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ABSTRACT: The slopes between the Pointes du Châtelard and the Pointe de Claret in the Vanoise National

Park, Haute-Maurienne in France are located right above the village of Bessans, its main access road and

ski lifts. In recent years, several significant avalanches came down these slopes, potentially threatening the

village. Notably, several bungalows of the local camping ground were partially destroyed by a large powder

avalanche impact in 2004. Avalanche safety in the valley is managed by a committee consisting of road

authorities, local officials, and independent avalanche experts. Due to the topography, most slopes are not

visible from the valley, hence limited information about snow coverage and the avalanche situation of the

upper part of the slopes is available. This causes a major challenge for the decision-makers who take actions

such as avalanche control or road closing. Being the only access road to the valley, minimizing road closure

is critical for its 6000 inhabitants. To address this challenge, an energy self-sufficient camera system was

installed at almost 3000 masl on a ridge on the opposite side of the valley, to automatically take photographs

of the avalanche slopes. The camera was modified to enhance contrast of the snow cover and avoid pixel

saturation due to high snow albedo. Photographs can be recorded every 15 minutes at 42 MP resolution

and in a high dynamic range. A specific high dynamic range mode was developed for night conditions so

that valuable information is available 24/7 for the avalanche safety committee. Preliminary results of image

analysis tests performed using both digital image correlation and deep learning algorithms demonstrate the

potential of this quantitative method to support decision-making. Digital image correlation is used to measure

local accelerations in the snow cover that could potentially lead to glide-snow avalanches, while deep learning

algorithms classify events. During the first winter of application, the 2023/2024 season, camera images

played a crucial part in the decision-making process of the avalanche safety committee and can be used by

the avalanche experts to further evaluate critical remote locations of the region known to be prone to similar

conditions and where no data is available until now.

Keywords: Avalanche monitoring, energy self-sufficient camera system, image processing, digital image

correlation, deep learning.

1. INTRODUCTION

The Departmental Council of Savoie is responsible

for avalanche risk management on its road network,

including access to many of the major ski resorts in

the French Alps (Tignes, Val d’Isère, Val-Thorens,

Courchevel, etc.). Since 1998, the Departmental

Council has been working with a team of snow and

avalanche experts (ALEA SARL) and have acquired

specific equipment, notably for snow-meteorological

measurements (ISAW) and automatic avalanche

detection. Although automatic snow and weather

measurements now provide satisfactory data, both

in quantity and quality, data on actual avalanche ac-

tivity is still too scarce; many avalanches go unde-

tected (at night or in bad weather), and when traces
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of them are discovered, it is no longer possible to

date them accurately. It is therefore difficult to de-

velop and validate forecasting models (Bourgeois

et al., 2013).

To progress, as early as 1999, a prototype of

infra-sound avalanche detection system (Arfang,

IAV, (Chritin et al., 1996)) had been developed

and tested in Bonneval-sur-Arc (Haute-Maurienne-

Vanoise/Savoie) to protect the departmental road

RD902, with the aim to be put into use quickly to

manage avalanche risk (Duclos et al., 2001). Never-

theless, it was moved a few years later to a site with

less at stake, due to errors deemed prohibitive by

the Department. Geophones (SLF) had also been

implanted, but without results, due to some tech-

nical problems. The RD902 has since been se-

cured by more than 25 remote avalanche control

systems. However, a section of this same road re-

mains exposed to very large avalanches between



the villages of Lanslevillard and Bessans. Installa-

tions similar to those installed at Bonneval-sur-Arc

have been requested by the commune of Bessans

(altitude 1700m), but the scale of the threatening

slopes (1700 m vertical drop) and the potential dam-

age to buildings led the department to choose, in a

first step, a more cautious and observationary ap-

proach. Indeed, in the past (1935), the chimneys of

the village school have already been destroyed by

avalanche powder clouds. More recently (2004), the

roof of a building not used in winter has been torn

off before crossing the RD902, several days after

a crisis period that had caused the temporary pre-

ventive closure of the road. On each occasion, the

avalanche starting zones were indeterminate, often

in high altitude areas that were difficult to see from

the valley, even in clear weather conditions.

