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Abstract

We consider the ensemble controllability problem for a linear time-invariant system
z(t,0) = A(0)x(t,0) + B(0)u(t), where A and B are continuous matrices with respect to
the parameter 0, which belongs to some compact set © C R. Given any continuous initial
state datum 6 — z°(6) and any continuous target state 6 — x'(6), we investigate the numer-
ical computation of a -independent open loop control u such that z° is steered, in a given
time T > 0, at a distance € > 0 of z' in the uniform norm (with respect to the parameter).

We approach the problem both theoretically and numerically. Using the Fenchel-
Rockafellar duality, we first prove the existence and uniqueness of the ensemble control of
a minimal L? norm. The numerical recovery of the optimal control is obtained by solving
the dual problem, which consists in the unconstrained minimization of a non-differentiable
functional in the space of Radon measures.

Keywords: parameter dependent systems, ensemble controllability, linear control system, Fenchel-
Rockafellar duality, numerical algorithms.
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1 Introduction

The concept of ensemble controllability [1, 8, 16, 21, 23] needs no more publicity nowadays with
regard to its practical importance. Its aim is to control systems whose natural dynamic depends
on some unknown or uncertain parameters in a robust and computationally efficient manner. In
particular, the goal is to find a parameter invariant control that performs well for each particular
realization of the parameters. This kind of problem arises for instance in the transport of quantum
particles, where the goal is to develop external excitation that can simultaneously steer the ensemble
of systems with variation in their internal parameters from an initial state to a desired final
state [20]. One can also see [3] where it is used to study the controllability of the Bloch equation,
for an ensemble of non-interacting half-spins, in a static magnetic field, with dispersion in the
Larmor frequency. Other real life practical example can be found, as for instance in non-holonomic
systems theory where ensemble controllability is used to derive an approximate steering algorithm
for a non-holonomic unicycle in the presence of model perturbation [4]. Nowadays, however,
the most widely application is related to machine learning, in particular to training processes in
supervised learning. By using the dynamic perspective of neural networks, the problem of their
training can be recast as a control problem in which the network coefficients (weights and biases)
stand for data(parameter)-independent controls [13].

From the generic notion of ensemble controllability, many other notions emerged as the one of
uniform ensemble controllability [16, 20, 21], uniform ensemble reachability, L?-ensemble reachabil-
ity [11]. Even if this topic is studied actively, it is far from being well understood. The necessary and
sufficient condition of ensemble controllability can be obtained as a special form of the generaliza-
tion of the Kalman rank theorem to infinite dimensional Banach spaces (e.g. [28, Theorem 3.1.1]).
However, such a characterization is primarily theoretical and not suitable for checking the control-
lability properties of a particular system. In the above-mentioned non-exhaustive references, the
authors have derived necessary and/or sufficient conditions for linear time invariant systems to be
uniformly ensemble controllable in some special cases. From these references, especially [8, 10, 11],
it could be seen that the topology of © plays a crucial role in the controllability issue. Roughly
speaking, for regular enough parameter dependent systems, uniform ensemble controllability can-
not hold if the compact set © is homeomorphic to some compact subset of R? (with d > 2) with
non-empty interior.

Most papers on the topic analyze conditions under which a system is ensemble controllable, but
do not consider the associated optimization problem of finding a feasible control of minimal norm,
nor do they deal with numerical recovery of the solution. An approximate construction of a feasible
control is provided only in some special cases (e.g. [3, 4]). In [15] the authors consider an associated
penalization problem in which the constraint of reaching the prescribed target with some a priori
given precision is replaced by an additional term in the cost functional that penalizes deviation of
the final state from the target. Consequently, such a problem consists in the unconstrained mini-
mization of a smooth functional and is numerically easier to handle. In [25], the uniform ensemble
control problem is replaced by a simultaneous one (consisting of hitting a reachable target). The
author discusses the strategies by which the latter can be approximated by its discretized version
(which is equivalent to an exact control problem for a large, finite-dimensional system). Let us also
mention [26], where an ensemble control is designed using polynomial approximations. However,
the results of [26] seem only applicable for single input systems.

In [18] we have characterized the optimal ensemble control in the discrete case (i.e., for a finite
number of parameters). Then, assuming Lipschitz regularity, we showed how to obtain a sub-
optimal control for the continuous case. In the present article, we directly tackle the case of a
continuous set O, and derive optimality conditions. Based on them we propose several numerical
strategies for recovering the minimal norm control. More precisely, we prove the existence and
uniqueness of a minimal norm ensemble control, and express it through the solution of the corre-
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sponding dual problem, which consists in the unconstrained minimization of a non-differentiable
functional in the space of Radon measures. The numerical strategies that we propose in this paper
are obtained using the optimality condition on the adjoint problem.

The paper is organized as follows. In the next section, we recall the notion and some basic
results on uniform ensemble controllability. In Section 3, we introduce the optimization problem of
finding a uniform ensemble control of a minimal L? norm and derive the associated dual problem.
We demonstrate the existence of a unique solution for both problems and list their properties. In
particular, the continuity of solutions with respect to the problem entries is obtained. Section 4
deals with a special but important case of discretized parameters (obtaining only a finite number of
values), where we also discuss the sparsity properties of the optimal measure. The convergence of
solutions when passing from discrete to continuous parameter setting is demonstrated in Section 5.
Numerical iterative algorithms are presented in Section 6, while their performances are checked
and discussed on several particular examples in Section 7. Appendices A and B contain some
technical and related results.

Notation. The following notations are used in the paper.
N =1{0,1,2,...} stands for the set of natural numbers including zero, while N* denotes the set of
positive integers. R, is the set of nonnegative real numbers, and we set R} = R, \ {0}. For a
matrix M € R™*™ M* € R™*" is the transpose matrix of M. |-| stands for the Euclidean norm
in R™, and (-, ) is the scalar product on R™. The open (respectively closed) ball of R™ centered on
some x and of radius € > 0 is denoted by B(z,¢) (respectively B(x,¢)).
For X a Banach space and f : X = RU{oo}, we define dom f = {x € X | f(z) < oo}, and cont f
is the set of points x € dom f where f is continuous. For S C X, int S is the interior of S.
Given n € N*, by C(0)" we denote the space of continuous complex vector functions on © C R
equipped with L* norm, i.e., C(0)" = C(©;R") and [ fllcq@y = supg [f(0)|. Boo(y, ) is the closed
ball in the space C(©)" centered in y and of radius e.
M(O) stands for the set of Radon measures supported on ©, while by M(O)" we
denote the dual space to C(©)" with the dual product given by (u, f)M(e)n,c(e)n =

Sy Jo fi(0) dui(0) = [ f(6)" dpu(8). In addition, for F € C(©)"*™, we define F*,u € M(0)™
by (F*ypu, f>M(e)m,c(9)m = (1, Ff>M(@)n,c(@)” = f@ (f(@)*F(G)*) dp(8).

2 Preliminaries
Let © be a compact subset of R and consider for every constant § € © the system described by

#(t,0) = A0)x(t,0) + B(O)u(t)  (t>0, 0 € ). (2.1)

In (2.1), we assume that A € C(©)" " and B € C(©)"™™. The input u is independent of the
parameter 6, and & is the derivative of x with respect to the time variable ¢. Given an initial state
2% € C(©)™ and an input u € L?(0,T)™, the solution of (2.1) at time ¢, is denoted by x(t, 0; °, u).
More precisely, we have,

t
x(t,0; 2%, u) = 40 20(9) —|—/ et=DAO B(9)u(t) dt (t=0, 0€0O). (2.2)
0

Definition 2.1 (Uniform Ensemble Controllability). The system (2.1) is said to be uniformly
ensemble controllable if for any 2%, 2' € C(©)" and any € > 0, there exist a time 7' > 0 and a
control u € L?(0,T)™, such that

sup |z(T, 0;2°,u) — z*(0)] <e.
0€6
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The terminology uniform in the above definition is used to emphasize the fact that the set of
output functions is the continuous one endowed with the uniform norm. This definition actually
makes sense since for any continuous initial state datum z° and any #-independent input u €
L?(0, T)m, the output trajectory is continuous with respect to the parameter 6.

Remark 2.2. The systems considered in the present paper focus on the case where A(6) and B(0)
are real matrices. However, all the obtained results can be applied to complex matrix, having in
mind that if A(f) € C**" and B(f) € C"*™ are complex matrices, then the complex system can
x x

be identified to a real system with matrices (gi _§R\f4A) € R27*2" and (gg _%\SBB) € R2nx2m,
where R and & denote the real and imaginary part respectively.

Let us also mention that it is classical that the set of parameter © is assumed to be a subset of C.
In this paper we only consider the case where ©® C R. This assumption is made, firstly, because
it avoids technical difficulties and, secondly, because, as said in the introduction, from [3, 10, 11]
typical sets © € C for which uniform ensemble controllability can be expected are one dimensional
objects.

The following facts can be found in [11].

Proposition 2.3. If (2.1) is uniformly ensemble controllable, then it is uniformly ensemble con-
trollable in any time T > 0, i.e., for any 2°, 21 € C(©)", any T > 0 and any € > 0, there exists a
control u € L*(0,T)", such that supyeq |17(T,9; 20, u) — x1(9)| <e.

Proposition 2.4. If (2.1) is uniformly ensemble controllable, then for every 8 € O, the pair
(A(0), B(0)) is controllable.

Remark 2.5. The direct consequence of the last result is that the control operator can not vanish
in any point, i.e. B(#) # 0 for every parameter 6.

More generally, we have the following exact controllability property.

Proposition 2.6. Assume (2.1) is uniformly ensemble controllable. For every K € N* and every
01,...,0K € O, two by two distinct, the pair (A,B) is controllable, where

A(61) B(6h)
A= ERKnxKn7 and B = ERKnXm_
A0k ) B(0k)

Let us also mention the unique continuation property for the adjoint system (cf. [10]). To this
end, we denote by M(O) the set of Radon measures supported in ©, and we define the control to
final state operator &7 € L(L?*(0,T)™,C(©)") by

T

(®7u)(0) = / (TDAO By At (0 €0, ue L2(0,T)™), (2.3)
0

ie., (Pru)(0) = =(T,0,0,u) with = given by (2.2). When there is no fear of ambiguity, we shall

use abbreviation zT = ®pu.
Note that the adjoint of ®7 is ®% € L(M(O)",L?*(0,T)™) defined by

o t) = B(0) eT—DAO)" 3,4(0) = { T-DA" B
(®z4)(6) /e (@)e ) <e oH >M(®)",C(®)"Xm

(te(0,T), peMO"). (24)
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Proposition 2.7. The system (2.1) is uniformly ensemble controllable in time T > 0 if and only if

{MGM(@)" | \ﬁe[(xTL/

B(0)*eT=DA0)" 4,(0) = o} = {0}. (2.5)
S

By the last proposition the uniform ensemble controllability implies the unique continuation
property of the adjoint operator, i.e.,

Orp=0=p=0. (2.6)

In particular, the Gramian operator defined as Ay := ®7®% € L(M(0)";C(O)") is injective.

3 Minimal L?-norm controls

3.1 Optimality conditions

The aim of this section is to characterize the minimal L?-norm control steering the system (2.1)
from z° to a distance € > 0 of z! in a given time T > 0. More precisely, given T > 0, € > 0 and
20, 2t € C(©)", we aim to find a minimizer of

. 1 2
min 5 HUHLQ(O,T)W s
m P
we€ L0, T)" and sup (P)

T
y(0) — / e TDAO B(G)u(t) dt| < e.
6co 0

where y € C(©)" is the final target adjusted by the solution of the homogeneous equation, i.e.,
y(0) = 21 (0) — A D2%9) (9 €0).

