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Abstract

Neural Episodic Control is a powerful reinforcement learning framework that em-
ploys a differentiable dictionary to store non-parametric memories. It was inspired
by episodic memory on the functional level, but lacks a direct theoretical connec-
tion to the associative memory models generally used to implement such a memory.
We first show that the dictionary is an instance of the recently proposed Universal
Hopfield Network framework. We then introduce a continuous approximation
of the dictionary readout operation in order to derive two energy functions that
are Lyapunov functions of the dynamics. Finally, we empirically show that the
dictionary outperforms the Max separation function, which had previously been
argued to be optimal, and that performance can further be improved by replacing
the Euclidean distance kernel by a Manhattan distance kernel. These results are
enabled by the generalization capabilities of the dictionary, so a novel criterion
is introduced to disentangle memorization from generalization when evaluating
associative memory models.

1 Introduction

Episodic memory is the ability to remember information about a specific situation. An influential
model of episodic memory is the Hopfield Network (1), a recurrent associative memory that can
learn a pattern in one shot and recall it, given some partial or noisy cue. Some important limitations
have been addressed with the development of differentiable continuous Hopfield Networks (2) and
their connection to deep learning (3; 4), thus providing a renewed interest to the field of associative
memory. Episodic memory has also been studied as an efficient way to control reinforcement learning
in so-called episodic control, particularly in the initial steps of learning (5), but no explicit link
has been made between Hopfield Networks and control algorithms. Such a link could lead to the
development of more efficient controllers and memory models. It could also shed light on how the
hippocampus, the seat of episodic memory in the brain, contributes to behavior.

In this paper, a novel connection is established between the fields of associative memory and
reinforcement learning. It is shown in Section 2 that the differentiable neural dictionary (DND)
introduced in the context of episodic control (6) as a rapid way to store and retrieve experiences, is
mathematically close to the Hopfield Network. Retrieval from a DND can indeed be decomposed into
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Figure 1: Differentiable Neural Dictionary lookup as retrieval from a Universal Hopfield Network.

similarity, separation and projection operations, just as any instance of the general Universal Hopfield
Network framework (UHN) (7) recently proposed to encompass both classical and recent models
of associative memory. In a DND, similarity scores are computed using the Euclidean distance and
separated with a k-nearest neighbor algorithm. The projection operation of DND is the same as for
all existing UHN instances, including the traditional Hopfield Network. DND can thus be thought of
as a single-shot associative memory model, just like Hopfield Networks and their modern continuous
variants. These models can often be defined by an energy function which decreases as memories are
retrieved. We show that energy functions can also be derived for the recall operation of the DND.

In Section 3, experiments are conducted to compare the DND to state of the art associative memory
models in memorization tasks. It is shown that the DND outperforms concurrent models in gen-
eralization tasks. Its performance is further improved by replacing the Euclidean distance by the
Manhattan distance, as predicted by the original UHN study (7). A new criterion is introduced to as-
sess performance, and it is found that the k-nearest neighbor separation of DND favors generalization
over memorization, as compared to the simpler Max separation function.

2 Differentiable Neural Dictionary as a Hopfield Network

The UHN framework encompasses a family of associative memory models in which retrieval is
performed by computing the similarity between a query q and keys K (sim function), separating the
similarity scores with a function sep, then projecting the results to the output space with some value
matrix V:

z = V · sep(sim(K , q)). (1)

In the original binary Hopfield Network (1), the similarity function is the dot product and sep is the
identity function. Modern continuous variants have been proposed (8) that improve storage capacity
by using more elaborate separation functions such as Softmax (4) to push apart memory attractors.

On the other hand, Neural Episodic Control is a reinforcement learning architecture that introduces
the DND as a way to store associations between sensory observations and Q-value estimates. The
reading operation of the DND is:

z =

k∑
i=1

ϕiw i, (2)

where w contains the normalized inverse distances between the query and the k nearest observation
keys, and ϕ contains the values of nearest observations (i.e. their Q-value estimates). The inverse
distances are computed using the following kernel function:

simi(K , q) =
1

δ + ||K i − q ||22
, (3)
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with K the observation keys, q the query, and δ = 10−3. The k-nearest neighbor function can be
written as:

sep(x ) = κ(x )/
∑
i

κi(x ) (4)

κi(x ) =

{
x i if x i is among the top k values of x ,
0 otherwise.

