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Abstract

We consider the ensemble controllability problem for a linear time-invariant system
ẋ(t, θ) = A(θ)x(t, θ) + B(θ)u(t), where A and B are continuous matrices with respect to
the parameter θ, which belongs to some compact set Θ ⊂ R. Given any continuous initial
state datum θ 7→ x0(θ) and any continuous target state θ 7→ x1(θ), we investigate the numer-
ical computation of a θ-independent open loop control u such that x0 is steered, in a given
time T > 0, at a distance ε > 0 of x1 in the uniform norm (with respect to the parameter).

We approach the problem both theoretically and numerically. Using the Fenchel-
Rockafellar duality, we �rst prove the existence and uniqueness of the ensemble control of
a minimal L2 norm. The numerical recovery of the optimal control is obtained by solving
the dual problem, which consists in the unconstrained minimization of a non-di�erentiable
functional in the space of Radon measures.

Keywords: parameter dependent systems, ensemble controllability, linear control system, Fenchel-
Rockafellar duality, numerical algorithms.
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1 Introduction1

The concept of ensemble controllability [1, 8, 16, 21, 23] needs no more publicity nowadays with2

regard to its practical importance. Its aim is to control systems whose natural dynamic depends3

on some unknown or uncertain parameters in a robust and computationally efficient manner. In4

particular, the goal is to find a parameter invariant control that performs well for each particular5

realization of the parameters. This kind of problem arises for instance in the transport of quantum6

particles, where the goal is to develop external excitation that can simultaneously steer the ensemble7

of systems with variation in their internal parameters from an initial state to a desired final8

state [20]. One can also see [3] where it is used to study the controllability of the Bloch equation,9

for an ensemble of non-interacting half-spins, in a static magnetic field, with dispersion in the10

Larmor frequency. Other real life practical example can be found, as for instance in non-holonomic11

systems theory where ensemble controllability is used to derive an approximate steering algorithm12

for a non-holonomic unicycle in the presence of model perturbation [4]. Nowadays, however,13

the most widely application is related to machine learning, in particular to training processes in14

supervised learning. By using the dynamic perspective of neural networks, the problem of their15

training can be recast as a control problem in which the network coefficients (weights and biases)16

stand for data(parameter)-independent controls [13].17

From the generic notion of ensemble controllability, many other notions emerged as the one of18

uniform ensemble controllability [16, 20, 21], uniform ensemble reachability, Lq-ensemble reachabil-19

ity [11]. Even if this topic is studied actively, it is far from being well understood. The necessary and20

sufficient condition of ensemble controllability can be obtained as a special form of the generaliza-21

tion of the Kalman rank theorem to infinite dimensional Banach spaces (e.g. [28, Theorem 3.1.1]).22

However, such a characterization is primarily theoretical and not suitable for checking the control-23

lability properties of a particular system. In the above-mentioned non-exhaustive references, the24

authors have derived necessary and/or sufficient conditions for linear time invariant systems to be25

uniformly ensemble controllable in some special cases. From these references, especially [8, 10, 11],26

it could be seen that the topology of Θ plays a crucial role in the controllability issue. Roughly27

speaking, for regular enough parameter dependent systems, uniform ensemble controllability can-28

not hold if the compact set Θ is homeomorphic to some compact subset of Rd (with d > 2) with29

non-empty interior.30

Most papers on the topic analyze conditions under which a system is ensemble controllable, but31

do not consider the associated optimization problem of finding a feasible control of minimal norm,32

nor do they deal with numerical recovery of the solution. An approximate construction of a feasible33

control is provided only in some special cases (e.g. [3, 4]). In [15] the authors consider an associated34

penalization problem in which the constraint of reaching the prescribed target with some a priori35

given precision is replaced by an additional term in the cost functional that penalizes deviation of36

the final state from the target. Consequently, such a problem consists in the unconstrained mini-37

mization of a smooth functional and is numerically easier to handle. In [25], the uniform ensemble38

control problem is replaced by a simultaneous one (consisting of hitting a reachable target). The39

author discusses the strategies by which the latter can be approximated by its discretized version40

(which is equivalent to an exact control problem for a large, finite-dimensional system). Let us also41

mention [26], where an ensemble control is designed using polynomial approximations. However,42

the results of [26] seem only applicable for single input systems.43

In [18] we have characterized the optimal ensemble control in the discrete case (i.e., for a finite44

number of parameters). Then, assuming Lipschitz regularity, we showed how to obtain a sub-45

optimal control for the continuous case. In the present article, we directly tackle the case of a46

continuous set Θ, and derive optimality conditions. Based on them we propose several numerical47

strategies for recovering the minimal norm control. More precisely, we prove the existence and48

uniqueness of a minimal norm ensemble control, and express it through the solution of the corre-49
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sponding dual problem, which consists in the unconstrained minimization of a non-differentiable50

functional in the space of Radon measures. The numerical strategies that we propose in this paper51

are obtained using the optimality condition on the adjoint problem.52

The paper is organized as follows. In the next section, we recall the notion and some basic53

results on uniform ensemble controllability. In Section 3, we introduce the optimization problem of54

finding a uniform ensemble control of a minimal L2 norm and derive the associated dual problem.55

We demonstrate the existence of a unique solution for both problems and list their properties. In56

particular, the continuity of solutions with respect to the problem entries is obtained. Section 457

deals with a special but important case of discretized parameters (obtaining only a finite number of58

values), where we also discuss the sparsity properties of the optimal measure. The convergence of59

solutions when passing from discrete to continuous parameter setting is demonstrated in Section 5.60

Numerical iterative algorithms are presented in Section 6, while their performances are checked61

and discussed on several particular examples in Section 7. Appendices A and B contain some62

technical and related results.63

Notation. The following notations are used in the paper.64

N = {0, 1, 2, . . .} stands for the set of natural numbers including zero, while N∗ denotes the set of65

positive integers. R+ is the set of nonnegative real numbers, and we set R∗+ = R+ \ {0}. For a66

matrix M ∈ Rn×m, M∗ ∈ Rm×n is the transpose matrix of M . |·| stands for the Euclidean norm67

in Rn, and 〈·, ·〉 is the scalar product on Rn. The open (respectively closed) ball of Rn centered on68

some x and of radius ε > 0 is denoted by B(x, ε) (respectively B(x, ε)).69

For X a Banach space and f : X → R∪{∞}, we define dom f = {x ∈ X | f(x) <∞}, and cont f70

is the set of points x ∈ dom f where f is continuous. For S ⊂ X, intS is the interior of S.71

Given n ∈ N∗, by C(Θ)
n we denote the space of continuous complex vector functions on Θ ⊆ R72

equipped with L∞ norm, i.e., C(Θ)
n

= C(Θ;Rn) and ‖f‖C(Θ)n = supθ |f(θ)|. B∞(y, ε) is the closed73

ball in the space C(Θ)
n centered in y and of radius ε.74

M(Θ) stands for the set of Radon measures supported on Θ, while by M(Θ)n we75

denote the dual space to C(Θ)
n with the dual product given by 〈µ, f〉M(Θ)n,C(Θ)n =76 ∑n

i=1

∫
Θ
fi(θ) dµi(θ) =

∫
Θ
f(θ)

∗
dµ(θ). In addition, for F ∈ C(Θ)

n×m, we define F ∗[µ ∈ M(Θ)
m

77

by 〈F ∗[µ, f〉M(Θ)m,C(Θ)m = 〈µ, Ff〉M(Θ)n,C(Θ)n =
∫

Θ

(
f(θ)

∗
F (θ)

∗)
dµ(θ).78

2 Preliminaries79

Let Θ be a compact subset of R and consider for every constant θ ∈ Θ the system described by80

ẋ(t, θ) = A(θ)x(t, θ) +B(θ)u(t) (t > 0, θ ∈ Θ). (2.1)

In (2.1), we assume that A ∈ C(Θ)
n×n and B ∈ C(Θ)

n×m. The input u is independent of the81

parameter θ, and ẋ is the derivative of x with respect to the time variable t. Given an initial state82

x0 ∈ C(Θ)n and an input u ∈ L2(0, T )
m, the solution of (2.1) at time t, is denoted by x(t, θ;x0, u).83

More precisely, we have,84

x(t, θ;x0, u) = etA(θ)x0(θ) +

∫ t

0

e(t−τ)A(θ)B(θ)u(t) dt (t > 0, θ ∈ Θ). (2.2)

Definition 2.1 (Uniform Ensemble Controllability). The system (2.1) is said to be uniformly85

ensemble controllable if for any x0, x1 ∈ C(Θ)n and any ε > 0, there exist a time T > 0 and a86

control u ∈ L2(0, T )
m, such that87

sup
θ∈Θ

∣∣x(T, θ;x0, u)− x1(θ)
∣∣ 6 ε.
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The terminology uniform in the above definition is used to emphasize the fact that the set of88

output functions is the continuous one endowed with the uniform norm. This definition actually89

makes sense since for any continuous initial state datum x0 and any θ-independent input u ∈90

L2(0, T )
m, the output trajectory is continuous with respect to the parameter θ.91

Remark 2.2. The systems considered in the present paper focus on the case where A(θ) and B(θ)92

are real matrices. However, all the obtained results can be applied to complex matrix, having in93

mind that if A(θ) ∈ Cn×n and B(θ) ∈ Cn×m are complex matrices, then the complex system can94

be identified to a real system with matrices
(
<A −=A
=A <A

)
∈ R2n×2n and

(
<B −=B
=B <B

)
∈ R2n×2m,95

where < and = denote the real and imaginary part respectively.96

Let us also mention that it is classical that the set of parameter Θ is assumed to be a subset of C.97

In this paper we only consider the case where Θ ⊂ R. This assumption is made, firstly, because98

it avoids technical difficulties and, secondly, because, as said in the introduction, from [8, 10, 11]99

typical sets Θ ∈ C for which uniform ensemble controllability can be expected are one dimensional100

objects.101

The following facts can be found in [11].102

Proposition 2.3. If (2.1) is uniformly ensemble controllable, then it is uniformly ensemble con-103

trollable in any time T > 0, i.e., for any x0, x1 ∈ C(Θ)
n, any T > 0 and any ε > 0, there exists a104

control u ∈ L2(0, T )
m, such that supθ∈Θ

∣∣x(T, θ;x0, u)− x1(θ)
∣∣ 6 ε.105

Proposition 2.4. If (2.1) is uniformly ensemble controllable, then for every θ ∈ Θ, the pair106

(A(θ), B(θ)) is controllable.107

Remark 2.5. The direct consequence of the last result is that the control operator can not vanish108

in any point, i.e. B(θ) 6= 0 for every parameter θ.109

More generally, we have the following exact controllability property.110

Proposition 2.6. Assume (2.1) is uniformly ensemble controllable. For every K ∈ N∗ and every111

θ1, . . . , θK ∈ Θ, two by two distinct, the pair (A,B) is controllable, where112

A =

A(θ1)
. . .

A(θK)

 ∈ RKn×Kn, and B =

B(θ1)
...

B(θK)

 ∈ RKn×m.

Let us also mention the unique continuation property for the adjoint system (cf. [10]). To this113

end, we denote byM(Θ) the set of Radon measures supported in Θ, and we define the control to114

final state operator ΦT ∈ L(L2(0, T )
m
, C(Θ)

n
) by115

(ΦTu)(θ) =

∫ T

0

e(T−t)A(θ)B(θ)u(t) dt (θ ∈ Θ, u ∈ L2(0, T )
m

), (2.3)

i.e., (ΦTu)(θ) = x(T, θ, 0, u) with x given by (2.2). When there is no fear of ambiguity, we shall116

use abbreviation xT = ΦTu.117

Note that the adjoint of ΦT is Φ∗T ∈ L(M(Θ)
n
, L2(0, T )

m
) defined by

(Φ∗Tµ)(t) =

∫
Θ

B(θ)
∗
e(T−t)A(θ)∗ dµ(θ) =

〈
e(T−t)A∗

[µ,B
〉
M(Θ)n,C(Θ)n×m

(t ∈ (0, T ), µ ∈M(Θ)
n
). (2.4)
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Proposition 2.7. The system (2.1) is uniformly ensemble controllable in time T > 0 if and only if118 {
µ ∈M(Θ)

n | ∀t ∈ [0, T ],

∫
Θ

B(θ)
∗
e(T−t)A(θ)∗ dµ(θ) = 0

}
= {0}. (2.5)

By the last proposition the uniform ensemble controllability implies the unique continuation119

property of the adjoint operator, i.e.,120

Φ∗Tµ = 0 =⇒ µ = 0. (2.6)

In particular, the Gramian operator defined as ΛT := ΦTΦ∗T ∈ L(M(Θ)
n
; C(Θ)

n
) is injective.121

3 Minimal L2-norm controls122

3.1 Optimality conditions123

The aim of this section is to characterize the minimal L2-norm control steering the system (2.1)124

from x0 to a distance ε > 0 of x1 in a given time T > 0. More precisely, given T > 0, ε > 0 and125

x0, x1 ∈ C(Θ)
n, we aim to find a minimizer of126

min 1
2 ‖u‖

2
L2(0,T )m ,

u ∈ L2(0, T )
m and sup

θ∈Θ

∣∣∣∣∣y(θ)−
∫ T

0

e(T−t)A(θ)B(θ)u(t) dt

∣∣∣∣∣ 6 ε.
(P )

where y ∈ C(Θ)
n is the final target adjusted by the solution of the homogeneous equation, i.e.,

y(θ) = x1(θ)− eTA(θ)x0(θ) (θ ∈ Θ).

When there is no fear of ambiguity, we shall also refer to y as (adjusted) target.127

We rewrite the problem (P ) by introducing functions f ∈ C(L2(0, T )
m

) and g : C(Θ)
n →

R+ ∪ {∞} defined as,

f(u) = 1
2 ‖u‖

2
L2(0,T )m (u ∈ L2(0, T )

m
),

g(ξ) =

{
0 if ‖ξ − y‖L∞(Θ)n 6 ε,

∞ otherwise
(ξ ∈ C(Θ)

n
).