When there is no fear of ambiguity, we shall also refer to y as (adjusted) target.
We rewrite the problem (P) by introducing functions f € C(L?(0,7)™) and g : C(©)" —
R4 U {oo} defined as,

Fu) = 2l 02y (ue L2(0,T)™),
0 if [€—=vY|;erem <&, n

g@):{ 1€ = 9l o) (€ece)).
oo otherwise

In particular, g is the indicator function of the ball By (y,g) C C(©)".
Hence, (P) can be expressed as
min U Dru).
el f(u) + g(@ru)
Note that f and g are convex functions, and our aim is to approach the optimization problem (P)

by the Fenchel-Rockafellar duality. To this end, we consider the Fenchel conjugates of f and g
defined as

fr(v) = sup (<U7 u>L2(O,T)"" - f(u)) = % ”U”i"’(O,T)"” (ve LZ(OaT)m)a
w€L2(0,T)™
g" () = sup (<M,§>M(@)",c(9)" - 9(5)) = sup <M75>M(e)",c(e)"
gec(e)” gec(e)”
‘|§7y‘|1,06((—))n<5
= {1 Y) meoym coyr T € 1l oy (1€ M(9)").
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Here, and in the rest of this paper, for g = (p1,. .., ptm) € M(0)", we set

n

||M||M(~)": sup <M7§>M(~)"c(~)": sup <Mz‘afz‘>M@ c(e) -
©) geco)" (SINEE) €1,..,£n €C(O) ; (£26(6)
€1l oo (oyn <1 supe 31, 1€:17<1

Specially, if the components of p are written in the form u; = f;,v for some i-independent scalar
and positive measure v, then ||ul| vgyr = <(\/Zl- f?) b, 1>M(@) o) Jo | f(0)] dv(f). In the
special case of p being a combination of disjoint Dirac masses u — > Midg, for my € R™, its

norm is given by >, [my|.

Theorem 3.1. Assume (2.1) is uniformly ensemble controllable. Then for every y € C(©)™ and
every € > 0, the minimization problem (P) admits a unique minimizer uop; € L? (O,T)m given by
the expression

Uopt = (I);"/u‘opta

where pope € M(O)" minimizes the dual functional

J(n) = % H‘I)?MHsz(o,T)m - <M7Q>M(e)n,0(@)" +e HMHM(@)n (1€ M(O)"). (3.1)

Furthermore, the minimizer oy is unique, and satisfies

2
HU0pt||L2(o7T)m = <Nopt»y>M(@)n,c(@)n —€ ||,“0pt||M(@)n ) (3.2)

SUpp fiopr C {0 € © | |(Pruop:)(0) = y(0)] = e} (3:3)
and, for every test function v € C(©)" such that Pruepy +v € Bo(y,€),

<Mopt; U>M(®)n7c(®)n = 0. (34)
Finally, pop: is the zero measure if and only if y < e.

Remark 3.2. As |[(®ruept)(0) — y(0)] is the distance of the optimal final state from the target z?,
the characterization (3.3) restricts the support of the optimal measure to the parameters § € ©
for which the optimal final state lies exactly on the boundary of the target ball Bo (21, ¢).

Proof. We first observe that f is strictly convex, and dom g is not empty. Furthermore, we observe
that {u € L*(0,7)" | ®ru € dom g} is a convex set and g is lower semi-continuous. These facts
ensure the existence and uniqueness of a minimizer of (P) (see e.g. [24, Theorem 2.19]). Note
also that cont g = intdom g and dom f = L?(0,T)", hence, the uniform ensemble controllability
assumption guaranties that ®7 dom f Ncont g # (. Thus, according to Fenchel duality (see e.g. |5,

Theorem 4.4.3], [24, Theorem 3.51] or [12]), we have
. + ‘I) — _ * ‘I)* _ * _ - _ . * (I)* _|_ * _
werdn f(u) + g(@ru) L f(@7n) — 9" (—n) ue%(%)nf (@7p) + 9" (—1)

_ . 1 * 2 _
T ueme)y 2 [RT 1l L2 0,y = (4 ¥) meey ey T € 1l aoyn -

In addition (3.1) admits a minimizer p,y; € M(0)", and we have

f(uopt) + g(@ruopt) = = (7 ttopt) = 9™ (—topt) (3.5)

and
O ptopt € Of (Uopt) and  — popr € 0g(Pruopt),
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where 0 stands for the sub-differential. As f is a smooth function, its sub-differential is a singleton,
and from the first of the above inclusions we get that wep: = @5 propt-

Noticing that f* = f, g(®Pruep:) = 0, we get from (3.5), 2f(topt) = —g*(—fopt), Which leads
to (3.2).

We also have that zl, := ®rue: € C(O)" is such that "mfpt—y"Lw(@)n < e,

ie.,
g(zl,) = 0. Then, —pop € dg(xl,) implies that for every v € C(©)", g(zl, + v) =
g(:z:oTpt +v) — g(:z:zpt) > <7M0Pt7v>,/\/l((~))"’c(@)"' In particular, if ||xfpt +v— y||L°o(@)n < g, we
have 0 < (uopt,v>M(®)n7C(@)n, thus proving (3.4).

From here we obtain the characterization (3.3) of the support of pop. Indeed, for ev-
ery v € C(©)" such that suppv C {#€© | ’mgpt(O) —y(0)| <}, there exists @ > 0 such
that fopt + av —ZJHLOC(@)E < ¢ and ||.I?;pt — v —yHLOQ(@)n < €. Hence, we shall have 0 <
(,uophv}M(@)n)C(@)n and 0 < — </1,opt,’l}>M(@)n’c(®)n, leading to 0 = <:U/Optav>M(@)n)c(@)n'

Dealing with the uniqueness of p,¢, assume by contradiction that p; and po are minimizer
of J. By the uniqueness of uypt, we have uopr = @51 = ®po. According to Proposition 2.7, we
conclude that g1 = po.

Finally, if Hy||c(@)n < £ (meaning that the free dynamics brings the state within the target
ball) by the definition (3.1) of the functional J and the Cauchy-Schwarz inequality, we have that

for every measure j € M(©)"

J(1) = = [l meym 1Wlleeyn + € il pggeyn = 0= J(0),

i.e., the functional J is nonnegative and jiop: = 0 is its unique minimizer.

The reverse implication holds trivially, as if [|y[|c(g)» > € then a nonzero control is required in
order to satisfy the constraint (of reaching the target ball). Using classical optimization techniques
arguments, it can be even shown that in that case ||opt || 5, ()~ is bounded from below by a positive
constant depending linearly on the difference [|y||¢g)» — € (e.g. [I7, Proposition 2.3]). O

Proposition 3.3. Using the assumptions and notations introduced in Theorem 3.1, the optimal
measure Uop: 15 of the form

dptopt(0) = a(0) (y(0) — 25, (0)) d|ptope] (9), (3.6)

where |fopt] = Doiy |topt,i] € M(O) is the sum of total variations of components of the vector
measure [lop, while a : © — Ry is an integrable (with respect to |popt|) nonnegative scalar function.

Proof. Step 1. We first show that
<Nopt; U>M(@)n’c(@)n =0, (37)

for every test function v € C(©)" such that (v(6),y(0) — zZ,,(6)) > 0 whenever |(xoTpt)(0) —y(0)| =
g, 0€0.

Suppose first that v satisfies the last inequality strictly, i.e., that (v(6),y(8) — xl,(0)) >0
for every 6 € © satisfying |zop(0) — y(0)] = e. Then we show there exists a 6 independent
scalar o > 0 small enough such that [|zep +av —yll gy < €. Indeed, let us set Ogp =
{0 €0 | |zopt(0) —y(0)| =€}, since § — |zop(6) — y(F)| is continuous, we have that Op is
compact. On this set, we have (v(6),y(8) — zope(0)) > 0, using the uniform continuity on © of this
function, we get the existence of § > 0 such that (v(6),y(0) — xep(8)) > 20 for every 6 € Oy,
and there also exists 77 > 0 such that (v(6),y(0) — xop(8)) > 6 for every 6 € O, + B(0, 7). Using
the fact that © \ (O + B(0,7)) is compact, we also obtain the existence of & < ¢ such that
|zopt(8) — y(0)| < € for every 6 € © \ (Oupt + B(0,n)). All in all, we have for every o > 0,
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[ ] fOI' 9 S @Opt + B(O7n)7

[Zopt (0) + () = y(O)” = |2ops (6) = y(O)]” — 2a (v(0), y(6) — oy (60)) + @* [0(0)]”
e? — 2ad + o? ||v|\ioo(9)n .

e for 0 € ©\ (O + B(0,7)),
2 ~
|22,0(0) + av(0) — y(0)]” < &+ 2ae [0]] oo (@) + @ HUHQLw(e)n :
Hence, taking o > 0 small enough, we have |930pt 0) + av(f) — y()| < e for every 6 € ©. By (3.4)
this ensures that (topt, V) yy(pyn c(@yn = 0 for every v € C(©)" such that (v(0),y(0) — xL,,(0)) >0
for every 6 € Op;.
It remains to prove that (3.7) holds true, even if (v(),y(0) — xL,,(8)) > 0 for every 6 € Oy In

fact, if v satisfies the last condition, then (v(6) + o (y(8) — x2,1(0)),y(0) — xfpt(9)> > 0 for every
6 € O, and every a > 0. This ensures that 0 < (pope, v(0) + o (y(6) — xfpt(ﬂ)»M(@)n @)’ and
hence, taking the limit « — 0, we obtain the desired result.

Step 2. Now we prove the relation (3.6)

First, let us note that pp; is absolutely continuous with respect to the measure |pop:|. By the
Lebesgue-Radon-Nikodym theorem (see e.g. [14]) there exists an integrable (with respect to |gopt|)
vector function ¢ such that dpep:(8) = ¢(0) d|popt|(8).

It remains to prove that ¢ = a(y—z ) for some a : © — R, which is integrable (with respect
to |topt|)- To this end, without loosing generality, let us write ¢ as

p(0) = a(0)(y(0) — 26, (0)) + w(0), (3.8)

where w(f) € {y(0) — ajgpt(H)}L, while « is an arbitrary (not necessarily non-negative) scalar
function. Without loss of generality, we can assume that supp ¢ C supp fiopt, i.€., we can assume
that « and w vanish on ©\supp pep. Taking into account that y—xoTpt is continuous on © and that
ly — x| = € on supp pope, we get that a(6) = (y(8) — xL,,(6),0(0)) /e? for every 6 € supp popt.
This ensures that o is |fop|-measurable, and then w = ¢ — a (y — 7 ;) is also |pep¢|-measurable.

Define v = ¢ (y — x,,,), where ¢ € C(©) is an arbitrary non-negative, scalar test function. v is
therefore an eligible test function in (3.7), implying

O g <N’opta > )n )n / < Zpt(a)) + w(o))ﬂ/f(g) (y(@) - prt(e))> d |H’0Pt| (9)
/ 0(0)[1(0) = a0 O 0(0) el 0) = {00 ltoil- 0 |y = alyel”) |

As |popt| is a non-negative measure, by varying ¢ and taking again into account that |y — x;{pt| =€
oL SUpP fopt, it follows o = 0 for |pep|-a.e. 6. Taking ¢ = 1, we also get that « is |pepe|-integrable.
; . 2 _ 2 _ T
Furthermore, (3.2) together with Huopt”LZ(o,T)m = H‘I%uoptHLz(o’T)m = <:u“0Pt?‘Topt>M(@)n,C(@)n
leads to
_ T
€ ||,LLopt||M(@)" - </U'Opt7 y— xopt>M(@)n’C(@)n .

