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Abstract UML (Unified Modelling Language) is the de
facto standard for the development of software models and
OCL (Object Constraint Language) is used within UML mod-
els to specify model constraints. Several UML/OCL tools
provide MDE (Model Driven Engineering) transformation
into general object oriented programming languages such as
Java, C++, etc. But the latter did not provide mechanisms for
the specification and the verification of OCL constraints. In
this context, formal methods are largely used for the specifi-
cation of UML/OCL models and the verification of their OCL
constraints. However, the divergence between UML (object
oriented modelling) and formal methods (mathematical and
logical based tools) leads in general to ignore most UM-
L/OCL architectural and conceptual features such as OCL
constraints simple and multiple inheritance, late binding, tem-
plate binding, dependencies, etc. To address the formalization
of these features, we have used FoCaLiZe, an object-oriented
development environment using a proof-based formal ap-
proach. More precisely, we propose a formal transformation
of the essential UML/OCL features into FoCaLiZe speci-
fications. The derived formal model reflects perfectly the
structural features of the original UML/OCL model. In addi-
tion, it is possible to check and prove model properties using
Zenon, the automatic theorem prover of FoCaLiZe.
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1 Introduction

Model Driven Engineering (MDE) is a promising approach
for software production by automatic models refinements,
from abstract specifications to concrete codes. Model Driven
Architecture (MDA) Miller et al. (2003) is the OMG1 partic-
ular vision on MDE that relies on the use of UML (Unified
Modeling Language) OMG (2015) and OCL (Object Con-
straint Language) OMG (2014). UML has become a standard
to graphically and intuitively describe systems in an object
oriented way and OCL allows to enhance UML models with
formal constraints. Currently, UML and OCL are largely
adopted in software engineering tools to describe structural
and behavioral specifications of models.
To ensure the consistency of systems (especially critical
ones), it seems relevant to combine UML/OCL with for-
mal methods, that provide mechanisms to express and verify
software properties.

As we will see in Section 6, there are numerous works
on transforming UML/OCL models using formal tools. De-
pending on the target language, some important features of
object oriented programming are seldom supported. In order
to support late binding, multiple inheritance, methods redef-
inition, dependencies, UML templates and OCL constraint
inheritance we decided to use the FoCaLiZe environment
Hardin et al. (2016), a formal language inspired from Coq
Coq (2016) and OCaml2 functional paradigms with addi-
tional object oriented features. So, the paper presents for-
mal transformations of UML/OCL models into FoCaLiZe

1 OMG: Object management group http://www.omg.org/
2 Objective Caml programming language: http://ocaml.org/
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specifications that maintain the aforementioned UML/OCL
features.

Both FoCaLiZe developers and UML developers can
benefit from such transformations. From the UML point of
view, FoCaLiZe could be exploited as a model verification
tool. On the other hand, from the FoCaLiZe point of view, it
is possible to use a UML/OCL model as a starting point for a
FoCaLiZe development.

The reminder of this document is structured as follows:
First, Sections 2 and 3 present the essential UML/OCL sup-
ported features and the main concepts of FoCaLiZe. Then,
Section 4 details the correspondences between UML/OCL
and FoCaLiZe. After that, Section 5 shows an overview on
the usefulness of the proposed transformation. Before con-
cluding, Section 6 presents comparison with related works
on the transformation of UML features into formal methods.

2 UML/OCL

UML is a general-purpose modeling language that helps de-
velopers to design, visualize and document the artifacts of
software engineering. A UML model is a set of diagrams
describing the static and the behavioral aspects of software
systems. OCL is a declarative language for describing con-
straints on UML elements.

The current study supports a subset of UML2 class dia-
gram features and a subset of the OCL constraints. The main
ensured features are:

• UML classes with attributes and operations,
• inheritance and multiple inheritance with method redefi-

nition and late binding,
• multiple dependency relationships,
• UML templates and template bindings,
• OCL invarants, pre-conditions and post-conditions,
• and OCL constraints (invariant, pre and post-conditions)

inheritance.

OCL constraints inheritance means that the OCL con-
straints of super-classes are automatically transmitted through
simple and multiple inheritances to their sub classes.

The UML/OCL syntax follows the official UML and
OCL metamodels OMG (2015, 2014). However, we prefer
to represent (during the description of the transformation
rules) the UML/OCL elements in EBNF notation (rather than
standard XML notation), in order to increase the readability
of our transformation rules.

The next paragraphs detail the UML/OCL supported syn-
tax. We describe first the UML class diagram constructs, then
we present the supported OCL expressions.

2.1 UML Class Diagram

A class diagram is a set of UML classes with possibly UML
relationships. The general definition of a UML class (named)
cn is expressed as follows:

[public][�class− stereotype�] class cn (Pcn)

binds Tcn depends Dcn inherits Hcn = Acn Ocn end (1)

with
• Pcn a list of formal parameters declarations,
• Tcn a list of substitutions of formal parameters with actual parame-

ters,
• Hcn a list of class names from which the current class inherits,
• Dcn a list of class names to which the class cn depends,
• Acn a list of attributes and
• Ocn a list of operation.

We shall first describe the main members of a UML
class: attributes and operations, then we detail relationships
between classes.

The list of attributes Acn (attr1 . . . attrk ) characterizes
the state of the class cn instances. The general syntax of
attributes definition is:

attribute attrVis attrNane : typeExp [mult] (2)

The non-terminal symbol mult specifies the multiplicity of
the attribute. If mult is different from 1 (the default value), the
attribute is multivalued. In this paper, we focus on the general
cases of attributes visibility: + (public) and - (private).

The list of operations Ocn (op1 . . .opk) manipulates the
attributes of the class cn and changes the status of its in-
stances. Each operation has form:

operation V S N

 dir1 p1 : type1 [mult1],
. . . ,
dirm pm : typem [multm]

 : Type [mult] (3)

Each operation has a name N and specified by a visibility
V and a stereotype S. In this paper, we consider the general
cases of operation visibilities : + (public) or - (private).
The stereotype S may be create for class constructor. The
operation parameter directions diri are either in (by default)
or out. The pi are the operation parameter names and typei
their types. Operation parameter multiplicities (multi) are
similar to attributes multiplicities. The operation return type
is Type and has multiplicity mult.

The inheritance is the mechanism that enables a new sub-
class cn to acquire all attributes and operations of its super-
classes (cn1 . . .cnk). The class cn can also be enriched with
its own attributes and operations, as it can redefine (override)
operations of the super-classes:

public class cn inherits cn1, . . . , cnk = . . . end (4)
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A UML template class cn is a general class that is param-
eterized by a list of formal parameter names ( f p1 . . . f pk).
Each formal parameter is specified by a type expression:

public class cn ( fp1 : type1, . . . , f pk : typek) = . . . end (5)

Template classes cannot be directly instantiated, they
should be refined using template binding relationships to
create concrete bound models. A bound model cn′ can be
derived from a template class cn through substitutions of
its formal parameters in a dedicated binding relationship.
The latter specifies a list of template parameter substitutions
(Tcn) that associates actual elements (of the bound model) to
formal parameters (of the template):

public class cn′ bind cn

< fp1 -> ap1, . . . , fpk -> apk>= . . . end (6)

where fpi -> api indicates the substitution of the formal
parameter fpi with the actual parameter api. Standard con-
straints require the type of each actual parameter (in the
bound model) to be a sub-type of the corresponding formal
parameter. In the particular case of formal template parame-
ters of the type Class, they can be substituted by any class of
the model. The type Class is a super-type of all classes.