In particular, g is the indicator function of the ball B∞(y, ε) ⊂ C(Θ)
n.128

Hence, (P ) can be expressed as

min
u∈L2(0,T )m

f(u) + g(ΦTu).

Note that f and g are convex functions, and our aim is to approach the optimization problem (P )
by the Fenchel-Rockafellar duality. To this end, we consider the Fenchel conjugates of f and g
defined as

f∗(v) = sup
u∈L2(0,T )m

(
〈v, u〉L2(0,T )m − f(u)

)
= 1

2 ‖v‖
2
L2(0,T )m (v ∈ L2(0, T )

m
),

g∗(µ) = sup
ξ∈C(Θ)n

(
〈µ, ξ〉M(Θ)n,C(Θ)n − g(ξ)

)
= sup

ξ∈C(Θ)n

‖ξ−y‖L∞(Θ)n6ε

〈µ, ξ〉M(Θ)n,C(Θ)n

= 〈µ, y〉M(Θ)n,C(Θ)n + ε ‖µ‖M(Θ)n (µ ∈M(θ)
n
).
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Here, and in the rest of this paper, for µ = (µ1, . . . , µm) ∈M(Θ)
n, we set129

‖µ‖M(Θ)n = sup
ξ∈C(Θ)n

‖ξ‖L∞(Θ)n61

〈µ, ξ〉M(Θ)n,C(Θ)n = sup
ξ1,...,ξn∈C(Θ)

supΘ

∑n
i=1|ξi|

261

n∑
i=1

〈µi, ξi〉M(Θ),C(Θ) .

Specially, if the components of µ are written in the form µi = fi[ν for some i-independent scalar130

and positive measure ν, then ‖µ‖M(Θ)n =
〈(√∑

i f
2
i

)
[ν, 1

〉
M(Θ),C(Θ)

=
∫

Θ
|f(θ)| dν(θ). In the131

special case of µ being a combination of disjoint Dirac masses µ =
∑
kmkδθk for mk ∈ Rn, its132

norm is given by
∑
k |mk|.133

Theorem 3.1. Assume (2.1) is uniformly ensemble controllable. Then for every y ∈ C(Θ)n and134

every ε > 0, the minimization problem (P ) admits a unique minimizer uopt ∈ L2(0, T )
m given by135

the expression136

uopt = Φ∗Tµopt,

where µopt ∈M(Θ)
n minimizes the dual functional137

J(µ) = 1
2 ‖Φ

∗
Tµ‖

2
L2(0,T )m − 〈µ, y〉M(Θ)n,C(Θ)n + ε ‖µ‖M(Θ)n (µ ∈M(Θ)

n
). (3.1)

Furthermore, the minimizer µopt is unique, and satisfies138

‖uopt‖2L2(0,T )m = 〈µopt, y〉M(Θ)n,C(Θ)n − ε ‖µopt‖M(Θ)n , (3.2)
139

suppµopt ⊂ {θ ∈ Θ | |(ΦTuopt)(θ)− y(θ)| = ε} (3.3)

and, for every test function υ ∈ C(Θ)n such that ΦTuopt + υ ∈ B∞(y, ε),140

〈µopt, υ〉M(Θ)n,C(Θ)n > 0. (3.4)

Finally, µopt is the zero measure if and only if y 6 ε.141

Remark 3.2. As |(ΦTuopt)(θ)− y(θ)| is the distance of the optimal final state from the target x1,142

the characterization (3.3) restricts the support of the optimal measure to the parameters θ ∈ Θ143

for which the optimal final state lies exactly on the boundary of the target ball B∞(x1, ε).144

Proof. We first observe that f is strictly convex, and dom g is not empty. Furthermore, we observe
that

{
u ∈ L2(0, T )

m | ΦTu ∈ dom g
}
is a convex set and g is lower semi-continuous. These facts

ensure the existence and uniqueness of a minimizer of (P ) (see e.g. [24, Theorem 2.19]). Note
also that cont g = int dom g and dom f = L2(0, T )

m, hence, the uniform ensemble controllability
assumption guaranties that ΦT dom f ∩ cont g 6= ∅. Thus, according to Fenchel duality (see e.g. [5,
Theorem 4.4.3], [24, Theorem 3.51] or [12]), we have

min
u∈L2(0,T )m

f(u) + g(ΦTu) = max
µ∈M(Θ)n

−f∗(Φ∗Tµ)− g∗(−µ) = − min
µ∈M(Θ)n

f∗(Φ∗Tµ) + g∗(−µ)

= − min
µ∈M(Θ)n

1
2 ‖Φ

∗
Tµ‖

2
L2(0,T )m − 〈µ, y〉M(Θ)n,C(Θ)n + ε ‖µ‖M(Θ)n .

In addition (3.1) admits a minimizer µopt ∈M(Θ)
n, and we have145

f(uopt) + g(ΦTuopt) = −f∗(Φ∗Tµopt)− g∗(−µopt) (3.5)

and146

Φ∗Tµopt ∈ ∂f(uopt) and − µopt ∈ ∂g(ΦTuopt),
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where ∂ stands for the sub-differential. As f is a smooth function, its sub-differential is a singleton,147

and from the first of the above inclusions we get that uopt = Φ∗Tµopt.148

Noticing that f∗ = f , g(ΦTuopt) = 0, we get from (3.5), 2f(uopt) = −g∗(−µopt), which leads149

to (3.2).150

We also have that xTopt := ΦTuopt ∈ C(Θ)n is such that
∥∥xTopt − y∥∥L∞(Θ)n

6 ε, i.e.,151

g(xTopt) = 0. Then, −µopt ∈ ∂g(xTopt) implies that for every v ∈ C(Θ)n, g(xTopt + v) =152

g(xTopt + v) − g(xTopt) > 〈−µopt, v〉M(Θ)n,C(Θ)n . In particular, if
∥∥xTopt + v − y

∥∥
L∞(Θ)n

6 ε, we153

have 0 6 〈µopt, v〉M(Θ)n,C(Θ)n , thus proving (3.4).154

From here we obtain the characterization (3.3) of the support of µopt. Indeed, for ev-155

ery v ∈ C(Θ)n such that supp v ⊂
{
θ ∈ Θ |

∣∣xTopt(θ)− y(θ)
∣∣ < ε

}
, there exists α > 0 such156

that
∥∥xTopt + αv − y

∥∥
L∞(Θ)n

< ε and
∥∥xTopt − αv − y∥∥L∞(Θ)n

< ε. Hence, we shall have 0 6157

〈µopt, v〉M(Θ)n,C(Θ)n and 0 6 −〈µopt, v〉M(Θ)n,C(Θ)n , leading to 0 = 〈µopt, v〉M(Θ)n,C(Θ)n .158

Dealing with the uniqueness of µopt, assume by contradiction that µ1 and µ2 are minimizer159

of J . By the uniqueness of uopt, we have uopt = Φ∗Tµ1 = Φ∗Tµ2. According to Proposition 2.7, we160

conclude that µ1 = µ2.161

Finally, if ‖y‖C(Θ)n 6 ε (meaning that the free dynamics brings the state within the target
ball) by the definition (3.1) of the functional J and the Cauchy-Schwarz inequality, we have that
for every measure µ ∈M(Θ)

n

J(µ) > −‖µ‖M(Θ)n ‖y‖C(Θ)n + ε ‖µ‖M(Θ)n > 0 = J(0),

i.e., the functional J is nonnegative and µopt = 0 is its unique minimizer.162

The reverse implication holds trivially, as if ‖y‖C(Θ)n > ε then a nonzero control is required in163

order to satisfy the constraint (of reaching the target ball). Using classical optimization techniques164

arguments, it can be even shown that in that case ‖µopt‖M(Θ)n is bounded from below by a positive165

constant depending linearly on the difference ‖y‖C(Θ)n − ε (e.g. [17, Proposition 2.3]).166

Proposition 3.3. Using the assumptions and notations introduced in Theorem 3.1, the optimal167

measure µopt is of the form168

dµopt(θ) = α(θ)
(
y(θ)− xTopt(θ)

)
d |µopt| (θ), (3.6)

where |µopt| =
∑n
i=1 |µopt,i| ∈ M(Θ) is the sum of total variations of components of the vector169

measure µopt, while α : Θ→ R+ is an integrable (with respect to |µopt|) nonnegative scalar function.170

Proof. Step 1. We first show that171

〈µopt, υ〉M(Θ)n,C(Θ)n > 0, (3.7)

for every test function υ ∈ C(Θ)n such that
〈
υ(θ), y(θ)− xTopt(θ)

〉
> 0 whenever

∣∣(xTopt)(θ)− y(θ)
∣∣ =172

ε, θ ∈ Θ.173

Suppose first that v satisfies the last inequality strictly, i.e., that
〈
v(θ), y(θ)− xTopt(θ)

〉
> 0174

for every θ ∈ Θ satisfying |xopt(θ)− y(θ)| = ε. Then we show there exists a θ independent175

scalar α > 0 small enough such that ‖xopt + αv − y‖L∞(Θ)n 6 ε. Indeed, let us set Θopt =176

{θ ∈ Θ | |xopt(θ)− y(θ)| = ε}, since θ 7→ |xopt(θ)− y(θ)| is continuous, we have that Θopt is177

compact. On this set, we have 〈v(θ), y(θ)− xopt(θ)〉 > 0, using the uniform continuity on Θ of this178

function, we get the existence of δ > 0 such that 〈v(θ), y(θ)− xopt(θ)〉 > 2δ for every θ ∈ Θopt,179

and there also exists η > 0 such that 〈v(θ), y(θ)− xopt(θ)〉 > δ for every θ ∈ Θopt +B(0, η). Using180

the fact that Θ \ (Θopt +B(0, η)) is compact, we also obtain the existence of ε̃ < ε such that181

|xopt(θ)− y(θ)| 6 ε̃ for every θ ∈ Θ \ (Θopt +B(0, η)). All in all, we have for every α > 0,182
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• for θ ∈ Θopt +B(0, η),

|xopt(θ) + αv(θ)− y(θ)|2 = |xopt(θ)− y(θ)|2 − 2α 〈v(θ), y(θ)− xopt(θ)〉+ α2 |v(θ)|2

6 ε2 − 2αδ + α2 ‖v‖2L∞(Θ)n .

• for θ ∈ Θ \ (Θopt +B(0, η)),∣∣xTopt(θ) + αv(θ)− y(θ)
∣∣2 6 ε̃2 + 2αε̃ ‖v‖L∞(Θ)n + α2 ‖v‖2L∞(Θ)n .

Hence, taking α > 0 small enough, we have
∣∣xTopt(θ) + αv(θ)− y(θ)

∣∣ 6 ε for every θ ∈ Θ. By (3.4)183

this ensures that 〈µopt, v〉M(θ)n,C(Θ)n > 0 for every v ∈ C(Θ)n such that
〈
v(θ), y(θ)− xTopt(θ)

〉
> 0184

for every θ ∈ Θopt.185

It remains to prove that (3.7) holds true, even if
〈
v(θ), y(θ)− xTopt(θ)

〉
> 0 for every θ ∈ Θopt. In186

fact, if v satisfies the last condition, then
〈
v(θ) + α

(
y(θ)− xTopt(θ)

)
, y(θ)− xTopt(θ)

〉
> 0 for every187

θ ∈ Θopt and every α > 0. This ensures that 0 6
〈
µopt, v(θ) + α

(
y(θ)− xTopt(θ)

)〉
M(Θ)n,C(Θ)n

, and188

hence, taking the limit α→ 0, we obtain the desired result.189

Step 2. Now we prove the relation (3.6)190

First, let us note that µopt is absolutely continuous with respect to the measure |µopt|. By the191

Lebesgue-Radon-Nikodym theorem (see e.g. [14]) there exists an integrable (with respect to |µopt|)192

vector function ϕ such that dµopt(θ) = ϕ(θ) d|µopt|(θ).193

It remains to prove that ϕ = α(y−xTopt) for some α : Θ→ R+ which is integrable (with respect194

to |µopt|). To this end, without loosing generality, let us write ϕ as195

ϕ(θ) = α(θ)(y(θ)− xTopt(θ)) + w(θ), (3.8)

where w(θ) ∈
{
y(θ)− xTopt(θ)

}⊥, while α is an arbitrary (not necessarily non-negative) scalar196

function. Without loss of generality, we can assume that suppϕ ⊂ suppµopt, i.e., we can assume197

that α and w vanish on Θ\suppµopt. Taking into account that y−xTopt is continuous on Θ and that198 ∣∣y − xTopt∣∣ = ε on suppµopt, we get that α(θ) =
〈
y(θ)− xTopt(θ), ϕ(θ)

〉
/ε2 for every θ ∈ suppµopt.199

This ensures that α is |µopt|-measurable, and then w = ϕ− α
(
y − xTopt

)
is also |µopt|-measurable.200

Define υ = ψ
(
y − xTopt

)
, where ψ ∈ C(Θ) is an arbitrary non-negative, scalar test function. υ is

therefore an eligible test function in (3.7), implying

0 6 〈µopt, υ〉M(Θ)n,C(Θ)n =

∫
Θ

〈(
α(θ)(y(θ)− xTopt(θ)) + w(θ)

)
, ψ(θ)

(
y(θ)− xTopt(θ)

)〉
d |µopt| (θ)

=

∫
Θ

ψ(θ)
∣∣y(θ)− xTopt(θ)

∣∣2 α(θ) d |µopt| (θ) =
〈
α[ |µopt|, ψ

∣∣y − xTopt∣∣2〉M(Θ),C(Θ)
.