At this stage we exploit the form (3.8) and put pigpr = (a(y —2,,) + w)p |popt| in the last
expression. By taking into account that w(@) is orthogonal to y(#) — xZ (), and recalling that
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|y — xoTpt| = € on Supp fopt, We get

= [ 1a@)w) = 25,0) + wO)] it (6) = | a(6) |0(6) ~ 5Ty )] d el ©)
(C] [C]
== [ a0)|6(0) = 5] o 0) (39)

As « is a non-negative function and |a(y — zfpt) + w| >« |y — xoTpt|, the equality (3.9) implies
la(y — 2L,) + w| = a|y — al,| for |pope|-a.e. 6, that is to say that w = 0 for |pep| (and conse-
quently for pop) a.e. 6. O

Remark 3.4. The last result covers the well-known behavior of the optimal control in the deter-
ministic case, i.e., when © is a singleton. In that case, unless the optimal control is trivial, the
solution of the dual problem is a vector having the same direction as y — xzpt (see e.g. [19]).

In general, when a functional of the form (3.1) is defined on a Hilbert space, its minimizer hgy; is

either trivial or a solution to the Euler-Lagrange equation which formally reads as:

h
T opt

— X = €& .
O T

In that case it follows directly that the minimizer has the same direction as y — 7 ;. This kind of
result is stronger than the one obtained in the last proposition, and it corresponds to a constant
function « in (3.6). The reason why such approach is not possible in our setting is that the norm

term ||t/ o @)~ entering the functional J is not differentiable.

As a consequence of the last proposition, we obtain the following characterization of the optimal
measure in the scalar case.

Corollary 3.5. Using the assumptions and notations introduced in Theorem 3.1, let us suppose
n=m=1.

Then the control operator does not change sign, i.e., there exists e € {—1,1} and 8 € C(O) such
that 5(0) > 0 and B(0) = €B(0) for every 6 € ©.

Set O, = {00 | y0)—al,(0)=c} and ©_ = {0 €0 | y(0) —2l,(0)=—c}. Then
SUpP opt C O UOL and pop is nonnegative (respectively, nonpositive) on © 4 (respectively ©_ ).

In addition, if ©_ = 0 (respectively ©4 = (), then either uo = 0 or sign(uep(t)) = €
(respectively sign(uop:(t)) = —€) for every t € [0,T].

Proof. The fact that B € C(©) does not vanish directly follows from Proposition 2.4. Being a
continuous function, its sign is constant.

The support and sign conditions of ji,,; directly follow from (3.3) and Proposition 3.3, respectively.
For the sign of uepe, let us assume that ©_ = ) (the proof for other case is identical). We have for
every t € [0,T],

Uopt (t) = /@ eI O B(0) dptop (0) = € /@ eT=DA(O) B(6) gt (6),

+

We conclude by noticing that, for every 6 € ©, eT=947(®)3(9) > 0 and Lopt is nonnegative. In
particular, uop: = 0 if and only if y10p: = 0 and, according to Theorem 3.1, this holds if and only if
19llc(e)» < €. Otherwise, the optimal control has a constant sign equal to € for every ¢ € [0,7]. O

The rest of this subsection provides results by which one can construct a family of optimization
problem (P) for which the minimizers of (3.1) can be explicitly calculated. This will allow us to
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compare the results obtained by the numerical procedure to be presented in the Section 6 with the
exact ones and to verify efficiency and correctness of the proposed algorithms (see Section 7).

The idea is to invert the problem: we specify a positive measure i and calculate 77 = &7 ®2.11,
the final state of the system run by the control u = ®%.pi. The adjusted target y is then carefully
chosen as a center of a square whose one vertex is 71 (note that the geometrical representation of
a ball in C(©)" is actually a square). In particular, in accordance to Proposition 3.3, the difference
y — 1 has the same direction as [ for every parameter value 6.

Proposition 3.6. Using the assumptions and notations introduced in Theorem 3.1 take € > 0,
n € M(©) a nonnegative scalar measure, and f € C(0O)™ such that |f| does not vanish. Define
o= fon, 8 = ®r®hu and y = 27 + 5‘—’;|. Then [ is the minimizer of J defined by (3.1).

Proof. Let us first observe that for every u € M(0©)™, we have
* 2
J(p) = % ”(I)T//’HL?(O,T)”‘ - <va>M(@)n,c(@)n te ||N||M(@)n
* 2 * * ~
= 1053 01y~ (@50 850 € (o = (1), o i)

and

- . (£, 1) .
J() = =3 057l 0 oy +2 ( Listan— [ lan) = <3 1933 -
Let ftopt € M(O)™ be the minimizer of J, we have J(opt) < J(ft), that is to say that

* ~\ 112
% 197 (1opt — M)HLz(o,T)m < € (HMOPtHM(@)" - <M0pt’ Ti‘cl>/\/l(®)" C(@)”) )

Obviously, we have [[poptl| pgoyr = <,uopt, |§T>M(®)" cop’ from which we can conclude that we

necessarily have ®%.(popt — ) = 0. We conclude that pop = [ using the unique continuation
property (2.6) of the adjoint. O

As a direct corollary, we have the following result.

Corollary 3.7. Using the assumptions and notations introduced in Theorem 5.1. Suppose n =1,
let e >0, € € {-1,1}, n € M(O) a nonnegative measure, y = e(@rP5n + ). The minimizer
of (3.1) is en.

Proof. This is Proposition 3.6 with f = e. O

From Proposition 3.6 and Corollary 3.7, we see that there is no reason that the optimal mea-
sure [iopt is sparse, i.e., the Lebesgue measure of its support is in general not zero. This might look
surprisingly at the first glance, as fiop is @ minimizer of the functional containing the ||-|| M@
term. This non-sparsity pitfall will be discussed in Section 4 in the case where the parameter set
is of a finite cardinality.

3.2 Continuity properties of the minimizers

The characterization of the solution through the adjoint problem, that is obtained in the previous
subsection, allows us also to demonstrate the continuity of solutions to optimization problem (P)
with respect to the tolerance ¢, the time 7" and the adjusted target y. More precisely, we consider
a sequence of functionals

* 2 n
Je(p) = % ‘|¢Tkﬂ|‘L2(o7T)m - <N>yk>M(9)",C(9)n + &k HNHM(Q)" (ne M(©)"). (3.10)

where:

10
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(i) yr — y strongly in C(©)™,
(ii) Ty — T in R%
(ili) ep — € in RY.
By Theorem 3.1, for each k£ € N, the functional J; admits the unique minimizer p; satisfying
the relation

. 2
H@TkukHL?(O,Tk)m = (bt Uk) poym oy — €k ikl pqgoyn (3.11)

and the control uy = ®7, iy is the solution of the optimal ensemble control problem

. 1 2
min 5 [[ul[72 o,y

m P
‘ we L20,7)" and |y — D7, ul| oo (@) < Ek- (Pi)

We are going to prove that (), and (uy), converge respectively vaguely and strongly (in the
appropriate spaces) to the limit points p and u, respectively, where p is the minimizer of the limit
functional (3.1) and w is the solution of the ensemble optimal control problem (P).

Note that the convergence of time horizons T}, implies strong convergence of the operators @,
and @7, . The following technical result characterizes strong convergence of arbitrary operators on
Banach spaces.

Lemma 3.8. Let (Ly), be a sequence of linear operators in L(X,Y), with X andY being Banach
spaces. The following statements are equivalent.
(a) Ly, — L strongly in L(X,Y), i.e.,

VueX) Lyu— Lu inY.
(b) For every weakly * converging sequence (vy), inY' it holds
vp — v = Ljvy — L*v in X'
(¢) For every strongly converging sequence (ug), in X it holds
up —u — Lgup — Lu inY.

Proof. (a) = (b): Let (vy), converge weakly * to v € Y. By employing the strong convergence of
the operators Ly, for every u € X we get

(Lrok, u) xo x = (Vs Liw)ys y — (v, L)y, y = (L*v,u) ¢
ie., Livgy — L*vin X'.

(b) = (c): We first prove the weak convergence of the sequence (Lyuy),. To this end, note that
for an arbitrary v € Y’ we have

(v, Liur)y y = (Lpv, uk) xr x — (Lo, u)yr x = (0, L)y y

Here we have employed the strong convergence of (uy) and the assumption (b). In particular, we
have
| Lully < likminf | Liuklly - (3.12)
— 00

On the other hand, for each k there exists vy € Y’ such that

| Luglly = (vr, Liur)yr y (3.13)

11
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and ||vglly, = || Lxuklly (see e.g. [6, Corollary 1.3.]).

Due to the weak convergence of (Lyug),, the sequence of norms || Ljuy ||y is bounded, in sequel
implying boundedness of (vy), in Y. In particular, up to a subsequence, (vy), converge weakly *
to some v € Y, and it holds

[vlly, < liminf oy, = liminf || Lyug]y - (3.14)
From here it follows
| Luglly = vk, L)y, y = (Livi, ) o x — (L'0,u) 0 ¢ = (v, Lu)y, y (3.15)

where we passed to the limit by using the assumption (b) again.
In particular, by employing (3.15) and (3.14), we obtain

2
[Lxurlly = y(v, Lu)y < [Jolly. [|Lully < [ Lwurlly | Lully

lim lim
k—o0 k—o0

implying limg oo || Lruk|ly < ||Lully . Together with (3.12) this finishes the proof.
(¢) = (a): Trivial (take a constant sequence uy = u). O

Before proving the convergence, we first demonstrate the boundedness properties of the mini-
mizers.

Lemma 3.9. The sequence (ux), of minimizers of functionals Jy, given by (3.10) is bounded

in M(©)™.
Proof. We argue by contradiction and assume that
||.Uk||M(@)" — 0 (3.16)

(up to a non-relabelled subsequence).
Dividing the relation (3.11) by [z || py(ey» and denoting vy, = pui/ [ e[| pqoyn We get

« 2
HM’C”M(@)n |(I)Tk VkHL2(07T)7n, = <Vk> yk>M(@)",C(@)" — k- (317)
As all the terms on the right-hand side are bounded (with respect to k), the contradictory assump-
tion (3.16) implies
®% vy — 0 strongly in L?(0,7)™. (3.18)

On the other hand, denoting by v the vague limit of (v;) (up to a subsequence), the strong
convergence of operators @7, and Lemma 3.8 imply ®7, v, — ®7v weakly in L?(0,T)™. Together
with (3.18), we get ®%v = 0, while the ensemble controllability assumption (2.5) implies v = 0.

Going back to (3.17) and passing to the limit we get

0> er — (Vk, Yk) m(oym c(o)r — -

Here we use that (vk, yx) M@)m ce)y 18 the dual product of a strongly convergent functions with
measures converging vaguely to zero, thus vanishing on the limit.
The last relation provides the desired contradiction which, in turn, implies the result. O

Based on the last two lemmas, we are going to obtain the main result of this paragraph.

