients due to scale differences across species and vital rates. With heri-
tability 0.2, observed adaptation rates per generation align with empirical gradient estimates 0.25,
fitting within empirical ranges [Kingsolver et al., 2012]. Results for other parameters are described
in Appendix S3. Adaptation rate magnitudes depend on Va and β, yet species and vital rate
differences are consistent (Figure S11).

Principle of adaptation rate: theoretical derivations
Adaptation rate is determined by the change in mean phenotype z over time ∆zt. We analyze and
compare adaptation rates under selective pressures on the four vital rates for each of five species.
This involved eight calculation methods, varying by the time unit (year vs or generation) and
selection unit.
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Table 1: Demographic parameters for the five species used in the simulations along with demographic
characteristics. λ is population growth rate and T is generation time

Parameter Species 1 Species 2 Species 3 Species 4 Species 5
Fertility (F ) 10.9868 4.9958 0.9987 0.3004 0.2286

Adult survival (SA) 0.0365 0.2000 0.8000 0.9300 0.9500
Juvenile survival (SJ ) 0.0965 0.2500 0.3850 0.5050 0.8000

Maturation rate (γ) 0.9000 0.5720 0.4000 0.3000 0.0700
λ 1.0000 1.0000 1.0000 1.0000 1.0000
T 2.0476 2.3698 6.3004 15.7521 23.9042

Rate of adaptation per unit of time, RAT. In the Fisher infinitesimal model Fisher [1918], the
additive genetic variance stays nearly constant over time, close to Va. As changes in Ve were
not modeled, the phenotypic variance also remains stable, close to VP . Thus, we calculate the
adaptation rate per time unit RAT using Lande’s equation. [Bulmer, 1980; Lande, 1979]:

RAT = ∆zt ≈ Vaδ, (1)
with

δ =
∂ ln(λ)

∂zt
(2)

which can also be written as:

RAT = h2VP
1

λ

∂λ

∂zt
(3)

In addition, when the phenotypic variance in the population is not too large, the mean growth rate
λ is well approximated by the growth rate λ at equilibrium of a monomorphic population with
trait z. The selection gradient in the population is thus approximated using the sensitivity matrix
S associated to the growth rate λ and the variation of the vital rate with respect to the phenotype,

so that (S =
∂λ

∂zt
). The sensitivity matrix S is described by

S =
vwT

vTw
, with v =

(
SJγ

λ− SJ(1− γ)

)
, w =

(
F

λ− SJ(1− γ)

)
where v and w are the left and right eigenvectors associated with the eigenvalue λ of the projection
matrix Ã = Ũ + F̃ at the mean trait z. The projection matrices Ũ and F̃ are defined by the life
cycle in Figure 1 (see equations (13),(16)).

Rate of adaptation per generation unit, RAG. The evolution of the mean phenotype can also
be measured per generation time T . For a monomorphic population, generation time is defined
by Bienvenu & Legendre [2015]

T =
λvT w

vTRw
=

λvTw

v1w2F
(4)

The rate of adaptation per generation time is linked to the rate of adaptation per unit of time as
follows

RAG = RAT T (5)
Here, the sensitivity matrix S is replaced by the following sensitivity matrix per generation ST

defined by

ST = ST = λ
vwT

vTRw
= λ

vwT

v1w2F
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Rates of adaptation per unit of vital rate, RATSθ and RAGSθ. The rates of adaptation can also
be measured in terms of units of vital rate, i.e., based on the response in the vital rate on which
selection acts, denoted by RATSθ, and RAGSθ when expressed in terms of generation time. They
are calculated as follows

RATSθ =
RAT

Vθ
and RAGSθ =

RAG

Vθ
, where Vθ =

∂ ln(θ)

∂zt
=

1

θ

∂θ

∂zt
. (6)

where Vθ is the relative rate of change in the vital rate θ of interest.

Rates of adaptation per unit of fitness.The selection units can be characterized as the proportional
rate of variation in an individual’s fitness. Individual fitness can be measured as the average
lifetime reproductive success, or the net reproductive rate R0, which is defined for our simple life
cycle as

R0 =
FSJγ

(1− SA)(1− SJ(1− γ))
. (7)

The rate of adaptation over time, denoted by RATSR0 and the rate of adaptation per generation,
denoted by RAGSR0 , measured per unit of individual fitness are given by

RATSR0 =
RAT

VR0

and RAGSR0 =
RAG

VR0

, where VR0 =
∂ ln(R0)

∂zt
=

1

R0

∂R0

∂zt
(8)

and VR0 is the relative change in individual fitness.

Evo-Demo Hyperstate Matrix Population Model (EvoDemo-Hyper)
Our population model, based on the hyperstate model formulation Roth & Caswell [2016], in-
cludes three dimensions (m = 3) (Figure 2). Individuals are classified by stage (i), breeding value
(j), and phenotype (k). The first dimension (i) ranges from 1 to s, the second (j) from 1 to b, and the
third (k) from 1 to p. This allows tracking of breeding values and phenotypes. The life cycle has
two stages (s = 2), with 40 classes for both breeding value and phenotype (b = p = 40). Breeding
values and phenotypes are assumed to be centered at zero, ranging from −4 to 4.
The population vector nt consists of the number of individuals ni,j,k in each stage i, categorized
by breeding value class j and phenotype class k. Phenotypes are grouped within breeding values,
and breeding values are grouped within stages. Our model projects this population vector from
time t to t + 1 using the projection matrix Ã[nt]. Although the model is centered on females, it
extends to a two-sex formulation to include the distribution of male breeding values, thus account-
ing for genetic transmission, assuming a similar structure for both male and female populations.
The dynamic of the population is given by

nt+1 = Ã[nt]nt (9)

The matrix Ã can be broken down into the matrices Ũ and F̃ (Figure 2), which represent the
transition of living individuals and the production of offspring, respectively.

Ã[nt] = Ũ+ F̃[nt] (10)

The matrices Ũ and F̃ can also be broken down into sub-processes (Figure 2), which represent
different transition processes happening within each dimension:

Ũ = (Kb,pKs,b)
TPKb,pBKs,bU (11)

F̃[nt] = (Kb,pKs,b)
TMKb,pH[nt]Ks,bR (12)
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Figure 2: Schematic representation of the Ã matrix and its constituents. Note that Ø means that those
matrices contain no specific parameters; they are identity matrices

The matrices P, B, U, M, H and R consist of block diagonal matrices with matrices Pij , Bik, Ujk,
Hij , Mik and Rjk placed on the diagonal, respectively. The K matrices are vec-permutation matri-
ces that rearrange the structure of the n vector after each sub-process is applied, in order to align
with the organization in the subsequent processes.
Equation (11) involves a series of operations on the population vector n. First, it is multiplied by
the block matrix U, which represents the stage within the breeding value within the phenotype.
The resulting vector is then rearranged using the matrix Ks,b. Next, it is multiplied by the matrix
B, which represents the breeding value within stage within the phenotype. Again, the resulting
vector is rearranged, this time using the matrix Kb,p. Finally, it is multiplied by the matrix P,
which represents the phenotype within the stage within the breeding value. The vector n is then
rearranged back to its original structure, i.e., stage within breeding value within phenotype, using
the transpose of the product of matrices Kb,p and Ks,b.
In Equation (12), the population vector n is subject to a comparable sequence of operations, al-
though it involves distinct processes R, H[nt], and M that serve, respectively, as substitutes for U,

8



B, and P. Each of these subprocesses is detailed in the following sections.
Transition of living individuals
The transitions of living individuals from time t to time t+1 are captured by three sets of matrices,
each of which represents a distinct process along a single dimension.