A UML dependency is a relationship which indicates
that the specification of a class cn (client) requires supplier
classes (cn1, . . . ,cnk). This implies that the definition of the
client class can use the supplier classes in order to develop
its own methods. Contrary to the inheritance mechanism, the
client class does not acquire or redefine the attributes and
operations of the supplier classes, it can only use them. We
use the clause depends to specify a dependency:

public class cn depends cn1, . . . ,cnk = . . . end (7)

2.2 OCL Constraints

An OCL constraint is a statement of the OCL language OMG
(2014) which uses types and operations on types. We dis-
tinguish between primitive types (Integer, Boolean, Real
and String), enumeration types, object types (classes of
UML model) and collection types. For a given type T, the
OCL type Collection(T) represents a collection family of
elements of type T.

OCL constraints are OCL invariants, pre-conditions and
post-conditions. Each OCL constraint is expressed by a for-
mula following the OCL metamodel syntax OMG (2014).

An invariant is an OCL constraint attached to a class that
must be true for all instances of that class at any time. Given
a class cn, an OCL invariant ( Einv) associated to the class cn,
has the following form:

context cn inv : Einv (8)

where Einv is the logical expression (formula) describing the
invariant.

The pre-condition describes a constraint that should be
true before the operation is executed and the post-condition
describes a constraint which must be satisfied after the op-
eration is executed. Given a class cn, an OCL pre-condition
(Epre) and post-condition (Epost) associated to an operation
of the class cn has general form:

context cn ::N(p1 : type1 . . . pk : typek)

pre :Epre post :Epost (9)

where N is the operation name, p1 . . . pk are the operation pa-
rameters and type1 . . . typek their corresponding types. Epre
and Epost are logical expressions (formulas) describing the
pre/post-conditions.

2.3 Example of a UML/OCL Model

In this paper, we have chosen a UML/OCL pedagogic and
theoretical example in order to consider most UML/OCL
architectural and conceptual features such as UML tem-
plates, bound models, OCL constraints inheritance, . . . which
are rarely gathered in the same project. Otherwise, several
real projects have been developed using FoCaLiZe and UM-
L/OCL such as the verification of the UML/OCL model of
a control system of a railway crossing a road Abbas et al.
(2018) and the verification of the UML/OCL model of the air-
port security regulations Delahaye et al. (2008b). Additional
applications are also available in the web site of the transfor-
mation tool: http://www.univ-eloued.dz/uml2foc/.

One of the usual application of UML templates and tem-
plate bindings is the modeling of generic classes (as C++
templates), that enables developers to avoid repetition and
enhance the re-usability of codes. We present here an exam-
ple (see Fig. 1) of a UML template modeling a generic class
(FArray) and its specialization (FStack and PersonStack)
using inheritance and binding relationships. We remind that
the formal parameter T:Class of the template FArray could
be substituted by any class of the model, to generate new
bound models.

The annotations attached to the classes FArray, FStack
and Person are OCL constraints following the OCL meta-
model syntax OMG (2014).

The first invariant, of the class FArray specifies for each
array a, whether it is empty then it is not full. The second
invariant species that the length of each empty array (a)
equals to zero (a.length()=0).

The OCL constraints of the class FStack are pre/post-
conditions. The first pre/post-conditions (of the operation
push(t:T)) specifies that when stacking an element in an
empty stack and then unstacking it out, the stack remains

http://www.univ-eloued.dz/uml2foc/
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Fig. 1: Example of UML/OCL Model

empty. The second pre/post-conditions (of the same opera-
tion) specifies that when stacking an element in a not full
stack and then unstacking it out, the stack remains unchanged.

Finally, the invariant of the class Person specifies that
the value of the its attribute age is always greater than 0.

2.4 Dependency Graph

Given a UML class diagram, before performing its trans-
formation into FoCaLiZe, we start by ordering the classes
according to the syntactic and semantic correlations between
them.

A UML class cni is syntactically and semantically depen-
dent on another class cn j in the following cases:

• The class cni inherits from the class cn j (cn j ∈Hcni ).
• The class cni is parameterized by the class cn j (cn j ∈
Pcni ).

• The class cni is dependent on the class cn j (cn j ∈ Dcni ).
• The class cni is a bound class obtained through a binding

relationship from the class cn j (cn j ∈ Tcni ).

In such way, we construct a dependency graph that will
guide the transformation of the UML class diagram into
FoCaLiZe.

3 FoCaLiZe

FoCaLiZe is a complete development environment that inte-
grates a programming language, a requirement specifica-
tion language and a proof language. A FoCaLiZe develop-
ment is built step by step starting from abstract specifications
until reaching concrete implementations using object ori-
ented features Ayrault et al. (2009); Delahaye et al. (2008a);

Fechter (2005). To verify and analyze software properties,
FoCaLiZe is based on Coq.

The main brick is a species, a modular structure that
groups together the carrier type of the species, functions to
manipulate this carrier type and logical properties.

Table 1: The Syntax of a Species

spec ::= species species name [(param [{ , param}∗ ])]
= [inherit spec def [ { , spec def}∗ ] ;]
{methods;}∗ end;;

param ::= ident in type | ident is spec def
spec def ::= species name

| species name (param [{ , param}∗ ])
methods ::= rep | signature | let | property | theorem
rep ::= representation = type;
signature ::= signature function name : function type;
let ::= let [rec] function name = function body;
property ::= property property name :

property specification ;
theorem ::= theorem property name :

property specification
proof = theorem proof ;

The general syntax of a species (see Table 1) uses the
following methods:

• The representation to describe the data structure of the
species instances,

• signatures specifying functions without giving their com-
putational bodies (only the functional type is provided in
the species),

• let definitions to specify functions together with their
computational bodies,

• property statements to express properties (requirements)
that should be satisfied in the context of the species (no
proof is provided in the species),
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• theorem statements to express properties together with
their formal proofs.
A species can be built from scratch or using (multiple)

inheritance from existing species. It can also be prametrized
by existing species, to express dependency relationships be-
tween species. So, using inheritance and parameterization, a
FoCaLiZe development is designed as a hierarchy of species.
Note that, FoCaLiZe supports methods redefinition, except
for representation, and late binding mechanisms.