(5)

We can thus rewrite Equation 2 as:

z = ϕ · sep(sim(K , q)), (6)

which closely resembles the reading operation of UHN (Equation 1).

Note that the Euclidean similarity function of UHN (7) is the same as the kernel function of Neural
Episodic Control (6):

simi(K , q) =
1

δ +
∑

j(K ij − q j)
2

(7)

=
1

δ +
(√∑

j(K ij − q j)
2
)2 (8)

=
1

δ + ||K i − q ||22
(9)

In sum, the kernel function of DND acts as a similarity function and is equivalent to the Euclidean
similarity function of UHN. Furthermore, the k-nearest neighbor algorithm sparsifies the result of
the similarity function by cancelling the contribution of the most distant experiences. The output of
the algorithm is then normalized before being projected to the value space. This constitutes a novel
separation function for the UHN framework, we call it k-Max. It is worth noting that this separation
function is similar to applying a threshold on the similarity function, like what is done in the sparse
distributed memory model (9), which has also been cast as a UHN (7). The only difference is that the
threshold for sparse distributed memory is fixed, while it must be dynamic for selecting a constant
number k of neighbors. Furthermore, with k = 1, the separation function is equivalent to the Max
separation function of UHN. The remaining difference between DND and other UHN instances is that
the output of the DND is a scalar value, while UHN models can store vector values. In a modification
of DND (10), multidimensional values have been stored. In fact, the DND can simply be extended
with a matrix of value vectors V . Equation 6 thus becomes:

z = V · sep(sim(K , q)). (10)

An abstract energy function has been derived for UHN models (7). It is defined as:

E(K , v) =
∑
i

1

2
v2
i −

∫
sep
[∑

j

sim(K i,j , v i)

]
, (11)

with v the activity of value neurons which are initialized with the query q , and updated to produce
the output pattern z (in the case of autoassociation where V = K⊤).

The energy function requires the gradient of the separation function to be nonzero, which is not the
case for κ (as defined in Equation 5). A few adjustments thus need to be made to κ in order to derive
the energy function for the DND. Let σ(x) denote the Sigmoid function, defined as:

σ(x) =
1

1 + e−x
(12)

An adjusted Sigmoid function with threshold Θ and steepness parameter β > 0, is used to define a
continuous approximation of κ:

κi(x ) = x iσ
(
β(x i −Θ)

)
(13)

x i =
∑
j

sim(K i,j , v i). (14)
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A second Sigmoid function is used to count the number of selected dimensions (κ/x entries higher
than 1/2) and adjust Θ to ensure there are only k of them:

Θt+1 = Θt + α

[
− k +

n∑
i=1

σ
(
βk(

κi

x i
− 1

2
)
)]
, (15)

where 0 < α < 1 governs the threshold dynamics and βk controls the steepness of the second
Sigmoid. In Appendix A, we show that Θ is convergent with α < 16

nβk β . Equation 13 has a nonzero
gradient, and as β and βk grow to infinity, it approaches Equation 5. Hence, it can be used for
the separation function of Equation 11, providing DND with an energy function. A second energy
function is the update of Θ:

E = ∆(Θ) = α

[
− k +

n∑
i=1

σ

[
βk

(
σ
(
β(x i −Θ)

)
− 1

2

)]]
(16)

3 Associative memory performance of the Differentiable Neural Dictionary

In the previous section, the differentiable neural dictionary of Neural Episodic Control has been
shown to be a Universal Hopfield Network. In principle, DND can thus be used as an associative
memory. In this section, the MNIST, CIFAR10 and Tiny ImageNet datasets are used to test the
robustness and capacity of DND as an associative memory model, using the same methods as for the
other UHN instances (7) unless otherwise mentioned2.