1. The stage transition matrices Ujk (dimension s × s) capture the transition of individuals
between juvenile and adult stages for each combination of breeding value j and phenotype
k. Transitions between stages include survival S and maturation probabilities γ;

Ujk =

(
SJjk(1− γjk) 0

SJjkγjk SAjk

)
(13)

where SJ and SA are respectively the juvenile and adult survival rate corresponding to the
breeding value j and phenotype class k.

2. The transition matrices for stage i and phenotypic class k, Bi,k (dimensions b × b) contain
transitions of the breeding value class for individuals in each stage i and phenotypic class k.
Breeding values are assumed fixed from birth, hence Bi,k are identity matrices:

Bik =


1 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 1

 (14)

3. Transition matrices for stage i and breeding value class j, Pi,j (dimensions p × p) contains
transitions between phenotypic classes for individuals of stage i and in breeding value class
j. Individuals are assumed to stay within their phenotypic class throughout their life, so that
the matrices Pi,j are also identity matrices:

Pij =


1 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 1

 (15)

However, this assumption can be relaxed to account for phenotypic changes over an individual’s
lifetime, such as traits that improve with age.
Production of new individuals
The production of new individuals with their own breeding values and phenotypes is represented
by the following set of matrices:

1. Reproduction matrices (Rjk) contain the state-specific fertilities of individuals within the
breeding values and phenotypic classes j and k, respectively:

Rjk =

(
0 Fjk

0 0

)
(16)

where F is the fertility rate of adults carrying breeding value j and phenotype k.
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2. The breeding values of newly produced offspring are determined by the matrices Hi,k[n]
(dimensions b × b). Those matrices contain the probabilities that newly produced offspring
receive a given breeding value depending on the breeding values of their parents and are
assumed fixed across all i and k values.

Individuals are assumed to reproduce sexually with random mating. The breeding values
of the parents are denoted xjf and xjm . The breeding value of the offspring is sampled
from a normal distribution with a mean equal to the average of the parental breeding values
(xjf + xjm)/2 and a variance equal to Va = h2VP . Here, h2 represents the heritability of
the phenotypic trait of interest in the population. This model is commonly referred to as the
Fisher infinitesimal model [Bulmer, 1980; Fisher, 1918].

In other words, the probability that a mother with a breeding value in class jf finds a male
in class jm and gives birth to an individual with a breeding value in class j is given by

GVa

(
xj −

xjf + xjm
2

)
δjm(Rn), (17)

where GVa represents the Gaussian distribution with a mean of 0 and a variance of Va, and
δjm denotes the frequency of reproductive male individuals with a breeding value in class
jm within the population. We make the assumption that both males and females experience
similar selective pressures and have an even sex ratio. Therefore, the frequency of alive
reproductive males is equivalent to the frequency of alive reproductive females, which can
be defined as follows:

δjm(Rn) =

s,g∑
i,k=1

Fjm,kni,jm,k

s,b,g∑
i,j,k=1

Fj,kni,j,k

. (18)

Then the transition matrices for a breeding value class j, Hi,k[n] is defined for all breeding
value classes jf by

(Hi,k[n])j,jf =

b∑
jm=1

GVa

(
xj −

xjf + xjm
2

)
δjm(Rn) (19)

3. Matrices for stage i and breeding value class j, Mi,j (dimensions p × p), assigns new off-
spring, with breeding value j, to their phenotypic class. The matrices Mi,j give the proba-
bility that a newborn with breeding value xj will express the phenotype zk at birth. Impor-
tantly, this probability is solely dependent on the breeding value of the newborn and is not
influenced by the phenotype of the parent. For a newborn with breeding value class j, the
probability to fall within the phenotypic class k is

GVE
(zk − xj) ,

where GVE
is the Gaussian distribution with mean 0 and variance VE = VP − Va = (1 −

h2)VP . Thus the matrix Mi,j , is defined by

Mij =
(
GVE

(zk − xj)
)
k,l∈{1,...,p} (20)
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Construction of block diagonal matrices
From the matrices Uj,k, Rj,k, Bi,k, Hi,k, Pi,j and Mi,j , we construct block diagonal matrices; e.g.,

U =


U11 0 . . . 0

0 U21 . . . 0
...

...
. . .

...
0 0 . . . Ubg

 . (21)

with similar block-diagonal constructions for R, B, H, P, and M.

Results
Theoretical derivations of rates of adaptation
When selection acts through fertility F , that is, F (z) = exp(log(F ) + β z), the adaptation rates can
be computed with respect to the parameters of our model. The selection gradient described by (2)
takes the form

∂ ln(λ)

∂zt
=

1

λ

∂λ

∂zt
=

1

λ

∂λ

∂F

∂F

∂zt
(22)

Using the sensitivity matrix S associated with the matrix (Ũ + F̃) and the generation time T ,
defined by (4) then

∂λ

∂F
=

2∑
i1,i2=1

Si1,i2

∂(R+U)i1,i2
∂F

= S1,2 =
v1w2

vTw
(23)

∂F

∂zt
(0) = β F (24)

Equations (3) and (5) for the rate of adaptation become

RAT = h2VP β
1

T
and RAG = h2VP β. (25)

Then, assuming similar selective pressure (β), heritability (h2), and phenotypic variance (VP )
among the five species, the adaptation rates per generation are also all equal. In contrast, the
rate of adaptation per unit of time will decrease with the species’ generation time.
When selection acts on fertility, the relative rate of change in fertility Vθ and the relative change in
individual fitness VR0 are equal

Vθ = VR0 = β.

The rates of adaptation measured in terms of unit of selection (6) and in terms of unit of individual
selection (8) are equal

RATSθ = RATSR0 = h2VP
1

T
and RAGSθ = RAGSR0 = h2VP .