To illustrate the above FoCaLiZe concepts, we present a
concrete development that aims to model points (of the plan)
and circles. Each circle is defined by its radius and its center
(a point):

Code 1: The species Point and Circle

(* Definition of the type color *)

type color = | Red | Green | Blue ;;

species Setoid =

signature equal: Self -> Self -> bool;

signature element: Self;

property equal_reflexive: all x: Self ,

equal (x, x);

property equal_symmetric: all x y: Self ,

equal(x, y) -> equal(y, x);

property equal_transitive:all x y z:Self ,

equal(x, y)-> equal(y, z)-> equal(x, z);

end;;

species Point = inherit Setoid;

signature getX : Self -> float;

signature getY : Self -> float;

signature move :

Self -> float -> float -> Self;

(* distance: calculates the distance

between two given points *)

let distance (a:Self , b: Self): float =

sqrt( ((getX(a) - getX(b))*

(getX(a) - getX(b))) +

((getY(a) - getY(b))*

(getY(a) - getY(b)))) ;

(* distanceSpecification : specifies

the method distance *)

property distanceSpecification:

all p q:Self , equal(p, q) ->

distance(p, q) = 0.0;

end;;

species Circle (P is Point) =

representation = P * float ;

let newCircle(centre:P, radius:float ):

Self = (centre , radius );

let getCenter(c:Self):P = fst(c);

let getRadius(c:Self):float = snd(c);

end;;

species ColoredPoint = inherit Point;

representation = (float * float) * color;

let getColor(p:Self): color = snd(p);

let newColoredPoint( x:float ,

y:float ,

c:color):Self=

((x, y), c);

let getX(p) = fst(fst(p));

let getY(p) = snd(fst(p));

let move(p, dx, dy) =

newColoredPoint( getX(p) + dx ,

getY(p) + dy,

getColor(p) );

let element =

newColoredPoint (0.0, 0.0, Blue);

proof of distanceSpecification =

by definition of distance;

proof of equal_reflexive = assumed;

proof of equal_symmetric = assumed;

proof of equal_transitive = assumed;

end;;

• At top level (outside the species), we define the sum type
color that will be used by the species of the example.

• The general structure Setoid models any non-empty sets
with an equivalence relation. Because the representation
is still undefined, it is possible to inherit from this species
to construct new species with different representations.

• Although the species Point (modeling points of the plan)
inherits signatures and properties of Setoid, its repre-
sentation is still undefined.

• The species Circle is parameterized by the species
Point in order to define the center of a circle. Here,
the species Circle can use all signatures, functions and
properties of Point, even if they are not completely de-
fined yet.

• The species ColoredPoint (specifies colored points) is
a complete species that inherits the species Point and
provides definitions for all its signatures and properties
(including inherited signatures and properties).

FoCaLiZe provides several means to write the proofs
of properties. We can directly write Coq proofs or using
the key word assumed to accept proofs without providing
proofs. But the usual way to write proofs consists to use the
FoCaLiZe proof language (FPL). Using FPL, the developer
organizes the proof in steps. Each step provides proof hints
that will be exploited by Zenon (the automatic theorem prover
of FoCaLiZe) Bonichon et al. (2007).

4 From UML/OCL to FoCaLiZe

After the description of UML/OCL elements, we present
now the transformation process of a UML/OCL model into
FoCaLiZe:

• To start with, we deal with the transformation of a UML
class without relationships with other classes.

• Then, we present the mapping of OCL constraints, class
invariants and pre/post-conditions.

• After that, we describe the transformation of relation-
ships between classes: multiple inheritance, dependency,
templates, template bindings and associations.
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• Finally, we present the general transformation of a UML
class diagram, UML classes with possibly relationships
and OCL constraints.

The transformation we have defined uses similarities be-
tween UML/OCL concepts and FoCaLiZe concepts Delahaye
et al. (2008a); Fechter (2005). A UML class corresponds to a
FoCaLiZe species, class attributes correspond to the species
representation, class operations correspond to species signa-
tures and OCL constraints correspond to species properties.
Also, UML and FoCaLiZe share similar relationships and
mechanisms such as (multiple) inheritance, dependency, pa-
rameterization, methods overriding and late binding.

4.1 Transformation of classes without relationships

FoCaLiZe species have a larger abstraction level than UML
classes. In fact, a FoCaLiZe species corresponds to a UML
meta class. In particular, each class element has a direct
counterpart in a FoCaLiZe species. This has led us to trans-
form a UML class into a FoCaLiZe species, class attributes
to species signatures (modeling attributes getters) and class
operations (which are only declared) to species signatures.

Before dealing with the transformation of attributes and
operations, we present first the transformation of UML type
expressions, including UML primitive types and UML enu-
meration types.

Notations and conventions
Throughout the next sections, we will use the following nota-
tions and conventions:

• For a UML/OCL element e, we denote [[e]] its transfor-
mation into FoCaLiZe.

• For a UML/OCL element named en, we maintain the
same name for its transformation into FoCaLiZe, taking
into account upper and lower cases to respect FoCaLiZe
syntax.

All UML primitive types have their FoCaLiZe counter-
parts:

[[Integer]] = int

[[Real]] = float

Primitive Types: [[Boolean]] = bool

[[String]] = string

[[UnlimitedNatural]] = unlimited_Nat

A general UML type expression is followed by an integer
interval (typeExp [mult]) specifying its multiplicity. It is
converted into a FoCaLiZe type as follows:

[[ typeExp [mult]]]=

{
[[typeExp]] if mult = 1..1

list([[typeExp]]) if mult 6= 1..1

(10)

Attributes (see formula (2) ) specify the states of class ob-
jects. Then, each attribute gives rise to a signature modeling
its getter function in the corresponding species:

UML:
attrNane : typeExp [mult];

FoCaLiZe:
signature get attrNane : Self -> [[ typeExp [mult]]];

Operations (see formula (3)) represent services invoked
by any object of the class in order to affect object behaviors.
In the context of object oriented programming languages,
when an instance o of the class c n invokes an operation
named N with the stereotype S of the class, the memory state
of the instance o is affected and moves to a new memory
state o′. In functional languages (without memory state) such
as FoCaLiZe, the two memory states of an object represent
two different entities. Taking into account this difference
between the two formalisms, we convert a class operation
into a species signatures (function interface) that starts with
the type Self (the entity that invokes the function), followed
by the function parameter types and ends with the type Self
(the new created entity). So, the general transformation of
operations (see formula (3)) is:

UML:

S N

 dir1 p1 : type1 [mult1]
. . .
dirk pk : typek [multk]

 : Type[mult]

FoCaLiZe:
signature N: [Self]->[[Type1[mult1]]]->...->

[[Typek[multk]]]->[Self];

Note that if the operation is a class constructor (op st =
<<create>>), its transformation will not start with the type
Self. Also, if the class operation returns a particular value
(has a returned type, returnType), its transformation will end
with the FoCaLiZe type [[returnType[mult]]].