Example reconstructions of images by DND are shown in Figure 2, as well as Figures 8 and 7.
Memories are separated by keeping the k-nearest neighbors only (k-Max separation function). For
simplicity, the kd-tree of the original Neural Episodic Control implementation is not used, nor is
the continuous k-Max version that makes use of Equation 13. Instead, all similarity scores are
computed and those not selected are zeroed out (Equation 5). In Figure 2, using k = 50 like in
the original Neural Episodic Control publication (6) gives an output from which the original image
can be recognized, but the model is unable to properly separate memories and the resulting output
is blurry. The Max separation function is equivalent to selecting the nearest neighbor (k = 1) and
provides a much clearer output. In fact, Max is the best separation function benchmarked for UHN
(7). Even when the output is blurry, the k > 1 models seem to properly capture the statistics of the
dataset, such as the fact that central pixels are globally more active than those on the borders. Recall
accuracy is typically assessed in absolute terms, by checking that the difference between output and
response is below a threshold (7). It is worth exploring whether the statistical modeling capacities of
k > 1 can consistently improve performance with this criterion, despite the Max function having
theoretically unbounded capacity with respect to the dimensionality of the query (7). On the other
hand, a new criterion will be introduced to evaluate recall in relation to other stored patterns, given
that the main function of episodic memory is to reconstruct information corresponding to a particular
situation (memorization) rather than to generalize.

Throughout the paper, we distinguish between two key aspects of associative memory models,
adhering to the terms of (7): capacity and retrieval. Capacity refers to the number of unique images
(or memories) that can be stored while maintaining accurate recall. Retrieval, on the other hand,
focuses on the model’s performance in recalling these stored images when they are presented with
incomplete or noisy cues. It measures the resilience of memory recall in the presence of distortion.

3.1 Capacity with different functions

In DND, the similarity between memories and the query is computed using a Euclidean function
(Equation 3). While rarely used in associative memory models, this function was found to outperform
the more common dot product (7). An even better performing similarity function was the inverse of
the Manhattan distance:

simi(K , q) =
1

δ +
∑

j abs(K ij − q j)
(17)

2The code is available at https://github.com/HugoChateauLaurent/DND_AssociativeMemory and
is based on https://github.com/BerenMillidge/Theory_Associative_Memory (MIT license).
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Figure 2: Example reconstructions of noisy MNIST digits by DND. The top row shows the input cue
with increasing amount of noise. The following rows show the reconstruction of the stored memory
using k = 1, 5, 50.

The capacity of the model under different similarity (Euclidean and Manhattan) and separation
functions is assessed by quantifying correctly retrieved data when increasing number of MNIST,
CIFAR10 and Tiny ImageNet images is stored (Figures 3 and 9 ; Table 1). Half-masked images are
given as input, and a trial is correct if the sum of squared pixel differences between the output and
the actual image is less than a threshold of 50. The Manhattan similarity function outperforms the
Euclidean function, especially when k is low. Furthermore, the best k value is highly dependent on
the dataset. In MNIST, the best k is 5 for both Euclidean and Manhattan functions. In CIFAR10, the
best k is 2 with Euclidean similarity and 1 with the Manhattan function. In Tiny ImageNet, Max
(k = 1) outperforms other functions.
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(a) Euclidean similarity
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(b) Manhattan similarity

Figure 3: Capacity of associative memory with different similarity and separation functions assessed
with MNIST. Plots represent the means and standard deviations of 10 simulations. A trial is correct
when the difference between the output and the actual memory is under a threshold.

3.2 Retrieval with different functions

In order to test robustness of the memory, the ability to recall memories from noisy cues is analyzed.
Independent zero-mean Gaussian noise with variance σ is thus added to the query images pixelwise.
Performance is evaluated using sets of 100 images.
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Table 1: Capacity of associative memory with different similarity and separation functions assessed
with MNIST, CIFAR10 and Tiny ImageNet datasets. Reported are means and standard deviations
of the 10 simulations of Figure 9. For each dataset and similarity function, the best performance is
highlighted in bold.