As |µopt| is a non-negative measure, by varying ψ and taking again into account that
∣∣y − xTopt∣∣ = ε201

on suppµopt, it follows α > 0 for |µopt|-a.e. θ. Taking ψ = 1, we also get that α is |µopt|-integrable.202

Furthermore, (3.2) together with ‖uopt‖2L2(0,T )m = ‖Φ∗Tµopt‖
2
L2(0,T )m =

〈
µopt, x

T
opt

〉
M(Θ)n,C(Θ)n

leads to
ε ‖µopt‖M(Θ)n =

〈
µopt, y − xTopt

〉
M(Θ)n,C(Θ)n

.

At this stage we exploit the form (3.8) and put µopt =
(
α(y − xTopt) + w

)
[ |µopt| in the last

expression. By taking into account that w(θ) is orthogonal to y(θ) − xTopt(θ), and recalling that
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∣∣y − xTopt∣∣ = ε on suppµopt, we get

ε

∫
Θ

∣∣α(θ)(y(θ)− xTopt(θ)) + w(θ)
∣∣ d |µopt| (θ) =

∫
Θ

α(θ)
∣∣(y(θ)− xTopt(θ))

∣∣2 d |µopt| (θ)

= ε

∫
Θ

α(θ)
∣∣(y(θ)− xTopt(θ))

∣∣ d |µopt| (θ) (3.9)

As α is a non-negative function and
∣∣α(y − xTopt) + w

∣∣ > α
∣∣y − xTopt∣∣, the equality (3.9) implies203 ∣∣α(y − xTopt) + w

∣∣ = α
∣∣y − xTopt∣∣ for |µopt|-a.e. θ, that is to say that w = 0 for |µopt| (and conse-204

quently for µopt) a.e. θ.205

Remark 3.4. The last result covers the well-known behavior of the optimal control in the deter-206

ministic case, i.e., when Θ is a singleton. In that case, unless the optimal control is trivial, the207

solution of the dual problem is a vector having the same direction as y − xTopt (see e.g. [19]).208

In general, when a functional of the form (3.1) is defined on a Hilbert space, its minimizer hopt is209

either trivial or a solution to the Euler-Lagrange equation which formally reads as:210

y − xTopt = ε
hopt
‖hopt‖

.

In that case it follows directly that the minimizer has the same direction as y− xTopt. This kind of211

result is stronger than the one obtained in the last proposition, and it corresponds to a constant212

function α in (3.6). The reason why such approach is not possible in our setting is that the norm213

term ‖µ‖M(Θ)n entering the functional J is not differentiable.214

As a consequence of the last proposition, we obtain the following characterization of the optimal215

measure in the scalar case.216

Corollary 3.5. Using the assumptions and notations introduced in Theorem 3.1, let us suppose217

n = m = 1.218

Then the control operator does not change sign, i.e., there exists ε ∈ {−1, 1} and β ∈ C(Θ) such219

that β(θ) > 0 and B(θ) = εβ(θ) for every θ ∈ Θ.220

Set Θ+ =
{
θ ∈ Θ | y(θ)− xTopt(θ) = ε

}
and Θ− =

{
θ ∈ Θ | y(θ)− xTopt(θ) = −ε

}
. Then221

suppµopt ⊂ Θ− ∪Θ+ and µopt is nonnegative (respectively, nonpositive) on Θ+ (respectively Θ−).222

In addition, if Θ− = ∅ (respectively Θ+ = ∅), then either uopt ≡ 0 or sign(uopt(t)) = ε223

(respectively sign(uopt(t)) = −ε) for every t ∈ [0, T ].224

Proof. The fact that B ∈ C(Θ) does not vanish directly follows from Proposition 2.4. Being a225

continuous function, its sign is constant.226

The support and sign conditions of µopt directly follow from (3.3) and Proposition 3.3, respectively.227

For the sign of uopt, let us assume that Θ− = ∅ (the proof for other case is identical). We have for228

every t ∈ [0, T ],229

uopt(t) =

∫
Θ

e(T−t)A∗(Θ)B(θ) dµopt(θ) = ε

∫
Θ+

e(T−t)A∗(Θ)β(θ) dµopt(θ),

We conclude by noticing that, for every θ ∈ Θ, e(T−t)A∗(Θ)β(θ) > 0 and µopt is nonnegative. In230

particular, uopt ≡ 0 if and only if µopt = 0 and, according to Theorem 3.1, this holds if and only if231

‖y‖C(Θ)n 6 ε. Otherwise, the optimal control has a constant sign equal to ε for every t ∈ [0, T ].232

The rest of this subsection provides results by which one can construct a family of optimization233

problem (P ) for which the minimizers of (3.1) can be explicitly calculated. This will allow us to234
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compare the results obtained by the numerical procedure to be presented in the Section 6 with the235

exact ones and to verify efficiency and correctness of the proposed algorithms (see Section 7).236

The idea is to invert the problem: we specify a positive measure µ̃ and calculate x̃T = ΦTΦ∗T µ̃,237

the final state of the system run by the control ũ = Φ∗T µ̃. The adjusted target y is then carefully238

chosen as a center of a square whose one vertex is x̃T (note that the geometrical representation of239

a ball in C(Θ)
n is actually a square). In particular, in accordance to Proposition 3.3, the difference240

y − x̃T has the same direction as µ̃ for every parameter value θ.241

Proposition 3.6. Using the assumptions and notations introduced in Theorem 3.1 take ε > 0,242

η ∈ M(Θ) a nonnegative scalar measure, and f ∈ C(Θ)n such that |f | does not vanish. Define243

µ̃ = f [η, x̃T = ΦTΦ∗T µ̃ and y = x̃T + ε f|f | . Then µ̃ is the minimizer of J defined by (3.1).244

Proof. Let us first observe that for every µ ∈M(Θ)n, we have

J(µ) = 1
2 ‖Φ

∗
Tµ‖

2
L2(0,T )m − 〈µ, y〉M(Θ)n,C(Θ)n + ε ‖µ‖M(Θ)n

= 1
2 ‖Φ

∗
Tµ‖

2
L2(0,T )m − 〈Φ

∗
Tµ,Φ

∗
T µ̃〉L2(0,T )m + ε

(
‖µ‖M(Θ)n −

〈
µ, f|f |

〉
M(Θ)n,C(Θ)n

)
and

J(µ̃) = − 1
2 ‖Φ

∗
T µ̃‖

2
L2(0,T )m + ε

(∫
Θ

|f | dη −
∫

Θ

〈f, f〉
|f |

dη

)
= − 1

2 ‖Φ
∗
T µ̃‖

2
L2(0,T )m .

Let µopt ∈M(Θ)n be the minimizer of J , we have J(µopt) 6 J(µ̃), that is to say that245

1
2 ‖Φ

∗
T (µopt − µ̃)‖2L2(0,T )m 6 −ε

(
‖µopt‖M(Θ)n −

〈
µopt,

f
|f |

〉
M(Θ)n,C(Θ)n

)
.

Obviously, we have ‖µopt‖M(Θ)n >
〈
µopt,

f
|f |

〉
M(Θ)n,C(Θ)n

, from which we can conclude that we246

necessarily have Φ∗T (µopt − µ̃) = 0. We conclude that µopt = µ̃ using the unique continuation247

property (2.6) of the adjoint.248

As a direct corollary, we have the following result.249

Corollary 3.7. Using the assumptions and notations introduced in Theorem 3.1. Suppose n = 1,250

let ε > 0, ε ∈ {−1, 1}, η ∈ M(Θ) a nonnegative measure, y = ε(ΦTΦ∗T η + ε). The minimizer251

of (3.1) is εη.252

Proof. This is Proposition 3.6 with f = ε.253

From Proposition 3.6 and Corollary 3.7, we see that there is no reason that the optimal mea-254

sure µopt is sparse, i.e., the Lebesgue measure of its support is in general not zero. This might look255

surprisingly at the first glance, as µopt is a minimizer of the functional containing the ‖·‖M(Θ)n256

term. This non-sparsity pitfall will be discussed in Section 4 in the case where the parameter set257

is of a finite cardinality.258

3.2 Continuity properties of the minimizers259

The characterization of the solution through the adjoint problem, that is obtained in the previous260

subsection, allows us also to demonstrate the continuity of solutions to optimization problem (P )261

with respect to the tolerance ε, the time T and the adjusted target y. More precisely, we consider262

a sequence of functionals263

Jk(µ) = 1
2

∥∥Φ∗Tkµ
∥∥2

L2(0,T )m
− 〈µ, yk〉M(Θ)n,C(Θ)n + εk ‖µ‖M(Θ)n (µ ∈M(Θ)n). (3.10)

where:264
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(i) yk → y strongly in C(Θ)n,265

(ii) Tk → T in R∗+266

(iii) εk → ε in R∗+.267

By Theorem 3.1, for each k ∈ N, the functional Jk admits the unique minimizer µk satisfying268

the relation269 ∥∥Φ∗Tkµk
∥∥2

L2(0,Tk)m
= 〈µk, yk〉M(Θ)n,C(Θ)n − εk ‖µk‖M(Θ)n (3.11)

and the control uk = Φ∗Tkµk is the solution of the optimal ensemble control problem270

min 1
2 ‖u‖

2
L2(0,T )m ,

u ∈ L2(0, T )
m and ‖yk − ΦTku‖L∞(Θ)n 6 εk.

(Pk)

We are going to prove that (µk)k and (uk)k converge respectively vaguely and strongly (in the271

appropriate spaces) to the limit points µ and u, respectively, where µ is the minimizer of the limit272

functional (3.1) and u is the solution of the ensemble optimal control problem (P ).273

Note that the convergence of time horizons Tk implies strong convergence of the operators ΦTk274

and Φ∗Tk . The following technical result characterizes strong convergence of arbitrary operators on275

Banach spaces.276

Lemma 3.8. Let (Lk)k be a sequence of linear operators in L(X,Y ), with X and Y being Banach277

spaces. The following statements are equivalent.278

(a) Lk −→ L strongly in L(X,Y ), i.e.,279

(∀u ∈ X) Lku −→ Lu in Y.

(b) For every weakly ∗ converging sequence (vk)k in Y ′ it holds280

vk
∗−⇀ v =⇒ L∗kvk

∗−⇀ L∗v in X ′.

(c) For every strongly converging sequence (uk)k in X it holds281

uk −→ u =⇒ Lkuk −→ Lu in Y.

Proof. (a) ⇒ (b): Let (vk)k converge weakly ∗ to v ∈ Y ′. By employing the strong convergence of282

the operators Lk, for every u ∈ X we get283

〈L∗kvk, u〉X′,X = 〈vk, Lku〉Y ′,Y −→ 〈v, Lu〉Y ′,Y = 〈L∗v, u〉X′,X ,

i.e., L∗kvk
∗−⇀ L∗v in X ′.284

285

(b) ⇒ (c): We first prove the weak convergence of the sequence (Lkuk)k. To this end, note that286

for an arbitrary v ∈ Y ′ we have287

〈v, Lkuk〉Y ′,Y = 〈L∗kv, uk〉X′,X −→ 〈L
∗v, u〉X′,X = 〈v, Lu〉Y ′,Y .

Here we have employed the strong convergence of (uk) and the assumption (b). In particular, we288

have289

‖Lu‖Y 6 lim inf
k→∞

‖Lkuk‖Y . (3.12)

On the other hand, for each k there exists vk ∈ Y ′ such that290

‖Lkuk‖2Y = 〈vk, Lkuk〉Y ′,Y , (3.13)
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and ‖vk‖Y ′ = ‖Lkuk‖Y (see e.g. [6, Corollary 1.3.]).291

Due to the weak convergence of (Lkuk)k, the sequence of norms ‖Lkuk‖Y is bounded, in sequel292

implying boundedness of (vk)k in Y ′. In particular, up to a subsequence, (vk)k converge weakly ∗293

to some v ∈ Y ′, and it holds294

‖v‖Y ′ 6 lim inf
k→∞

‖vk‖Y ′ = lim inf
k→∞

‖Lkuk‖Y . (3.14)

From here it follows295

‖Lkuk‖2Y = 〈vk, Lkuk〉Y ′,Y = 〈L∗kvk, uk〉X′,X −→ 〈L
∗v, u〉X′,X = 〈v, Lu〉Y ′,Y , (3.15)

where we passed to the limit by using the assumption (b) again.296

In particular, by employing (3.15) and (3.14), we obtain

lim
k→∞

‖Lkuk‖2Y = Y ′〈 v, Lu 〉Y 6 ‖v‖Y ′ ‖Lu‖Y 6 lim
k→∞

‖Lkuk‖Y ‖Lu‖Y ,

implying limk→∞ ‖Lkuk‖Y 6 ‖Lu‖Y . Together with (3.12) this finishes the proof.297

298

(c) ⇒ (a): Trivial (take a constant sequence uk = u).299

Before proving the convergence, we first demonstrate the boundedness properties of the mini-300

mizers.301

Lemma 3.9. The sequence (µk)k of minimizers of functionals Jk given by (3.10) is bounded302

inM(Θ)n.303

Proof. We argue by contradiction and assume that304

‖µk‖M(Θ)n −→∞ (3.16)

(up to a non-relabelled subsequence).305

Dividing the relation (3.11) by ‖µk‖M(Θ)n and denoting νk = µk/ ‖µk‖M(Θ)n we get306

‖µk‖M(Θ)n
∥∥Φ∗Tkνk

∥∥2

L2(0,T )m
= 〈νk, yk〉M(Θ)n,C(Θ)n − εk. (3.17)

As all the terms on the right-hand side are bounded (with respect to k), the contradictory assump-307

tion (3.16) implies308

Φ∗Tkνk → 0 strongly in L2(0, T )
m
. (3.18)

On the other hand, denoting by ν the vague limit of (νk) (up to a subsequence), the strong309

convergence of operators ΦTk and Lemma 3.8 imply Φ∗Tkνk −⇀ Φ∗T ν weakly in L2(0, T )
m. Together310

with (3.18), we get Φ∗T ν = 0, while the ensemble controllability assumption (2.5) implies ν = 0.311

Going back to (3.17) and passing to the limit we get312

0 > εk − 〈νk, yk〉M(Θ)n,C(Θ)n −→ ε.