In addition, the rate of adaptation per generation and per unit of individual selection only depends
on the heritability and the phenotypic variance, when selection acts on the fertility. The theoretical
formulas for fertility, along with those for juvenile survival (SJ ), maturation rate (γ) and adult
survival (SA) are provided in Table 2, and their derivations are detailed in Appendix S4.
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Table 2: Rates of adaptation for different measures of time and different measures of selection when selec-
tion acts on different vital rate of the life cycle

Rate Fertility Juvenile survival Maturation Adult survival

RAT h2 VP β
1

T
h2 VP β

1

T

λ(1− SJ)

λ− SJ(1− γ)
h2 VP β

1

T

(λ− SJ)(1− γ)

λ− SJ(1− γ)
h2 VP β

1

T

SA(1− SA)

λ− SA

RAG h2 VP β h2 VP β
λ(1− SJ)

λ− SJ(1− γ)
h2 VP β

(λ− SJ)(1− γ)

λ− SJ(1− γ)
h2 VP β

SA(1− SA)

λ− SA

RATSθ h2 VP
1

T
h2 VP

1

T

λ

λ− SJ(1− γ)
h2 VP

1

T

(λ− SJ)

λ− SJ(1− γ)
h2 VP

1

T

SA

λ− SA

RAGSθ h2 VP h2 VP
λ

λ− SJ(1− γ)
h2 VP

(λ− SJ)

λ− SJ(1− γ)
h2 VP

SA

λ− SA

RATSR0 h2 VP
1

T
h2 VP

1

T

λ
(
1− SJ(1− γ)

)
λ− SJ(1− γ)

h2 VP
1

T

(λ− SJ)(1− SJ(1− γ))

(1− SJ)(λ− SJ(1− γ)
h2 VP

1

T

(1− SA)

λ− SA

RAGSR0 h2 VP h2 VP

λ
(
1− SJ(1− γ)

)
λ− SJ(1− γ)
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Method comparison
The adaptation rates per unit of time are almost identical in the three methods: theoretical deriva-
tions, IBM, or EvoDemo-Hyper MPM (Figure 3). Minor deviations between the theoretical deriva-
tions and MPM occur (for example, species 1 in the juvenile survival selection scenario, Figure 3),
validating our theoretical approximations. Although IBM results embody demographic stochas-
ticity and genetic drift, they match the deterministic results on average. However, the confidence
interval around the mean change in breeding value after 100 years tends to be larger for scenarios
with lower rates of adaptation (Figure 3) because of lower population sizes and higher genetic
drift occurring in those scenarios.
MPM results align with IBM as they cover the observed phenotypic and breeding value ranges
over time. When observed values reach class boundaries, adaptation rates decrease (see the Ap-
pendix S3).
Computation times differ significantly between methods (see Appendix S5). Theoretical and MPM
computations are fast (0.04 to 49 seconds), independent of species or vital rate. In contrast, IBM
simulation times vary widely with scenarios and initial population size (1.45 to 18,500 seconds).
Multiple IBM simulation runs (e.g., 100 replicates) are needed to estimate adaptation, affecting
dynamics and extinction probability, amplifying differences from deterministic simulations.

Definition comparison
Determining which species have the greatest adaptation capacity and identifying vital rates with
the highest adaptation potential under similar selection pressures are essential questions. Our
theoretical findings show that responses vary based on the adaptation rate definition. Adaptation
rates differ among species and depend on the selected vital rate, all influenced by how adaptation
rate is defined.
The greatest differences in adaptation rate between species are found when adaptation is ex-
pressed per unit of time (RAT), compared to per unit of generation (RAG). The exception is
when selection acts on adult survival (Figure 4). However, the pattern of variation in adaptation
rates between species and vital rates remains consistent (top row on Figure 4), unless adaptation
rates are calculated per selection units identified as the relative rate of change in an individual’s
fitness (RATSθ and RATSR0 , middle and bottom rows on Figure 4). For RATSR0 and RAGSR0 ,
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Figure 3: Comparison of the breeding value changes after 100 years for the three approaches: theoretical
derivations (THEO, blue bars), Individual-Based Model (IBM, orange bars), and EvoDemo-Hyper Matrix
Projection Model (MPM, brown bars). Theoretical derivations RAT (THEO) are multiplied by 100 to match
projection time of the IBM and MPM. Each panel corresponds to a particular vital rate under selection.
Color bars illustrate the outcomes for the five species, ranging from the species with the shortest generation
time to the species with the longest generation time. Error bars for IBMs represent the 95% confidence in-
terval for the mean of 100 simulation replicates. Note the difference in y-axis scales among panels. Table S1
details the values.

there are no longer variations in the adaptation rates between the vital rates. Furthermore, when
adjusted for generation time, adaptation rates are the same across all vital rates and species.

Comparison of the rate at which organisms adapt across different life histories.
The rate of adaptation per time RAT is slower for species 5 than other species for all vital rates
except adult survival. It decreases when the generation time increases if the pressure of selection
acts on fecundity and juvenile survival. However, when the selection pressure acts on maturation
rate and adult survival this monotonicity vanishes and intermediate species (2 and 3) have a more
rapid rate of adaptation. Highest adaptation rates per time occur when selection acts on juvenile
survival SJ , and remain high under fecundity selection. This pattern slightly differs for species
5, whose rate of adaptation is higher under fecundity selection (0.0013) than juvenile survival se-
lection (0.0012). Furthermore, the main influence of juvenile survival is based on our assumption
that the newborn survival rate S0 equals the juvenile survival rate (S0 = SJ ). Under the op-
posite assumption, adaptation rate per time may be greater when selection influences fecundity
(Appendix S2).

The rate of adaptation per generation RAG decreases along the slow-fast continuum if the pres-
sure of selection acts on juvenile survival, but remains constant across species if it acts on fecun-
dity. Furthermore, intermediate species (2 and 3) no longer have a faster rate of adaptation when
selection pressure acts on the maturation rate or adult survival. Instead, the rate of adaptation
per generation increases with the generation time when selection pressure acts on maturation and
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Figure 4: Comparison of adaptation rates based on the six definitions (Equations (3)-(5)-(6)-(8)). Each
panel presents a different definition. The rate of adaptation can be indicated per unit of time RAT (first
column) or per unit of generation RAG (second column). These rates can also be indicated per unit of
selection (second and third row) or not (first row). The second row is represented by the unit of selection
expressed by the relative rate of change in the vital rate θ: RATSθ left column and RAGSθ right column.
The third row corresponds to RATSR0

(left column) and RAGSR0 (right column), where the selection
units are defined by the relative rate of change in an individual’s fitness, quantified by the mean lifetime
reproductive success R0. The color bar represents a specific vital rate that undergoes selection for the five
species (x-axis) arranged from the species with the shortest generation time to the species with the longest
generation time.

adult survival. Similarly to the adaptation rate per time, the adaptation rate per generation ex-
hibits the highest values under juvenile survival selection and remains high when selection acts
on fecundity, with a switch for species 5 (Figure 4).

The rates of adaptation per unit of vital rate over time RATSθ exhibits a comparable trend to
the rates of adaptation per time RAT when selection influences fecundity and the survival of
juveniles. However, it increases with the generation time when selection acts on adult survival
and it decreases when selection pressure impacts the maturation rate. The highest RATSθ values
are still evident under juvenile survival selection in species 1 and 2. However, in species 3 to 5
the highest RATSθ values occur under selection on adult survival. Differences in vital rates and
species are comparable when the rates of adaptation per unit of vital rate are expressed in terms
of generation time, RAGSθ. However, adaptation rates exhibit significantly higher values when
selection influences adult survival.
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The rate of adaptation per unit of fitness over time RATSR0 shows no differences among the
vital rates. Additionally, when the data is normalized for generation time, the rate of adaptation
RAGSR0 remains constant across both vital rates and species.