Recent developments in automatic image capture

and processing induced the Departmental Coun-

cil to choose an approach built on camera-based

observations (Stähly et al., 2023) as at least a

partial response to the need for a better under-

standing of avalanche activity. A new project was

launched in 2022, to test the automatic capture of

high-resolution images to be assessed visually by

avalanche experts, with the aim of developing an

automatic image-processing based analysis in the

near future. In addition to the institution (Depart-

ment and Commune de Bessans), snow Experts

(ALEA Sarl) and suppliers (Geoprevent), academics

are also involved in the project (University Savoie

Mont-Blanc, LISTIC laboratories). On the one hand,

the aim is to help local decision-making in real-time,

both by the communal safety commission and by the

Departmental Council (preventive closures, reopen-

ings, activation of preventive avalanche control from

helicopters); on the other hand, to highlight a partic-

ular situation that could affect other sites in the De-

partment; and finally, to build up a database to re-

fine the environment-surrounded learning. For the

time being, the Departmental Council prioritized a

camera-based approach over other automatic de-

tection systems such as Doppler radar (Meier et al.,

2016), due to the large amount of information,

sometimes unexpected, that is provided by the im-

ages. This includes information relative to the dis-

tribution of snow cover in high-altitude areas, de-

termined as much by precipitation as by the effect

of wind or avalanches that have already occurred.

During this first 2023-2024 season, the exploitation

of the photos was exclusively human, but already

very rewarding. Nevertheless, the aim was to cre-

ate an initial working basis for automatic avalanche

recognition, first using an approach based on well-

known digital image correlation algorithms and then

using more recent deep learning algorithms.

Digital image correlation algorithms have been

widely applied to different research fields for several

decades to measure deformations and displace-

ment. These algorithms have also already been

applied to the avalanche field (Feick et al., 2012;

van Herwijnen et al., 2013). Thereby, the focus of

the authors was mainly on the detection of glide

cracks and the measurement of their expension as

well as the monitoring of cornice dynamics (Vogel

et al., 2012). About deep learning method, a re-

cent ground-based photographic method proposed

by Fox et al. (2024) is developed with an objec-

tive of real-time avalanches classification. Con-

jointly, the UIBK dataset with 4090 ground-based

photographs containing 7228 avalanches labeled

by experts is presented. Localisation with bound-

ing boxes, avalanches classification and avalanches

segmentation are encoded in this dataset. The

deep vision approach relies on two sequential mod-

els, a ResNet152 for avalanche predetection and a

YOLOv3-SP for avalanche localisation and classifi-

cation. The paper proposes a live hybride AI frame-

work to monitoring webcams and present potentially

alarming images to experts for validation. In this

same way, another recent paper by Hafner et al.

(2024) proposes an interactive avalanche segmen-

tation to support avalanche mapping in webcam im-

agery. The study focused on the Dischma Valley

in the town of Davos, and covered 14 cameras in

6 different locations. The SLF dataset presented in

this paper is based on image acquisition every 30

minutes during the day, and contains 400 annota-

tions. Segmentation of avalanches are performed in

this study with a pixel-wise deep model. The inter-

active function is achieved by the intervention of an

expert who places positive clicks on the avalanche,

and negative clicks on the background. These clicks

are ingested by the model, enabling it to improve

classification and segmentation results.

Deep learning methods, while advanced, face chal-

lenges in reliability due to variable environmental

conditions and data quality, leading to issues like

false alarms and missed detection. To address

these, expert validation and adjustments are crucial

for improving accuracy. This paper presents the re-

sults from the first season of avalanche monitoring

in the Maurienne valley using a camera-based sys-

tem, detailing the difficulties encountered, benefits

obtained, and future outlook. It also analyzes the ef-

fectiveness and reliability of deformation algorithms

and deep learning detection methods for identifying

and monitoring avalanche events, based on obser-

vations from the 2023-2024 season. Following this

introduction, a presentation of the site is given in

section 2. along with a presentation of the energy-

efficient acquisition equipment and the database

produced. Section 3. presents the methodology

employed, featuring both a classical approach and

a deep learning approach. The results and limita-

tions of the methodology are presented in section



4.. Section 5. discusses the season’s operational

results, contributions to decision-making, and future

directions. The article concludes with a final sum-

mary.