Here we use that 〈νk, yk〉M(Θ)n,C(Θ)n is the dual product of a strongly convergent functions with313

measures converging vaguely to zero, thus vanishing on the limit.314

The last relation provides the desired contradiction which, in turn, implies the result.315

Based on the last two lemmas, we are going to obtain the main result of this paragraph.316
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Proposition 3.10. The sequence of minimizers µk of the functionals Jk given by (3.10) converges317

vaguely inM(Θ)
n to µopt (the minimizer of the limit functional (3.1)), and ‖µk‖M(Θ)n converges318

to ‖µopt‖M(Θ)n . In addition, the sequence of optimal ensemble controls uk = Φ∗Tkµk converges319

strongly in L2(0, T )
m to the solution of the limit problem (P ).320

Proof. By Lemma 3.9, there exists a (non-relabelled) subsequence of the minimizers µk converging321

vaguely to some measure µL ∈M(Θ)
n.322

In the first part of the proof, we show that the limit µL is the unique minimizer of the limit323

functional (3.1). Thus, it suffices to show324

J(µL) 6 J(µ), µ ∈M(Θ)
n
. (3.19)

To this end, we explore the convergence properties of the sequence of minimal functional values325

lim inf
k→∞

Jk(µk) = lim inf
k→∞

(
1
2

∥∥Φ∗Tkµk
∥∥2

L2(0,T )m
− 〈µk, yk〉M(Θ)n,C(Θ)n + εk ‖µk‖M(Θ)n

)
. (3.20)

Due to the weak lower semi-continuity of norms in Banach spaces, the last term is bounded from326

below by ε ‖µL‖M(Θ)n .327

The second term on the right-hand side of (3.20) is the product of a strongly and vaguely328

convergent sequence, thus 〈µk, yk〉M(Θ)n,C(Θ)n → 〈µL, y〉M(Θ)n,C(Θ)n .329

As for the first term entering functional Jk by Lemma 3.8 and the strong convergence of the330

operators ΦTk , we have Φ∗Tkµk −⇀ Φ∗TµL weakly in L2(0, T )n, implying331

lim inf
k→∞

∥∥Φ∗Tkµk
∥∥2

L2(0,T )m
> ‖Φ∗TµL‖

2
L2(0,T )m . (3.21)

Consequently, from (3.20) we get

lim inf
k→∞

Jk(µk) > 1
2 ‖Φ

∗
TµL‖

2
L2(0,T )m − 〈µL, y〉+ ε ‖µL‖M(Θ)n = J(µL)

As µk minimizes Jk, for an arbitrary µ ∈M(Θ)n we have332

lim inf
k→∞

Jk(µ) > J(µL). (3.22)

On the other hand, employing the assumed convergences, (i), (ii) and (iii), for each fixed µ we have333

Jk(µ) = 1
2

∥∥Φ∗Tkµ
∥∥2

L2(0,T )m
− 〈µ, yk〉M(Θ)n,C(Θ)n + εk ‖µ‖M(Θ)n

→ 1
2 ‖Φ

∗
Tµ‖

2
L2(0,T )m − 〈µ, y〉M(Θ)n,C(Θ)n + ε ‖µ‖M(Θ)n = J(µ).

(3.23)

Together with (3.22) this implies (3.19), and in particular µk
∗−⇀ µopt.334

In the second part of the proof, we will show that the sequence ‖µk‖M(Θ)n converges335

to ‖µopt‖M(Θ)n .336

Taking µ = µopt in (3.23) we have,337

J(µopt) = lim
k→∞

Jk(µopt) > lim
k→∞

Jk(µk).

Combining the obtained inequality with (3.22) (remember that µopt = µL) we get the convergence338

of the optimal values Jk(µk)→ J(µopt). Together with (3.21) this convergence implies,339

lim inf
k→∞

‖µk‖M(Θ)n 6 ‖µopt‖M(Θ)n .

which together with the vague convergence of the sequence (µk) implies the desired result.340

The strong convergence of optimal ensemble controls uk = Φ∗Tkµk follows now directly from the341

strong convergence of the operators ΦTk and the vague convergence of the measures µk (cf. Lem-342

ma 3.8 (c)).343

13



4 Systems with a �nite number of parameter values344

In this section, we restrict the analysis to the case of a finite number of parameters, i.e., card Θ <∞.345

Such situation deserves a special attention, not only because in some applications the parameter346

assumes only discrete and bounded values, but also because the most general situations (i.e., those347

in which the parameter ranges over a continuous set of values) are numerically treated and analyzed348

as the limit case of discretized problems as the number of elements in the parameter set goes to349

infinity.350

The aim is to provide a geometrical description of the problem and its solution, which will351

allow us to discuss the conditions under which the optimal measure (i.e., the minimizer of the352

functional J given by (3.1)) is sparse.353

To this end, we assume that the parameter dependent system (2.1) is uniformly ensemble354

controllable, and that we deal with a parameter set Θ of finite cardinality. As we consider finite355

dimensional systems only, these assumptions imply that the Gramian operator ΛT = ΦTΦ∗T ∈356

L(M(Θ)
n
; C(Θ)

n
) is not just injective (due to Proposition 2.7), but also of full range. Indeed,357

due to the assumed finite cardinality of the parameter set, both spaces M(Θ)
n and C(Θ)

n are358

finite dimensional and are isomorphic to RnK (where K = card Θ ∈ N∗ denotes the number of359

parameters), thus the statement follows from the rank-nullity theorem.360

For c > 0, we introduce the subset Ec ⊂ C(Θ)n consisting of all the final states xT that can be
reached with a control of norm less or equal to c, i.e.,

Ec :=
{
xT ∈ C(Θ)n | ∃u ∈ L2(0, T )

m such that ‖u‖L2(0,T )m 6 c and xT = ΦTu
}
.

As the minimal norm control reaching any state xT is of the HUM form Φ∗Tµ for some µ ∈M(Θ)
(see e.g. [29]), the introduced set can be characterized as follows

Ec =
{
xT ∈ C(Θ)n | ∃µ ∈M(Θ)n such that xT = ΛTµ and ‖Φ∗Tµ‖L2(0,T )m 6 c

}
,

where ΛT stands for the Gramian ΦTΦ∗T . As the ensemble controllability assumption ensures the
injectivity of the Gramian, the optimal control norm can be rewritten as

‖Φ∗Tµ‖
2
L2(0,T )m = 〈µ,ΦTΦ∗Tµ〉M(Θ)n,C(Θ)n =

〈
Λ−1
T xT , xT

〉
M(Θ)n,C(Θ)n

,

leading to the following characterization of the set Ec:361

Ec =
{
xT ∈ C(Θ)n |

〈
Λ−1
T xT , xT

〉
M(Θ)n,C(Θ)n

6 c2
}
. (4.1)

In other words, Ec is a sublevel set of a smooth function F (xT ) =
〈
Λ−1
T xT , xT

〉
. In particular,362

{Ec, c > 0} is a nested family of closed, convex sets with smooth boundary ∂Ec = {xT | F (xT ) =363

c2}. The normal functional at the point xT ∈ ∂Ec is nEc(xT ) = ∇F (xT ) = 2Λ−1
T xT .364

Theorem 4.1. Let xT , x1 ∈ C(Θ)n be such that
∣∣x1(θ)− xT (θ)

∣∣ 6 ε for every θ ∈ Θ.365

Then xT is the optimal final state of the problem (P ) with the target x1 and initial datum x0 = 0366

if and only if the normal functional nEc(xT ) is of the form367

nEc
(
xT
)

=
(
α(x1 − xT )

)
[ν, (4.2)

where α ∈ C(Θ) and ν ∈M(Θ) are respectively a non-negative scalar function and a non-negative368

measure, and α(θ) = 0 whenever
∣∣x1(θ)− xT (θ)

∣∣ < ε.369

Here Ec is the sublevel set defined by (4.1) with the constant c =
∥∥Φ∗TΛ−1

T xT
∥∥
L2(0,T )m

being the370

minimal norm required to reach xT .371
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Remark 4.2. By the choice of the level c, it follows that xT ∈ ∂Ec. If additionally the relation (4.2)372

holds, i.e., if xT is the optimal final state of the problem (P ), then c =
∥∥Φ∗TΛ−1

T xT
∥∥
L2(0,T )m

is the373

smallest level such that the intersection of the sublevel set Ec with the target box is non-empty374

(see Figure 1).

−0.5

0

0.5

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5

nEc(x
T )

Ec

xT

x1

Figure 1: Set Ec for n = 1 and K = 2, together with the target ball, the optimal final state xT
and the normal functional nEc(xT ). Each x ∈ C(Θ) is presented by a point (x(θ1), x(θ2)) ∈ R2.
For this plot, we have set A(θ1) = 1, A(θ2) = 5, B(θ1) = 1, B(θ2) = 1/50, T = 1, ε = 1/4, and
the plotted set Ec is for c = 1.

375

Proof of Theorem 4.1. =⇒ Let us assume that xT is the optimal final state of the problem (P ).376

In that case 1
2nEc(x

T ) = Λ−1
T xT is the optimal measure and the result follows directly from377

Proposition 3.3 (ensuring that it is of the form α(x1 − xT )|µopt|, with α and |µopt| being a non-378

negative scalar function and measure, respectively) and the description of the support of the379

optimal measure (3.3).380

⇐= Assume that (4.2) holds. In order to prove the statement, it is enough to show that xT is the381

only element in the intersection of the sublevel set Ec and the ε ball around the target x1 ∈ C(Θ)n.382

We assume the contrary, i.e., that there exists some x̃T 6= xT lying in the above intersection.383

We split the parameter set into two disjoint subsets, defined as384

Θb =
{
θ ∈ Θ |

∣∣x1(θ)− xT (θ)
∣∣ = ε

}
and Θi =

{
θ ∈ Θ |

∣∣x1(θ)− xT (θ)
∣∣ < ε

}
.

By the assumption made on α, Θi is a zero measure set for nEc(xT ). On the other hand, for any385

θ ∈ Θb, the vector xT (θ) lies on the boundary of the ε ball (in Rn) around the target x1(θ), which,386

together with the fact that x̃T (θ) belongs to the same ball, implies that387 〈(
x1 − xT

)
(θ),

(
x̃T − xT

)
(θ)
〉
> 0 (θ ∈ Θb). (4.3)

Consequently, we get388 〈
nEc

(
xT
)
, x̃T − xT

〉
M(Θ)n,C(Θ)n

=
〈
nEc

(
xT
)
, x̃T − xT

〉
M(Θ1)n,C(Θ1)n

=
〈(
α
(
x1 − xT

))
[
ν, x̃T − xT

〉
M(Θ1)n,C(Θ1)n

=
〈
α[ν,

(
x1 − xT

)
·
(
x̃T − xT

)〉
M(Θ1)n,C(Θ1)n

> 0,

(4.4)

where the final inequality follows by (4.3) and the assumed non-negativity of the measure α[ν.389
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As nEc(xT ) is the normal functional, the only way for x̃T ∈ Ec ∩ B∞(x1, ε) to satisfy the390

inequality (4.4) is that
〈
nEc

(
xT
)
, x̃T − xT

〉
M(Θ)n,C(Θ)n

= 0, i.e., that x̃T belongs to the tangential391

space TEc(xT ). As the convex set Ec intersects the tangential space TEc(xT ) only in its boundary392

points, it follows that x̃T ∈ ∂Ec. In such way we obtain two distinct points x̃T and xT lying in393

∂Ec∩B∞(x1, ε). However, that would imply existence of two different feasible controls of the same394

norm, c, which contradicts the uniqueness of the solution to problem (P ).395

Remark 4.3. Note that the relation (4.2) implies that the optimal measure396

µopt = Λ−1
T xT = 1

2nEc
(
xT
)

(4.5)

has, in every point θ ∈ Θ, the same direction as (x1 − xT )(θ), which is in accordance with the397

results of Proposition 3.3.398

The last result allows an alternative, more direct proof of Proposition 3.6, in the case where399

the parameter set is of finite cardinal, by which one can construct a series of problems for which400

the exact solution is known.401

Alternative proof of Proposition 3.6. With the notations and assumptions of Proposition 3.6, let402

c =
∥∥Φ∗TΛ−1

T x̃T
∥∥
L2(0,T )m

be the minimal norm required to reach the state x̃T . Then for the normal403

functional nEc(x̃T ) we have404

nEc
(
x̃T
)

= 2Λ−1
T x̃T = 2f [η = 2

(
|f |
ε

(
y − x̃T

))
[η,

where η ∈ M(Θ) and f ∈ C(Θ)n are the nonnegative scalar measure and the continuous vector405

function from the statement of Proposition 3.6 such that Λ−1
T x̃T = f [η.406

From here we see that the normal nEc(x̃T ) is of the form (4.2) (note that y = x1 for the zero407

initial datum). The statement now follows from Theorem 4.1.408

The introduced sets Ec allow us to describe the set of targets for which the associated optimal409

control vanishes for some parameter θ ∈ Θ. This allows us to construct examples for which the410

exact solution is known. This is important in numerical implementations, where the detection of411

active parameters plays a crucial role in constructing the optimal measure.412

For simplicity, the discussion is provided for scalar systems, i.e., we assume n = 1.413

Given some optimal final state xT , we know that the corresponding optimal measure is of the414

form (4.5). In particular, its i-th component (with i ∈ {1, . . . ,K} and K = card Θ) is going to be415

zero measure if and only if xT = ΛTµopt lies in the hyperplane Hi = [Λ1, . . . ,Λi−1,Λi+1 . . .ΛK ]416

spanned by all the columns of the Gramian matrix except the i-th one. This happens exactly for417

the states xT for which the normal derivative nEc(xT ) = 2µopt is orthogonal to the i-th coordinate418

axes (Figure 2).419

As any target x1 lies at most K
√

2 ε/2 from the optimal final state, this implies that the set of420

targets Ni for which the i-th component of the optimal measure equals zero is contained within the421

hyperstrip Hε
i := Hi +B(0, K

√
2 ε/2). More precise characterization of this set can be obtained in422

the case K = 2, i.e., when the parameter obtains only two values. In that case, the set of targets423

for which the i-th component of the optimal measure is zero is given by424

Ni =

{
xT + ε

(
nEc(x

T )

|nEc(xT )|
+ βei

)
| xT ∈ Hi, |β| 6 1

}
∪ B∞(0, ε),

and depicted on Figure 3.425
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Figure 2: The hyperplanes H1 and H2 for n = 1 and K = 2. Arrows represent nEc(xT ) for
different values of c and well-chosen values of xT . The parameters used for this plot are the ones
of Figure 1.