Using the transformation rules for attributes and oper-
ations, a UML class cn (without relationships with other
classes) specified with the attributes list Acn and the oper-
ations list Ocn is then converted into a FoCaLiZe species
(named) sn, with signatures [[Acn]] and [[Ocn]], as follows:

UML:
[public |private |protected] [final |abstract]
[�class-stereotype�] class cn = Acn Ocn
end

FoCaLiZe:
species sn = [[Acn]] [[Ocn]]
end ;;

4.2 Mapping of OCL Constraints

To transform OCL expressions we had to built a FoCaL-
iZe library that formalizes OCL expressions. In this library,
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Classes of the UML model correspond to FoCaLiZe species
and OCL primitive types correspond to FoCaLiZe primitive
types.

The OCL constraints (invariants, pre-conditions and post-
conditions) specified in the context of a UML class are
then mapped into FoCaLiZe properties of the corresponding
species.

To OCL primitive types (Integer, Real, String) cor-
respond equivalent FoCaLiZe primitive types (as we did for
UML primitive types). Most of the OCL operations on in-
tegers are then directly converted into their corresponding
FoCaLiZe operations using the same notations:

Table 2: Mapping of OCL Integer expressions

OCL FoCaLize
n n
α +β [[α]] + [[β ]]
α−β [[α]] - [[β ]]
−α -[[α]]
α ∗β [[α]] * [[β ]]
α div β [[α]] / [[β ]]
α mod β [[α]] % [[β ]]
α.min(β ) min([[α]], [[β ]])
α.max(β ) max([[α]], [[β ]])
α.abs abs([[α]])

The transformation of String and Real expressions are
handled in a similar way, using FoCaLiZe operations on
string and float types.

Most OCL formulas (of type Boolean) have a straight-
forward counterpart as FoCaLiZe boolean expressions:

Table 3: Mapping of OCL formulas

OCL FoCaLiZe
true true
false false
not(φ) ~~([[φ ]])
φ and ψ [[φ ]] /\ [[ψ]] / [[φ ]] && [[ψ]]
φ or ψ [[φ ]] \/ [[ψ]] / [[φ ]] || [[ψ]]
φ xor ψ [[φ ]] |<>| [[ψ]]
φ implies ψ [[φ ]] -> [[ψ]]
if φ then ψ else ϕ if [[φ ]] then [[ψ]] else [[ϕ]]
let x : type = Exp in φ let x = [[Exp]] in [[φ ]]
α = β [[α]] = [[β ]]
α <> β ~~([[α]] = [[β ]])
α > β [[α]]> [[β ]]
α < β [[α]]< [[β ]]
α >= β [[α]]>= [[β ]]
α <= β [[α]]<= [[β ]]
allInstances -> forAll(x | φ) all x : Self, [[φ ]]
allInstances -> exists(x | φ) ex x : Self, [[φ ]]

Where φ and ψ are two OCL formulas, α and β are two
integer/real expressions.

Note that, the OCL operations forAll and exists, when
applied to the OCL collection returned by the allInstances
operation, are respectively mapped to the FoCaLiZe univer-
sal (all) and existential (ex) quantifiers. Otherwise, they
must be turned into special defined FoCaLiZe operations that
iterate on all instances of a collection.

An OCL invariant (see formula (8)) Einv of the class cn
is converted into a FoCaLiZe property of the corresponding
species:

OCL:
context cn inv : Einv

FoCaLiZe:
property invIdent : all e : Self, [[Einv]] ;

The OCL formula Einv is converted into the FoCaLiZe boolean
expression [[Einv]] using the correspondences between OCL
and FoCaLiZe presented in Tables 3 and 2.

An OCL pre and post-conditions Epre and Epost of an
operation named N of the class cn (see formula (9)) are trans-
formed together into a FoCaLiZe implication (pre-condition⇒
post-condition) of the corresponding species:

OCL:
context cn :: N(p1 : type1 . . . pk : typek)

pre :Epre post :Epost
FoCaLiZe:

property prePostIdent :

all e : Self,

all p1 : [[type1]] , . . . , all pk : [[typek]] ,
[[Epre]] -> [[Epost ]] ;

As for invariants, the OCL formulas Epre and Epost are
converted into FoCaLiZe boolean expressions ([[Epre]] and
[[Epost ]]) using the correspondences between OCL and Fo-
CaLiZe presented in Tables 3 and 2. More details about the
correspondence between OCL and FoCaLiZe expressions are
given in Abbas (2014).

The transformation of the class Person (see Fig. 1) il-
lustrates the above transformation rules of classes, attributes,
operations and OCL constraints as follows (Code 2):

Code 2: Transformation of the class Person
species Person =

signature get_name : Self -> string;

signature get_age : Self -> int;

signature setAge : Self -> int -> Self;

signature birthdayHappens: Self -> Self;

signature newPerson : string -> int

-> Self;

property inv_1: all p:Self ,

(get_age(p) > 0);

end;;

The signatures get age and get name show the trans-
formation of the class Person attributes (name and age).
The signature setAge corresponds to the operation hav-
ing the same name of the class Person and the signature
transforms the class Person constructor (preceded by the
stereotype <<create>>, see Fig. 1). Contrary to UML object
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oriented paradigm, the entities (of the species Person) that
will invoke these signatures are explicit (the first Self of
each signature), except for the species constructor. This is
due to the functional paradigm of FoCaLiZe language.

The property inv 1 corresponds to the class Person

invariant (age > 0).

4.3 Transformation of Relationships Between Classes

We present now the transformation of the supported UML
relationships, which are:

• inheritance and multiple inheritance with method redefi-
nition and late binding mechanisms,

• multiple dependency relationships,
• UML templates and template binding relationships.

To transform (multiple) inheritance, templates, template
bindings and dependency features, we use similar mecha-
nisms in FoCaLiZe. Although FoCaLiZe is a functional lan-
guage, it supports multiple inheritance, parameterized species
(like templates in UML) and the substitution of formal pa-
rameters of species, which is similar to template binding in
UML.

A UML template cn (see formula (5)) with formal param-
eters fp1 : type1, . . . , fpk : typek corresponds to a parameter-
ized species, where each formal parameter of the template is
transformed into a species parameter:

UML:
public class cn ( f p1 : type1, . . . , f pk : typek) = . . . end

FoCaLiZe:
species sn( f p1 is|in [[type1]] , . . . ,

f pk is|in [[typek]])= . . . end;;

Formal template parameters of type Class are modeled
as formal species parameters of Setoid (using the keyword
is). Formal template parameters of primitive types are mod-
eled as formal species parameters of FoCaLiZe primitive
types (using the keyword in). More details about UML tem-
plates transformation are provided in Abbas et al. (2014).