12
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Proposition 3.10. The sequence of minimizers uy of the functionals Ji, given by (3.10) converges
vaguely in M(©)" to piop (the minimizer of the limit functional (3.1)), and bkl pr(@yn converges
to ||M0pt||M(@)vl' In addition, the sequence of optimal ensemble controls ux = @, i converges
strongly in L2(0,T)" to the solution of the limit problem (P).

Proof. By Lemma 3.9, there exists a (non-relabelled) subsequence of the minimizers py converging
vaguely to some measure py € M(0)".

In the first part of the proof, we show that the limit uy is the unique minimizer of the limit
functional (3.1). Thus, it suffices to show

Jup) < J(w), peM@O)". (3.19)

To this end, we explore the convergence properties of the sequence of minimal functional values

. RTINS 1 % 2
hkrglorgf T () = hkrggf(g Hq)TkukHLQ(QT)"" — (Bks Yk) Moy co)m €k ||ukHM(@)n,). (3.20)

Due to the weak lower semi-continuity of norms in Banach spaces, the last term is bounded from
below by € [|uL || poyn-
The second term on the right-hand side of (3.20) is the product of a strongly and vaguely

convergent sequence, thus (uk,yk>M(@)n’c(@)n — (uL,y>M(@)n’c(@)n.
As for the first term entering functional J; by Lemma 3.8 and the strong convergence of the
operators @y, we have ®%, pip — ®7ur, weakly in L?(0,T)", implying

B inf [| D, ux |7 g gy 2 195 1L 20,1y - (3.21)
Consequently, from (3.20) we get
lim inf Ji (i) > 3 | ®7 4Ll 720 7ym — (i 9) + < [zl pgoyr = I (1r)
As pp minimizes Jy, for an arbitrary p € M(©)™ we have
1ikn_1)gf Ji(p) = J(pr). (3.22)
On the other hand, employing the assumed convergences, (i), (ii) and (iii), for each fixed p we have

12
Je(p) = % Hq)TkM|‘L2(07T)m - <M>yk>M(@)n,c(@)n + ek ||M||M((~))" (3.23)

* 2
=3 1P ullZ2 0.0y = (1 U) oy oy T € 1l pggeys = I ()-
Together with (3.22) this implies (3.19), and in particular f — fops-
In the second part of the proof, we will show that the sequence ||p|l ) converges
to ||ﬂozot||M(@)n-
Taking ft = fiope in (3.23) we have,
S (pope) = Hm Sy (pope) = N Jyo(p)-

Combining the obtained inequality with (3.22) (remember that fi,p = pr) we get the convergence
of the optimal values Jx(ur) — J(topt). Together with (3.21) this convergence implies,

hkrgiogf ||:uk||M(e)” < ||N0pt||M(@)n .

which together with the vague convergence of the sequence (py) implies the desired result.

The strong convergence of optimal ensemble controls uy = @7, . follows now directly from the
strong convergence of the operators ®7, and the vague convergence of the measures uy (cf. Lem-
ma 3.8 (¢)). O

13
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4 Systems with a finite number of parameter values

In this section, we restrict the analysis to the case of a finite number of parameters, i.e., card © < co.
Such situation deserves a special attention, not only because in some applications the parameter
assumes only discrete and bounded values, but also because the most general situations (i.e., those
in which the parameter ranges over a continuous set of values) are numerically treated and analyzed
as the limit case of discretized problems as the number of elements in the parameter set goes to
infinity.

The aim is to provide a geometrical description of the problem and its solution, which will
allow us to discuss the conditions under which the optimal measure (i.e., the minimizer of the
functional J given by (3.1)) is sparse.

To this end, we assume that the parameter dependent system (2.1) is uniformly ensemble
controllable, and that we deal with a parameter set © of finite cardinality. As we consider finite
dimensional systems only, these assumptions imply that the Gramian operator Ay = @7 &% €
L(M(0)";C(0)") is not just injective (due to Proposition 2.7), but also of full range. Indeed,
due to the assumed finite cardinality of the parameter set, both spaces M(0©)" and C(0)" are
finite dimensional and are isomorphic to R™® (where K = card ® € N* denotes the number of
parameters), thus the statement follows from the rank-nullity theorem.

For ¢ > 0, we introduce the subset E. C C(©)" consisting of all the final states 27 that can be
reached with a control of norm less or equal to ¢, i.e.,

E, .= {xT €C(®)" | Jue L*0,T)" such that lull 2o, 7ym < ¢ and !l = @Tu} .

As the minimal norm control reaching any state z7 is of the HUM form ®Z.u for some u € M(O)
(see e.g. [29]), the introduced set can be characterized as follows

E. = {xT €C(0)" | Iu € M(0)" such that z7 = Azpu and 1271l 20,7y < c} )

where A stands for the Gramian ®7®%. As the ensemble controllability assumption ensures the
injectivity of the Gramian, the optimal control norm can be rewritten as

* 2 * -1..7 T
95011 = (880 = (AT 0o

leading to the following characterization of the set F.:
T n -1, T T 2
E. = {x ecO" | (Ap'a",x >M(@)",C(®)" <c } (4.1)

In other words, E. is a sublevel set of a smooth function F(2T) = <A}1xT,xT>. In particular,
{E., ¢ > 0} is a nested family of closed, convex sets with smooth boundary 0F,. = {zT | F(zT) =
¢?}. The normal functional at the point 27 € 9E, is npg, (z7) = VF(27) = 2A; 27

Theorem 4.1. Let 27, 2' € C(©)™ be such that |z'(0) — 2T (0)| < e for every 6 € ©.
Then xT is the optimal final state of the problem (P) with the target x' and initial datum x° = 0
if and only if the normal functional ng, (xT) is of the form

ng, (xT) = (a(ml — xT)) bV, (4.2)

where o € C(O) and v € M(O) are respectively a non-negative scalar function and a non-negative
measure, and o(f) = 0 whenever |z*(0) — 27 (0)| < e.
Here E, is the sublevel set defined by (4.1) with the constant ¢ = H<I>*TA;1xT||L2

minimal norm required to reach zT.

(0,1)™ being the

14
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Remark 4.2. By the choice of the level ¢, it follows that 7 € JE,. If additionally the relation (4.2)
holds, i.e., if 27 is the optimal final state of the problem (), then ¢ = H@}A;leHB(O )™ is the
smallest level such that the intersection of the sublevel set E. with the target box is flon—empty
(see Figure 1).

ng, (z")
1-=
0.5~
r'@
0
2 L_15¢ ~1 <05 0.5 1 15
v
X

057

Figure 1: Set E, for n = 1 and K = 2, together with the target ball, the optimal final state 27
and the normal functional ng, (z1). Each x € C(©) is presented by a point (x(6),x(62)) € R2.
For this plot, we have set A(61) = 1, A(f2) =5, B(61) =1, B(62) = 1/50, T =1, ¢ = 1/4, and
the plotted set E. is for ¢ = 1.

Proof of Theorem 4.1. = Let us assume that 27 is the optimal final state of the problem (P).
In that case %na (T) = A;la;T is the optimal measure and the result follows directly from
Proposition 3.3 (ensuring that it is of the form a(a! — 27)|popt|, With o and |ppe| being a non-
negative scalar function and measure, respectively) and the description of the support of the

optimal measure (3.3).

<= Assume that (4.2) holds. In order to prove the statement, it is enough to show that x7 is the
only element in the intersection of the sublevel set E.. and the ¢ ball around the target 2 € C(0)".
We assume the contrary, i.e., that there exists some #7 # x” lying in the above intersection.

We split the parameter set into two disjoint subsets, defined as

O,={0€0 | [z'(0)—2"(0)|=c} and ©;={0€0O | [2'(0)—2"(0)] <e}.

By the assumption made on «, ©; is a zero measure set for ng_(x?). On the other hand, for any
6 € Oy, the vector 27 () lies on the boundary of the e ball (in R™) around the target z'(6), which,
together with the fact that 7 (0) belongs to the same ball, implies that

((z' =2T)(0), (" =2")(0)) =0 (0 €06y). (4.3)
Consequently, we get

(ne, (xT)W%T - $T> c(e)r = (np. (= ) - wT>M(®1)“,c(®1)"

<(a b — 2T Y Tl — xT> (4.4)
MHceH)
~T

<abu7 (x - ) (x >0,

—2")) paeryn ciory

where the final inequality follows by (4.3) and the assumed non-negativity of the measure a,v.
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As ng, (2T) is the normal functional, the only way for 27 € E. N By (z!,¢) to satisfy the
inequality (4.4) is that <nEC (xT),ET — xT>M(e)n,C(e)n =0, i.e., that 7 belongs to the tangential
space Tg_(x7). As the convex set E, intersects the tangential space Tg_(x7) only in its boundary
points, it follows that 27 € OF.. In such way we obtain two distinct points 27 and z” lying in
OE.NBs (2, ). However, that would imply existence of two different feasible controls of the same
norm, ¢, which contradicts the uniqueness of the solution to problem (P). O

Remark 4.3. Note that the relation (4.2) implies that the optimal measure
topt = Ap'a” = ing, (27) (4.5)

has, in every point § € ©, the same direction as (x! — 27)(#), which is in accordance with the
results of Proposition 3.3.

The last result allows an alternative, more direct proof of Proposition 3.6, in the case where
the parameter set is of finite cardinal, by which one can construct a series of problems for which
the exact solution is known.

Alternative proof of Proposition 5.6. With the notations and assumptions of Proposition 3.6, let

c= H(I)}A;l%T||L2(O )™ be the minimal norm required to reach the state Z7. Then for the normal
functional ng, (1) we have
ng, (1) = 207177 = 2f,n =2 LA 4
g (B) =200F =2fm =2 (2 (y=27) |om,

where n € M(©) and f € C(©)™ are the nonnegative scalar measure and the continuous vector
function from the statement of Proposition 3.6 such that A;I%JT = fun.

From here we see that the normal ng_(z7) is of the form (4.2) (note that y = x! for the zero
initial datum). The statement now follows from Theorem 4.1. O

The introduced sets E. allow us to describe the set of targets for which the associated optimal
control vanishes for some parameter § € ©. This allows us to construct examples for which the
exact solution is known. This is important in numerical implementations, where the detection of
active parameters plays a crucial role in constructing the optimal measure.

For simplicity, the discussion is provided for scalar systems, i.e., we assume n = 1.

Given some optimal final state 7, we know that the corresponding optimal measure is of the
form (4.5). In particular, its i-th component (with ¢ € {1,..., K} and K = card ©) is going to be
zero measure if and only if 27 = Arpiopt lies in the hyperplane H; = [Aq,...,Aj—1, Ajy1 ... Ak]
spanned by all the columns of the Gramian matrix except the i-th one. This happens exactly for
the states 27 for which the normal derivative ng, (1) = 2ptopt is orthogonal to the i-th coordinate
axes (Figure 2).

As any target 2! lies at most ¥/2¢/2 from the optimal final state, this implies that the set of
targets N; for which the i-th component of the optimal measure equals zero is contained within the
hyperstrip Hf := H; + B(0, I{/?a/ 2). More precise characterization of this set can be obtained in
the case K = 2, i.e., when the parameter obtains only two values. In that case, the set of targets
for which the i-th component of the optimal measure is zero is given by

)

n T
Ni = {JJT + € (MECE.’I}T) +ﬂ61) ‘ l’T S Hi, |5| < 1} UBOO(O,FJ),

and depicted on Figure 3.
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H, -2~

H,

Figure 2:  The hyperplanes H; and H for n = 1 and K = 2. Arrows represent ng, (z1) for
different values of ¢ and well-chosen values of 7. The parameters used for this plot are the ones
of Figure 1.