−3

−2

−1

0

1

2

3

−4 −2 0 2 4

N2

N1

Figure 3: Sets N1 and N2 for n = 1 and K = 2. The parameters used for this plot are the ones
of Figure 1.
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For numerical implementations, it would be very useful to know whether the given target426

belongs to some set Ni. This is because revealing the support of the optimal measure is often the427

most challenging part of the numerical process, while, as we shall see in Section 7 (see in particular428

Examples 7.1 and 7.2), tuning the weights of active Dirac distributions turns out to be easier.429

However, the description of the sets Ni requires computation of the Gramian operator, which is a430

computationally very demanding task (therefore construction of the Gramian is generally avoided431

and instead various iterative procedures are used for solving control optimization problems). For432

this reason, the above description of targets for which the optimal measure vanishes at some points433

cannot directly accelerate numerical procedures. However, it contributes to a better understanding434

of the problem and its solution, and allows us to describe some characteristics of the optimal435

measures, in particular the sparsity.436

In general, we can say that for the targets that are not contained in the union of hyperstrips437

∪iHε
i the optimal measure is going to be fully supported. Of course, as hyperstrips Hε

i , i ∈438

{1, . . . ,K} cover just a smaller portion of the whole output space RK , this will be the case for439

the most of the targets. This might look surprisingly, having in mind that the term ε ‖µ‖M(Θ)n440

entering the dual functional (3.1) is supposed to imply the sparsity in the support of the optimal441

measure. However, in the discrete case, the norm ‖·‖M(Θ)n is equivalent to the `1 norm (see442

comments preceding Theorem 3.1), while the size of the measure support (i.e., number of active443

Dirac distributions) is given by the `0 norm. Although the `1 norm might be used to recover sparse444

solutions under suitable assumptions (see e.g. [7]), in general the `0 term is the one that induces445

sparsity.446

5 Discretized problem and convergence447

In this section, we show that the solution to the problem (P ) can be arbitrarily well approximated448

by a solution to a discretized problem taking into account only a finite number of parameter449

values. This is of crucial importance from the numerical point of view, as the minimization of the450

dual functional in the latter case (originally defined onM(Θ)
n) reduces to the minimization of a451

function on RKn for some large enough K ∈ N∗.452

To this end, let h > 0 and consider Θh a compact subset of Θ such that dist(θ,Θh) 6 h for453

every θ ∈ Θ. The discretized version of (P ) is454

min 1
2 ‖u‖

2
L2(0,T )m ,

u ∈ L2(0, T )
m and sup

θ∈Θh

∣∣∣∣∣x1(θ)− eTA(θ)x0(θ)−
∫ T

0

e(T−t)A(θ)B(θ)u(t) dt

∣∣∣∣∣ 6 ε.

(Ph)
Following [18], we have the following results.455

Theorem 5.1. Assume that (2.1) is uniformly ensemble controllable. Given y ∈ C(Θ)
n and456

ε > 0, we set uopt ∈ L2(0, T )
m (respectively uh ∈ L2(0, T )) the unique minimizer of (P ) (respec-457

tively (Ph)). Let us also set µopt ∈M(Θ)
n and µh ∈M(Θh)

n the unique minimizers of J defined458

by (3.1) overM(Θ)
n andM(Θh)

n respectively.459

We have ‖uh‖L2(0,T )m 6 ‖uopt‖L2(0,T )m , for every h > 0, and in addition, uh → uopt in L2(0, T )
m

460

and µh vaguely converges to µopt as h→ 0.461

Before giving the proof of this result, let us first recall that according to Proposition 2.4,462

if (2.1) is uniformly ensemble controllable with parameter set Θ, then (2.1) is uniformly ensemble463

controllable with parameter set Θh. Hence, the existence and uniqueness of uh and µh (and of uopt464

and µopt) directly follow from Theorem 3.1. Let us also mention that the strong convergence465
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of (uh)h has already been given in [18, §2.2], under the additional assumption that A, B and y are466

Lipschitz function with respect to θ. It seems that this regularity assumption is not required, and467

we give this proof below.468

Proof of Theorem 5.1. We identify µh to a measure inM(Θ) supported on Θh. Since Θh ⊂ Θ, it469

is obvious that ‖uh‖L2(0,T )m 6 ‖uopt‖L2(0,T )m .470

Step 1. Let us show that for every sequence (hk)k∈N ∈ (R∗+)
N converging to 0, ‖µhk‖M(Θ)n is

uniformly bounded with respect to k.
Assume by contradiction that there exist a sequence (hk)k∈N ∈ (R∗+)

N converging to 0 such that
‖µhk‖M(Θ)n → ∞ as k → ∞. We then set λk = ‖µhk‖M(Θ)n , and we assume without loss of
generality that λk > 0 for every k ∈ N, and we set ςk = µhk/λk. By vague compactness (see
e.g. [2, Chapter IV]), there exist a subsequence (still denoted by (ςk)k∈N) such that (ςk)k is vaguely
convergent to ς0 ∈M(Θ)

n. According to eq. (3.2), we have

λk ‖Φ∗T ςk‖
2
L2(0,T ) = 〈ςk, y〉M(Θ)n,C(Θ)n − ε ‖ςk‖M(Θ)n = 〈ςk, y〉M(Θ)n,C(Θ)n − ε.

This ensures that ‖Φ∗T ςk‖L2(0,T ) → 0 as k → ∞, i.e., Φ∗T ς0 = 0, and hence, ς0 = 0 by Propo-471

sition 2.7. Hence, for k large enough, we have, λk ‖Φ∗T ςk‖
2
L2(0,T ) = 〈ςk, y〉M(Θ)n,C(Θ)n − ε < 0,472

which leads to a contradiction with λk ‖Φ∗T ςk‖
2
L2(0,T ) > 0.473

Step 2. Let us consider a sequence (hk)k∈N ∈ (R∗+)
N such that hk → 0 as k →∞, and assume474

that (µhk)k∈N converges vaguely in M(Θ)
n. We aim to prove that (µhk)k∈N converges vaguely475

to µopt, and that the corresponding sequence of controls (uhk)k∈N converges strongly to uopt in476

L2(0, T )
m.477

Let us denote by µ0 the vague limit of (µhk)k and we set u0 = Φ∗Tµ0 ∈ L2(0, T )
m. For every478

ϕ ∈ L2(0, T )
m, we have as k →∞,479

〈uhk , ϕ〉L2(0,T )m = 〈µhk ,ΦTϕ〉M(Θ)n,C(Θ)n −→ 〈µ0,ΦTϕ〉M(Θ)n,C(Θ)n = 〈u0, ϕ〉L2(0,T )m .

This ensures the weak convergence of (uhk)k∈N to u0, in particular, we have ‖u0‖L2(0,T )m 6480

lim infk→∞ ‖uhk‖L2(0,T )m 6 ‖uopt‖L2(0,T )m .481

Since A and B are continuous on the compact set Θ, there are uniformly continuous and
bounded. In addition, it is easy to see that there exists a constant C > 0, depending only on T
and on the bounds of A and B, such that∣∣∣e(T−t)A(θ1)B(θ1)− e(T−t)A(θ0)B(θ0)

∣∣∣ 6 C (|A(θ1)−A(θ0)|+ |B(θ1)−B(θ0)|)

(t ∈ [0, T ], θ0, θ1 ∈ Θ).

This ensures that for every v ∈ L2(0, T )
m and every θ0, θ1 ∈ Θ we have482

|(ΦT v) (θ1)− (ΦT v) (θ0)| 6
√
TC ‖v‖L2(0,T )m (|A(θ1)−A(θ0)|+ |B(θ1)−B(θ0)|) .

The last inequality clearly implies the uniform continuity of ΦTuhk , more precisely, for every δ > 0,483

there exists η(δ) > 0 (with η(δ) → 0 as δ → 0) such that for every k ∈ N and every θ0, θ1 ∈ Θ484

satisfying |θ1 − θ0| 6 δ, we have485

|(ΦTuhk) (θ1)− (ΦTuhk) (θ0)| 6 η(δ).

By taking larger η(δ) if needed, we can also assume that486

|y(θ1)− y(θ0)| 6 η(δ).
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Indeed, y is also uniformly continuous on Θ, since y is continuous on the compact set Θ.487

For every θ ∈ Θ and every k ∈ N, let us set θhk ∈ Θhk such that |θ − θhk | 6 hk. We recall that
since θhk ∈ Θhk , we have |(ΦTuhk)(θhk)− y(θhk)| 6 ε. We then have, for every θ ∈ Θ and every
k ∈ N,

|(ΦTu0) (θ)− y(θ)| 6 |(ΦTu0) (θ)− (ΦTuhk) (θ)|+ |(ΦTuhk) (θ)− (ΦTuhk) (θhk)|
+ |(ΦTuhk) (θhk)− y(θhk)|+ |y(θhk)− y(θ)|

6 |(ΦTu0) (θ)− (ΦTuhk) (θ)|+ 2η(hk) + ε.

Taking the limit k →∞, we conclude that |(ΦTu0) (θ)− y(θ)| 6 ε. This ensures that u0 solves the488

uniform ensemble controllability problem with parameter set Θ. Thus, we have ‖u0‖L2(0,T )m >489

‖uopt‖L2(0,T )m . But, we already know that ‖u0‖L2(0,T )m 6 ‖uopt‖L2(0,T )m from the weak conver-490

gence of the sequence (uhk)k. This ensures that ‖u0‖L2(0,T )m = ‖uopt‖L2(0,T )m , and by unique-491

ness of the minimal L2-norm control, u0 = uopt. Finally, from ‖uopt‖L2(0,T )m > ‖uhk‖L2(0,T )m492

and ‖u0‖L2(0,T )m 6 lim infk→∞ ‖uhk‖L2(0,T )m , we conclude that limk→∞ ‖uhk‖L2(0,T )m =493

‖uopt‖L2(0,T )m . This ensures that uhk → uopt strongly in L2(0, T )
m as k →∞.494

The fact that u0 = uopt also ensures that Φ∗Tµ0 = Φ∗Tµopt and hence, µ0 = µopt by Propo-495

sition 2.7.496

Conclusion. Assume by contradiction that µh is not vaguely convergent to µopt as497

h → 0. Then, there exists f ∈ C(Θ)n such that 〈µh, f〉M(Θ)n,C(Θ)n does not converge to498

〈µopt, f〉M(Θ)n,C(Θ)n as h → 0. In particular, there exists r > 0 and a sequence (hk)k∈N ∈ (R∗+)
N

499

converging to 0 such that
∣∣∣〈µhk − µopt, f〉M(Θ)n,C(Θ)n

∣∣∣ > r. But according to step 1, (µhk)k∈N500

is uniformly bonded. Using vague compactness, up to the extraction of a subsequence (µhk)k is501

vaguely convergent. Finally, the step 2 ensures that the only possible vague limit is µopt. This502

leads to a contradiction, and concludes the proof.503

Remark 5.2. Let us mention that the arguments used in the first step of the proof of Theorem 5.1504

are similar to the ones used in Lemma 3.9. This type of similarity is expected since in Theorem 5.1,505

we prove continuity of the minimizers of J with respect to the parameter set Θ, while Lemma 3.9506

is an ingredient to prove continuity with respect to T , ε and y (see Proposition 3.10).507

Let us now consider a discretized version of the problem. To this end, we consider K ∈ N∗,508

θ1, . . . , θK ∈ Θ be two by two distinct, ΘhK = {θ1, . . . , θK}, with hK = maxθ∈Θ dist(θ,ΘhK ). Let509

µhK be the minimizer of J defined by (3.1) over ΘhK , then µhK =
∑K
k=1 wkδθk , where δθk is the510

atomic mass located at θk, and w = (wk)k∈{1,...,K} ∈ (Rn)
K is the unique minimizer of511

JΘhK
(w) =

1

2

∫ T

0

∣∣∣∣∣
K∑
k=1

B(θk)
∗
e(T−t)A(θk)∗wk

∣∣∣∣∣
2

dt−
K∑
k=1

〈wk, y(θk)〉+ ε

K∑
k=1

|wk| (5.1)

and we have,

uhK (t) = Φ∗TµhK =

K∑
k=1

B(θk)
∗
e(T−t)A(θk)∗wk (t ∈ [0, T ]).

In order to prepare § 6.1, let us give the following results.512

Proposition 5.3. w = (wk)k∈{1,...,K} ∈ (Rn)
K is a minimizer of JΘhK

if and only if for every513

l ∈ {1, . . . ,K}, wl ∈ Rn is a minimizer of514

Jl : ŵ ∈ Rn 7→ 1

2
ŵ∗Λθlŵ −

〈
ŵ, y(θl)−

∫ T

0

e(T−t)A(θl)B(θl)ul(t) dt

〉
+ ε |ŵ| ,
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with

ul(t) =

K∑
k=1
k 6=l

B(θk)
∗
e(T−t)A(θk)∗wk and Λθl =

∫ T

0

e(T−t)A(θl)B(θl)B(θl)
∗
e(T−t)A(θl)

∗
dt.