Separator MNIST CIFAR10 Tiny

Euclidean Similarity

Max 0.739± 0.14 0.220± 0.18 0.223± 0.210.223± 0.210.223± 0.21
2-Max 0.826± 0.11 0.236± 0.180.236± 0.180.236± 0.18 0.015± 0.02
5-Max 0.851± 0.080.851± 0.080.851± 0.08 0.117± 0.09 0.010± 0.02
10-Max 0.838± 0.08 0.095± 0.08 0.010± 0.02
50-Max 0.801± 0.09 0.087± 0.09 0.010± 0.02
Identity 0.809± 0.08 0.088± 0.09 0.010± 0.02

Manhattan Similarity

Max 0.835± 0.10 0.451± 0.210.451± 0.210.451± 0.21 0.669± 0.240.669± 0.240.669± 0.24
2-Max 0.886± 0.08 0.369± 0.20 0.011± 0.02
5-Max 0.887± 0.070.887± 0.070.887± 0.07 0.106± 0.08 0.010± 0.02
10-Max 0.826± 0.08 0.075± 0.07 0.010± 0.02
50-Max 0.775± 0.11 0.067± 0.06 0.010± 0.02
Identity 0.804± 0.09 0.063± 0.06 0.010± 0.02

Like capacity, the best k for retrieval depends on the dataset (Figure 10 Table 2). Here again, the
performance is better with the Manhattan similarity than with the Euclidean similarity for low k, and
worse for high k. In MNIST, the best k is 50 with both Euclidean and Manhattan similarities. In
CIFAR10, 2 is the best k. Like for capacity, Max outperforms other functions with Tiny ImageNet
images.
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(a) Absolute criterion
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(b) Memorization criterion

Figure 4: Retrieval capability against increasing levels of noise. Plots represent the means and
standard deviations of 10 simulations with different sets of MNIST images.

As hypothesized, Max is not always the best performing function with the absolute accuracy criterion,
both for capacity and retrieval tasks. It can indeed be outperformed by higher k values, meaning
that taking into account more memories than the single most similar one can lead to more precise
recall in absolute terms (i.e. as assessed by a threshold). The performance of the identity and 50-Max
functions in the MNIST dataset are surprisingly good, even under very high levels of noise (Figure
4a). In fact, as pixel values are restricted to lie in the range [0, 1], it is very unlikely that enough
information remains in the image to correctly identify it when σ > 1. Hence, a plausible explanation
is that high k functions model the dataset such that they output a mixture of many images that is
sometimes classified as correct retrieval, although it is not necessarily closer to the query image than
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Table 2: Retrieval capability against noise. Reported are means and standard deviations of the 10
simulations of Figure 10. For each dataset and similarity function, the best performance is highlighted
in bold.

Separator MNIST CIFAR10 Tiny

Euclidean Similarity

Max 0.667± 0.44 0.574± 0.45 0.580± 0.440.580± 0.440.580± 0.44
2-Max 0.692± 0.41 0.588± 0.440.588± 0.440.588± 0.44 0.310± 0.43
5-Max 0.735± 0.37 0.455± 0.41 0.190± 0.35
10-Max 0.789± 0.31 0.357± 0.39 0.128± 0.33
50-Max 0.904± 0.090.904± 0.090.904± 0.09 0.205± 0.30 0.002± 0.01
Identity 0.830± 0.10 0.083± 0.09 0.000± 0.00

Manhattan Similarity

Max 0.672± 0.43 0.627± 0.44 0.620± 0.430.620± 0.430.620± 0.43
2-Max 0.699± 0.40 0.628± 0.430.628± 0.430.628± 0.43 0.223± 0.39
5-Max 0.741± 0.36 0.424± 0.38 0.009± 0.02
10-Max 0.794± 0.30 0.282± 0.28 0.002± 0.01
50-Max 0.891± 0.070.891± 0.070.891± 0.07 0.085± 0.06 0.000± 0.00
Identity 0.781± 0.05 0.049± 0.02 0.000± 0.00

any other of the dataset. This is especially true for MNIST which contains simple pictures that are
more similar to each other than CIFAR10 and Tiny ImageNet.