The template class FArray (see Fig. 1) has two parame-
ters: t of type Class and i of type Integer. It is translated
into a parameterized species (having the same name) with
two formal parameters as follows:

Code 3: Transformation of the class FArray and its OCL
constraints

(* Transformation of the class FArray *)

species FArray ( Obj is Setoid ,

i in IntCollection) =

signature get_data : Self -> list(Obj);

signature isFull : Self -> bool ;

signature isEmpty : Self -> bool ;

signature length: Self -> int ;

signature newInstance: list(Obj) -> Self;

(* mapping of OCL constraints on FArray *)

property inv_1 : all s : Self ,

isEmpty(s) -> (length(s) = 0);

property inv_2 : all s : Self ,

isEmpty(s) -> ~~( isFull(s));

end;;

The class formal parameter of the template FArray (T:
Class) is transformed into the species formal parameter Obj
is Setoid. The primitive formal parameter of the template
FArray (i: Integer) is transformed into the species for-
mal parameter i in IntCollection. In fact, we have used
the FoCaLiZe corresponding collection (IntCollection)
to create an integer entity.

The UML (multiple) inheritance mechanism between the
subclass cn and the super classes cn1, . . . , cnk (see formula
(4)) is directly transformed into (multiple) inheritance be-
tween their corresponding species, using the clause inherit
of FoCaLiZe:

UML:
public class cn inherits cn1, . . . , cnk = . . . end

FoCaLiZe:
species sn(Psn) = inherit sn1(Psn1 ), . . . snk(Psnk ); . . . end;;

Where, Psn is the parameters list of the derived species
sn and Psni , i : 1..k are the parameters list of the derived
species sni, i : 1..k. Note that in the particular case when the
classes cn1, . . . , cnk are not parameterized, the transformation
becomes:

species sn = inherit sn1, . . . , snk; . . .end;;
All OCL constraints of the class cn (including those in-

herited from the classes cn1 . . . cnk) become properties of the
the species sn through multiple inheritance.

Code 4 shows the transformation of the inheritance rela-
tionship between the classes FArray and FStack (see Fig. 1).
This relationship is transformed into FoCaLiZe inheritance
between the species FArray (derived from the class FArray)
and the species FStack (derived from the class FStack):

Code 4: Transformation of the class FStack
(* Transformation of the class FStack *)

species FStack ( Obj is Setoid ,

i in IntCollection ) =

inherit FArray(Obj , i);

signature head : Self -> Obj ;

signature push : Obj -> Self -> Self;

signature pop : Self -> Self;

(* mapping of OCL constraints on FStack *)

property pre_post_push_1: all e: Obj ,

all s: Self ,

isEmpty (s) -> isEmpty(pop(push(e, s)));

property pre_post_push_2: all e:Obj ,

all s:Self ,

~( isFull(s))-> equal(pop(push(e, s)), s);

end;;
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Table 4: Transformation of a dependency relationship

UML FoCaLiZe
species Point = ... end;;

species Circle (P is Point)=

signature get_radius: Self -> float;

signature belongs: Self -> P -> bool;

...

end;;

The dependency between the client class cn and the sup-
plier classes cn1, . . . , cnk (see formula (7)) enable us to define
the attributes, operations and OCL constraints of cn using
those of the classes cn1, . . . , cnk. Hence, we transform a
dependency relationship between classes using FoCaLiZe
parameterization:

UML:
public class cn depends cn1, . . . , cnk = . . . end

FoCaLiZe:
species sn( Psn1 , . . . ,Psnk ,

fp1 is sn1(Psn1 ), . . . , fpk is snk(Psnk )) =
. . .
end;;

Where, Psni , i : 1..k are the parameters list of the species
sni, i : 1..k (derived from the classes cn1, . . . , cnk). Note that
in the particular case when the classes cn, cn1, . . . , cnk are
not parameterized, the transformation becomes:

species sn( fp1 is sn1, . . . , fpk is snk) = . . .end;;

Like in UML, The properties of supplier species (derived
from OCL constraints of supplier classes) can be safely used
through the parameterization by the client species, to develop
its own methods.

To decide whether a given point p belongs to a given
circle c, the class Circle (see Table 4) uses the operation
belongs (p : Point) parameterized with an instance of the
class Point. This expresses a dependency relationship be-
tween the classes Circle (the client) and Point (the sup-
plier).

To transform a binding relationship (see formula (6)),
we use both inheritance and parameterization mechanisms
in FoCaLiZe. Actual parameters are provided using FoCaL-
iZe collections and parameter substitution mechanisms. For
the binding of primitive formal parameters, we directly use
the FoCaLiZe corresponding collections (IntCollection,
FloatCollection, . . . ) to create primitive entities. A for-
mal parameter P of type Integer is bounded in FoCaLiZe
by the creation of integer entities using IntCollection as
follows:

UML:
p -> integerValue

FoCaLiZe:
let p = IntCollection!createInt( [[integerValue]] );;

Formal parameters on other primitive types are bounded
in a similar way.

The substitution (binding) of the formal parameter T of
type Class with an effective parameter (T->cn′) is trans-
formed into a FoCaLiZe substitution (binding), as follows:

UML:
T -> cn′

FoCaLiZe:
T is [[cn′]]

Code 5 shows the transformation of the binding rela-
tionship between the template class FStack and the class
PersonStack (see Fig. 1):

Code 5: Transformation of the class PersonStack
(* creation of the entity medeling

the integer value 100 *)

let e = IntCollection!newInstance (100);;

(* Transformation of the

class PersonStack *)

species PersonStack( T is Person ,

i in IntCollection )=

inherit FStack(T, e);

end;;

On the UML side, the OCL constraints of the template
FStack are propagated to its bound model (PersonStack).
This mechanism is also maintained on the FoCaLiZe side, the
properties of the species FStack (derived from the OCL in-
variant and pre/post-conditiond) are propagated to the species
PersonStack.

4.4 Transformation of Classes with Relationships

Given a class cn with attributes, operations and having rela-
tionships (multiple inheritances, dependencies and template
bindings) with other classes, we can now generate its corre-
sponding species using the following general transformation:

UML:
[public] [�class-stereotype�] class cn (Pcn)

binds Tcn depends Dcn inherits Hcn= Acn Ocn
end

FoCaLiZe:
species sn (Psn) =

inherit Setoid, [[Hcn]] ; [[Acn]] [[Ocn]] end ;;
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Fig. 2: Systematic transformation of UML models into FoCaLiZe

Where, Psn is the list of parameters of the species sn,
provided from the transformation of the class cn parameters
([[Pcn]]), parameters substitutions ([[Tcn]]) and dependencies
([[Dcn]]). The list of species from which the species sn inherits
is obtained from the transformation of the class cn inheri-
tances list ([[Hcn]]). Finally, the transformation of the class
attributes list ([[Acn]]) and the transformation of the class op-
erations list ([[Ocn]]) generate the signatures of the species
sn.

The complete generated FoCaLiZe specification from the
UML/OCL model of Fig. 1 is presented in appendix A.

4.5 Deployment

The proposed transformation from UML/OCL to FoCaLiZe
is implemented using the XSL Transformations (XSLT) W3C
(2014). Recommended by the World Wide Web Consortium
(W3C), the XSLT is a usable language for the transforma-
tion of XML documents into various formats such as HTML,
XML, text, PDF, etc. We have developed XSLT stylesheets
specifying the transformation rules from a UML model ex-
pressed in the XMI interchange format (generated by the
Papyrus graphical tool) into FoCaLiZe. The output is the
corresponding FoCaLiZe source file, which can be directly
read by the FoCaLiZe compiler (see Fig. 2). Additional infor-
mation about the achieved transformation tool (UML2FOC)
are now available on-site (http://www.univ-eloued.dz/
uml2foc/), where instructions for installation and use are
detailed.