Discussion
Here, we present an Evo-Demo Hyperstate Matrix Population Model (EvoDemo-Hyper MPM)
that incorporates quantitative genetic processes to predict the evolution of breeding values and
phenotypes within a population. We calculate theoretical adaptation rates using the Lande equa-
tion [Bulmer, 1980; Lande, 1976] for the rate of adaptation and demonstrate that our theoretical
predictions, along with simulation results from the MPM, align with those from a more conven-
tional evolutionary Individual-Based Model (IBM). This collaboration between evolutionary biol-
ogists and demographers highlighted different possible definitions of the rate of adaptation and
their implications for assessing variations in the rate of adaptation across life-history traits and
species’ generation times. We found no overarching prediction as to which species or life-history
trait yields a higher rate of adaptation; this is contingent on the life cycle and the specific vital
rates subject to selection pressure, as well as the choice of definition.

Converging Dynamics Across Diverse Methodologies
The debates surrounding the use of evolutionary IPMs in the years 2010 [Chevin, 2015; Janeiro
et al., 2017; van Benthem et al., 2017] cast population matrix models against quantitative genetic
models, and may have suggested that one or the other approach was superior. Our work il-
lustrates the rather self-evident fact that different approaches lead to similar results when they
actually represent the same biological processes. In particular, population matrix models can in-
corporate quantitative trait inheritance correctly and thus provide consistent results with other
methods.
While it is relatively trivial to create models of evolution and demography using IBMs or iterative
equations, empirical applications remain relatively rare. Based on our own experience, we believe
that it is in part because the range of possible models and assumptions is very large for any given
system, requiring intense research to develop a useful empirical model. Furthermore, IBMs can
be particularly long to develop, check, and analyze. Using matrix projection model with a more
constrained structure and ease of creation, e.g. Integral Projection Models (IPM), may be a good
option to tackle evolution-demography questions.
Regrettably, the majority of IPMs that include evolutionary processes, subsequently referred to
as EvoDemo-IPMs, have predominantly employed insufficient models for genetic transmission.
For example, EvoDemo-IPMs incorrectly dampen evolutionary responses or they introduce an
unjustified environmental influence on inheritance [for instance see inheritance function in Clark-
Wolf et al., 2024].
An explicit evolutionary matrix model is not novel, but our Evo-Demo Hyperstate Matrix Popu-
lation Model is a rare option to include quantitative genetics accounting for two-sex inheritance
while keeping the flexibility of EvoDemo-IPMs. Although Coulson et al. [2017] introduced a broad
framework for EvoDemo-IPMs with quantitative genetic inheritance, potentially with two sexes,
they did not provide a code. To our knowledge, Simmonds et al. [2020] is the only application of
the proper EvoDemo-IPMs Coulson et al. [2017], but it only incorporates the breeding values of the
females within the inheritance function. Indeed, this model assumes that offspring breeding val-
ues are independent of paternal contributions, which, in the absence of stabilizing selection, may
drive an increase in phenotypic variance over time. Furthermore, if environmental factors influ-
ence annual variations in the sex ratio of recruits by favoring males due to competitive advantages
in resource-limited conditions, as suggested by Oddie [2000], excluding male contributions in the
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model may lead to biases in population estimates.
For simple applications, the analytical results we derived may prove particularly useful. The the-
oretical formulas allow us to compute adaptation rates for all species, vital rates, and definitions
within a short CPU time of 0.04 s. This paves the way for further theoretical exploration across a
wider range of life histories, allowing for an examination of a more gradual spectrum of genera-
tion times.

Which species adapt faster? And what is adaptation anyway?
Lots of research currently aims to assess the potential of species to adapt to rapid anthropogenic
environmental change [Radchuk et al., 2019; Urban et al., 2023]. More specifically, scientists and
wildlife managers would benefit from knowledge on the potential speed of adaptation of species
to given selection pressure. Unfortunately, the present work shows that there cannot be a one-line
answer to the question of which type of species will adapt slower or faster.
First, differences in the rates of adaptation among species do not always fall along a continuum.
For instance, when using RAT, in the cases of maturation and adult survival, the highest rates are
observed for species with intermediate generation times (Figure 4). The ordering of species from
slowest to highest adaptation rate also varies depending on which vital rate is under selective
pressure.
Furthermore, and perhaps more importantly, determining which species adapts faster depends
on how we define the rate of adaptation. Throughout this work we highlighted two sensitive
dimensions in the definition: the time unit and the measure of the strength of selection. Our six
definitions provide dramatically different answers to which species, if any, adapts faster. Specif-
ically, when defining adaptation using measures of selection on a linear scale (RAT and RAG)
or per unit of vital rate (RATSθ and RAGSθ), the variation in adaptation rates among species is
contingent upon the particular vital rates targeted by selection. Thus determining which species
adapt faster requires precise knowledge on selection pressure experienced by the species. The var-
ious perspectives on selection strengths and time units are not mutually exclusive; rather, they can
be viewed as complementary strategies to take into account the effect of life history on adaptive
dynamics. For example, an increase in mean survival rates will extend generation time, which
consequently will slow down adaptation when measured per unit of vital rate and reduce selec-
tion pressure when measured per unit of fitness.
Our study does not explore another crucial aspect of variation in the definition of adaptation:
whether it exclusively refers to genetic changes resulting from natural selection (as we assume in
our work) or encompasses broader processes that enhance the expected population growth rate,
such as phenotypic plasticity or shifts in demographic structure. In evolutionary biology, adap-
tation (referring to adaptive evolution rather than the state of a trait being adaptive) is typically
defined as an evolutionary response to natural selection. This distinction is important because al-
ternative definitions can create apparent paradoxes in fundamental theorems of micro-evolution
[Kokko, 2021].
However, works on demography and wildlife management can adopt a broader definition of
adaptation, encompassing any deterministic increase in population growth rate, including im-
provements in phenotypic plasticity and changes in stage structure [e.g., Clark-Wolf et al., 2024;
Fox et al., 2019]. Phenotypic plasticity, defined as the ability of a genotype to produce different
phenotypes in response to environmental variation, can enable organisms to cope with environ-
mental changes in the short term. For example, plasticity in the timing of breeding of great tits
(Parus major) allows reducing mismatches between hatching and food availability under changing
conditions [Simmonds et al., 2020]. Our EvoDemo-Hyper model can easily be extended to incor-
porate phenotypic plasticity by defining non-trivial transition probabilities between phenotypic
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classes. This can be achieved through the transition matrices Pi,j (dimensions p × p), which con-
tain transitions between phenotypic classes for individuals of stage i with breeding value in class
j.
The intricacy of defining adaptation is further complicated by sentences like "adaptive change
due to phenotypic plasticity," that raise ambiguity about whether phenotypic plasticity is a sub-
set of adaptation or a distinct biological phenomenon. While we do not aim to prescribe one
definition over another, we emphasize the importance of recognizing the diversity of definitions
across disciplines and the potential for misunderstanding. Clarifying these distinctions is partic-
ularly relevant when designing studies or interpreting results across ecological and evolutionary
research fields.