2. EXPERIMENTAL SETUP

2.1 Bessans site

The camera system was installed at ca. 2950 m on

a ridge close to the Pointe de Soliet in Bessans.

The location of the system was choosen carefully in

order to provide an optimal view of the avalanche

release zones located at ca. 4.5 km on the other

side of the valley.

2.2 Camera acquisition system

A robust steal pole with a foot allowing versatile

positioning angles was used to optimally cope

with the alpine terrain. A picture of the system

is displayed on Figure 1. The camera system is

installed in a weather-proof housing and contains

the camera itself, as well as data transmission

and power management units. The camera is

equipped with an optical filter that improves the

quality of the snow cover images and reduces the

pixel saturation due to the brightness of sunlight

reflections on the snow cover. A consequence of

the implementation of this filter is the reduced range

exhibited by the images in RGB, so that the images

appear to be in greyscale. The system is equipped

Figure 1: The camera monitoring system installed close to the

Pointe du Soliet in Bessans, France, with the avalanche release

zones of interest close to the Pointes du Châtelard and Pointe de

Claret in the background.

with an anti-snow system continuously removing

the snow that could cover the camera lens during

important snow-fall. Due to the remoteness of the

system’s location, the power supply of the camera

and of the data transmission unit is covered with an

energy self-sufficient system consisting of batteries

and a 200 W solar panel. The different electronic

components and the power supply system were

designed to operate normally for two weeks under

adverse weather conditions and with limited solar

output.

2.3 Bessans-Alps dataset

The camera system records several high-resolution

(42 MP) images up to every 15 minutes that are

combined to generate high-dynamic range (HDR)

images exhibiting an improved contrast both for

visual inspection and automatic feature detection.

A dedicated HDR algorithm was developed for night

images, allowing to partially overcome the lower

light intensity and providing usable images. More

than 4000 images were acquired during the first

avalanche season (2023 - 2024).

3. METHODOLOGY

3.1 Overall methodology

Overall methodology for monitoring and detection is

presented in Figure 2. The method uses two distinct

approaches: digital image correlation for detecting

snow pack surface deformations, and deep learning

for classifying avalanche events.

3.1.1 Data preprocessing

Clear sky filtering. Images containing clouds pro-

vide no information on the surface of the mountain

other than overcast conditions. Weather and nivo-

logical stations are located in the town of Bessans

and in the nearby ski resort of Bonneval-sur-Arc.

However, it does not offer a good representation of

mountain whole visibility. In order to perform im-

agery algorithm and to exclude images containing

clouds, we apply filtering according to the combina-

tion of brightness measurement and edge detection

with trial-and-error thresholding. The edge detection

is implemented with Canny (1986) algorithm.

Co-registration. The camera system is subject to

wind and temperature-induced material expansion.

To ensure spatio-temporal coherence, images are

registered to the clear, cloud-free image batch using

the scale invariant feature transform method devel-

oped by Lowe (2004). Affine co-registration is then

applied using a moving reference image. Whenever

the coherence of the time series becomes compro-

mised, the reference image is replaced, ensuring

that the registration process continuously adapts to

changes in acquisition conditions.



Figure 2: Overall methodology implemented for avalanche monitoring and detection.

3.1.2 Digital image correlation

The digital image cross-correlation is performed on

the time-series that successfully passed the clear

sky filtering and co-registration steps. This tech-

nique is used to reveal surface displacements and

deformations, which could indicate stress accumu-

lation or instability, potentially leading to cracking

and sliding of the snow pack. We use a time series

of several days as input, analyzing deformations for

each hourly pair to minimize the impact of shadows

cast by the opposing cliff. In order to ensure con-

sistency in deformation estimation despite changes

in image acquisition rates, we skip any 24-hour im-

age pairs where an image is missing, such as due

to cloud cover. When too many images are missing,

we apply temporal weighting to the available data.