4.6 Correctness of the transformation rules

In order to ensure the correctness of our transformation rules
we have defined the following semantics (for both UML and
FoCaLiZe):

• ΓU for UML
• ΓF for FoCaLiZe.

For a given class named cn, ΓU (cn)= (cn,Vcn), where Vcn
is the value of the class. A class value is a pair (Γcn,bodycn)

composed of the local context of the class (Γcn) and the body
of the class (bodycn). The body of the class is composed
of class attributes (Acn), class operations (Ocn) and class
constraints (Ccn). In other words, the body of the class cn is
expressed as follows (the trailing star sign ∗ denotes several
occurrences):
bodycn = (Acn,Ocn,Ccn), where

• Acn = {(attr n : typeExp)}∗, where attr n is an attribute
name of the class cn and typeExp its type.

• Ocn = {(op n : opType)}∗ where op n is an operation
name of the class cn and opType its parameters and re-
turned types.

• Ccn = {(const n : invExp)}∗ where const n is a con-
straint name of the class cn and invExp its first order
expression.

The local context of the class cn (Γcn) is the list of the
class cn parameters (Pcn) and the list of the class cn depen-
dencies (Dcn), see class definition formula (1):
Γcn = Pcn

⋃
Dcn where,

Pcn = {( fp n, typeExp) / fp n ∈ Pcn} and
Dcn = {cni / cni ∈ Dcn}

Using the above definitions, we define by induction, the
general semantics ΓU of a UML/OCL model M with multiple
inheritance relationships (see class definition, formula (1)),
formal parameters, dependencies list and OCL constraints,
as follows:

• ΓU = {(cn, (Γcn, Acn, Ocn, Ccn)) / cn ∈M}, where
• Γcn = Pcn

⋃
Dcn

• Acn = Acn
⋃

i

{Acni / cni ∈Hcn}, Hcn is the list of inher-

ited classes.
• Ocn =Ocn

⋃
i

{Ocni / cni ∈Hcn}, Hcn is the list of inher-

ited classes.
• Ccn = Ccn

⋃
i

{Ccni / cni ∈Hcn}, Hcn is the list of inher-

ited classes.

http://www.univ-eloued.dz/uml2foc/
http://www.univ-eloued.dz/uml2foc/
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For our concern, the derived FoCaLiZe model will be
composed of a list of abstract species (they only contain
signatures and declared properties). This is due to the fact
that original UML/OCL models are also abstract, and contain
no implementations. So, each derived species sn is specified
by:

• A list of species names from which the current species
inherits (Hsn),

• A list of signatures (sigsn) and
• A list of properties (propsn).

In a symmetrical way, for a given species named sn,
ΓF(sn) = (sn, Vsn), where Vsn is the value of the species.
A species value is a pair (Γsn , bodysn) composed of the local
context of the species (Γsn) and its body (bodysn). The body
of the species sn is denoted: bodysn = (Sigsn,Propsn), with

• Sigsn = {( f unName : f unSig)}∗ where f unName is a
function name and f unSig its signature.

• Propsn = {(propName : propSpec)}∗ where propName
shows the name of a property and propSpec its logical
statement.

So, we define the general semantics ΓF of a FoCaLiZe
model F with a multiple inheritances list H, formal parame-
ters list P and properties specification as follows:

• ΓF = {(sn, (Γsn, sigsn, propsn)) / sn ∈ F}, where
• Γsn =Hsn

⋃
Psn

• Psn = Psn

k⋃
i=1

{Psni}
k⋃

i=1

{( fpni is sni(Psni))}

• sigsn = sigsn
⋃

i

{sigsni / sni ∈ Hsn}, Hsn is the list of in-

herited species.
• propsn = propsn

⋃
i

{propsni / sni ∈Hsn}, Hsn is the list

of inherited species.

During the transformation of the class cn to the species sn,
both ΓU (cn) and ΓF(sn) are enriched progressively. In such a
way, we define a one-to-one correspondence where each new
UML definition of the set ΓU (cn) is paired with exactly one
element of ΓF(sn), and each element of ΓF(sn) is paired with
exactly one element of ΓU (cn). Using the aforementioned
reliable semantic and the proposed transformation rules (from
UML/OCL to FoCaLiZe), we prove that the properties of a
UML model are maintained in its FoCaLiZe transformation.

5 Usefulness of the transformation

As we mentioned in the introduction of this document, the
proposed transformation is meant to be useful for both Fo-
CaLiZe and UML users:

• For UML Users, FoCaLiZe can analyze and check the
properties of of UML/OCL models. In fact, FoCaLiZe

is motivated by its powerful automated theorem prover
Zenon Doligez (2016) and its proof checker Coq Coq
(2016). Realizing proofs with Zenon makes the user in-
tervention much easier since it manages to fulfill most
of the proof obligations automatically. In addition, when-
ever such a proof fails, Zenon helps the user to locate the
source of the inconsistency.
For example (see Code 6), we can check the correctness
of the property pre_post_push_1 (derived from the
first pre/post condition of the operation pus(t:T)) using
the following FoCaLiZe proof hints :

Code 6: Proof of the property pre post push 1
species PersonStack ( T is Person ,

i in IntCollection )=

inherit FStack(T, e) ;

...

(* Proof of the property

pre_post_push_1 *)

proof of pre_post_push_1 =

<1>1 assume e : T, s : Self ,

hypothesis H1: isEmpty(s),

prove isEmpty(pop(push(e, s)))

<2>1 prove equal(pop (push(e , s) ), s)

by hypothesis H1 property inv_2 ,

pre_post_push_2

<2>2 prove isEmpty(pop (push (e, s)))

by hypothesis H1 step <2>1

property inv_1 , equal_symmetric

<2>3 qed by step <2>2

<1>2 conclude ;

...

end;;

In fact, we try to prove one property (pre_post_push_1)
using the other properties (inv_2, pre_post_push_2,
. . . ) as premises. This mechanism helps developers to
detect eventual contradictions between the properties of
the same UML/OCL model.
Let us note that if a proof fails, the FoCaLiZe compiler
indicates the line of code responsible for the error. There
are two main kinds of errors: either Zenon could not find
a proof automatically, or there are inconsistencies in the
original UML/OCL model. In the first case, the developer
interaction is needed to give appropriate hints to prove
the properties, while in the second case one must go back
to the original UML/OCL model to correct and/or com-
plete it.