Adapting to Adaptation: How Conservationists, Demographers, and Geneticists De-
fine and Measure Change
In turn, different definitions may be better suited depending on the scientific context. For instance,
a conservation manager focused on implementing actions to aid species’ adaptation over time,
might analyze adaptation rates per unit of time. They could observe that adaptation rates decline
along the slow-fast continuum if selection pressure affects juvenile survival and fecundity. While
the patterns become subtler when selection pressure impacts maturation and survival, there are
no significant differences in adaptation rates overall. Consequently, conservation efforts might
prioritize enhancing juvenile survival and fecundity in short-lived species and focus on any vital
rates for longer-lived species to facilitate adaptation to global changes.
Demographers with an interest in life history strategies might interpret the rate of adaptation per
time per unit of selection in terms of its effect on the relative rate of change in an individual’s
vital rate. From this perspective, adaptation rates appear faster when selection impacts juvenile
survival and fecundity, as well as maturation in short-lived species, whereas in long-lived species,
adaptation is quicker when selection acts on adult survival.
Quantitative geneticists, on the other hand, prioritize the study of the causes and consequences
of genetic change. They express adaptation rate per generation time and the response of selective
pressure in standardized units of relative fitness or relative fitness component. Their approach is
in line with the theoretical basis and conceptual focus on genetic change and is encapsulated by
the breeder’s equation. In one formulation, the breeder’s equation expresses the per generation
predicted change in the trait under selection as the product of additive genetic variance and a
selection gradient (i.e., the average slope of relative fitness on the trait). When standardizing the
response by the strength of selection, the predicted response depends only on additive genetic
variance in the trait, which explains why the rate of adaptation RAGSR0 is equal for all species
and all vital rates on Figure 4. The actual standardized strength of selection does depend on
the details of the life-history and which fitness component selection acts on, but by measuring
selection in a standardized way, quantitative genetics can take those details out of the equation.
Instead of the details of life-history and on which fitness component selection acts, quantitative
geneticists therefore stress the importance of differences in generation time, strength of selection
and additive genetic variance (or, equivalently, heritabilities) across species [e.g. Carlson et al.,
2014; Kingsolver et al., 2012; Postma, 2014].

Conclusion
Here, we demonstrate that both Evo-Demo Hyperstate Matrix Population Model and Individual-
Based Models yield consistent results regarding the average dynamics of breeding values and
phenotypic change. Thus, the choice of method is not crucial when analyzing the rate of evolu-
tion. Researchers may select a method based on computational efficiency, their background in
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evolution or demography, or the degree of detail about the life cycle they wish to incorporate.
We also highlight that patterns observed among species and vital rates are influenced by defini-
tions, underscoring the importance of maintaining awareness of this context when drawing broad
conclusions about species adaptation, particularly in response to global changes. Overall, we rec-
ommend researchers interested in which species adapt faster in a given scenario do not assume
an answer based on some verbal expectation, but instead model the rate of adaptation with the
definition that matters to them, and find out a quantitative answer.
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Supplementary information

S1 Individual-based Model.
Individual-based simulations
Individual-based simulations are based on the same life cycle (Figure 1), incorporating the same
assumptions as the infinitesimal quantitative genetic model described for sexual reproduction in
the EvoDemo-Hyper model and using vital rates specified in Table 1. Unlike the EvoDemo-Hyper
model which tracks density of classes of phenotype-genotype-stage, the individual-based model
(IBM) explicitly represents individuals at each time step. Individual-based simulations, more
commonly used in evolutionary research, validate the results obtained from the EvoDemo-Hyper
model and the analytical approximations. In addition, in the simulations survival, maturation,
and reproduction are probabilistic events and thus subject to chance, introducing demographic
stochasticity into the system (Figure S1). The EvoDemo-Hyper model does not take into account
demographic stochasticity, although it has minimal impact on large populations.
The initial population consists of a combination of adult and juvenile individuals, whose breed-
ing values are randomly drawn from a normal distribution with a mean of 0 and a variance of
Va, while the environmental values are drawn from a normal distribution with a mean of 0 and a
variance of VP −Va.

At the beginning of each time step, new young individuals are born. The reproductive success
of mature females at a given time step follows a Poisson distribution and is dependent on their
phenotypes (see section "Phenotypic variation, heritability, and selective pressure on vital rates").
In contrast, the fathers of the offspring are randomly assigned from the pool of mature males at
that time. Subsequently, adults and juveniles, including those born during the current time step,
face a risk of mortality depending on their phenotype. Lastly, juveniles born before the current
time step have the opportunity to mature into adults with a given probability dependent on their
phenotype. If there are no females or no males present before the start of the next time step, the
population is considered extinct, and the simulation ends. Otherwise, the life cycle is repeated for
100 time steps, i.e., 100 years.

Comparison between methods
Using each of the three methods (theoretical derivations, the EvoDemo-Hyper model and individual-
based simulations), we calculated the rate of adaptation according to the six definitions, and ac-
cording to the four different pathways (i.e., vital rate) through which selection can act for each
species separately (Table S1). For the EvoDemo-Hyper model and IBM, we estimate the rate of
adaptation per time (RAT) as the difference in mean breeding value in the population between
time 101 and time 1, divided by 100. As we did not model plastic changes, the change in mean
breeding values is very close to the change in mean phenotype.
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Table S1: Difference in breeding value after 100 years of simulation according to the demographic pathway
(i.e., vital rate) through which selective pressure was applied for each of the five fictive species consid-
ered. Results from the matrix population model (MPM), the theoretical analytical equations (THEO), and
the individual-based model (IBM) are compared. IBM values are averages (standard errors) based on 100
simulation replicates, excluding replicates in which populations went extinct.

Species
Demographic pathway Model 1 2 3 4 5

Fertility f MPM 1.460 1.280 0.507 0.196 0.144
THEO 1.465 1.266 0.476 0.190 0.127

IBM
1.550
(0.040)

1.280
(0.028)

0.514
(0.019)

0.267
(0.022)

0.162
(0.025)

Adult survival SA MPM 0.053 0.255 0.362 0.168 0.113
THEO 0.053 0.253 0.381 0.176 0.118

IBM
0.039
(0.081)

0.235
(0.057)

0.317
(0.030)

0.150
(0.023)

0.068
(0.023)

Juvenile survival SJ MPM 2.422 1.874 0.681 0.246 0.128
THEO 2.660 2.013 0.674 0.240 0.124

IBM
2.740
(0.029)

2.070
(0.010)

0.770
(0.006)

0.415
(0.004)

0.139
(0.007)

Maturation rate γ MPM 0.134 0.455 0.229 0.102 0.092
THEO 0.131 0.436 0.221 0.100 0.088

IBM
0.163
(0.099)

0.504
(0.050)

0.240
(0.033)

0.117
(0.023)

