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The morphological classification of nucleated blood cells is fundamental for the diagnosis of hematological diseases.
Many Deep Learning algorithms have been implemented to automatize this classification task, but most of the time
they fail to classify images coming from different sources. This is known as “domain shift”. Whereas some research
has been conducted in this area, domain adaptation techniques are often computationally expensive and can introduce
significant modifications to initial cell images. In this article, we propose an easy-to-implement workflow where we
trained a model to classify images from two datasets, and tested it on images coming from eight other datasets. An
EfficientNet model was trained on a source dataset comprising images from two different datasets. It was afterwards
fine-tuned on each of the eight target datasets by using 100 or less-annotated images from these datasets. Images
from both the source and the target dataset underwent a color transform to put them into a standardized color style.
The importance of color transform and fine-tuning was evaluated through an ablation study and visually assessed
with scatter plots, and an extensive error analysis was carried out. The model achieved an accuracy higher than
80% for every dataset and exceeded 90% formore than half of the datasets. The presentedworkflow yielded promising
results in terms of generalizability, significantly improving performance on target datasets, whereas keeping low com-
putational cost and maintaining consistent color transformations. Source code is available at: https://github.com/
mc2295/WBC_Generalization
Introduction

Context

The study of blood smears is a routine laboratory test that follows auto-
mated complete blood cell count and leucocyte differential count. It pro-
vides essential information about the patient health condition. Nucleated
blood cells are divided into different categories including white blood
cells and occasionally nucleated red blood cells (or erythroblasts). Differen-
tial count is essential to reveal disorders that affect specific types of cells.
Therefore, the classification of white blood cells and nucleated red blood
cells is a key stage for the diagnosis of various pathological conditions, in-
cluding malignancies such as leukemia and lymphomas. Usually, this anal-
ysis is performed by experts who visually assess microscopic images, which
is error-prone and time-consuming.1 Deep learning solutions have gained
significant importance in recent years, as they can automate processes
and alleviate the increasing pressure on hospitals.2,3
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A well-known problem with such an approach, however, is that it lacks
generalizability capacity, and whereas a computer vision algorithm can
give good results when trained on a given source dataset, it will most prob-
ably fail to obtain similar performance when applied on images from a dif-
ferent target dataset.4 Having images from different origins for training and
testing can cause serious limitations. This phenomenon is called domain
shift and is caused by variations in data distribution originating from differ-
ent sources.5 This situation is very common; the visual aspect of images
from various healthcare centers can vary greatly due to variations in light-
ing conditions, camera characteristics, backgrounds etc. and thus there is a
need for algorithms that operate on data from any source. Domain adapta-
tion is defined as the process of making an algorithm able to perform well
on a new domain.

There has been a growing appeal for few-shot learning strategies ap-
plied to clinical data because the number of health-related labeled samples
is most often scarce.6–8 In few-shot learning, the model is trained by using
only a few annotated images. It can use previous knowledge learnt from
tober 2024
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another task, this process being defined as transfer learning. So far, only a
few articles have tackled the matter of generalizability in the classification
of white blood cells, and to our knowledge, no study has yielded an inter-
pretable and simple-to-implement workflow for the classification of cell im-
ages coming from an unknown dataset.

In this article, we enhance the generalizability capacity of a classifier
model on a new dataset, using a few labeled images. We propose a general
workflow to classify images at low computational cost. We trained a neural
network to classify white blood cell images from two source public datasets.
Then, we applied the model to eight target datasets, by fine-tuning the
model with no more than 100 labeled images from these datasets. For
each dataset, a visual transformation was applied to standardize the color
appearance to a common style. We also conducted extensive experiments
to evaluate and understand the role of each step of our process. We visually
assessed the benefits of our approach, and we carried out an error
analysis. This article studies a large number of data sources, some of the
aforementioned datasets having never been studied for generalizability
performances before. This shows that a clinical center willing to classify a
local dataset of images can obtain good performance with little annotation
effort.