Proof. According to Theorem A.1, w = (wk)k∈{1,...,K} is a minimizer of JΘhK
if and only if for

every l ∈ {1, . . . ,K}, wl is a minimizer of ŵ ∈ Rn 7→ JΘhK
(w̃) with w̃k =

{
wk, if k 6= l,

ŵ, otherwise
.

But, for every l ∈ {1, . . . ,K}, we have,

JΘhK
(w) =

1

2

∫ T

0

∣∣∣∣∣
K∑
k=1

B(θk)
∗
e(T−t)A(θk)∗wk

∣∣∣∣∣
2

dt−
K∑
k=1

〈wk, y(θk)〉+ ε

K∑
k=1

|wk|

=
1

2

∫ T

0

∣∣∣B(θl)
∗
e(T−t)A(θl)

∗
wl

∣∣∣2 dt

+

∫ T

0

〈
B(θl)

∗
e(T−t)A(θl)

∗
wl,

K∑
k=1
k 6=l

B(θk)
∗
e(T−t)A(θk)∗wk

〉
dt− 〈wl, y(θl)〉+ ε |wl|

+
1

2

∫ T

0

∣∣∣∣∣∣∣
K∑
k=1
k 6=l

B(θk)
∗
e(T−t)A(θk)∗wk

∣∣∣∣∣∣∣
2

dt−
K∑
k=1
k 6=l

〈wk, y(θk)〉+ ε

K∑
k=1
k 6=l

|wk| .

It is then clear that minimizers of ŵ 7→ JΘhK
(w̃) are minimizers of Jl.515

Let us now give condition on the minimizers of Jl defined in Proposition 5.3.516

Proposition 5.4. Let Λ ∈ Rn×n, be a positive definite matrix, z ∈ Rn and ε > 0, the minimizer517

popt ∈ Rn of J : p ∈ Rn 7→ 1
2p
∗Λp−〈p, z〉+ ε |p| over Rn is unique and satisfies popt = 0 if |z| < ε,518

and otherwise popt = ρq where,519

• |q| = 1;520

• shrink(|z| , ε)/CΛ 6 ρ 6 shrink(|z| , ε)/cΛ;521

• (εI + ρΛ)q = z,522

where 0 < cΛ 6 CΛ are such that523

cΛ |p|2 6 p∗Λp 6 CΛ |p|2 (p ∈ Rn)

and524

shrink(s, µ) =


s+ µ if s < −µ,
0 if − µ 6 s 6 µ,

s− µ if µ < s

(s ∈ R, µ ∈ R+).

Remark 5.5. When n = 1, we have popt = shrink(z, ε)/Λ.525

Proof. First, J is strictly convex and coercive, hence admits a unique minimizer popt on Rn.526

Furthermore, popt is characterized by 0 ∈ ∂J (popt). But, we have527

∂J (p) =

{
Λp− z + ε p|p| if p 6= 0,

B(0, ε)− z if p = 0,
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recall that B(0, ε) ⊂ Rn is the closed ball of Rn centered on 0 and of radius ε. In particular, we528

have 0 ∈ ∂J (0) if |z| 6 ε. Let us then assume that |z| > ε, we then have popt 6= 0, and we set529

ρ = |popt| and q = popt/ρ. We thus have (εI + ρΛ)q = z, and hence ρ > 0 shall be such that530

1 = |q|2 =
∣∣∣(εI + ρΛ)

−1
z
∣∣∣2. This leads to the bounds on ρ.531

Before entering the algorithmic computation of a minimizer of JΘhK
, let us give the sub-

differential of JΘhK
. For every k ∈ {1, . . . ,K}, we have,

∂wkJΘhK
(w) =


y(θk)−

∫ T

0

e(T−t)A(θk)B(θk)u(t) dt+ ε
wk
|wk|

, if wk 6= 0,

y(θk)−
∫ T

0

e(T−t)A(θk)B(θk)u(t) dt+ B (0, ε) , if wk = 0,

with u(t) =
∑K
k=1B(θk)

∗
e(T−t)A(θk)∗wk. In particular, if 0 ∈ ∂wkJΘhK

(w), we have532

shrink

(∣∣∣∣∣y(θk)−
∫ T

0

e(T−t)A(θk)B(θk)u(t) dt

∣∣∣∣∣ , ε
)

= 0.

In addition, when wk = 0, we have533

shrink

(∣∣∣∣∣y(θk)−
∫ T

0

e(T−t)A(θk)B(θk)u(t) dt

∣∣∣∣∣ , ε
)

= min {|z| | z ∈ ∂wkJ(w)} .

Alternatively to the algorithm proposed in § 6.1, one can use a direct optimization based on534

the optimality conditions given in Proposition 3.3. We have the following direct corollary of Pro-535

position 3.3.536

Corollary 5.6. w = (wk)k∈{1,...,K} ∈ (Rn)
K is a minimizer of JΘhK

if there exists (αk)k∈{1,...,K} ∈537

RK such that for every k ∈ {1, . . . ,K},538

• αk > 0, and αk = 0 if |y(θk)− (ΦTΦ∗TµhK ) (θk)| < ε;539

• wk = αk (y(θk)− (ΦTΦ∗TµhK ) (θk)),540

where we have set µkK =
∑K
k=1 wkδθk .541

These condition will lead to the minimization problem given in § 6.2.542

6 Numerical strategies543

In this section, we propose three ways to numerically compute a minimizer of JΘh .544

The first one, S.0 is basically using existing solvers without taking in consideration differentia-545

bility issues that emerge from non-smoothness of the dual functional. The second one, S.1 is based546

on the optimality conditions given in Corollary 5.6, see § 6.2. The last ones, S.2.0 and S.2.1, use547

the greedy coordinate descent method proposed in [22], see § 6.1.548

Finally, the strategies S.2.0 and S.2.1 can also be combined with the strategies S.0 and S.1. All549

the possibility are given in § 6.3, and compared on some numerical examples in Section 7.550

6.1 Greedy coordinate descent551

Inspired from [22], we propose the following greedy coordinate descent algorithm (Algorithm 1).552

This algorithm is a coordinate descent algorithm, but instead of considering each coordinate se-553

quentially, we select at each iteration the coordinate for which the decrease of the cost function is554

the most important.555

The convergence of Algorithm 1 is ensured by the following result.556
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Proposition 6.1. Let f1, . . . , fK ∈ C(Rn) and F ∈ C1((Rn)
K

) be all convex. We consider the cost557

function558

J(w1, . . . , wK) = F (w1, . . . , wK) +

K∑
k=1

fk(wk) (w1, . . . , wK ∈ Rn),

and we assume that J is coercive and strictly convex.559

Given w0 = (w0
1, . . . , w

0
K) ∈ (Rn)

K , we define the sequences (ki)i∈N ∈ {1, · · · ,K}N and (wi)i∈N ∈560 (
(Rn)

K
)N

by:561

ki ∈ argmin
k∈{1,...,K}

(
min
ŵ∈Rn

J(wi1, . . . , w
i
k−1, ŵ, w

i
k+1, . . . , w

i
K)

)
, (6.1)

and

wi+1
ki
∈ argmin

ŵ∈Rn
J(wi1, . . . , w

i
ki−1, ŵ, w

i
ki+1, . . . , w

i
K),

wi+1
k = wik (∀k ∈ {1, . . . ,K} \ {ki}),

Then limi→∞ wi = wopt ∈ (Rn)
K , where wopt is the minimizer of J.562

The proof of this result follows the arguments given in [22, Section 2.4] and is given in Appen-563

dix A for the sake of completeness. Note that in [22] the proof is given for n = 1.564

Remark 6.2. We expected that the convergence result would also hold by selecting565

ki ∈ argmax
k∈{1,...,K}

dist
(
0, ∂wkJ(wi)

)
. (6.2)

But, we did not succeed to prove this result without additional regularity assumptions on the566

functions fk. However, in practice, it seems that using the selection rule (6.2), give similar results567

compared to the selection rule (6.1), but is much faster (see examples in Section 7).568

Algorithm 1 Greedy coordinate descent for uniform ensemble control.

Require: T > 0, ε > 0, (A,B, x0, x1) ∈ C(Θ)n×n × C(Θ)n×m × C(Θ)n × C(Θ)n, with n,m ∈ N∗
Require: Θh ⊂ Θ with K := card(Θh) ∈ N∗ and Θh = {θ1, . . . , θK}
Require: η > 0 . A tolerance parameter.

Ensure: u ∈ L2(0, T )
m is such that sup

θ∈Θh

∣∣∣∣∣x1(θ)− eTA(θ)x0(θ)−
∫ T

0

e(T−t)A(θ)B(θ)u(t) dt

∣∣∣∣∣ 6 ε+δ
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Algorithm 1 (continued)

1: for all k ∈ {1, . . . ,K} do
2: wk ← 0
3: yk ← x1(θk)− eTA(θk)x0(θk)
4: Gk ← shrink(|yk| , ε) . Gk = dist {0, ∂wkJΘh(w)}.
5: end for

6: u(t)← 0 . u(t) =

K∑
k=1

B(θk)
∗
e(T−t)A(θk)∗wk.

7: c← 0 . c = JΘh(w).
8: while sup

k∈{1,...,K}
|yk| > ε+ η do

9: for all l ∈ {1, . . . ,K} do . Look for the best descent coordinate.
10: if Gl 6= 0 then
11: for all k ∈ {1, . . . ,K} do ŵk ← wk
12: end for
13: û(t)← B(θl)

∗
e(T−t)A(θl)

∗
wl

14: ŷl ← yl +

∫ T

0

e(T−t)A(θl)B(θl)û(t) dt

. We have ŷl = x1(θl)− eTA(θl)x0(θl)−
∫ T

0

e(T−t)A(θl)B(θl)

K∑
k=1
k 6=l

B(θk)
∗
e(T−t)A(θk)∗wk dt.

15: ŵl ← Approximate Control(ε, T,A(θl), B(θl), ŷl) . See Algorithm 2.
16: ĉl ← JΘh (ŵ)
17: else ĉl ← c
18: end if
19: end for
20: l← an element of argmax

k∈{1,...,K}
ĉk . l is the best coordinate to update.

21: û(t)← B(θl)
∗
e(T−t)A(θl)

∗
wl

22: ŷl ← yl +

∫ T

0

e(T−t)A(θl)B(θl)û(t) dt

23: wl ← Approximate Control(ε, T,A(θl), B(θl), ŷl)

24: u(t)← u(t)− û(t) +B(θl)
∗
e(T−t)A(θl)

∗
wl . We have u(t) =

K∑
k=1

B(θk)
∗
e(T−t)A(θk)∗wk.

25: c← JΘh(w)
26: for all k ∈ {1, . . . ,K} do

27: yk ← x1(θk)− eTA(θk)x0(θk)−
∫ T

0

e(T−t)A(θk)B(θk)u(t) dt

28: if wk = 0 then Gk ← shrink(|yk| , ε)

29: else Gk ←
∣∣∣∣yk − ε wk|wk|

∣∣∣∣
30: end if
31: end for
32: end while
33: return u(t)

Remark 6.3. Here are some comments on Algorithm 1.569

• The loop, lines 9 to 19, can be done in parallel.570
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• What is computed in the loop, lines 9 to 19, can be stored and reused lines 21 to 23 and 25.571

• Algorithm 2 will be called many times, and hence has to be fast.572

• This algorithm is adapted from [22], where the aim is to find sparse solutions. Thus, as we573

will see on some examples in Section 7, will lead to sparse minimizers. Consequently, it might574

not be optimal when we are in the situation described in Proposition 3.6 and Corollary 3.7,575

i.e., when the optimal measure is fully supported. However, we shall see that the controls576

obtained in this way still provide a fairy good approximation of the optimal one.577

Algorithm 2 Computation of an approximate control for the system ẋ = Ax+Bu.

Require: T > 0, ε > 0 and (A,B, y) ∈ Rn×n × Rn×m × Rn with n,m ∈ N∗

Ensure: w ∈ Rn is such that

∣∣∣∣∣y −
∫ T

0

e(T−t)ABu(t) dt

∣∣∣∣∣ 6 ε with u(t) = B∗e(T−t)A∗w

1: function Approximate Control(ε, T,A,B, y)
2: if |y| 6 ε then w ← 0 . See Remark 5.5.
3: else . In that case, we have w 6= 0.
4: if n = 1 then

5: Λ←
∫ T

0

e(T−t)ABB∗e(T−t)A∗ dt

6: w ← shrink(y, ε)/Λ . See Remark 5.5.
7: else if the control Gramian is “computable” then . e.g. for n “small”.