N

Figure 3: Sets Ny and Nj for n = 1 and K = 2. The parameters used for this plot are the ones
of Figure 1.
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For numerical implementations, it would be very useful to know whether the given target
belongs to some set IN;. This is because revealing the support of the optimal measure is often the
most challenging part of the numerical process, while, as we shall see in Section 7 (see in particular
Examples 7.1 and 7.2), tuning the weights of active Dirac distributions turns out to be easier.
However, the description of the sets N; requires computation of the Gramian operator, which is a
computationally very demanding task (therefore construction of the Gramian is generally avoided
and instead various iterative procedures are used for solving control optimization problems). For
this reason, the above description of targets for which the optimal measure vanishes at some points
cannot directly accelerate numerical procedures. However, it contributes to a better understanding
of the problem and its solution, and allows us to describe some characteristics of the optimal
measures, in particular the sparsity.

In general, we can say that for the targets that are not contained in the union of hyperstrips
U; H? the optimal measure is going to be fully supported. Of course, as hyperstrips H;, ¢ €
{1,...,K} cover just a smaller portion of the whole output space R¥, this will be the case for
the most of the targets. This might look surprisingly, having in mind that the term & ||ul| M@)"
entering the dual functional (3.1) is supposed to imply the sparsity in the support of the optimal
measure. However, in the discrete case, the norm ||-[| \ ) is equivalent to the /! norm (see
comments preceding Theorem 3.1), while the size of the measure support (i.e., number of active
Dirac distributions) is given by the £° norm. Although the ¢! norm might be used to recover sparse
solutions under suitable assumptions (see e.g. [7]), in general the ¢° term is the one that induces
sparsity.

5 Discretized problem and convergence

In this section, we show that the solution to the problem (P) can be arbitrarily well approximated
by a solution to a discretized problem taking into account only a finite number of parameter
values. This is of crucial importance from the numerical point of view, as the minimization of the
dual functional in the latter case (originally defined on M(©)") reduces to the minimization of a
function on RX™ for some large enough K € N*.

To this end, let h > 0 and consider O}, a compact subset of © such that dist(6,0;) < h for
every 0 € ©. The discretized version of (P) is

. 2
min lullz2(0,7ym »

T
we L2(0,7)" and sup |z'(h) — T4 20(9) —/ eT=DAO) B(G)u(t) dt| < e.
€Oy, 0

(Pn)
Following [18], we have the following results.

Theorem 5.1. Assume that (2.1) is uniformly ensemble controllable. Given y € C(©)" and
e >0, we set Uppy € L2(0,T)™ (respectively up, € L*(0,T)) the unique minimizer of (P) (respec-
tively (Py,)). Let us also set popr € M(O)" and p, € M(Op)" the unique minimizers of J defined
by (3.1) over M(©)" and M(Op)" respectively.

We have |[un|| 2 rym < lUoptll 2o 7ym - for every h >0, and in addition, up — uopt in L?(0, 7)™
and pp, vaguely converges to fiopt as h — 0.

Before giving the proof of this result, let us first recall that according to Proposition 2.4,
if (2.1) is uniformly ensemble controllable with parameter set ©, then (2.1) is uniformly ensemble
controllable with parameter set ©;. Hence, the existence and uniqueness of u;, and p5, (and of ugp
and fiopt) directly follow from Theorem 3.1. Let us also mention that the strong convergence
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of (up),, has already been given in [1%, §2.2|, under the additional assumption that A, B and y are
Lipschitz function with respect to 6. It seems that this regularity assumption is not required, and
we give this proof below.

Proof of Theorem 5.1. We identify u;, to a measure in M(©) supported on ©y,. Since Oy, C O, it
is obvious that [|ual| 2 7)m < Huopt||L2(07T)m.

.Step 1. Let us sh'ow that for every sequence (hy),cy € (Ri)N converging to 0, ||un, [ am(eyn 18
uniformly bounded with respect to k.
Assume by contradiction that there exist a sequence (hy),cy € (Ri)N converging to 0 such that
[l pmeyn — 00 as k — oo. We then set A = ||ptn, [ pq(e)n, and we assume without loss of
generality that A\ > 0 for every k € N, and we set ¢ = pp, /A\k. By vague compactness (see
e.g. [2, Chapter IV]), there exist a subsequence (still denoted by (sx),cy) such that (cx), is vaguely
convergent to g9 € M(0)". According to eq. (3.2), we have

w2
Ak ||‘I>T§kHL2(0,T) = <§k7y>/v1(@)n,c(@)n —€ ||§kHM(@)” = <§k,y>M(@)n’c(@)n —¢&.
This ensures that H(I);’%HL?(O 7y — 0 as k — oo, ie., ®hgy = 0, and hence, ¢op = 0 by Propo-

sition 2.7. Hence, for k large enough, we have, A H<I>*T§k||2Lg(0 ) = (gk,y>M(@)n cey —€ <0,

which leads to a contradiction with Ay ||<I>*T§kHiQ(O ) = 0.

Step 2. Let us consider a sequence (h), oy € (Ri)N such that hy — 0 as k — 00, and assume
that (pn, ),y converges vaguely in M(©)". We aim to prove that (i, ),y converges vaguely
to fopt, and that the corresponding sequence of controls (up, ),y converges strongly to gy in
L0, 7)™.

Let us denote by g the vague limit of (up,), and we set ug = ®hug € L2(0,7)™. For every
0 e L*(0,T7)™, we have as k — oo,

(um,@)m(o,:r)m = (Khy s ‘I’T80>M(e)n,C(e)n — <N07‘I’T<P>M(e)n,C(®)n - <“()"P>L2(0,T)"" :

This ensures the weak convergence of (up,),cy to uo, in particular, we have [[uol|p2(grym <

hm lnfk_)(x; ||uhk ||L2(O,T)m S Huopt”LQ (O,T)m .

Since A and B are continuous on the compact set O, there are uniformly continuous and
bounded. In addition, it is easy to see that there exists a constant C' > 0, depending only on T’
and on the bounds of A and B, such that

T=OAOIB(g,) — e T=OA B(6y)| < O (JA(61) — A(60)] + |B(61) — B(6o))
(t € [O,T], 90,01 S @)
This ensures that for every v € L2(0,7)™ and every 6y, 0; € © we have
[(@70) (01) = (©20) (00)| < VTC 0] 0.1y (1A(8:) — A(B0)| + [B(03) — B(0o)))

The last inequality clearly implies the uniform continuity of ®7us, , more precisely, for every § > 0,
there exists n(6) > 0 (with n(d) — 0 as & — 0) such that for every k € N and every 6,0, € ©
satisfying |81 — 09| < J, we have

[(@run,) (01) = (Prun,) (6o)| < 7(0).

By taking larger n(d) if needed, we can also assume that

ly(61) — y(o)| < n(d).
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Indeed, y is also uniformly continuous on O, since y is continuous on the compact set ©.

For every 6 € © and every k € N, let us set 0y, € Oy, such that |0 — 6, | < hy. We recall that
since 0y, € Oy, , we have |(Prup, )(On,) — y(0n,)| < €. We then have, for every § € © and every
keN,

[(@ruo) (0) — y(0)] < [(Pruo) (0) — (Prun,) (0)] + [(Prun,) (0) — (Prun,) (On, )
+ (®run,) (On,) — y(On,)| + |y (On,) — y(0)]
< [(@7uo) (0) — (Prun,) (0)] + 2n(hy) + &

Taking the limit & — oo, we conclude that |(Prug) (0) — y(0)| < €. This ensures that ug solves the
uniform ensemble controllability problem with parameter set ©. Thus, we have [[ugl| 2 7)m >
[topt || 29 ym - But, we already know that [[uol| 2 rym < [[toptl 2 (g ym from the weak conver-
gence of the sequence (up,),. This ensures that |[ul| 2 7ym = l[tiopt]l 2o rym+ and by unique-
ness of the minimal L?-norm control, ug = uyy. Finally, from ||uopt||L2(07T)m 2 |lun [l p20,7ym
and uoll 2 rym < lminfyoc [[un,[lp2o rym, We conclude that limg oo [un,llz2mm =
|opt || 1.2 0.7)™ - This ensures that up, — ey strongly in L?(0, )" as k — oo.

The %act that ug = uepe also ensures that ®%pg = PG pepe and hence, pg = popr by Propo-
sition 2.7.

Conclusion. Assume by contradiction that p; is not vaguely convergent to fip: as
h — 0. Then, there exists f € C(©)" such that (un,f) s\ e)nce)» does not converge to

<'u0pt7f>./\/((@)",c(@)" as h — 0. In particular, there exists » > 0 and a sequence (), oy € (Ri)N

converging to 0 such that |(up, — ,uopt,f>M(@)n)c(@)n > r. But according to step 1, (un,),ey

is uniformly bonded. Using vague compactness, up to the extraction of a subsequence (j4, ), is
vaguely convergent. Finally, the step 2 ensures that the only possible vague limit is piop:. This
leads to a contradiction, and concludes the proof. O

Remark 5.2. Let us mention that the arguments used in the first step of the proof of Theorem 5.1
are similar to the ones used in Lemma 3.9. This type of similarity is expected since in Theorem 5.1,
we prove continuity of the minimizers of J with respect to the parameter set ©, while Lemma 3.9
is an ingredient to prove continuity with respect to T', € and y (see Proposition 3.10).

Let us now consider a discretized version of the problem. To this end, we consider K € N*,
01,...,0k € O be two by two distinct, ©p, = {61,...,0k}, with hx = maxgceo dist(0, O}, ). Let
th, be the minimizer of J defined by (3.1) over ©y,., then pp, = 25:1 wy0g, , where dp, is the

atomic mass located at O, and w = (wk)peqr, gy € (R™)™ is the unique minimizer of

.....

K 2 K

T K
‘RMK(M)::%LA > B(O) T TAO | dt — > (wg,y(Ok)) +e Y |wgl (5.1)

k=1 k=1 k=1

and we have,
K
Uh (t) = (b’}iu’hK = ZB(Hk)*e(T_t)A(ek)*wk (t € [07T])
k=1

In order to prepare § 6.1, let us give the following results.

Proposition 5.3. w = (wk)ke{1 K} € (IR”)K is a minimizer of Je, if and only if for every
le{l,...,K}, w € R" is a minimizer of

1 T
ﬁ:@eR"HQQMm@—<@ww0—/‘éPﬂMWBWMMﬂM>+5@L
0
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with

T
B(6) e ™40 1y and Aol:/ e(T=DA0) B(9,) B(6,)" e T-DAC) 4.
0

] =

w(t) =

ol
—F

Z

.....

W, 1f]€7é l,

every | € {1,..., K}, w; is a minimizer of @ € R" — Jg, (W) with wy, = T
K w,  otherwise

But, for every I € {1,..., K}, we have,

2

1 (T|X o ) K K
Jo,, . (w) = 5/ ZB(ek) MDA | dt — Z (Wi, y(0k)) + EZ |wi|
0 k=1 k=1 k=1
17 . .2
= 5/ ‘B(@l) e(T_t)A(al) wl‘ dt
0
T K
+/ <B(91)*6(T_t)‘4(91) w, Y B(Oy) MDA wk> dt — (wy,y(6))) + € |wy|
0 -
=4
2
1 (T K K K
+ 3 / ZB(Qk)*e(T_t)A(e’“) wy| dt — Z (wi, y(0k)) + EZ |wp| .
0 k=1 k=1 k=1
k£l k£l k£l

It is then clear that minimizers of @ — Jo,. (w) are minimizers of .J;.