• For FoCaLiZe Users, it is possible to use a UML/OCL
model as the starting point for a FoCaLiZe develop-
ment. Having provided the transformation rules from
UML/OCL to FoCaLiZe, we can now generate a FoCaL-
iZe abstract specification, starting from a UML class
diagram annotated with OCL constraints. Then, FoCaL-
iZe developers will be able to complete the generated
specification, by implementing all its undefined methods
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(representations + signatures), until reaching the final
code.
Refinements of the leaf species generated from the UM-
L/OCL model of Fig. 1 is detailed in appendix B.

We note that whatever the definitions provided for the
generated signatures, they must satisfy the properties derived
from OCL constrains. Otherwise, FoCaLiZe will prevent
developers from creating collections for such species.

6 Related Works

Various approaches have been used to provide supporting
tools and techniques to formalize UML models and check
OCL constraints. The most widely used are set theory based
methods such as the B method Abrial (2005) and Alloy
Jackson (2012). Several approaches use first and higher-
order logic based tools (Maude Clavel et al. (2007) and Is-
abelle/HOL Nipkow et al. (2002)). Other approaches and
techniques use Real time checker tools (such as PROMELA,
SMV and LOTOS). Moreover, there are numerous works fo-
cusing on specific aspects of UML/OCL using formal meth-
ods such as rCOS (A refinement calculus of object systems)
Ke et al. (2012) and CASL (Common Algebraic Specifica-
tion Language) Mosses (2004).

B is a method for specifying, designing and coding soft-
ware systems based on set theory. Among works interested on
the transformation of UML/OCL models into the B method
based tools, some focus on the study of the transformation
rules and verification techniques Tao and Fengsheng (2015);
Truong and J. (2006), while others concentrate on the genera-
tion of concrete transformation tools (ArgoUML+ B Ledang
et al. (2003), UML2B Snook and Butler (2004) and UML-B
Snook and Butler (2006); Said et al. (2015)).

Most of UML features and OCL constraints are supported
in the transformation into B method.

However, the multiple inheritance mechanism, UML tem-
plates (with template bindings) and the propagation of OCL
constraints are not supported.

Alloy is a formal language with restricted set-based syn-
tax, for describing structural properties. It has been recently
used to formalize and check the consistency of UML/OCL
models Cunha et al. (2013); Nimiya et al. (2010); Cunha
et al. (2015). Using Alloy, a UML class is modeled by a
signature (a set of atoms). Simple inheritance is considered
through the clause extends, and some kind of parameteriza-
tion is taken care of at module level. However, as for B, the
multiple inheritance cannot be directly represented in Alloy
Anastasakis et al. (2010). Furthermore, UML templates and
template bindings are not supported, and it is not possible
to import abstract modules (at specification level) and bind
modules parameters to create actual modules.

Several approaches based on equational logic, first-order
logic and higher-order logic are also used through different
formal tools.

ITP-OCL tool Clavel and Egea (2006) is a rewriting-
based tool that supports automatic validation of UML class
diagrams with respect to OCL constraints.

KeY Beckert et al. (2007) proposes a mapping from OCL
into first-order logic that allows interactive reasoning about
UML diagrams with OCL constraints.

HOL-OCL Brucker and Wolff (2007); Rull et al. (2015)
maps OCL constraints into higher-order logic. It concentrates
on producing OCL evaluator tools. HOL-OCL supports most
of UML/OCL features, in particular simple inheritance (ex-
pressed as inclusion of sets) and late binding mechanisms.

The Maude system is based on rewriting logic and run-
time checking tools. It is also used as target language in the
formalization of UML/OCL models Chama et al. (2015);
Durán et al. (2011). The simple inheritance feature is sup-
ported through the definition of predicates which establishes
that one class is a subclass of another class. Moreover, Maude
allows to specify a module parameterized with formal param-
eters. We think that this feature enables to formalize UML
template and template binding.

But, although HOL-OCL and transformation to Maude
are the most comprehensive tools, they also ignore multi-
ple inheritance, UML templates, template bindings and the
propagation of OCL constraints.

Some other approaches interested in UML models verifi-
cation use real time checker: SMV Kwon (2000), PROMELA
(using Spin model checker) Lilius and Paltor (1999) and LO-
TOS (using CADP model checker) Carreira and Costa (2003).
They concentrate on the transformation of UML state ma-
chines. But, they ignore OCL constraints and are limited to
the verification of isolated UML state machines.

Other formal tools and techniques are concerned with
specific aspects of UML/OCL models and the study of their
semantics. In particular, UMLtoCSP Cabot et al. (2007) pro-
vides a mapping of OCL constraints into constraint program-
ming expressions to check UML class diagrams annotated
with OCL constraints. Some other proposals have used CASL
Reggio et al. (2001); Favre (2010) in order to provide for-
mal semantics for UML diagrams. Finally, a formalization
of UML models using rCOS is proposed Yang (2009) in or-
der to study the consistency conditions among a number of
related UML models.

Likewise, essential UML/OCL features as multiple inher-
itance and template bindings are not taken care of.

Comparison with Related Works

The perfect formal modeling of UML/OCL models depends
on the used formal method. Three essential aspects charac-
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Table 5: Comparison - From UML/OCL to Formal methods

Transformation
to

B Method

Transformation
to

Alloy

Transformation
to

Maude

Transformation
to

HOL (HOL-OCL)

Transformation
to

FoCaLiZe

UML/OCL
Architectural

and
Conceptual

Features
Supported

by the
Transformation

Encapsulation • • • • •
Simple Inheritance • • • • •
Dependency • • • • •
Multiple Inheritance •
Methods redefinition • •
Late binding • •
Templates specification • • • • •
Template Binding
specification • •

OCL constraints • • • • •
OCL constraints
inheritance •

Propagation of
OCL constraints
through dependency
and template binding

•

Verification
techniques

Model checker and/or
Test Generation • • •

Theorem Prover • • • •
Programming
Paradigm

Imperative • •
Functional • •

terize formal methods: the supported architectural and con-
ceptual object-oriented features, the paradigm and the ex-
pressiveness of its programming language and the available
verification and proof techniques.

As matter of comparison, we have studied the transfor-
mation of the UML/OCL model of Fig. 1 into FoCaLiZe
and into similar formal development environments. The class
PersonStack is created through inheritance and template
binding from the classes FArray, FStack and Person. Thus,
it acquires all methods and OCL constraints of these classes.
Using our transformation approach, we get a formal and
abstract model (see appendix A) that reflects perfectly the
original UML/OCL model with all its methods, properties,
relationships and conceptual (specification) scope. All these
features are maintained within a purely functional paradigm
scope and with the possibility to check properties using either
the theorem prover of FoCaLiZe or test generation techniques.
Contrary to transformations to the aforementioned formal
environments (B method, Alloy, Maude and HOL-OCL), it
is not possible to preserve the properties of the original UM-
L/OCL model. This is because the based formal methods
do not allow features like inheritance, multiple inheritance,
methods redefinition, late binding, OCL constraints, OCL
constraints inheritance and template bindings. That leads in
general to generate a concrete and manufactured model rather
than abstract and conceptual one. Table 5 recapitulates the re-
sult of comparison between the most powerful transformation
tools. It highlights the capacity of supporting high architec-
tural and conceptual features, verification techniques and
functional programming paradigm. This comparison ensures

that the transformation to FoCaLiZe maintains the highest
standards in software development.