Related work

Until recently, the early diagnosis of hematological disorders was
mainly based on clinician visual assessment of blood smears. The digitiza-
tion of images, however, has paved the way for automated processes.1

At first, the automation of image treatment solely relied on machine
learning principles such as SVMor random forest.9,10 This approach needed
consequent pre-processing of the images, to extract relevant features before
training models. In particular, the segmentation of the cell or the nucleus
was often necessary.11,12

More recently, deep learning solutions have gained increasing popular-
ity due to their ability to automatically extract relevant featureswithout the
need for manual pre-processing.2,3,13 Many studies have explored the clas-
sification of different cell types from peripheral blood or from bone
marrow.4,8,14–17 Classificationwas also employed for the differentiation be-
tween healthy and pathological cells.6,18,19

Most of the previously mentioned studies utilized uniform datasets,
with both the training and testing phases employing images from the iden-
tical dataset. Nevertheless, a few articles addressed the issue of model gen-
eralizability, with most of them employing solely two or three different
datasets. Among them, some researchers have dealt with generalizability
by producing new images. In Refs,20–23 generative adversarial network
(GAN) models were designed to generate different-looking images and to
augment the size of the dataset. Furthermore, data augmentation methods
were employed, but mainly with random augmentation techniques, such
as color jittering or random crop.24 In Baydilli et al.,20 and Claro et al.,24

10 datasets and 18 datasets were employed, respectively, in order to en-
hance the diversity of images. To the best of our knowledge, these are the
only articles employing more than five datasets for the classification of
white blood cell types.

At a feature level, other studies have tried to extract domain-
independent features from images. In Refs,25–27 machine learning and
deep learning techniques were combined to extract more robust features.
This needed, however, further preprocessing treatment. Other articles
trained models to specifically extract generalizable features in parallel
with classification; in this case, the adversarial loss was used to make fea-
ture vectors indistinguishable.28,29 Nevertheless, this approach was still
specific to the domains under study.

Combining feature and image focus, another approach was developed
in Pandey et al.30; a variational autoencoder was trained to reconstruct an
image from a wide latent space and classify it. When a new dataset was
considered, the closest clone was chosen in the latent space thanks to
structural similarity index, and the reconstructed image of this clone
was classified.
2

These approaches presented several limitations. First, in order to gener-
alize well, some of these models needed images from the test dataset for
training. Second, the computational cost was high. Finally, whether it was
with GAN or image transforms, the creation of new images did not ensure
they were realistic looking.

Material and methods

Overview

The overall workflow of our study is illustrated in Fig. 1, and consists in
using different datasets for training and test, in order to evaluate the out-of-
domain performances of our model.

First, a model employing the EfficientNet architecture was trained on
two source datasets: it constituted the source dataset. Images were collected
andmade public by Barcelona andMunich clinical centers.31,32 Afterwards,
we fine-tuned the model on the eight other datasets, called the target
datasets. For each target dataset, fine-tuning hyperparameters such as learn-
ing rate or batch size were optimized by dividing the fine-tuning dataset
into train and valid subsets, and employing cross-validation. We report
the numbers of images selected for fine-tuning in Table 3. The rest of the
target datasets were used for testing purpose. A transform was applied
both to the source and the target images to ensure they all followed the
same visual “style”.

Description of the datasets

After a review of existing datasets in literature, we collected images
from 12 studies. From these datasets, we discarded Cella Vision Blog
which was very small and contained several annotation mistakes, as well
as Ruinjing dataset which was only composed of lymphocytes, lymphoma,
and blasts. Finally, we used 10 datasets, 2 of them being used for training,
and the rest for fine-tuning and testing. The description of the final
datasets is given in Table 1, and sample images from each dataset are
shown in Fig. 2. The visual aspects of the images varied among the differ-
ent datasets due to resolution, capture method, and magnification power.
Details about the acquisition conditions for each dataset are provided in
Appendix A. Both peripheral blood smears and bone marrow smears are
represented in datasets and they were treated the same by the algorithm.
For this study, only six WBC classes were considered, namely eosinophils,
basophils, neutrophils, monocytes, erythroblasts, and lymphocytes. These
classes were chosen as to maximize the number of classes shared among
datasets, regardless of where cells were from. In some cases, classes had
higher granularity; for example, neutrophils could be described as band
neutrophil or segmented neutrophils. We classified these images into the
main category they belonged to; in this case, they would both be labeled
as neutrophils.