This involves adjusting the importance of the avail-

able image pairs based on the time intervals cov-

ered, thereby maintaining a balanced contribution to

the deformation analysis.

3.1.3 Deep learning model

Based on the work of Fox et al. (2024), we trained

a deep learning model on their ground image UIBK

avalanche database and inferenced it to Bessans-

Alps time-series. Since generating a Bessans-Alps

annotations base would be too tedious, we exper-

imented deep learning by using transfer learning.

In order to adapt to larger images and variable

size objects, we used the Slicing Aided Hyper In-

ference (SAHI) algorithm developed by Akyon et al.

(2022) to perform detection with sliding and overlap-

ping windows. We implemented YOLOv5 Ultralyt-

ics (2021) bounding boxes and segmentation mod-

els by training from scratch. To obtain comparable

results, we used the same dataset splitting as in

Fox et al. (2024), with 3,612 images for the train-

ing set and 478 for the validation set. A total of 10%

of the images in the training set are dedicated to

the validation set. Selection of the validation set is

based on three different randomized experiments to

obtain the standard deviation of model test set per-

formance.

For inference stage, the detection threshold is set at

0.25 to retain the maximum number of detection, as

the transfer learning approach can result in low con-

fidence scores. Then, two post deep-inference fil-

ters are added to improve the raw results by remov-

ing simple false positives. Firstly, the snow-covered

canopy of the woods or the city can lead to miss-

classifications. A binary mask overlaying the moun-

tain, which acts as a spatial filter is used to delimit

the study area. Secondly, hallucinations in saturated

or low-light conditions are addressed with an addi-

tional filter based on detection count and its deriva-

tive.

4. RESULTS

4.1 High Dynamic Range images

Two examples of images acquired by the system are

displayed on Figure 3, where the upper image was

taken at 3 AM and the lower one at 5 PM. The high

contrast and clear visibility of the image acquired

at night (top) is made possible by the application of

high exposure time and the customized night HDR

algorithm.

4.2 Digital image correlation

The results obtained with the cross-correlation al-

gorithm are shown in Figure 4. The inner dis-

placement field is color-coded with the magnitude

of the displacement intensity and allows to visually

detect zones with important displacement (possible

avalanche precursory signs like glide cracks or lo-

cal displacements due to settlements). In case of

avalanche events or cornice collapse, no displace-

ment are measured because it is not possible to

compute the correlation between the images com-

pared. In such cases, such as visible in the inset of

Figure 4, correlation losses can be used to directly

identify zones with important changes.



Figure 3: Images acquired with the camera system, under night

conditions on February 25th 2024 at 3 AM (top) and on January

31st at 5 PM (bottom).

Figure 4: Deformation between 2024-01-29 (± 1.5 days) and

2024-01-31 (± 0.5 day) in Px/24h.

4.3 Deep learning model

4.3.1 Classification and localisation

Training and time execution. Deep learning train-

ing and inference are performed on a workstation

equipped with dual NVLink RTX6000 GPUs. The

two YOLOv5 models were trained for 180 epochs,

with an early stopping criterion set to 25 epochs if

neither loss nor accuracy improved. The models’

architecture accepts an input size of 896, with an ini-

tial learning rate of 0.01, adjusted to a final learning

rate of 0.1 using the OneCycleLR scheduler. During

training, an Intersection over Union (IoU) threshold

of 0.20 was applied, and a confidence threshold of

0.25 was used for detection. We conducted multiple

validation tests on different input sizes (640, 672,

and 896), and varied the IoU thresholds and con-

fidence levels. Model training was completed in 3

hours on the UIBK dataset, with the multiclass an-

notations and 3 different validation seeds. On the

test set, the bounding boxes model achieved an F1

score of 45.6±2.3%, with a precision of 61.6±6.8%

and a recall of 37±5.7%. And the segmentation

model achieved a higher F1 score of 49±2.4%, with

a precision of 53.8±5.6% and a recall of 43.6±3.9%.