Let us now give condition on the minimizers of J; defined in Proposition 5.3.

Proposition 5.4. Let A € R"*"™, be a positive definite matriz, z € R™ and € > 0, the minimizer
Popt ER™ of T :p € R" — %p*Ap— (p, z) +€|p| over R™ is unique and satisfies popr = 0 if |2| <€,

and otherwise pope = pq where,
° lg =1;
o shrink(|z|,e)/Ca < p < shrink(|z],¢€)/ca;
o (eI+pA)g==z,

where 0 < cy < Cp are such that

ealpl> <pAp < Cylpl (p € R")

and
s+p if s < —p,
shrink(s, u) = < 0 if —p<s<p, (seR, peRy).
s—p ifpu<s

Remark 5.5. When n = 1, we have p,,; = shrink(z, e)/A.

Proof. First, J is strictly convex and coercive, hence admits a unique minimizer p,,: on R".

Furthermore, p,,: is characterized by 0 € 0J (popt). But, we have

Ap—ersﬁ if p#£0,

07 () = {B(O,e) -z if p=0,

21
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recall that B(0,¢) C R™ is the closed ball of R” centered on 0 and of radius . In particular, we
have 0 € 0J(0) if |2| < e. Let us then assume that |z| > ¢, we then have p,,; # 0, and we set
p = |popt| and ¢ = popt/p. We thus have (eI + pA)g = z, and hence p > 0 shall be such that

2
1=l = |(e] + pA)flz’ . This leads to the bounds on p. O

Before entering the algorithmic computation of a minimizer of Jo, , let us give the sub-
differential of Jg, . For every k € {1,..., K}, we have,

T
y(0r) — / e T=DA0) B (g, u(t) dt+shwﬂ—k|, if wy £ 0,
0 k

Owy, J@h,K (w) = T
y(Or) — / e T DA B(Oyyu(t) dt + B (0,¢), if wy, =0,
0

with u(t) = Zszl B(0;,)"eT=DA0) .. In particular, if 0 € 0y, Jo,, . (w), we have

shrink ( ,6) =0.

In addition, when wy = 0, we have
,6) =min{|z| | 2 € Oy, J(w)}.

shrink <

Alternatively to the algorithm proposed in § 6.1, one can use a direct optimization based on
the optimality conditions given in Proposition 3.3. We have the following direct corollary of Pro-
position 3.3.

T
y(0r) — / eT=D40%) B(, )u(t) dt
0

T
y(0r) — / e(T=DA00%) B(9, )u(t) dt
0

Corollary 5.6. w = (wk)eq1,. k) € (R™)™ is a minimizer of Je,, if there exists (ar)peq, . xy €
RE such that for every k € {1,..., K},

o ap >0, and ar, =0 if |y(0) — (PrPhpn, ) (Ok)] < e&;

o wi = ay (y(Or) = (P P7pun,) (Or)),
where we have set py, = Zszl Wiy, -

These condition will lead to the minimization problem given in § 6.2.

6 Numerical strategies

In this section, we propose three ways to numerically compute a minimizer of Jg, .

The first one, S.0 is basically using existing solvers without taking in consideration differentia-
bility issues that emerge from non-smoothness of the dual functional. The second one, S.1 is based
on the optimality conditions given in Corollary 5.6, see § 6.2. The last ones, S.2.0 and S.2.1, use
the greedy coordinate descent method proposed in [22], see § 6.1.

Finally, the strategies S.2.0 and S.2.1 can also be combined with the strategies S.0 and S.1. All
the possibility are given in § 6.3, and compared on some numerical examples in Section 7.

6.1 Greedy coordinate descent

Inspired from [22], we propose the following greedy coordinate descent algorithm (Algorithm 1).
This algorithm is a coordinate descent algorithm, but instead of considering each coordinate se-
quentially, we select at each iteration the coordinate for which the decrease of the cost function is
the most important.

The convergence of Algorithm 1 is ensured by the following result.
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Proposition 6.1. Let fi, ..., fx € C(R") and F € CL((R™)™) be all convex. We consider the cost
function

Jwr, .. wk) = Flwy,. . owi) + Y fr(ws) (i, wg €R™),

and we assume that J is coercive and strictly conver.
Given w° = (u?,...,w%) € (R™)™, we define the sequences (ki)ien € {1, K} and (w'),oy €

((IR{")K)N by:

: : i AN i
k; € argmin (pm}t J(wl,...,wk_l,w,wk_,_l,...,wK)) , (6.1)
ke{l,...,K} \WER
and
1 ¢ argmin J(w! ¢ 0, w )
wy! aAgR WYy Wh, 1, W, Wh 415+ W),
weR™

witt =wi (Ve {1,...,K}\ {k}),

. ; K ) o ~
Then lim;_, oo w® = w°Pt € (R™)", where wP! is the minimizer of J.

The proof of this result follows the arguments given in [22, Section 2.4] and is given in Appen-
dix A for the sake of completeness. Note that in [22] the proof is given for n = 1.

Remark 6.2. We expected that the convergence result would also hold by selecting

k; € argmax dist (0, 0y, J(w")). (6.2)
ke{1,....K}

But, we did not succeed to prove this result without additional regularity assumptions on the
functions fi. However, in practice, it seems that using the selection rule (6.2), give similar results
compared to the selection rule (6.1), but is much faster (see examples in Section 7).

Algorithm 1 Greedy coordinate descent for uniform ensemble control.

Require: T >0, ¢ > 0, (4, B,2%,2!) € C(©)"*" x C(O©)"*™ x C(O)" x C(O)", with n,m € N*
Require: ©;, C O with K := card(©),) € N* and ©), = {0;,...,0k}

Require: >0 > A tolerance parameter.

T
Ensure: u € L?(0,T)™ is such that sup |z!(0) — e?4@20(9) — / eT=DAO) B(G)u(t) dt| < e+6
(2SI 0

23



Algorithm 1 (continued)

1: for all k € {1,...,K} do
2 wg 0
3: Y <z () — eTAO20(6,)
4 Gy, < shrink(|yk|, €) > G, = dist {0, 0y, Jo, (w)}.
5: end for
6: u(t) <0 ZB eT=DAO) )
7 c+ 0 >c=Jo, (w).
8: while sup |yx| >e+ndo
ke{l,...,K}
9: forallle{l,...,K} do > Look for the best descent coordinate.
10: if G, 7& 0 then
11: for all k € {1,..., K} do wy, < wy
12: end for
13: U(t)  B(6;) eT=DA0)y,
T
” Gyt / T=DAW®) B9, Ya(t) dt
0 . X«
> We have 7; = 21(6;) — €740 29(0;) — / eT-40) g Z B(0)* T4y, dt.
0 _
izl
15: W; + APPROXIMATE CONTROL(e, T, A(6;), B(6;),71) > See Algorithm 2.
16: ¢+ Jo, ()
17: else¢ <+ ¢
18: end if
19: end for
20: [ < an element of argmax ¢y > [ is the best coordinate to update.
ke{l,....K}
21:  G(t) « B(6)) eT=HA0)y,
T
22: Gy + / eT=40) B(9,)a(t) dt
0
23: w; < APPROXIMATE CONTROL(e, T, A(6;), B(6;), 1)
K
24: u(t) < u(t) — at) + B(6;) MDAy, > We have u(t Z B(0)*eT=0A0)"y,
k=1
25: ¢+ Jo, (w)
26: for all ke {1,...,K} do
T
27: Yk — x(0)) — eTAO 209, ) — / eT=D40%) B(0, )u(t) dt
0
28: if w,, = 0 then Gy, + shrink(|yx|, )
29: else Gy + |yr — 6%
|wi|
30: end if
31: end for

32: end while
33: return u(t)

seo Remark 6.3. Here are some comments on Algorithm 1.
570 e The loop, lines 9 to 19, can be done in parallel.
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e What is computed in the loop, lines 9 to 19, can be stored and reused lines 21 to 23 and 25.

e Algorithm 2 will be called many times, and hence has to be fast.

e This algorithm is adapted from [22], where the aim is to find sparse solutions. Thus, as we
will see on some examples in Section 7, will lead to sparse minimizers. Consequently, it might
not be optimal when we are in the situation described in Proposition 3.6 and Corollary 3.7,
i.e., when the optimal measure is fully supported. However, we shall see that the controls
obtained in this way still provide a fairy good approximation of the optimal one.

Algorithm 2 Computation of an approximate control for the system & = Az + Bu.
Require: T >0, e > 0 and (A, B,y) € R"*" x R**™ x R" with n,m € N*

T
Ensure: w € R" is such that ‘y — / eT=DABuy(t) dt’ < e with u(t) = B*eT-947y

0

1: function APPROXIMATE CONTROL(e, T, A, B, y)
2: if |y| < e then w + 0 > See Remark 5.5.
3: else > In that case, we have w # 0.
4: ifn=1 thj@n
5: A+~ eT=DABRB*e(T-1A" g4

0
6: w < shrink(y, e)/A > See Remark 5.5.
7: else if the control Gramian is “computable” then > e.g. for n “small”.

T

8: A+ eT=DABRB*e(T-HA" gy

0
9: (r,q) < solution of » > 0, g € R™, |¢g| =1 and (] + rA)g(r) =y
10: w < rq(r) > See Proposition 5.4.
11: else

e -2

12: w 4 argmin 7/ ’B*e(T*t)A vl dt—(v,y) +e|v|

veR? 2 0
13: end if
14: end if
15: return w

16: end function

Remark 6.4. e In Algorithm 2 (line 9), finding a solution of r > 0, ¢ € R™, |¢| = 1 and
(eI +rA)q(r) =y can be done using a dichotomy search.

e To find a minimizer of J (line 12 of Algorithm 2), one can use a gradient descent method.
In fact, note that J is only not differentiable at 0, and note that 0 cannot be the minimizer
in the situation of line 12 this is because |y| > €. A way to avoid the evaluation of J(v) =
%fOT |B"‘e(T_t)A*V’2 dt — (v,y) + € |v| at 0 is to initialize the gradient descent method with
v € R™ such that J(v) < J(0) = 0. This is for instance possible by setting v = ay, with
o = shrink(|y|* , e |y|)/C, with C = fOT ’B*e(T_t)A*y‘Q dt. We thus have v # 0 and J (v) < 0,
see Remark 5.5.

e Computing the Gramian matrix might be resource consuming. Hence, instead of computing
it in Algorithm 2, it can be computed and stored in Algorithm 1.
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6.2 Reduced minimization problem

For this strategy, we will use the optimality condition given in Corollary 5.6. More precisely, we
consider the following minimization problem (recall that we have set () = 2 () — T4 19(9)),

2

K
min 5 ZB(Gk)*e(Tf-)A(Qk)*wk (633)
k=1 L2(0,T)™
with respect to wy, ..., wg € R™, subject to the following constraints

[y(6r) — o7 (600)] < <.
Vk e {1,...,K}, Jar =0 such that: Qg (|y(9k) _ yT(Qk)|2 _ 52) >0, (6.3b)

wy = ag (y(0k) —y* (0r))

where we have set

T
y7 (6)) :/ e(T—A( ek)B (Z e(T 1) (91)*wl> dt. (6.3c)
0

Observe that the last three constraints coincide with the optimality condition given in Corollary 5.6,
and the control is given by u(t) = Zszl B(0y,)*eT=DA0) .. Using Corollary 5.6, it is obvious
that minimizers of Jo,  coincide with minimizers of (6.3).