3.3 Performance with memorization criterion

In order to prevent associative memory models from modeling the statistics of the dataset rather than
focusing on the query image to output the actual memory, a novel criterion is introduced. Instead of
the absolute threshold, retrieval must be good relatively to other images. More precisely, the novel
criterion is such that a trial is correct if and only if the sum of squared pixel differences between the
truth and the output is lower or equal to the sum of squared pixel differences between the output and
any other memory, that is, if:∑

j

(zj −K cj)
2 = min

i

∑
j

(zj −K ij)
2 (18)

where K c is the correct pattern to retrieve.

Capacity is now assessed using this new criterion (Figures 5 and 11 ; Table 3). The Manhattan
function still outperforms the Euclidean similarity. Most crucially, the best performance is always
obtained with the Max function.

Retrieval is then tested with the new criterion (Figures 4b and 12 ; Table 4). Once again, the
best performance is obtained with the Manhattan similarity. Furthermore, k = 1 almost always
outperforms other values. Note that performance with k = 2 is very similar.

3.4 Relationship between k-Max and Softmax

Like k-Max, the Softmax function virtually cancels out the contribution of distant memories, espe-
cially when β, the scaling parameter of its input, is high. It does it by normalizing exponentiated
similarity scores:

Softmax(x ) =
eβx∑
i e

βx i
(19)

While k is a discrete parameter, β is continuous, which makes the Softmax function harder to optimize
but perhaps more flexible. Here, the two separation functions are compared. For each dataset, 100
images are encoded. The noise is set to 1 for MNIST and 0.75 for CIFAR10 dataset and Tiny
ImageNet. The results are shown in Figures 6a and 13 with the absolute criterion and in Figures 6b
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(a) Euclidean similarity
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(b) Manhattan similarity

Figure 5: Capacity of associative memory with different similarity and separation functions assessed
with MNIST. Plots represent the means and standard deviations of 10 simulations. Here, a trial is
correct when the difference between the output and the actual memory is lower than the difference
between the output and any other stored memory.

Table 3: Capacity of associative memory with different similarity and separation functions assessed
with MNIST, CIFAR10 and Tiny ImageNet datasets. Reported are means and standard deviations of
the 10 simulations of Figure 11. For each dataset and similarity function, the best performance is
highlighted in bold.

Separator MNIST CIFAR10 Tiny

Euclidean Similarity

Max 0.624± 0.220.624± 0.220.624± 0.22 0.223± 0.190.223± 0.190.223± 0.19 0.223± 0.210.223± 0.210.223± 0.21
2-Max 0.624± 0.220.624± 0.220.624± 0.22 0.222± 0.19 0.222± 0.21
5-Max 0.256± 0.24 0.132± 0.13 0.112± 0.14
10-Max 0.199± 0.24 0.104± 0.14 0.098± 0.13
50-Max 0.171± 0.25 0.086± 0.14 0.095± 0.14
Identity 0.169± 0.25 0.085± 0.14 0.095± 0.14

Manhattan Similarity

Max 0.793± 0.140.793± 0.140.793± 0.14 0.502± 0.240.502± 0.240.502± 0.24 0.669± 0.240.669± 0.240.669± 0.24
2-Max 0.790± 0.14 0.486± 0.25 0.505± 0.36
5-Max 0.255± 0.22 0.176± 0.19 0.155± 0.20
10-Max 0.187± 0.22 0.103± 0.15 0.119± 0.18
50-Max 0.163± 0.23 0.090± 0.15 0.113± 0.18
Identity 0.162± 0.23 0.088± 0.15 0.113± 0.18

and 14 with the memorization criterion. Except for the condition with CIFAR10, Euclidean similarity
and absolute criterion (Figure 13b), the Softmax can always outperform k-Max.