8: Λ←
∫ T

0

e(T−t)ABB∗e(T−t)A∗ dt

9: (r, q)← solution of r > 0, q ∈ Rn, |q| = 1 and (εI + rΛ)q(r) = y
10: w ← rq(r) . See Proposition 5.4.
11: else

12: w ← argmin
ν∈Rn

(
1

2

∫ T

0

∣∣∣B∗e(T−t)A∗ν
∣∣∣2 dt− 〈ν, y〉+ ε |ν|

)
13: end if
14: end if
15: return w
16: end function

Remark 6.4. • In Algorithm 2 (line 9), finding a solution of r > 0, q ∈ Rn, |q| = 1 and578

(εI + rΛ)q(r) = y can be done using a dichotomy search.579

• To find a minimizer of J (line 12 of Algorithm 2), one can use a gradient descent method.580

In fact, note that J is only not differentiable at 0, and note that 0 cannot be the minimizer581

in the situation of line 12 this is because |y| > ε. A way to avoid the evaluation of J (ν) =582

1
2

∫ T
0

∣∣B∗e(T−t)A∗ν
∣∣2 dt− 〈ν, y〉+ ε |ν| at 0 is to initialize the gradient descent method with583

ν ∈ Rn such that J (ν) < J (0) = 0. This is for instance possible by setting ν = αy, with584

α = shrink(|y|2 , ε |y|)/C, with C =
∫ T

0

∣∣B∗e(T−t)A∗y
∣∣2 dt. We thus have ν 6= 0 and J (ν) < 0,585

see Remark 5.5.586

• Computing the Gramian matrix might be resource consuming. Hence, instead of computing587

it in Algorithm 2, it can be computed and stored in Algorithm 1.588
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6.2 Reduced minimization problem589

For this strategy, we will use the optimality condition given in Corollary 5.6. More precisely, we590

consider the following minimization problem (recall that we have set y(θ) = x1(θ)− eTA(θ)x0(θ)),591

min
1

2

∥∥∥∥∥
K∑
k=1

B(θk)∗e(T−·)A(θk)∗wk

∥∥∥∥∥
2

L2(0,T )m

(6.3a)

with respect to w1, . . . , wK ∈ Rn, subject to the following constraints592

∀k ∈ {1, . . . ,K}, ∃αk > 0 such that:


∣∣y(θk)− yT (θk)

∣∣2 6 ε2,

αk

(∣∣y(θk)− yT (θk)
∣∣2 − ε2

)
> 0,

wk = αk
(
y(θk)− yT (θk)

)
,

(6.3b)

where we have set593

yT (θk) =

∫ T

0

e(T−t)A(θk)B(θk)

(
K∑
l=1

B(θl)
∗e(T−t)A(θl)

∗
wl

)
dt. (6.3c)

Observe that the last three constraints coincide with the optimality condition given in Corollary 5.6,594

and the control is given by u(t) =
∑K
k=1B(θk)∗e(T−t)A(θk)∗wk. Using Corollary 5.6, it is obvious595

that minimizers of JΘhK
coincide with minimizers of (6.3).596

Remark 6.5. In practice the minimization problem (6.3) can be expressed as a minimization only597

on (αk)k∈{1,...,K}, however, from a numerical point of view, it is easier to consider the minimiza-598

tion problem (6.3) as a minimization with respect to (wk, αk, y(θk))k∈{1,...,K} since gradient and599

Hessians can be easily computed.600

6.3 Proposed numerical strategies601

Based on the previous consideration, we can propose the following numerical strategies.602

S.0. Use existing nonlinear solvers, and try to directly minimize JΘhK
, without considering po-603

tential issues related to the non-differentiability of the cost functional. In the examples of604

Section 7, we use the fminunc function of Matlab with the quasi-Newton algorithm.605

S.1. Use existing nonlinear solvers to find a minimizer of (6.3). In the examples of Section 7, we606

use the fmincon function of Matlab with the interior-point algorithm.607

In addition, one can use algorithms based on Algorithm 1. This leads to two strategies:608

S.2.0. Use directly Algorithm 1.609

S.2.1. Use Algorithm 1 but instead of using the selection rule given by (6.1), we use the one given610

by (6.2) (see Remark 6.2).611

As we will see in Section 7, with strategies S.2.0 and S.2.1, it appears that many steps are between612

non-zeros values. Hence, we propose a refinement of these two algorithms by running S.0 or S.1 after613

some component of (wk)k switches from null to a non-null value, or vice versa. More precisely,614

using notations of Algorithm 1, if wl was 0 and is updated to a non-null value or if wl was615

non-null and is updated to 0, we run S.0 or S.1 for the same minimization problem, but with616

Θ̃ = {θk ∈ Θh, ∀k ∈ {1, . . . ,K} s.t. wk 6= 0} in place of Θh. In other words, we try to update all617

the non-zero values of (wk)k in one shoot. This leads to the four additional strategies, S.2.i–S.j618

(with i, j ∈ {0, 1}).619

Let us recall that we have analytical guaranties of convergence only for the strategy S.2.0.620
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7 Numerical examples621

Unless explicitly said otherwise, for all the following examples622

• the final time is T = 1;623

• Θ = [1, 2], and Θh is a uniform discretization of Θ with step h = 10−2, leading to K =624

card Θh = 101;625

• ε = 5× 10−2;626

• the time integrals are computed using the trapezoidal rule with a uniform time step of 10−4.627

In particular, to compute ΦT , we use the trapezoidal rule, and the matrix exponentials are628

computed numerically. Another alternative could have been to solve the ordinary differential629

equation using a numerical scheme;630

• the stopping criterion on the gradient (i.e., δ in Algorithm 1) is set to 10−12, we also set a631

step tolerance of 10−20 (i.e., step sizes shall be greater than this number) and a maximal632

number of iterations of 105.633

Examples 7.1 and 7.2 correspond to situation where the optimal control and the adjoint measure634

are known (see Proposition 3.6 and Corollary 3.7). Example 7.3 corresponds to a situation where635

the target cannot be reached (see Appendix B). Finally, Example 7.4 tackled the uniform ensemble636

controllability for a discretized heat equation.637

In the tables used for the comparison of the different numerical strategies, G = (G1, . . . , GK) ∈638

(R+)K is given by lines 27 to 29 of Algorithm 1 that is Gk = dist (0, ∂wkJΘh(w)).639

The codes are run using Matlab version R2020b on a 12 core processor of 64 bits and 3.20 GHz.640

Example 7.1. We consider a first basic example, where n = m = 1, A(θ) = −θ and B(θ) = 1.641

It is well-known that this system is ensemble controllable (see [21, 27]). We consider x0(θ) = 0,642

dµopt(θ) = χω(θ) dθ, where ω is an open subset of Θ. According to Corollary 3.7, we know that643

uopt = Φ∗Tµopt is the minimizer of (P ) when the target is set to x1(θ) = (ΦTΦ∗Tµopt) (θ) + ε.644

In practice, since Θh (introduced in Section 5) is chosen as a uniform discretization of Θ, we645

set µopt,h = h
∑
θ∈Θh∩ω δθ, and it is clear that µopt,h is vaguely convergent to µopt. Also, the646

target x1
h is set accordingly, i.e., x1

h(θ) = (ΦTΦ∗Tµopt,h) (θ) + ε, and the discretized optimal control647

is uopt,h = Φ∗Tµopt,h.648

The numerical simulations are run with ω = (4/3, 7/4) (we recall that the other parameters649

are given in the preamble of Section 7). A comparison of the different strategies listed in § 6.3 is650

given in Table 1.651

Strategy CPU
time (s)

running
time (s)

nb.
iter. maxG

‖uh − uopt,h‖L2

‖uopt,h‖L2

‖µh − µopt,h‖M
‖µopt,h‖M

S.0 6.07 0.63 7 2.553×10− 5 1.561×10−3 0.959
S.1 4.59 2.82 83 1.293×10−13 4.384×10−8 1.271

S.2.0 1409.58 201.93 100000 2.387×10− 8 2.467×10−5 1.952
S.2.0–S.0 39.29 8.49 11 8.161×10−10 4.432×10−6 1.952
S.2.0–S.1 11.19 2.47 14 7.452×10−15 6.833×10−9 1.902

S.2.1 198.18 20.01 100000 3.389×10− 7 1.140×10−3 1.800
S.2.1–S.0 1.06 0.19 14 3.043×10− 9 1.617×10−5 1.905
S.2.1–S.1 4.28 1.19 12 3.757×10−14 2.951×10−8 1.857

(a) Errors, time of computation and number of iterations.

Table 1: Comparison of the strategies listed in § 6.3 for Example 7.1.
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Strategy Stopping reason
S.0 Cannot decrease the objective function along the current search direction.
S.1 Local minimum possible. Constraints satisfied.

S.2.0 Maximal number of iteration reached.
S.2.0–S.0 Cost is not decreasing.
S.2.0–S.1 Cost is not decreasing.

S.2.1 Maximal number of iteration reached.
S.2.1–S.0 Cost is not decreasing.
S.2.1–S.1 Cost is not decreasing.

(b) Stopping reasons.

Table 1: (continued)

In Table 1b, for strategies S.2.i–S.j (i, j ∈ {0, 1}) the last cost modifications is of order 10−17,652

which is close to the numerical 0 (indeed, by denoting copt the minimal cost, we have numerically653

copt + 10−18 = copt). Let us also mention that for all simulations, we have
∣∣x1(θ)− x(T, θ)

∣∣ = ε654

up to an error of order 10−8. We also see that the strategy S.2.0–S.1 gives the best results and655

strategy S.2.1–S.0 is the fastest one. As claimed in § 6.3, for strategy S.2.0 and S.2.1, most of the656

time is spent in updating non-zero values in fact for S.2.0, for all 105 steps the selected index is657

in {1, 55, 101}, and for S.2.1, after some iterations the selected index loops between 1, 42 and 101658

and then between 42, 69 and 101. In Table 1a, we see that even if the control is closed to the659

optimal ones, the adjoint is rather far from the optimal one, this is also illustrated on Figure 4. As660

we can see from Figure 4 and Table 1a, wide variation on the adjoint does not necessarily produce661

large variations on the control. One can see from Figure 4, that the strategies S.0 and S.1 lead to662

adjoints that are fully supported on Θh, while the other strategies lead to adjoints for which the663

support consist in only few points of Θh. These facts will be discussed later on.664
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(e) Strategy S.2.0�S.1.

Figure 4: Adjoints obtained with strategies listed in § 6.3 for Example 7.1.
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Figure 4: (continued)

Example 7.2. We consider the system and data given in Example 7.1, except that we set µopt =665

δθ̃1 + 2δθ̃2 . In that case, for i ∈ {1, 2}, we set θ̃i,h ∈ argmin
{∣∣∣θ̃i − θ∣∣∣ , θ ∈ Θh

}
and µopt,h =666

δθ̃1,h + 2δθ̃2,h .667

The numerical simulation is run with θ̃1 = 7/6 and θ̃2 = 17/10 (we recall that the other668

parameters are given in the preamble of Section 7). A comparison of the different strategies listed669

in § 6.3 is given in Table 2.

Strategy CPU
time (s)

running
time (s)

nb.
iter. maxG

‖uh − uopt,h‖L2

‖uopt,h‖L2

‖µh − µopt,h‖M
‖µopt,h‖M

S.0 4.11 0.44 19 2.431×10− 8 2.421×10−5 1.960
S.1 2.92 1.78 76 2.058×10−13 2.675×10−8 1.981

S.2.0 1478.55 213.11 100000 7.575×10− 7 1.065×10−4 2.000
S.2.0–S.0 0.55 0.10 10 4.783×10− 9 1.999×10−5 2.000
S.2.0–S.1 5.60 1.38 11 2.553×10−12 3.665×10−7 2.000

S.2.1 194.10 19.49 100000 2.495×10− 6 3.447×10−4 2.000
S.2.1–S.0 0.28 0.04 5 2.188×10− 8 4.409×10−5 2.000
S.2.1–S.1 3.01 0.78 8 9.378×10−12 5.331×10−7 2.000

(a) Errors, time of computation and number of iterations

Strategy Stopping reason
S.0 Cannot decrease the objective function along the current search direction.
S.1 Local minimum possible. Constraints satisfied.

S.2.0 Maximal number of iteration reached.
S.2.0–S.0 Step size is less than the step tolerance.
S.2.0–S.1 Step size is less than the step tolerance.

S.2.1 Maximal number of iteration reached.
S.2.1–S.0 Cost is not decreasing.
S.2.1–S.1 Cost is not decreasing.

(b) Stopping reasons.

Table 2: Comparison of the strategies listed in § 6.3 for Example 7.2.
670

We see form Table 2 that almost all the conclusion made for Example 7.1 also holds for Exam-671

ple 7.1, except that here the strategy S.1 give slightly better results than the strategy S.2.0–S.1. As672

for Example 7.1, we display on Figure 5 the adjoints numerically computed. The comments made673

in Example 7.1 also applies here, wide variation on the adjoint does not necessarily produce large674
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variations on the control, and the strategies S.0 and S.1 lead to adjoints that are fully supported675

on Θh, while the other strategies lead to adjoints for which the support consist in only few points676

of Θh.
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(d) Strategy S.2.0�S.0.
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(e) Strategy S.2.0�S.1.
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(f) Strategy S.2.1.
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(g) Strategy S.2.1�S.0.
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(h) Strategy S.2.1�S.1.