Each SAHI inference is performed in under 30 sec-

onds with these 7952×5304 pixel images.

Inference validation. Inference is performed on the

period from November 2023 to January 2024. A

dozen of major events are validated by experts dur-

ing this period. Deep learning succeeds in detecting

all of the cataloged events and detects more small

size avalanches. The set of inference validations is

limited in number but shows some preliminary prac-

tical results, which are presented below. The bound-

ing box detection and segmentation models are la-

beled differently, with different colors also used to

clearly distinguish between them.

Two significant slab were referenced at the top of

the massif. Figure 5 shows the results of these de-

tection. The two events were detected with a con-

fidence of 32% and 66% respectively. Another un-

expected slab was detected inside the left coombe.

The boundary with the snow cover is not quite clear,

which could explain the lower confidence index of

26%. The segmentation model also detects the

same slab avalanches with equivalent coefficients.

The loose class is correctly detected in Figure 6

with values of 52%, 35% and 55%. Moreover, a

glide avalanche is correctly identified although not

catalogued with the bounding boxes model and a

confidence value of 27%. The segmentation model

detects only two loose avalanches here, with con-

fidence of 28% and a high value of 71%. Both the

bounding box and segmentation methods effectively

identified the loose avalanches. These methods

complement each other in this context, with no false

detection observed. The segmentation is precise,



Figure 5: Catalogued slab avalanches (2023-12-03 at 3 PM).

offering a clear delineation of the avalanche zones.

However, some avalanche looses are also present

on the brightly lit left side, and are not detected by

any model.

Deep learning temporal detection. Figure 7 depicts

a cataloged glide event over three days. Four key

elements are presented: the pixel difference visu-

ally highlights daily changes that have occurred, de-

formation indicates areas of significant correlation

loss, corresponding to regions of movement, and fi-

nally, detection from both the bounding box model

and the segmentation model. Some events may

trigger larger avalanches. Detection begins with

an initial fracture in the top layer, followed by con-

tinuous detection of an increasingly extensive glide

with a higher confidence index (from 41% to 74%).

Deformation zones become progressively more ap-

parent over time, confirming the event’s presence

through both method by deep algorithms and corre-

lation loss.

With regard to event precursors, a significant drop

Figure 6: Catalogued loose avalanches (2024-01-29 at 4 PM).

in correlation is observed at 4 PM, followed by initial

detection using YOLO bounding boxes, leading up

to the glide’s collapse at 5 PM.

However, the deep detection model exhibits incon-

sistencies that may cause confusion. For example,

the ”loose” class is detected only once, despite the

increasing intensity of the avalanche and snow pack

fall over time. This inconsistency highlights a clas-

sification error, as the observed phenomenon is not

simply ”loose” snow but rather an accumulation from

the underlying slab, representing a specific case of

an avalanche interrupted by a rocky barrier. This on-

going glide event merits further analysis and should

be included in an extended training dataset. More-

over, the segmentation model shows fewer detec-

tion, in fact the glide is detected only once, and the

discontinuous snow accumulation is identified only

after the event under favorable lighting conditions.

4.3.2 Deep learning limitations

Hallucination. Deep learning models that repro-

duce results based on annotations, phenomena

such as dreams and hallucinations, although not

explicitly labeled, may emerge as a result of the

model’s operation. This is particularly relevant in

cases where the model operates under variable

lighting conditions. This same limitation has been

highlighted by Fox et al. (2024) and Hafner et al.

(2024) with unfavorable illumination condition. For

illustration, a raw inference result is shown in Figure

8 under the case of poor lightning condition. We ob-

serve abnormal slab detection on almost all rocks

and some glide on the town, which is entirely incor-



Figure 7: Catalogued glide avalanche detection over time (2024-01-28 to 2024-01-30).

rect. The temporal evolution of raw detection with-

out the use of post-inference filters is given in Figure

9. For this week, the hallucination phenomenon is

particularly recurrent in the early evening as the city

lights up.