0.149
(0.025)
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Figure S1: Results from the individual-based simulations for the changes in breeding values over a 100
years period after directional positive selection has been applied to a) fertility, b) adult survival, c) juvenile
survival and d) maturation rate for five species with contrasting life cycles. Thick plain lines correspond
to the average change over 100 replicates, and the dashed lines represent 80% intervals across those repli-
cates. For the fertility selection case, species 1, 2 and 3 follow the fixed value model of selection, whereas
species 4 and 5 follow the Bernoulli model of selection. Populations are initialised with 200 individuals at
demographic equilibrium.
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S2 Comparison of life cycle
Matrix Population Models (MPMs) are based on the assumption that the population census takes
place either immediately before reproduction (referred to as a "prebreeding census") or right after
reproduction (referred to as a "postbreeding census") [Caswell, 2000; Kendall et al., 2019]. During
a prebreeding census, the youngest age group consists of individuals who are all approximately
one year old, categorized as age one. Conversely, in a postbreeding census, the initial age group
includes newborn individuals, all aged zero. In our model, age is not directly included, and we
assume that individuals are classified as juveniles or adults at the start of the time step in the
prebreeding census and at the end of the time step in a postbreeding census. As a result, juveniles
would be considered one year old and older in both scenarios.
In the model, the production of new individuals in year t + 1 by a mature individual (adult) at
time t is denoted as the fertility rate F . The birth rate or fecundity f represents the mean number
of offspring produced at time t by a mature individual alive at that time. This process is viewed
as nearly instantaneous. The fertility rate F is derived by multiplying f by a survival factor.
In a prebreeding census model, the fertility coefficient is represented as F = fS0: where an adult
produces f offspring right after the census. The offspring then survive until the end of the time-
step with a survival rate of S0. In a post-breeding census, adults must survive in order to repro-
duce, resulting in a birth rate at the end of the time interval. Therefore, the fertility coefficient can
be calculated as F = SAf .
In the paper, we demonstrate our findings using a prebreeding life cycle, where S0 = SJ , assuming
that the selective pressures affecting survival during the first year of life (S0) are equivalent to
those affecting the survival of juvenile individuals (SJ ). We adopted this simplified hypothesis to
delineate the selective pressures acting on newborns via the birth rate f of those who influence
their juvenile survival S0 = SJ . In this context, the rate of adaptation when selective pressure
influences SJ is higher than if S0 ̸= SJ because when selection acts on SJ , it affects both survival
and fertility F (Figure S2).
Distinguishing between selective pressures on birth rate and survival becomes even more critical
in a postbreeding life cycle, where it is essential to differentiate between the birth rate and adult
survival since the selective pressures on newborns and their parents diverge. Demographers fre-
quently concentrate on fertility in theoretical research (e.g., Jenouvrier et al. [2022]; Neubert &
Caswell [2000]), and in this appendix, we investigate a range of scenarios based on varying as-
sumptionsc to assess the impact of choosing between prebreeding versus postbreeding life cycles,
as well as the choice of selection acting on fertility versus the birth rate.
Specifically, we show the rate of adaptation over time when selection influences the four vital rates
in five scenarios:

1. In the prebreeding census model, selection acts on fertility (referred as F = fS0 on x-axis of
Figure S2) ;

2. In the postbreeding census model, selection acts on fertility (referred as F = fSA on x-axis
of Figure S2);

3. In the prebreeding census model, selection acts on birth rate f but not S0 (referred as f on
x-axis of Figure S2);

4. In the postbreeding census model, selection acts either on f or SA referred as f&SA on x-axis
of Figure S2;

5. In the prebreeding census model, selection acts either on f or S0 with S0 = SJ referred as
f&SJ on x-axis of Figure S2.
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This fifth scenario is the one illustrated in the main manuscript.
Our findings remain consistent across different scenarios when selection influences reproduction,
either through birth rate or fertility (Figure S2 upper left panel). In our model, selection affects a
single vital rate, either F or f , at a time. Therefore, multiplying the birth rate by a constant rate
does not alter the outcomes.
As expected, the rate of adaptation over time does not vary between different scenarios when
selection influences maturation, as this parameter is not influenced by our various assumptions
(Figure S2 lower left panel).
The rate of adaptation over time is higher under our assumption that S0 = SJ when selection
acts on both parameters in the same way (Figure S2 upper rigth panel). In fact, in this case, the
sensitivity of the population growth rate to juvenile survival is greater (Figure S3 upper rigth
panel). However, the patterns of variations of the rate of adaptation over time remain the same
between species.
The key distinctions emerge in the prebreeding and postbreeding life cycles, with varying patterns
of adaptation rates over time among species when selection influences adult survival (Figure S2
lower rigth panel). The influence of adult survival on the population growth rate varies signifi-
cantly between the prebreeding and postbreeding stages, which affects the rate of adaptation over
time (Figure S3 lower right panel). These differences in the rate of adaptation are particularly no-
table for short-lived species, with values of 0.05 for prebreeding compared to 1.44 for postbreeding
for species # 1, and 0.25 compared to 1.23 for species 2, while they remain relatively consistent for
other species. Consequently, the adaptation rate decreases with generation time when selection
acts on adult survival in a postbreeding life cycle, whereas it peaks for species with intermediate
generation times (species # 3) in a prebreeding life cycle.
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Figure S2: Comparison of the adaptation rate per unit of time RAT among the five life cycle scenario. Each
panel displays a comparison for a particular vital rate that is subject to selection. The color bar illustrates the
outcomes for the five species, ranging from the species with the shortest generation time (blue representing
fast species) to the species with the longest generation time (green representing slow species). Specifically,
our five scenarios on the x-axis are as follows:

1. In the prebreeding census model, selection acts on fertility (referred as F = fS0) ;

2. In the postbreeding census model, selection acts on fertility (referred as F = fSA);

3. In the prebreeding census model, selection acts on birth rate f but not S0 (referred as f );

4. In the postbreeding census model, selection acts either on f or SA referred as f&S0);

5. In the prebreeding census model, selection acts either on f or S0 with S0 = SJ referred as f SJ

(scenario of the main manuscript).
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Figure S3: Comparison of the sensitivity of the population growth rate with respect to vital rates among
the five life cycle scenarios. Each panel displays a comparison for a particular vital rate that is subject to
selection. The color bar illustrates the outcomes for the five species, ranging from the species with the
shortest generation time (blue represents fast species) to the species with the longest generation time (green
represents slow species).
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S3 Comparison of additive variance and functional relationships of
the phenotypes.

In the manuscript, we present our findings using specific values for additive genetic variance
(Va = 0.2) and the slope of the functional relationship between phenotype and vital rates (β =
0.15). This appendix extends our analysis by exploring a variety of values for these two param-
eters. Additionally, we offer recommendations on choosing the suitable range of phenotypic cat-
egories to be incorporated into matrix models and the optimal time period for calculating the
adaptation rate.

Functional relationship
When selection acts on juvenile survival SJ , adult survival SA or maturation γ, the functional
relationships are :

SJ(z) = logit−1
(
logit(SJ) + βz

)
SA(z) = logit−1

(
logit(SA) + βz

)
γ(z) = logit−1

(
logit(γ) + βz

)
When selection acts on fecundity f the functional relationships are

f(z) = exp
(
log(f) + βz

)
.