4 Discussion

In this paper, DND, which has initially been introduced in the context of reinforcement learning
(6), has been shown to be mathematically related to Hopfield Networks (1). The Universal Hopfield
Network framework has recently been introduced to encompass the traditional Hopfield Network,
modern variants and related models (7). These models recall memories with a common sequence
of operations: similarity, separation and projection. It has been shown that retrieval from a DND is
also done with these operations. Hence, a DND is an instance of the Universal Hopfield Network
framework. For the sake of mathematical analysis, a continuous approximation of DND recall has
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Table 4: Retrieval capability against noise. Reported are means and standard deviations of the 10
simulations of Figure 12. For each dataset and similarity function, the best performance is highlighted
in bold.

Separator MNIST CIFAR10 Tiny

Euclidean Similarity

Max 0.661± 0.440.661± 0.440.661± 0.44 0.574± 0.45 0.580± 0.440.580± 0.440.580± 0.44
2-Max 0.661± 0.440.661± 0.440.661± 0.44 0.575± 0.440.575± 0.440.575± 0.44 0.579± 0.44
5-Max 0.576± 0.41 0.366± 0.42 0.416± 0.45
10-Max 0.522± 0.39 0.288± 0.40 0.314± 0.41
50-Max 0.246± 0.34 0.134± 0.29 0.160± 0.32
Identity 0.150± 0.32 0.029± 0.05 0.101± 0.24

Manhattan Similarity

Max 0.665± 0.440.665± 0.440.665± 0.44 0.621± 0.440.621± 0.440.621± 0.44 0.622± 0.430.622± 0.430.622± 0.43
2-Max 0.664± 0.43 0.621± 0.440.621± 0.440.621± 0.44 0.622± 0.430.622± 0.430.622± 0.43
5-Max 0.523± 0.36 0.316± 0.37 0.352± 0.40
10-Max 0.422± 0.31 0.177± 0.25 0.228± 0.33
50-Max 0.063± 0.04 0.026± 0.02 0.030± 0.03
Identity 0.022± 0.02 0.012± 0.00 0.012± 0.01
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Figure 6: Retrieval capability as a function of k and β parameters of the k-Max and Softmax
separation functions respectively. In each simulation, 100 MNIST images are encoded, then queried
with a noise of 1. Plots represent the means and standard deviations of 10 simulations with different
sets of images.

been proposed to comply with the requirements of the energy function of UHN and derive a second
Lyapunov function of the dynamics.

This novel link connects the fields of associative memory and reinforcement learning. The similarity
function of DND is Euclidean and has already been shown to yield high capacity (7). On the
other hand, the k-nearest neighbor is not commonly used as a separation function for associative
memory. One thing to note is that the time complexity of k-nearest neighbor search is O(logn)
when implemented with k-d trees (11). In contrast, the Softmax function has a time complexity of
O(n). Thus, one of the present objectives was to assess the performance of the more efficient k-Max
separation function.

Interestingly, k controls the degree of separation, and setting k = 1 is equivalent to using the Max
function studied by (7). While having theoretically unbounded capacity, the Max function can
transition sharply from one memory attractor to another when noise of increasing amplitude is added
to the query. With Figure 2, it was hypothesized that higher k values could be better at modelling
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datasets and improve the performance assessed in absolute terms. Simulations indeed revealed higher
capacity and better retrieval from noisy queries with k > 1, especially with simple datasets like
MNIST. However, these results depend on the way performance is evaluated. Traditionally, the
evaluation of retrieval is based on some distance evaluation of the memory output and the actual
image, which must not exceed some threshold fixed by the experimenter. This is a widespread method
for evaluating associative memory models, but one must choose the threshold wisely, as setting it
too high can result in false positives with the model grossly reproducing statistics of the dataset
(generalization). This for example seems to be the case when retrieval is assessed using the MNIST
dataset. The performance of 50-Max (and even the identity function) remains high despite very strong
noise. Therefore, another way of evaluating retrieval was introduced, which does not consider the
output in absolute terms, but rather compares it to the whole memory set. Retrieval is deemed correct
if and only if the output resembles the actual image more than any other stored memory. Memory
models thus cannot benefit from modeling statistics of the dataset, and must rather focus on recalling
the distinguishing characteristics of the query (memorization). Using this method, the Max function
outperforms the others. Ideally, performance should be evaluated in both absolute and relative terms
to ensure that recall is accurate and stands out from other memories.