Remark 6.5. In practice the minimization problem (6.3) can be expressed as a minimization only
on (ag) ke{1,.. K} however, from a numerical point of view, it is easier to consider the minimiza-
tion problem (6.3) as a minimization with respect to (wg, ok, y(0k))peq1, iy since gradient and
Hessians can be easily computed.

6.3 Proposed numerical strategies

Based on the previous consideration, we can propose the following numerical strategies.

S.0. Use existing nonlinear solvers, and try to directly minimize Jo, > without considering po-
tential issues related to the non-differentiability of the cost functional. In the examples of
Section 7, we use the fminunc function of Matlab with the quasi-Newton algorithm.

S.1. Use existing nonlinear solvers to find a minimizer of (6.3). In the examples of Section 7, we
use the fmincon function of Matlab with the interior-point algorithm.

In addition, one can use algorithms based on Algorithm 1. This leads to two strategies:

S.2.0. Use directly Algorithm 1.

S.2.1. Use Algorithm 1 but instead of using the selection rule given by (6.1), we use the one given
by (6.2) (see Remark 6.2).

As we will see in Section 7, with strategies S.2.0 and S.2.1, it appears that many steps are between

non-zeros values. Hence, we propose a refinement of these two algorithms by running S.0 or S.1 after

some component of (wy), switches from null to a non-null value, or vice versa. More precisely,

using notations of Algorithm 1, if w; was 0 and is updated to a non-null value or if w; was

non-null and is updated to 0, we run S.0 or 5.1 for the same minimization problem, but with

O ={0, €O, Vke{l,...,K} s.t. w # 0} in place of Op. In other words, we try to update all

the non-zero values of (wg)g in one shoot. This leads to the four additional strategies, S.2.i-S.j

(with 4,7 € {0,1}).

Let us recall that we have analytical guaranties of convergence only for the strategy S.2.0.
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7 Numerical examples

Unless explicitly said otherwise, for all the following examples

e the final time is T = 1;

e © = [1,2], and ©, is a uniform discretization of © with step h = 1072, leading to K =
card ©, = 101;

e c=5x10"2

e the time integrals are computed using the trapezoidal rule with a uniform time step of 104,
In particular, to compute ®7, we use the trapezoidal rule, and the matrix exponentials are
computed numerically. Another alternative could have been to solve the ordinary differential
equation using a numerical scheme;

e the stopping criterion on the gradient (i.e., § in Algorithm 1) is set to 107!2, we also set a
step tolerance of 1072Y (i.e., step sizes shall be greater than this number) and a maximal
number of iterations of 10°.

Examples 7.1 and 7.2 correspond to situation where the optimal control and the adjoint measure
are known (see Proposition 3.6 and Corollary 3.7). Example 7.3 corresponds to a situation where
the target cannot be reached (see Appendix B). Finally, Example 7.4 tackled the uniform ensemble
controllability for a discretized heat equation.

In the tables used for the comparison of the different numerical strategies, G = (Gy, ...
(R4 )¥ is given by lines 27 to 29 of Algorithm 1 that is G, = dist (0, 0, Jo, (w))-

The codes are run using Matlab version R2020b on a 12 core processor of 64 bits and 3.20 GHz.

7GK) S

Example 7.1. We consider a first basic example, where n = m = 1, A(d) = —0 and B(0) = 1.
It is well-known that this system is ensemble controllable (see [21, 27]). We consider z°(8) = 0,
dptopt(0) = xw(#) df, where w is an open subset of ©. According to Corollary 3.7, we know that
Uopt = P fiopt is the minimizer of (P) when the target is set to z'(0) = (Pr Pk popt) (0) + .

In practice, since O}, (introduced in Section 5) is chosen as a uniform discretization of ©, we
set flopt,h = hZGEGhﬂw dp, and it is clear that piop: is vaguely convergent to pop:. Also, the
target zj is set accordingly, i.e., z}(0) = (PrP%fiopt,n) (0) + €, and the discretized optimal control
is Uopt,h = (I);//fopt,h'

The numerical simulations are run with w = (4/3,7/4) (we recall that the other parameters
are given in the preamble of Section 7). A comparison of the different strategies listed in § 6.3 is
given in Table 1.

Strategy .CPU r.unning .nb. - lun — Uopt,h“Lz ln — Mopt,hHM

time (s) | time (s) iter. |opt,nll 2 | opt,h |l g
S.0 6.07 0.63 71 2.553x10~ ° 1.561x1073 0.959
S.1 4.59 2.82 83 | 1.293x10~ 13 4.384x1078 1.271
S.2.0 || 1409.58 | 201.93 | 100000 | 2.387x10~ 8 2.467x107° 1.952
S.2.0-S.0 39.29 8.49 11 | 8.161x10~10 4.432x1076 1.952
S.2.0-S.1 11.19 2.47 14 | 7.452x10° 13 6.833x10°° 1.902
S.2.1 198.18 20.01 | 100000 | 3.389x10~ 7 1.140x 1073 1.800
S.2.1-S.0 1.06 0.19 14| 3.043x10~° 1.617x107° 1.905
S.2.1-S.1 4.28 1.19 12 | 3.757x10~™ 2.951 %1078 1.857

(a) Errors, time of computation and number of iterations.
Table 1: Comparison of the strategies listed in § 6.3 for Example 7.1.
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’ Strategy H Stopping reason

S.0 || Cannot decrease the objective function along the current search direction.
S.1 || Local minimum possible. Constraints satisfied.
S.2.0 || Maximal number of iteration reached.
S.2.0-S.0 || Cost is not decreasing.
S.2.0-S.1 || Cost is not decreasing.
S.2.1 || Maximal number of iteration reached.
S.2.1-S.0 || Cost is not decreasing.
S.2.1-S.1 || Cost is not decreasing.

(b) Stopping reasons.

Table 1: (continued)

In Table 1b, for strategies S.2.i-S.j (i, € {0,1}) the last cost modifications is of order 10717,
which is close to the numerical 0 (indeed, by denoting c,p; the minimal cost, we have numerically

Copt + 10718 = Copt)- Let us also mention that for all simulations, we have }x

Y0) — o(T,0)| = ¢

up to an error of order 1078, We also see that the strategy S.2.0-S.1 gives the best results and
strategy S.2.1-S.0 is the fastest one. As claimed in § 6.3, for strategy S.2.0 and S.2.1, most of the
time is spent in updating non-zero values in fact for S.2.0, for all 10° steps the selected index is
in {1,55,101}, and for S.2.1, after some iterations the selected index loops between 1, 42 and 101
69 and 101. In Table la, we see that even if the control is closed to the
optimal ones, the adjoint is rather far from the optimal one, this is also illustrated on Figure 4. As
we can see from Figure 4 and Table la, wide variation on the adjoint does not necessarily produce
large variations on the control. One can see from Figure 4, that the strategies S.0 and S.1 lead to
adjoints that are fully supported on ©y, while the other strategies lead to adjoints for which the
support consist in only few points of ©. These facts will be discussed later on.
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Figure 4: Adjoints obtained with strategies listed in § 6.3 for Example 7.1.
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(h) Strategy 5.2.1-8.1.

Example 7.2. We consider the system and data given in Example 7.1, except that we set jiop: =

551 + 2552. In that case, for i € {1,2}, we set gi,h € argmin{

J

51.h + 2652,h'

0, — 0

, 0¢€e @h} and Llopt.h

The numerical simulation is run with §; = 7/6 and 6, = 17/10 (we recall that the other
parameters are given in the preamble of Section 7). A comparison of the different strategies listed
in § 6.3 is given in Table 2.

Strategy .CPU r.unning .nb. max G MTup, — Uopt,h||L2 Mlen — Mopt,hHM
time (s) | time (s) iter. [ opt,h |l 12 | topt.bll og
S.0 4.11 0.44 19| 2431x10- ¢ 2.421x107° 1.960
S.1 2.92 1.78 76 | 2.058x10° 13 2.675x10°8 1.981
S.2.0 || 1478.55 | 213.11 | 100000 | 7.575x10~ 7 1.065x10~* 2.000
S.2.0-S.0 0.55 0.10 10 4.783x10~ 7 1.999x10~° 2.000
S.2.0-S.1 5.60 1.38 11| 2.553x10~12 3.665x10~7 2.000
S.2.1 || 194.10 | 19.49 | 100000 | 2.495x10~ © 3.447x 1074 2.000
S.2.1-S.0 0.28 0.04 5 2.188x10~ 8 4.409x10~° 2.000
S.2.1-S.1 3.01 0.78 8 | 9.378x10712 5.331x 1077 2.000
(a) Errors, time of computation and number of iterations
’ Strategy H Stopping reason
S.0 || Cannot decrease the objective function along the current search direction.
S.1 || Local minimum possible. Constraints satisfied.
S.2.0 || Maximal number of iteration reached.
S.2.0-S.0 || Step size is less than the step tolerance.
S.2.0-S.1 || Step size is less than the step tolerance.
S.2.1 || Maximal number of iteration reached.
S.2.1-S.0 || Cost is not decreasing.
S.2.1-S.1 || Cost is not decreasing.

(b) Stopping reasons.

Table 2: Comparison of the strategies listed in § 6.3 for Example 7.2.

We see form Table 2 that almost all the conclusion made for Example 7.1 also holds for Exam-
ple 7.1, except that here the strategy S.1 give slightly better results than the strategy S.2.0-S.1. As
for Example 7.1, we display on Figure 5 the adjoints numerically computed. The comments made
in Example 7.1 also applies here, wide variation on the adjoint does not necessarily produce large
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e7s  variations on the control, and the strategies S.0 and S.1 lead to adjoints that are fully supported
eze on Oy, while the other strategies lead to adjoints for which the support consist in only few points

of @h.
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(f) Strategy S.2.1. (g) Strategy S.2.1-S.0. (b) Strategy S.2.1-S.1.

Figure 5: Adjoints obtained with strategies listed in § 6.3 for Example 7.1.

677

678 Based on the results given in Examples 7.1 and 7.2, we can make the following comments.

679 e All strategy lead to some acceptable control.

680 e Strategies S.0 and S.1 lead to adjoint measure, which are everywhere non-zero. In fact, they
681 are not adapted for sparsity, contrary to strategies S.2.0 and S.2.1 and their derivatives. In
682 addition, for strategy S.1 since an interior-point algorithm is used, the fact that the obtained
683 solution is non-zero everywhere is expected.

684 e Even if the strategy S.2.1-S.1 did not give the best results, it is relatively fast and provide
685 good results for the control. We will then use this strategy for the following examples.

sss Example 7.3. We consider the system and data given in Example 7.1, but we set z*(§) = 1. In
es7 that case, it is known from Proposition B.1 that the target state in not reachable. Hence, it is
sss expected that the norm of the minimal L?-norm control goes to oo as & goes to 0.

089 This fact is illustrated on Figure 6. On Figure 7, we also display the obtained results for
s0 £ = 2 x 107* (we recall that the other parameters are given in the preamble of Section 7). In
eox particular, Figures 7b and 7d confirm the claim of Corollary 3.5, i.e., the sign of the optimal measure
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ez coincide with the sign of 2! — 2”7 and the measure is only supported on the set of parameters § such
e that |2!(0) — 27 (6)| = e. The results for this example have been obtained using strategy S.2.1-S.1.