The resulting functional relationships are shown in Figure S4 for z = [−4 4], Va = 0.2, β = 0.15

Figure S4: Functional relationships between the phenotype and vital rates for β = 0.15. Each panel displays
a comparison for a particular vital rate. The colors illustrate the relationships for the five species, ranging
from the species with the shortest generation time (blue represents fast species) to the species with the
longest generation time (green represents slow species)
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Phenotypic range and the optimal time period for calculating the adaptation rate.
It is critical to note that because MPMs are structured by phenotypic class, adaptation is inher-
ently limited by the last phenotypic class. In our analysis, since selection is directional, both the
breeding values and phenotype inevitably reach a plateau at a maximum value (panels located
in the upper left and lower right of the Figures S5-S10). This is demonstrated by the shift in the
distribution of breeding values over time, as shown in the middle top panel of Figures S5-S10.
The initial step involves choosing a suitable range of phenotypic variations (z) to prevent unre-
alistic values of vital rates (panel located at the bottom left of the Figures S5-S10). This task can
be accomplished by visualizing the functional relationships (lower left panel of Figures S5-S10),
and the average vital rates over time (the lower middle panel of Figures S5-S10). For instance, for
the third species when selection affects adult survival, the average adult survival rate at time zero
is approximately 0.8 (Figure S7). The adult survival rate varies between 0.36 and 0.96 for differ-
ent phenotypes in the population. With intense and rapid selection (Va = 0.8 and β = 0.5), the
average vital rate rises to 0.92 within a century.
The next stage involves accurately estimating the rate of adaptation RAT during the adapta-
tion period. Indeed, RAT decreases as the optimal phenotype approaches (panels located on the
upper left and lower right of the Figures S5-S7). Furthermore, additive genetic variance and phe-
notypic variance decrease as the optimal phenotype is closer (panel located on the top left of the
Figures S5-S7). When adaptation reaches a plateau, it indicates that the population has reached
an adaptive peak, where further gains in fitness are constrained by the selective pressures defined
by the functional relationships and the range of phenotypic classes in our model. For instance, in
three cases illustrated in Figures S5 to S7, the values RAT calculated over a 100-year period are
0.0328, 0.0271, and 0.0238, respectively. When calculated over the initial ten years, the values of
RAT are 0.0548, 0.0794, and 0.0427, respectively. In our main manuscript, we report adaptation
rates calculated over the primary adaptation period, excluding the period of slowdown near the
plateau, to capture how quickly a population’s average fitness increases over time in response to
these selective pressures.
In this appendix, we have documented the rate of adaptation calculated over the initial ten years,
because adaptation can proceed rapidly in the presence of high additive genetic variance Va and
strong selective pressure β. The rate of adaptation calculated over a century is reported in the
main body of the paper. We present identical comprehensive outcomes for β = 0.15 and Va = 0.2
as discussed in the main text, focusing on the two highest RAT values seen in fast species one and
the minimum RAT recorded for slow species four. Although the highest value RAT estimated
for species one when selection acts on juvenile survival may be underestimated due to the slowing
of selection at the end of the century, the entire range of vital rates and species studied indicates
that achieving the optimal phenotype was far from being realized.

Comparison of the rate of adaptation for different levels of additive genetic variance
and the slope of the relationship between phenotype and vital rates.
As expected, the rate of adaptation per unit of time, RAT, increases when both β and Va increase
(Figure S11). The pattern of variations of RAT between species and vital rates is the same regard-
less of the values of additive genetic variance (Va) and the slope of the functional relationship
between phenotype and vital rates (β). The pattern of variations of RAT is described in detail in
the main body of the article for β = 0.15 and Va = 0.2.
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Figure S5: Detailed eco-evolutionary outcomes of MPMs output for species one under strong selection on
fecundity (Va = 0.2 and β = 0.5). The top left panel illustrates the average breeding value ± one standard
deviation across time. The top center panel displays the distribution of breeding values at different time
points. The top right panel exhibits the additive genetic variance and phenotypic variance over time. The
bottom right panel illustrates the functional relationship between the phenotype and vital rate. The middle
bottom panel depicts the average vital rate over time. The bottom right panel shows the average phenotype
± one standard deviation over time.
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Figure S6: Detailed eco-evolutionary outcomes of MPMs output for species two under rapid selection on
juvenile survival (Va = 0.8 and β = 0.15) . Same legends as previous figure.

Figure S7: Detailed eco-evolutionary outcomes of MPMs output for species three under strong and rapid
selection on adult survival (Va = 0.8 and β = 0.5) . Same legends as previous figure.
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Figure S8: Detailed eco-evolutionary outcomes of MPMs output for fast species one when subjected to
selection based on juvenile survival (Va = 0.2 and β = 0.15). Same legends as previous figure.

Figure S9: Detailed eco-evolutionary outcomes of MPMs output for fast species one when subjected to
selection based on fecundity (Va = 0.2 and β = 0.15). Same legends as previous figure.

32



Figure S10: Detailed eco-evolutionary outcomes of MPMs output for slow species four when subjected to
selection based on adult survival (Va = 0.2 and β = 0.15). Same legends as previous figure.

Figure S11: Comparison of the rate of adaptation for various values for the additive genetic variance (Va)
and the slope of the functional relationship between phenotype and vital rates (β). Each panel presents a
different combination of these two parameters. The rate of adaptation are indicated per unit of time RAT.
The color bar represents a specific vital rate that undergoes selection for the five species (x-axis) arranged
from the species with the shortest generation time to the species with the longest generation time.
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S4 Theoretical adaptation rates of the different vital rates
In the subsequent sections, we establish the rates of adaptation for each vital rate of the life cycle
described in Figure1.

Juvenile survival SJ (fertility case)
When selection acts on juvenile survival SJ , the selection gradient becomes

∂ ln(λ)

∂zt
=

1

λ

∂λ

∂zt
=

1

λ

∂λ

∂SJ

∂SJ

∂zt
(26)

Since the phenotypic trait acts on the logistic scale on the juvenile survival, i.e. SJ(z) = invlogit(logit(SJ)+
β z), the selection gradient can be computed using the sensitivity matrix associated to the matrix
(R+U)

∂λ

∂SJ
=

2∑
i1,i2=1

Si1,i2

∂(R+U)i1,i2
∂SJ

= S1,1(1− γ) + S2,1γ =
λ

SJ

v1w1

vTw
(27)

∂SJ

∂zt
(0) = β(1− SJ)SJ (28)

Thus, the rates of adaptation per unit of time and per generation satisfy

RAT = h2VP β
1

T

λ(1− SJ)

λ− SJ(1− γ)
and RAG = h2VP β

λ(1− SJ)

λ− SJ(1− γ)
(29)

The relative rate of change in juvenile survival is given by Vθ = β(1− SJ) and the rates of adapta-
tion per unit of selection satisfy

RATSθ = h2VP
1

T

λ

λ− SJ(1− γ)
and RAGSθ = h2VP

λ

λ− SJ(1− γ)
(30)

The strength of individual selection VR0 is

VR0 = β(1− SJ)
1

1− SJ(1− γ)
(31)

and the rates of adaptation per units of individual selection are

RATSR0 = h2VP
1

T

λ
(
1− SJ(1− γ)

)
λ− SJ(1− γ)

and RAGSR0 = h2VP
λ
(
1− SJ(1− γ)

)
λ− SJ(1− γ)

(32)

If the growth rate λ is equal to 1, then the rate of adaptation per selection units per generation is
independent of the vital rates.