This raises the question of what is the function of associative memory. Modeling statistics of a dataset
is related to generalization, which is typically the main goal of machine learning. The objective of
associative memory is somewhat different. Instead of generalizing, an associative memory aims
to recall the exact information corresponding to the individual memory. This is reminiscent of the
division of labor between episodic and semantic memory (12). When it comes to episodic control
however, that is the use of episodic memories for action control, some generalization is desirable.
This is especially the case in Neural Episodic Control in which the selection of actions only relies
on episodes, the DND thus constituting a bottleneck. Initially, episodic control (not to be confused
with its implementation in Neural Episodic Control) has been introduced as a way of speeding up the
learning of reinforcement agent and, after the initial episodic control phase, it is desirable that more
robust controllers can take over (5). A biologically inspired alternative to Neural Episodic Control
would be to supplement episodic memory with other controllers whose function is to generalize. The
episodic memory would then no longer be a bottleneck, and could instead be devoted to memorizing
the specifics of situations. That being said, there is also an ongoing debate about the fact that episodic
memory could also integrate a part of generalization and not only store the specificities of episodes
(13; 14; 15).

5 Limitations and Future Work

In this paper, we mainly focused on evaluating the capacity and retrieval performance of associative
memory models. Conversely to the application of DND to associative memory, the novel theoretical
link also implies that any instance of UHN can be used for episodic control. It is possible that the
Manhattan function could consistently improve sample efficiency, outperforming the Euclidean kernel
of DND, as it does on the associative memory tasks. The Softmax function, which has been proven
powerful in transformers (16), and more performant than k-Max in the present study, could also
improve episodic control agents. RL experiments are being conducted in this regard.

Finally, the fact that DND is theoretically related to Hopfield Networks provides a biological basis to
Neural Episodic Control, as the most influential model of the hippocampus relies heavily on similar
associative memory mechanisms (17). Hence, this study opens up new avenues of research at the
frontier of the fields of associative memory, reinforcement learning and neuroscience.
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A Convergence of the threshold Θ

From Equations 13 and 15 we obtain:

Θt+1 = F
(
Θt
)
, (20)

F (Θ) = Θ + α

[
− k +

n∑
i=1

σ

[
βk

(
σ
(
β(x i −Θ)

)
− 1

2

)]]
︸ ︷︷ ︸

∆(Θ)

, (21)

thus

F ′ (Θ) = 1− α

n∑
i=1

σ′

(
βk

(
σ
(
β(x i −Θ)

)
− 1

2

))
βk σ

′(β(x i −Θ)
)
β︸ ︷︷ ︸

δ(Θ)=−∆′(Θ)

(22)

Since from Equation 12 of the Sigmoid: 0 < σ′(x) = 1(
ex/2+e−x/2

)2 ≤ 1/4, while by design 0 < α,

0 < β, 0 < βk, we obtain:

F ′ (Θ) = 1− δ (Θ) with 0 < δ (Θ) ≤ αnβk β

16
(23)

so that if α < 16
nβk β then 0 < δ (Θ) < 1 thus 0 < F ′ (Θ) < 1 so that the recurrent series defining

Θ∞ is monotonic convergent3. This convergence is verified for all x , so that if their values vary
during the convergence, the final value of Θ may vary, but always in converging mode.

Furthermore, ∆(Θ) decreases along the iteration and can be used as energy (i.e. Lyapounov function)
for the recurrence, in complement of the abstract energy given in Equation 11. To avoid any
interference between both converging processes, at the implementation level, the continuous value
of Θ is calculated as a fast local iteration loop, so that it is then almost constant when adjusting the
dynamic related to Equation 11.