-
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(a) Norm of the control (black) and number of Dirac

masses in the adjoint state (gray), with respect to . (b) |pen| with respect to €.

Figure 6: Norm of the control, number of Dirac masses in the adjoint state and absolute value of
the adjoint state, with respect to €, for Example 7.3.
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Example 7.4. For this example, we consider a discretized version of the family indexed by 6 € ©
of systems of 1D heat equation:

y(t,0,x) = (’ﬁy(t7 0,z) — (6 — Dy(t, 7,x) + u(t, ) (t>0, z€(0,1)), (7.1a)
y(t,0,0) =y(t,6,1) =0 (t > 0), (7.1b)
y(0,0,2) = y°(0, x) (x €(0,1)). (7.1c)

One can refer to [9] for some ensemble controllability results related to parabolc systems.
Given n € N*, using centered finite differences, the discretized version of (7.1) is

V(t,0) = AOY(L0) + BOU®),  Y(0,0) = Y(0), (72)
with
-2 1 0 0
1 :
A(H):ﬁ o o l-0-Dner and BO) =1, R
1
0 0 1 -2

and where Y;(¢,0) ~ y(t, 6, n+r2), Ui (t) ~ u(t, %ﬁ) and Y(0) = y°(0, niQ)

Let us mention that using the trapezoidal rule, [[y(t,0, )| ;2(q 1 is approximated by 2 Y (t,0)]

hence, the value of ¢ will be adapted accordingly. For the control problem, we set 3°(0,z) =
sin(z + 0) and null target, i.e., y'(f) = 0. The goal is to find a control u € L?(0,T;L?(0,1))
such that supycg [|y(T 6, -)||L2(0’1) < g, &,T,0 and discretization parameters are defined in the
preamble of Section 7. For the numerical illustration, we use the strategy 5.2.1-S.1, with n = 19.
The obtained results are displayed on Figure 8.

A Proof of Proposition 6.1

For this proof, we follow [22, Section 2.4]. We consider a cost function of the form

K
J(wiy,y ..., wg) = Flwy,...,wk) +ka(wk) (wy,...,wg € R"),
k=1

where fi,..., fx are continuous convex function and F is a convex function of class C'. For every
ke {l,...,K}, we define Wy = (w1,...,Wg—1, Wk41,--.,WK) € (IR")K_l7 and Jg. 5, (wr) = J(w)
and Fk,uV;k (wk) = F(w)

Theorem A.1. Using the notations and assumptions introduced above, w = (wq,...,wg) is a
minimizer of J if and only if for every k € {1,..., K}, wi is a minimizer of Iy w, -

Proof. If w is a minimizer of J, then for every § € R™ and every k, we have
3(11}17 ceey, WE—1, Wk + 6a Wk415-- - 7wk:) 2 :‘(wla vy We—1, Wk, W41,y - - - awK)a

That is to say that Ji o, (Wk +0) = Jk.w, (Wk), i.€., wy minimizes Jy z, -
Reciprocally, if wy, minimizes Jj, 5, , for every § € R™ and every t € [0, 1], we have,

0 < I, (Wi +10) — Jio,iv, (W) = Fie s, (Wi + 10) — Fi 5, (wi) + fr(w + 1) — fr(wy).
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Figure 8: Results obtained with strategy S.2.1-S.1 for the system given in Example 7.4.
But, since f, is convex, we have fi(wg+t0) = fir (1 — t)wi + t(wg + 0)) < (1—1¢) fr (wg) + fr. (wi +
9), and we get

fo(wy +16) = fr(wr) <t (fr(wp +0) = fi(wr)) (¢ €[0,1]).
This ensures

0<

o~ | =

(Fr, (Wi +6) — Fio i, (wi)) + fe(wi +6) — fru(we) (¢ € (0,1)).

Since F is of class C!, Fj, s, is also of class C! and taking the limit ¢ — 0 in the above equation,
we get
0 <AV, (wi), 0) + fe(wr + ) — fr(wk).

Now, assume that w = (w1, ..., wk) is such that w; minimizes Fy 5, for every k € {1,...,K}.
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For every 6 = (d1,...,0K) € (R”)K7 we have, using the convexity (and C! regularity) of F,

] =

Jw+0)—J(w)=Fw+6) — Fw)+ > (fe(wk +6k) — fr(wr))

™~
Il

1

K
> (VF(w),0) + Y (fulwe + 6k) — fulwr))

k=1

(Vo F(w), 01) + fr(wr + 0x) — fr(ws))

M= 11

((VFi ., (Wk), 0k) + fr(wr + 0x) — fu(wk))

k=1
>0
That is to say that w is a minimizer of J. O
Lemma A.2. Assume J is strictly convex and coercive. Then, for every k € {1,...,K}, the

function gy, : (R”)Kfl — R™ defined by g, (W) = argmin J 5 is continuous.

Proof. Firstly, since we assumed that J is strictly convex and coercive, we have that Jj  is also

strictly convex and coercive, this holds for every @ € (R")* ™" and every k € {1,...,K}. This
ensures the existence and uniqueness of minimizers of Jj 4, i.e., the function g, is well-defined.

. N
Let @ € (R")*! and (0');en € ((R")Kﬁl) be a sequence converging to w, for every
i € N, we define w} = gp(@0") and wy = gi(w). We then have, Jj i (uﬂk) < Jpwi(wy), and
lim; o0 Jp,i (W) = Jg,w(wk). This ensures that the sequence (Jy i(w},)), is bounded. But
since J is coercive (and recalling that J, 5 (wy) = J(w")), this implies that the sequence (w},), is
bounded, and hence admits a convergent subsequence (still denote by (w}).), and we denote by

i

wi® its limit. We then have Jj 5(wp®) = liml-%oofjk)i,i(w};) < Moo I wi (We) = Tk, (W),
this implies wi = w;°, by uniqueness of the minimizer of Ji 5. We have thus proved that
lim; s 00 g (W) = gx (). O

We are now in position to prove the convergence of the algorithm.

Proof of Proposition 6.1. It is trivial that

in J<J(wth) <Jw' i € N). Al
[nin 3 Jw™) <J(w')  (@eN) (A1)

This ensures that (J(w")), is bounded and convergent. Due to the coercivity of J, we also have, by
compactness, the existence of ¢ : N — N increasing and w*> € (R")X such that lim; w?) =
w™. The continuity of J ensures that J(w™) = lim;_, o J(w?®) = lim,; oo J(w?) (the last equality
follows from the uniqueness of limits).

For every k € {1,...,K} and every w € (R")K, we define AJg(w) = J(wy,...,wg) —
J(wy, ..o, wi—1, g (W), Wgt1, - .., wk ) = 0, where g, is defined in Lemma A.2. From Lemma A.2,
gk is continuous, hence AJy is also continuous. We then have AJi(w™) = lim; Aﬁk(w¢(i)).
We also have, by definition of the sequence,

0< Ajk(w¢(i)) < Ak, (w¢(i)) - 3(w¢>(i)) _ 3(w¢(i)+1) GeN, ke{l,---  K}).

34



769

770

which goes to 0 as 7 goes to co. Hence, taking the limit ¢ — oo, we conclude that
0=AJ,(w™) (ke{l,--- ,K}).

This ensures, using the definition of AJx and Theorem A.1, that w® is the minimizer of J. Note
that the existence and uniqueness of the minimizer of J is ensured by the coercivity and strict
convexity of J.

Finally, the uniqueness of minimizers, the coercivity of J, and inequality (A.1) lead to
lim; s oo wt = w™. O

B Some unreachable states

In this paragraph, we will show, in the case m = 1, that for every k € N, 0 € © — A(0)*B(0) € R
is unreachable for the system (2.1). To get this result, we will assume that the system (2.1) is
uniformly ensemble controllable, and that © has a nonempty interior. Let us first define the set of
reachable points in time T > 0,

T
Rap(T) = {9 €O~ / eT=DAOB()u(t)dt | ue LQ(O,T)m} .
0

Before entering the proof of this result, let us mention that (2.1) is uniformly ensemble control-
lable if and only if Span {§ € © — A(0)*B(f)v | k € N, v € R™} is dense in C(©). This fact can
be found in [28] (see also [L1]).

Let us first prove our result in the case n = 1.

Proposition B.1. Let © C R be a compact set and assume that there exists 8y € © such that
0o is an accumulation point of ©. Let a,b € C(©) and assume that (a,b) is uniformly ensemble
controllable. Then for every T > 0, and every k € N, akb & R, (T).

Proof. Let us set © = a(©), we have © C R is a compact set, 6y = a(fy) € © is an accumulation
point of (:), and we set 1 the identity map on ©. Since the pair (a, b) is ensemble controllable, we
necessarily have that a is injective (see [11, Proposition 4]) and b(6) # 0 for every 6 € O (see Re-
mark 2.5). This ensures that if y € R, (T) then yoa™t € Rigboa—1(T) = (boa™") Ruga(T).
Consequently, it is enough to prove this result for a =19 and b = 1.

Let us assume by contradiction that there exists k € N and u € L2(0,7) such that

fOT eT=00(t)dt = 0% for every §# € ©. Since © admits an accumulation point, by analytic
continuation, we have

T
/ Tt dt =6 (9 €R).
0

For every ¢ € N, we also have by derivation with respect to 0,
T
/ (T — L TD0y (1 dr — 0 (0 € R).
0

Finally, using Stone-Weierstrass Theorem, we conclude that
(T — t)k+1eT=0%1) = 0 (0 eR, te[0,T] ae.)
and using the fact that (T — t)**+1e(T=1¢ does not vanish on (0,T’), we conclude that u = 0. This

leads to a contradiction with fOT e(T=10y(t) dt = 6%, O
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Even if the above result is given in the real context, it can be easily extended to the complex
case (i.e., with a(0),b(0) € C, complex controls and © C C). Its complex version will be used in
the next result.

We are now in position to give the general result.

Proposition B.2. Let © C R be a compact set and assume that int © # (. Let A € C(0)"*™ and
B € C(©)™, and assume that (A, B) is uniformly ensemble controllable. Then for every T > 0 and

every k € N, we have
AFB ¢ R4 5(T).

Proof. Following [10, Lemma A.2|, there exists 6y € int©, § > 0, A € C([#p — 0,60 + d],C) and
v € C([0o — 9,00+ 0], C)™ such that v(0) # 0 and A(0)*v(8) = A(0)v () for every 6 € [0y — 6,00 +0].
We now notice that if the system (2.1) is ensemble controllable on ©, then the system given by the
pair (A, v*B) is also uniformly ensemble controllable on [#y—d, 8y+d]. According to Proposition B.1,
we have that \*v*B & R ,+p(T) for every T > 0. This clearly ensures that A¥B ¢ R4 p(T) for
every T > 0. O

Remark B.3. Let us mention that in the case m > 1, the situation is not so trivial.
For instance, let T > 0, v € C*°([0, T]) such that v*)(0) = (’“)( ) = 0 for every k € N, and such

-1
that f eT=D9(t)dt # 0, and define 5(f) = (f e(T—1)0 dt) . For every k € N, we have

0% € Rg 1 5)(T). In fact, we clearly have 1 = fOT (T=1) 95( Jo(
integration by parts, one can deduce that 6% = fOT eT=193(9)v(*)

t)dt, from this relation and by
(t) dt for every k € N.
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