Maturation γ

When selection acts on maturation at the logistic scale, γ(z) = invlogit(logit(γ)+β z), the selection
gradient is given by

∂λ

∂γ
=

2∑
i1,i2=1

Si1,i2

∂(R+U)i1,i2
∂γ

= −S1,1SJ + S2,1SJ =
λ

Tγ

λ− SJ

λ− SJ(1− γ)
(33)

∂SJ

∂zt
(0) = β(1− γ)γ (34)

Thus the rates of adaptation per unit of time and per generation are:

RAT = h2VP β
1

T

(λ− SJ)(1− γ)

λ− SJ(1− γ)
and RAG = h2VP β

(λ− SJ)(1− γ)

λ− SJ(1− γ)
(35)
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The strength of selection is given by Vθ = β(1 − γ) and the rates of adaptation per selection unit
are

RATSθ = h2VP
1

T

(λ− SJ)

λ− SJ(1− γ)
and RAGSθ = h2VP

(λ− SJ)

λ− SJ(1− γ)
(36)

The strength of individual selection VR0 is

VR0 = β
(1− SJ)(1− γ)

1− SJ(1− γ)
(37)

and the rates of adaptation per units of individual selection are

RATSR0 = h2VP
1

T

(λ− SJ)(1− SJ(1− γ))

(1− SJ)(λ− SJ(1− γ)
and RAGSR0 = h2VP

(λ− SJ)(1− SJ(1− γ))

(1− SJ)(λ− SJ(1− γ)
(38)

If the growth rate λ equals 1, then the adaptation rate per selection units per generation does not
depend on the vital rates.

Adult survival SA

When selection affects adult survival SA at the logistic scale, invlogit(logit(SA)+β z), the selection
gradient can be expressed as

∂λ

∂SA
=

2∑
i1,i2=1

Si1,i2

∂(R+U)i1,i2
∂SA

= S2,2 =
λ

T

1

λ− SA
(39)

∂SA

∂zt
(0) = β(1− SA)SA (40)

Thus the rates of adaptation per unit of time and per generation are

RAT = h2VP β
1

T

SA(1− SA)

λ− SA
and RAG = h2VP β

SA(1− SA)

λ− SA
(41)

The strength of selection is given by Vθ = β(1−SA) and the rates of adaptation per unit of selection
are

RATSθ = h2VP
1

T

SA

λ− SA
and RAGSθ = h2VP

SA

λ− SA
(42)

The strength of individual selection VR0 is

VR0 = β SA (43)

and the adaptation rates per individual selection units are

RATSR0 = h2VP
1

T

(1− SA)

λ− SA
and RAGSR0 = h2VP

(1− SA)

λ− SA
(44)

If the growth rate λ equals 1, then the adaptation rate per selection units per generation does not
depend on the vital rates.

Adaptation rate under prebreeding census
Under a prebredding census, the fertility (F ) corresponds to the number of offspring produced
per female per year (i.e., fecundity, denoted as f ) that survive from time t to t+1 (with probability
SJ in our case), and it is defined by

F = f SJ . (45)

In this situation the rate of adaptation will change when selection acts on juvenile survival and we
describe them when selection acts on fecundity f .
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S4.0.1 Juvenile survival SJ (fecundity case)
When selection acts on juvenile survival SJ , the selection gradient will take the following form

∂λ

∂SJ
=

2∑
i1,i2=1

Si1,i2

∂(R+U)i1,i2
∂SJ

= S1,1(1− γ) + S2,1γ + S1,2f =
λ

SJ

(
v1w1

vTw
+

1

T

)
(46)

∂SJ

∂zt
(0) = β(1− SJ)SJ (47)

Thus, the rates of adaptation per unit of time and per generation become

RAT = h2VP β
1

T

(
1 +

λ

λ− SJ(1− γ)

)
(1−SJ) and RAG = h2VP β

(
1 +

λ

λ− SJ(1− γ)

)
(1−SJ)

(48)
The strength of selection is unchanged, Vθ = β(1 − SJ), but the rates of adaptation per unit of
selection become

RATSθ = h2VP
1

T

(
1 +

λ

λ− SJ(1− γ)

)
and RAGSθ = h2VP

(
1 +

λ

λ− SJ(1− γ)

)
(49)

. The strength of individual selection VR0 is modified as follows

VR0 = β(1− SJ)

(
1 +

1

1− SJ(1− γ)

)
(50)

and the rates of adaptation per units of individual selection become

RATSR0 = h2VP
1

T

(
1 +

λ

λ− SJ(1− γ)

)
1 +

1

1− SJ(1− γ)

and RAGSR0 = h2VP

(
1 +

λ

λ− SJ(1− γ)

)
1 +

1

1− SJ(1− γ)

(51)

If the growth rate λ is equal to 1, then the rate of adaptation per selection units per generation is
independent of the vital rates.
S4.0.2 Fecundity f

If the selection occurs through the fecundity of adults f , f(z) = exp(log(f)+β z), then the selection
gradient satisfies

∂λ

∂f
=

2∑
i1,i2=1

Si1,i2

∂(R+U)i1,i2
∂f

= S1,2SJ =
SJv1w2

vTw
(52)

∂f

∂zt
(0) = β f (53)

The generation time satisfies in this case the following formula

T =
λvT w

vTRw
=

λvTw

v1w2fSJ
(54)

Thus the rates of adaptation per unit of time and per generation become

RAT = h2VP β
1

T
and RAG = h2VP β (55)

When we make the assumption that the selective pressure (β), heritability (h2), and phenotypic
variance (VP ) are the same between species, then the rates of adaptation per generation will be
equal as well.
The relative rate of change in fecundity f , Vθ and the relative change in individual fitness VR0 are
also equal in this case Vθ = VR0 = β, and the rates of adaptation per unit of selection and per
individual selection unit are equal and they satisfy

RATSθ = RATSR0 = h2VP
1

T
and RAGSθ = RAGSR0 = v T/Vθ = h2VP ,
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S5 Computation time
In this study, we conducted a comparative analysis of the computational efficiency between Individual-
Based Models (IBM) and Matrix Population Models (MPM) by evaluating the time required to
simulate population dynamics over a century. The results indicate that, on average, MPMs sig-
nificantly outperform IBMs in terms of speed, except for species 5, which is characterized by the
longest life expectancy and highest generation time among the species studied. In particular,
MPMs were able to provide theoretical insights into the adaptation rate for four different species,
in merely 0.04 seconds. This stark contrast in computational efficiency underscores the potential
advantages of utilizing MPMs for extensive population studies.

Species IBM (200 individuals) IBM (2000 individuals) MPM
1 1840 18500 42.5
2 592 9260 42.5
3 23.0 1210 42.9
4 74.2 981 42.5
5 1.45 36.9 42.1

Table S2: The time (seconds) taken to compute one population simulation over 100 years was calculated.
IBM time was determined by averaging 20 replicates and initialization with 200 or 2000 individuals. Note
that, due to their stochasticity, IBM simulations should typically be replicated 100 times or more to compute
expected dynamics. MPM time refers to the duration for which the model runs for a single vital rate, calcu-
lated as the median across the four vital rates. It is worth mentioning that the theoretical findings provide
the adaptation rate for the four species and significant demographic results in 0.04 seconds. Provided times
are estimates, subject to variation with computers, coding languages, or optimization.
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