Table 2 details the number of available images. The names of cells cat-
egories are given by a three-letter abbreviation. The corresponding full
names can be found in the Glossary.

Data processing

Images from Tianjin and LISC datasets were not initially centered
around the cell. Thus, these images were first cropped to have a 250
× 250 window around the cell. Masks were provided with LISC images,
and bounding boxes with Tianjin images.

We applied a color transform to standardize the color style of each image
(Fig. 3).Color-based transformationwas chosen, andmore precisely conver-
sion with lαβ space – also known as CIELAB color space –40 following the
method described inReinhard et al.41 In addition, to better represent the va-
riety of zooms and of resolutions, images fromBarcelona that were of better
quality in the training set were augmented with degradation of image reso-
lution and random zoom (Fig. 4). After these transformations, all the
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Fig. 1.Overview of the general workflow. Firstly, themodel was trained on two source datasets. Secondly, for each target dataset, it was fine-tuned on 100 or less images and
tested on the remaining images. All images underwent visual transform.
augmented images were resized to 224 × 224 size as input of the neural
network.

Training strategy

A preliminary comparison was drawn between the following architec-
tures: VGG16, ResNet101, EfficientNet-B0, ViT, and Inception V3, in
order to determine the model that would exhibit the best performances
on out-of-domain images. This evaluation was based on a small subset of
images. EfficientNet architecturewas selected for an overall stronger ability
Table 1
Description of the datasets with the links to the datasets. Tianjin dataset is available
upon request. Classes used for this study are bolded. Only basophils, eosinophils,
erythroblasts, lymphocytes, monocytes, and neutrophils were kept for study. If
these classes were described more precisely (e.g., band neutrophils and segmented
neutrophils) only the main label (e.g., neutrophil) was given to the cell.

Name Nb
images

Classes

Barcelona31 17,092 NEU, EOS, BAS, LYT, MON, PMO, MYB, EBO, PLA, THO
Jiangxi
Tecom33

300 BAS, EOS, LYT, NEU, MON

Jin Woo
Choi34

2174 NGB, NGS, ERB, MMZ, MYO, MYB, ERO, ERP, PMO, PBL

BCCD35 3500 EOS, LYT, MON, NEU
LISC36 257 BAS, EOS, LYT, NEU, MON
Munich
20214

171,373 NGB, NGS, LYT, MON, EOS, BAS, MMZ, MYB, PMO, BLA,
PLM, KSC, OTH, ART, NIF, PEB, EBO, HAC, ABE, LYI, FGC

Munich
201932

18,365 BAS, EBO, EOS, KSC, LYT, LYA, MMZ, MYO, MON, NGB,
NGS, PMB

Raabin37 4514 EOS, LYT, MON, NEU
JSLH38 148 NGB, ERB,MMZ,MYO, ERO, ERP, PEB, PMO, NGS
Tianjin39 8564 BAS, EOS, LYT, NEU, MON

3

to generalize across diverse datasets. Themodel was divided into two parts:
the encoder was designed to extract features from images, and was imple-
mented according to EfficientNet-B0 architecture. At the end of the en-
coder, a 128-node linear layer was added. We referred to the output of
this layer as the image embedding. Then, a classifier head was positioned
at the top of the model, comprising two fully connected linear layers,
with 512 and 6 nodes, corresponding to the number of classes. The classi-
fier head also incorporated Batch Normalization and Dropout techniques,
with the activation function ReLU applied (Fig. 5).

The training dataset was made of images from Barcelona and Munich
2019.31,32 The model was trained with batches made of images from
these two datasets. The batch size was 16, the learning rate was 10−4 and
the number of epochs was 15. LabelSmoothingCrossEntropy was chosen
as a loss, and Adam optimizer was used. Computations were performed
using Pytorch and Fastai library.