Figure 8: Example of detection overestimation during a model

hallucination phase (2024-01-29 at 6pm).

Detection inconsistency. Inconsistency of detection

can be noticed both spatially and temporally. Fig-

ure 7 shows a discontinuity in detection around the

rocks. The same result is denoted all over the mas-

sif where glides on top of the rocks are detected, but

discontinuous snow accumulation at the base of the

rocks remaining undetected. This pattern of detec-

tion is consistent across the massif, where similar

issues are observed. Additionally, detection varies

over time as event are not consistently identified

in every frame despite remaining visible through-

out. As shown in Figure 9, the number of detection
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Figure 9: Number of raw detection per class obtained over the

last weekend of January 2024.

changes over time. Variations in light and shadow

have a huge influence on the detection capability

of the deep learning model. If the avalanche is

not snow-covered and lighting conditions are favor-

able, then detection can be carried out on several

images, which would validate or invalidate the de-

tection. However, detection cannot be fully ensured,

which is why the use of other algorithms, such as

motion detection, can provide additional support.

5. DISCUSSION

Both the raw night and day image data provided in-

teresting results helping operators of the system in

the visual inspection of the data throughout the sea-

son. With the images recorded, it was possible for

the operators of the system to remotely evaluate the

evolution snow cover conditions in the area, as well

as seeing how the avalanche situation evolved. This

was even possible in changing visibility conditions

(snow, fog), as the relatively high frequency of im-

age recordings (15 minutes) allowed to take advan-



tage of short improvements of the visibility condi-

tions.

The image-processing approach based on the dig-

ital image correlation provided a useful visual help

to detect changes in the snow cover, potential

avalanche precursory signs and avalanche trigger-

ing (by correlation loss). However, some further

developments would be necessary to automatically

detect these changes, or moreover, to be able to au-

tomatically detect and classify them. Here, the ap-

proach based on deep learning seems more promis-

ing. A number of perspectives can be pursued in

order to improve the deep learning-based detection

models under the constraint of using optical images:

- On image quality pre-processing, one ap-

proach might be to analyze avalanches even

under low-light conditions, using methods that

are not light-dependent. This could include im-

age decomposition techniques to isolate textu-

ral information. On the other hand, the use of

algorithms to improve image quality would en-

able a constant level of detection to be main-

tained, regardless of variations in illumination

condition.

- Instead of using a single robust model, we

could consider an adaptive model with the use

of models specific to each environmental condi-

tion. Another way would be to use an adaptive

model that adjusts its parameters in real time to

changing environmental conditions.

- Transfer learning and domain adaptation can

be coupled to deploy the detection tool on mul-

tiple sites with limited annotated dataset. Do-

main adaptation is particularly useful for gen-

eralizing models to different environments or to

data from different sources.

- Finally, the time-series imagery provides dy-

namic information that can be leveraged by

deep learning to detect events. This informa-

tion can be used as input for a model, from de-

tecting avalanches in individual images at time

t to identifying their emergence over a time-

series of images. Temporal information can

also be integrated externally via a quantitative

and qualitative snow pack deformation analy-

sis.

6. CONCLUSIONS

This paper introduces an optical monitoring system

installed in Bessans, Haute-Maurienne, France, that

was used by local avalanche authorities and experts

to visually inspect avalanche slopes above the main

access road of the region. Image-processing analy-

ses based on digital image correlation and more so-

phisticated deep-learning algorithms for avalanche

detection show that these technologies have a po-

tential to help experts in their monitoring and fore-

casting tasks. Further developments should focus

on increasing the reliability of the detection algo-

rithms, their speed and aim at automating the algo-

rithms. Moreover, the possibility of adding another

camera to the monitoring concept to gain some ad-

ditional information is under evaluation.
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