Figure 5: Adjoints obtained with strategies listed in § 6.3 for Example 7.1.
677

Based on the results given in Examples 7.1 and 7.2, we can make the following comments.678

• All strategy lead to some acceptable control.679

• Strategies S.0 and S.1 lead to adjoint measure, which are everywhere non-zero. In fact, they680

are not adapted for sparsity, contrary to strategies S.2.0 and S.2.1 and their derivatives. In681

addition, for strategy S.1 since an interior-point algorithm is used, the fact that the obtained682

solution is non-zero everywhere is expected.683

• Even if the strategy S.2.1–S.1 did not give the best results, it is relatively fast and provide684

good results for the control. We will then use this strategy for the following examples.685

Example 7.3. We consider the system and data given in Example 7.1, but we set x1(θ) = 1. In686

that case, it is known from Proposition B.1 that the target state in not reachable. Hence, it is687

expected that the norm of the minimal L2-norm control goes to ∞ as ε goes to 0.688

This fact is illustrated on Figure 6. On Figure 7, we also display the obtained results for689

ε = 2 × 10−4 (we recall that the other parameters are given in the preamble of Section 7). In690

particular, Figures 7b and 7d confirm the claim of Corollary 3.5, i.e., the sign of the optimal measure691
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coincide with the sign of x1−xT and the measure is only supported on the set of parameters θ such692

that
∣∣x1(θ)− xT (θ)

∣∣ = ε. The results for this example have been obtained using strategy S.2.1–S.1.693
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(a) Norm of the control (black) and number of Dirac
masses in the adjoint state (gray), with respect to ε.
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Figure 6: Norm of the control, number of Dirac masses in the adjoint state and absolute value of
the adjoint state, with respect to ε, for Example 7.3.
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(c) Time dependent solutions for some values of θ.
On this graph, we plot x1(θ)− x(·, θ).
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Figure 7: Results obtained with strategy S.2.1–S.1 for the system given in Example 7.3, with
ε = 2× 10−4.
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Example 7.4. For this example, we consider a discretized version of the family indexed by θ ∈ Θ
of systems of 1D heat equation:

ẏ(t, θ, x) = ∂2
xy(t, θ, x)− (θ − 1)y(t, τ, x) + u(t, x) (t > 0, x ∈ (0, 1)), (7.1a)

y(t, θ, 0) = y(t, θ, 1) = 0 (t > 0), (7.1b)

y(0, θ, x) = y0(θ, x) (x ∈ (0, 1)). (7.1c)

One can refer to [9] for some ensemble controllability results related to parabolc systems.694

Given n ∈ N∗, using centered finite differences, the discretized version of (7.1) is695

Ẏ (t, θ) = A(θ)Y (t, θ) +B(θ)U(t), Y (0, θ) = Y 0(θ), (7.2)

with696

A(θ) =
1

(n+ 1)2



−2 1 0 . . . 0

1
. . . . . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . 1

0 . . . 0 1 −2


− (θ − 1)In ∈ Rn×n and B(θ) = In ∈ Rn×n

and where Yi(t, θ) ' y(t, θ, i
n+2 ), Ui(t) ' u(t, i

n+2 ) and Y 0
i (θ) = y0(θ, i

n+2 ).697

Let us mention that using the trapezoidal rule, ‖y(t, θ, ·)‖L2(0,1) is approximated by
√

1
n+1 |Y (t, θ)|698

hence, the value of ε will be adapted accordingly. For the control problem, we set y0(θ, x) =699

sin(x + θ) and null target, i.e., y1(θ) = 0. The goal is to find a control u ∈ L2(0, T ;L2(0, 1))700

such that supθ∈Θ ‖y(T, θ, ·)‖L2(0,1) 6 ε, ε, T,Θ and discretization parameters are defined in the701

preamble of Section 7. For the numerical illustration, we use the strategy S.2.1–S.1, with n = 19.702

The obtained results are displayed on Figure 8.703

A Proof of Proposition 6.1704

For this proof, we follow [22, Section 2.4]. We consider a cost function of the form705

J(w1, . . . , wK) = F (w1, . . . , wK) +

K∑
k=1

fk(wk) (w1, . . . , wK ∈ Rn),

where f1, . . . , fK are continuous convex function and F is a convex function of class C1. For every706

k ∈ {1, . . . ,K}, we define qwk = (w1, . . . , wk−1, wk+1, . . . , wK) ∈ (Rn)
K−1, and Jk, qwk(wk) = J(w)707

and Fk, qwk(wk) = F (w).708

Theorem A.1. Using the notations and assumptions introduced above, w = (w1, . . . , wk) is a709

minimizer of J if and only if for every k ∈ {1, . . . ,K}, wk is a minimizer of Jk, qwk .710

Proof. If w is a minimizer of J, then for every δ ∈ Rn and every k, we have711

J(w1, . . . , wk−1, wk + δ, wk+1, . . . , wk) > J(w1, . . . , wk−1, wk, wk+1, . . . , wK),

That is to say that Jk, qwk(wk + δ) > Jk, qwk(wk), i.e., wk minimizes Jk, qwk .712

Reciprocally, if wk minimizes Jk, qwk , for every δ ∈ Rn and every t ∈ [0, 1], we have,713

0 6 Jk, qwk(wk + tδ)− Jk, qwk(wk) = Fk, qwk(wk + tδ)− Fk, qwk(wk) + fk(wk + tδ)− fk(wk).
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Figure 8: Results obtained with strategy S.2.1–S.1 for the system given in Example 7.4.

But, since fk is convex, we have fk(wk+tδ) = fk ((1− t)wk + t(wk + δ)) 6 (1−t)fk(wk)+tfk(wk+714

δ), and we get715

fk(wk + tδ)− fk(wk) 6 t (fk(wk + δ)− fk(wk)) (t ∈ [0, 1]).

This ensures716

0 6
1

t
(Fk, qwk(wk + tδ)− Fk, qwk(wk)) + fk(wk + δ)− fk(wk) (t ∈ (0, 1)).

Since F is of class C1, Fk, qwk is also of class C1 and taking the limit t → 0 in the above equation,717

we get718

0 6 〈∇Fk, qwk(wk), δ〉+ fk(wk + δ)− fk(wk).

Now, assume that w = (w1, . . . , wK) is such that wk minimizes Fk, qwk for every k ∈ {1, . . . ,K}.
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For every δ = (δ1, . . . , δK) ∈ (Rn)
K , we have, using the convexity (and C1 regularity) of F ,

J(w + δ)− J(w) = F (w + δ)− F (w) +

K∑
k=1

(fk(wk + δk)− fk(wk))

> 〈∇F (w), δ〉+

K∑
k=1

(fk(wk + δk)− fk(wk))

=

K∑
k=1

(〈∇wkF (w), δk〉+ fk(wk + δk)− fk(wk))

=

K∑
k=1

(〈∇Fk, qwk(wk), δk〉+ fk(wk + δk)− fk(wk))

> 0.

That is to say that w is a minimizer of J.719

Lemma A.2. Assume J is strictly convex and coercive. Then, for every k ∈ {1, . . . ,K}, the720

function gk : (Rn)
K−1 → Rn defined by gk( qw) = argmin Jk, qw is continuous.721

Proof. Firstly, since we assumed that J is strictly convex and coercive, we have that Jk, qw is also722

strictly convex and coercive, this holds for every qw ∈ (Rn)
K−1 and every k ∈ {1, . . . ,K}. This723

ensures the existence and uniqueness of minimizers of Jk, qw, i.e., the function gk is well-defined.724

Let qw ∈ (Rn)
K−1 and ( qwi)i∈N ∈

(
(Rn)

K−1
)N

be a sequence converging to qw, for every725

i ∈ N, we define wik = gk( qwi) and wk = gk( qw). We then have, Jk, qwi(w
i
k) 6 Jk, qwi(wk), and726

limi→∞ Jk, qwi(wk) = Jk, qw(wk). This ensures that the sequence (Jk, qwi(w
i
k))

i
is bounded. But727

since J is coercive (and recalling that Jk, qwi(w
i
k) = J(wi)), this implies that the sequence (wik)i is728

bounded, and hence admits a convergent subsequence (still denote by (wik)i), and we denote by729

w∞k its limit. We then have Jk, qw(w∞k ) = limi→∞ Jk, qwi(w
i
k) 6 limi→∞ Jk, qwi(wk) = Jk, qw(wk),730

this implies wk = w∞k , by uniqueness of the minimizer of Jk, qw. We have thus proved that731

limi→∞ gk( qwi) = gk( qw).732

We are now in position to prove the convergence of the algorithm.733

Proof of Proposition 6.1. It is trivial that734

min
(Rn)K

J 6 J(wi+1) 6 J(wi) (i ∈ N). (A.1)

This ensures that (J(wi))i is bounded and convergent. Due to the coercivity of J, we also have, by735

compactness, the existence of φ : N → N increasing and w∞ ∈ (Rn)K such that limi→∞ wφ(i) =736

w∞. The continuity of J ensures that J(w∞) = limi→∞ J(wφ(i)) = limi→∞ J(wi) (the last equality737

follows from the uniqueness of limits).738

For every k ∈ {1, . . . ,K} and every w ∈ (Rn)
K , we define ∆Jk(w) = J(w1, . . . , wK) −739

J(w1, . . . , wk−1, gk( qwk), wk+1, . . . , wK) > 0, where gk is defined in Lemma A.2. From Lemma A.2,740

gk is continuous, hence ∆Jk is also continuous. We then have ∆Jk(w∞) = limi→∞∆Jk(wφ(i)).741

We also have, by definition of the sequence,742

0 6 ∆Jk(wφ(i)) 6 ∆Jkφ(i)
(wφ(i)) = J(wφ(i))− J(wφ(i)+1) (i ∈ N, k ∈ {1, · · · ,K}).
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which goes to 0 as i goes to ∞. Hence, taking the limit i→∞, we conclude that743

0 = ∆Jk(w∞) (k ∈ {1, · · · ,K}).

This ensures, using the definition of ∆Jk and Theorem A.1, that w∞ is the minimizer of J. Note744

that the existence and uniqueness of the minimizer of J is ensured by the coercivity and strict745

convexity of J.746

Finally, the uniqueness of minimizers, the coercivity of J, and inequality (A.1) lead to747

limi→∞ wi = w∞.748

B Some unreachable states749

In this paragraph, we will show, in the case m = 1, that for every k ∈ N, θ ∈ Θ 7→ A(θ)kB(θ) ∈ Rn750

is unreachable for the system (2.1). To get this result, we will assume that the system (2.1) is751

uniformly ensemble controllable, and that Θ has a nonempty interior. Let us first define the set of752

reachable points in time T > 0,753

RA,B(T ) =

{
θ ∈ Θ 7→

∫ T

0

e(T−t)A(θ)B(θ)u(t) dt | u ∈ L2(0, T )m

}
.

Before entering the proof of this result, let us mention that (2.1) is uniformly ensemble control-754

lable if and only if Span
{
θ ∈ Θ 7→ A(θ)kB(θ)v | k ∈ N, v ∈ Rm

}
is dense in C(Θ). This fact can755

be found in [28] (see also [11]).756

Let us first prove our result in the case n = 1.757

Proposition B.1. Let Θ ⊂ R be a compact set and assume that there exists θ0 ∈ Θ such that758

θ0 is an accumulation point of Θ. Let a, b ∈ C(Θ) and assume that (a, b) is uniformly ensemble759

controllable. Then for every T > 0, and every k ∈ N, akb 6∈ Ra,b(T ).760

Proof. Let us set Θ̃ = a(Θ), we have Θ̃ ⊂ R is a compact set, θ̃0 = a(θ0) ∈ Θ̃ is an accumulation761

point of Θ̃, and we set ıΘ̃ the identity map on Θ̃. Since the pair (a, b) is ensemble controllable, we762

necessarily have that a is injective (see [11, Proposition 4]) and b(θ) 6= 0 for every θ ∈ Θ (see Re-763

mark 2.5). This ensures that if y ∈ Ra,b(T ) then y ◦ a−1 ∈ RıΘ̃,b◦a−1(T ) =
(
b ◦ a−1

)
RıΘ̃,1(T ).764

Consequently, it is enough to prove this result for a = ıΘ and b = 1.765

Let us assume by contradiction that there exists k ∈ N and u ∈ L2(0, T ) such that766 ∫ T
0
e(T−t)θu(t) dt = θk for every θ ∈ Θ. Since Θ admits an accumulation point, by analytic767

continuation, we have768 ∫ T

0

e(T−t)θu(t) dt = θk (θ ∈ R).

For every ` ∈ N, we also have by derivation with respect to θ,769 ∫ T

0

(T − t)k+1+`e(T−t)θu(t) dt = 0 (θ ∈ R).

Finally, using Stone-Weierstrass Theorem, we conclude that770

(T − t)k+1e(T−t)θu(t) = 0 (θ ∈ R, t ∈ [0, T ] a.e.)

and using the fact that (T − t)k+1e(T−t)θ does not vanish on (0, T ), we conclude that u = 0. This771

leads to a contradiction with
∫ T

0
e(T−t)θu(t) dt = θk.772
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Even if the above result is given in the real context, it can be easily extended to the complex773

case (i.e., with a(θ), b(θ) ∈ C, complex controls and Θ ⊂ C). Its complex version will be used in774

the next result.775

We are now in position to give the general result.776

Proposition B.2. Let Θ ⊂ R be a compact set and assume that int Θ 6= ∅. Let A ∈ C(Θ)n×n and777

B ∈ C(Θ)n, and assume that (A,B) is uniformly ensemble controllable. Then for every T > 0 and778

every k ∈ N, we have779

AkB 6∈ RA,B(T ).

Proof. Following [10, Lemma A.2], there exists θ0 ∈ int Θ, δ > 0, λ ∈ C([θ0 − δ, θ0 + δ],C) and780

v ∈ C([θ0− δ, θ0 + δ],C)n such that v(θ) 6= 0 and A(θ)∗v(θ) = λ(θ)v(θ) for every θ ∈ [θ0− δ, θ0 + δ].781

We now notice that if the system (2.1) is ensemble controllable on Θ, then the system given by the782

pair (λ, v∗B) is also uniformly ensemble controllable on [θ0−δ, θ0+δ]. According to Proposition B.1,783

we have that λkv∗B 6∈ Rλ,v∗B(T ) for every T > 0. This clearly ensures that AkB 6∈ RA,B(T ) for784

every T > 0.785

Remark B.3. Let us mention that in the case m > 1, the situation is not so trivial.786

For instance, let T > 0, v ∈ C∞([0, T ]) such that v(k)(0) = v(k)(T ) = 0 for every k ∈ N, and such787

that
∫ T

0
e(T−t)θv(t) dt 6= 0, and define β(θ) =

(∫ T
0
e(T−t)θv(t) dt

)−1

. For every k ∈ N, we have788

θk ∈ Rθ,(1 β)(T ). In fact, we clearly have 1 =
∫ T

0
e(T−t)θβ(θ)v(t) dt, from this relation and by789

integration by parts, one can deduce that θk =
∫ T

0
e(T−t)θβ(θ)v(k)(t) dt for every k ∈ N.790
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