7 Conclusion and Perspectives

In this paper we have been able to produce a formal trans-
formation from UML/OCL into FoCaLiZe that reflects most
of UML class diagram functionality such as multiple inher-
itance, dependency, templates, template bindings and the
navigation of OCL constrains over these features.

Starting from a UML class diagram annotated with OCL
constraints, we generate a FoCaLiZe specification, where
each class corresponds to a species, class attributes are mod-
eled as getter functions, class operations are converted into
signatures of the corresponding species and OCL constraints
are mapped into species properties.

More precisely, the proposed transformation naturally
preserves the following UML/OCL aspects:

• The (multiple) inheritance with methods overriding
and late binding: We obtain a species hierarchy that per-
fectly reflects the original UML inheritance relationships
between classes.

• UML templates, template bindings and dependencies
using species parameterization and parameters sub-
stitution: A species derived from one class can be used as
a parameter of another species derived from another class,
even at the specification level. The FoCaLiZe collection
and late-binding mechanisms ensure that all methods ap-
pearing in a species (used as formal parameter) are indeed
implemented and all properties are proved.
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• All species properties derived from OCL constraints
are propagated through FoCaLiZe inheritance and
parameterization relationships: The properties of a super-
species become properties of its inheritors (sub-species),
the properties of a supplier species can be safely used
by client species and the properties of a species derived
from a UML template become properties of the species
derived from the corresponding bound models.

A direct application of the proposed approach consists in
combining UML/OCL and FoCaLiZe in MDE modellingme-
works to generate certified applications.

In parallel with the presented approach, we are work-
ing on the transformation of UML diagrams describing the
behavioral aspect of UML classes. We have first dealt with
state machine diagrams Abbas et al. (2018), and now we are
working on the transformation of UML activity diagrams.
The idea consists in modeling a UML activity diagram by the
definition of a recursive function using the pattern matching
mechanism.

Finally, we note that (by construction) the proposed trans-
formation from UML/OCL to FoCaLiZe is not bidirectional.
However, we plan to study more in details the composition of
our proposal and the inverse transformation from FoCaLiZe
to UML Delahaye et al. (2008a). We believe indeed that the
two formalisms could further cooperate, using the graphi-
cal expressiveness of UML/OCL and the FoCaLiZe proof
capabilities.
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Appendix A
The FoCaLiZe specification generated from the
UML/OCL model of Fig. 1

The complete FoCaLiZe specification generated by applica-
tion of the proposed transformation rules on the UML/OCL
model of Fig. 1 is presented as follows:
species Person =

signature get_name : Self -> string;

signature get_age : Self -> int;

signature setAge:Self ->int -> Self;

signature birthdayHappens : Self -> Self;

signature newPerson:string -> int -> Self;

(* mapping of OCL constraints on Person *)

property inv_1: all p:Self ,

(get_age(p) > 0);

end;;

species FArray ( Obj is Setoid ,

i in IntCollection) =

signature get_data : Self -> list(Obj);

signature isFull : Self -> bool ;

signature isEmpty : Self -> bool ;

signature length: Self -> int ;

signature newInstance: list(Obj) -> Self;

(* mapping of OCL constraints on FArray *)

property inv_1 : all s : Self ,

isEmpty(s) -> (length(s) = 0);

property inv_2 : all s : Self ,

isEmpty(s) -> ~~( isFull(s));

end;;

species FStack ( Obj is Setoid ,

i in IntCollection ) =

inherit FArray(Obj , i);

signature head : Self -> Obj ;

signature push : Obj -> Self -> Self;

signature pop : Self -> Self;

(* mapping of OCL constraints on FStack *)

property pre_post_push_1: all e: Obj ,

all s: Self ,

isEmpty (s) -> isEmpty(pop(push(e, s)));

property pre_post_push_2: all e:Obj ,

all s:Self ,

~~( isFull(s))-> equal(pop(push(e, s)), s);

end;;

(* creation of the entity medeling

the integer value 100 *)

let e = IntCollection!newInstance (100);;

species PersonStack( T is Person ,

i in IntCollection )=

inherit FStack(T, e);

end;;

http://www.omg.org/spec/OCL/2.4
http://www.omg.org/spec/OCL/2.4
http://www.omg.org/spec/UML/2.5/PDF
http://www.w3.org/TR/2014/WD-xslt-30-20141002/
http://www.w3.org/TR/2014/WD-xslt-30-20141002/
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Appendix B
Refinements of the FoCaLiZe specification generated
from the UML/OCL model of Fig. 1

A FoCaLiZe developer completes (refines) the abstract spec-
ification (generated from the UML/OCL model of Fig. 1)
by providing definitions for all its undefined methods, as
follows:

(* The species Person_Def provides

definitions for the species

Person methods *)

species Person_Def = inherit Person;

representation = string * (int) ;

let newPerson(s :string , a:int ):Self =

(s, a);

let get_name(p:Self): string = fst(p);

let get_age(p:Self):int = snd(p);

let setAge (p:Self , a:int):Self =

newPerson(get_name(p), a);

let birthdayHappens (p:Self):Self =

newPerson(get_name(p), (get_age(p)+ 1));

(* The functions element and equal

are inherited from Setoid *)

let equal (x:Self , y:Self): bool =

(get_name(x) = get_name(y));

let element:Self = ("toto", 1);

end;;

species PersonStack ( T is Person ,

i in IntCollection )=

inherit FStack(T, e);

representation = list(T);

let newInstance(x: list(T))Self = x ;

let get_data (x: Self):list(T)= x;

let isFull(x:Self):bool = (length(x) =

(IntCollection!to_int(i)));

let isEmpty(x:Self):bool =

(length(x) = 0) ;

let head(x: Self):T =

match get_data(x) with

| [] ->

focalize_error("The stack is empty")

| y :: z -> y;

let push (o: T, y: Self):Self =

if ~~( isFull(y))

then newInstance(o:: get_data(y))

else focalize_error("The stack is full");

let pop(x: Self):Self =

match get_data(x) with

| [] ->

focalize_error ("The stack is empty")

| y :: z -> newInstance(z);

let rec length(x: Self):int =

match (x) with

| [] -> 0

| y :: z -> 1 + length(z);

(* The functions element and

equal are inherited from Setoid *)

let equal(x:Self , y:Self): bool = (x = y);

let element:Self = [] ;

end;;


	Introduction
	UML/OCL
	FoCaLiZe
	From UML/OCL to FoCaLiZe
	Usefulness of the transformation
	Related Works
	Conclusion and Perspectives
	Compliance with Ethical Standards
	Appendix The FoCaLiZe specification generated from the UML/OCL model of Fig. 1
	Appendix Refinements of the FoCaLiZe specification generated from the UML/OCL model of Fig. 1