3For α < 32
k βk β

we still have |F ′ (Θ) | < 1, since −1 < F ′ (Θ) < 1, thus convergence, but the convergence
may be oscillatory. Since limt→∞ |F ′ (Θ) | = 1 the fixed point is at the edge of stability, thus monotonic
convergence is preferable at the numerical level.
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B Example reconstructions
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Figure 7: Example reconstructions of noisy CIFAR10 images by DND. The top row shows the input
cue with increasing amount of noise. The following rows show the reconstruction of the stored
memory using k = 1, 5, 50.
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Figure 8: Example reconstructions of noisy Tiny ImageNet images by DND. The top row shows the
input cue with increasing amount of noise. The following rows show the reconstruction of the stored
memory using k = 1, 5, 50.
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C Capacity with absolute criterion
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(c) Tiny ImageNet with Euclidean
similarity
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(e) CIFAR10 with Manhattan simi-
larity
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(f) Tiny ImageNet with Manhattan
similarity

Figure 9: Capacity of associative memory with different similarity and separation functions assessed
with MNIST, CIFAR10 and Tiny ImageNet datasets. Plots represent the means and standard deviations
of 10 simulations. A trial is correct when the difference between the output and the actual memory is
under a threshold.
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D Retrieval with absolute criterion
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(f) Tiny ImageNet with Manhattan
similarity

Figure 10: Retrieval capability against increasing levels of noise. Plots represent the means and
standard deviations of 10 simulations with different sets of images. A trial is correct when the
difference between the output and the actual memory is under a threshold.
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E Capacity with memorization criterion
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(e) CIFAR10 with Manhattan simi-
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similarity

Figure 11: Capacity of associative memory with different similarity and separation functions assessed
with MNIST, CIFAR10 and Tiny ImageNet datasets. Plots represent the means and standard deviations
of 10 simulations. Here, a trial is correct when the difference between the output and the actual
memory is lower than the difference between the output and any other stored memory.
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F Retrieval with memorization criterion
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(e) CIFAR10 with Manhattan simi-
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Figure 12: Retrieval capability against increasing levels of noise. Plots represent the means and
standard deviations of 10 simulations with different sets of images. Here, a trial is correct when the
difference between the output and the actual memory is lower than the difference between the output
and any other stored memory.
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G β vs. k with absolute criterion
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(c) Tiny ImageNet with Euclidean
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(e) CIFAR10 with Manhattan simi-
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similarity

Figure 13: Retrieval capability as a function of k and β parameters of the k-Max and Softmax
separation functions respectively. Plots represent the means and standard deviations of 10 simulations
with different sets of images. A trial is correct when the difference between the output and the actual
memory is under a threshold.
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H β vs. k with memorization criterion
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(a) MNIST with Euclidean similar-
ity
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(b) CIFAR10 with Euclidean simi-
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(c) Tiny ImageNet with Euclidean
similarity
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(e) CIFAR10 with Manhattan simi-
larity
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(f) Tiny ImageNet with Manhattan
similarity

Figure 14: Retrieval capability as a function of k and β parameters of the k-Max and softmax
separation functions respectively. Plots represent the means and standard deviations of 10 simulations
with different sets of images. Here, a trial is correct when the difference between the output and the
actual memory is lower than the difference between the output and any other stored memory.

19



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
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the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: A complete proof was provided for the convergence of Θ.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experiments are described in sufficient details to reproduce the results and the
code is made available.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code is made available and can already be used to reproduce the results.
Additional instructions will be provided before publication to improve reproducibility.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper does specify all the experimental details necessary to understand
the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper reports error bars which are defined in the text.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Experiments presented in the paper are light but details about the computer
resources (identity of the cluster) used are omitted in the submission to preserve anonymity
and will be included in the acknowledgements after the review process.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper presents theoretical work. There are many potential societal
consequences of our work, none which we feel must be specifically highlighted.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper presents theoretical work and therefore poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators of the original code used in the paper are properly credited and
the license and terms of use are explicitly mentioned and properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code is made available and can already be used to reproduce the results.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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