Fine-tuning strategy

To reproduce the situation of a new clinical center coming with a few
annotated images, 100 or less images were selected from every target
dataset, with the same proportion of images of each class. Fine-tuning
was performed by retraining the model using only these images, as if the
clinical center had only this small subset as ground-truth. The number of
images used was reported in Table 3. No images were needed to fine-tune
the model on JSLH dataset because images were good enough to be classi-
fied without fine-tuning.

The choice of fine-tuning parameters, principally the learning rate, the
batch size and the number of epochs, plays a critical role in the performance
of the model. Given the limited size of the fine-tuning subsets and the im-
portant differences between images from different datasets, parameters
had to be carefully set to prevent overfitting. Thus, the fine-tuning set
was partitioned into training and validation subsets, and hyper parameter
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Fig. 2. Images from every dataset. Images come from 10 different dataset, both of bone marrow and of peripheral blood cells.

Table 2
The distribution of cell classes for every dataset.

Dataset Basophils Eosinophils Erythroblasts Lymphocytes Monocytes Neutrophils

Munich 2021 441 5891 27,395 26,307 4040 39,392
Rabin 301 1066 3609 795 10,862
Munich 2019 79 424 78 3948 1789 8593
Lisc 53 39 52 48 50
Jslh 56 24
Jin woo choi 150 100
Jiangxi tecom 1 22 48 53 176
Bccd 3133 3108 3095 3171
Tianjin 302 1098 1863 1201 4100
Barcelona 1218 3117 1551 1214 1420 3329

Fig. 3. Color transform: all images were put in the same style with Lab-space transformation.

Fig. 4. Successive transforms applied to training set.

4
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Fig. 5.Model architecture. The EfficientNet Encoder extracts the features from the image. These features are represented in the 128-layer, which we will refer as the image
embeddings. The three fully connected linear layers are called head of the model and perform classification.

Table 3
Number of images used for fine-tuning. 100 images were taken from large datasets,
1/10th of the total number of images were taken for smaller datasets. No images
were needed to fine-tune the model on JSLH, because images were already well
classified without fine-tuning.

Fine-tuning set Fine-tuning set size Remaining images

Rabin 100 16,533
Munich 2021 100 103,366
Lisc 20 222
Jslh 0 72
Jin woo choi 20 230
Jiangxi tecom 25 275
Bccd 100 8511
Tianjin 100 2371
optimization was carried on using Optuna library. 3-fold cross-validation
was utilized to mitigate the specificity of the results to the very small
fine-tuning validation set.

Results and discussion

Classification of target datasets

The overall accuracy is defined as the number of rightly predicted im-
ages over the total number of images. Precision and recall are relative to
a class.

Accuracy
Rightly Labeled Images
Total Nb of Images

Precision
TPclass

TPclass FPclass
Fig. 6. Accuracy per dataset, the error bars are the in

5

Recall
TPclass

TPclass FNclass

We first trained the model on source datasets. We split the two source
datasets in 80/20 to evaluate the performances of the EfficientNet model
after initial training, and obtained accuracy, macro precision and macro re-
call of 0.88, 0.76, 0.77 for Munich 2018 and 0.98, 0.98, 0.98 for Barcelona,
respectively.

Afterwards, the model was fine-tuned on each target dataset. The classi-
fication results of everyfine-tunedmodel on its target dataset are reported in
Fig. 6, and average Precision vs. Recall curves of each target dataset are
plotted in Fig. 7. Detailed Precision vs. Recall curves can be found in
Appendix B.

Bootstrapping techniques were employed on the model predictions to
obtain confidence intervals of the results.42

The model accuracy is higher than 0.8 for each target dataset, showcas-
ing its generalization capabilities despite the utilization of fewer than 100
annotated images per dataset. These results are supported by the Precision
vs. Recall plot, where AUC is superior to 0.85 for all dataset.

Recall and precision per class are also presented in Table 4. Neutrophils
are consistently classified with high precision and recall, whereas mono-
cytes are often classified as lymphocytes and neutrophils. Recall is particu-
larly low for basophils in the Munich 2018, 2021, and Rabin datasets. This
result was expected, basophils being the rarest class.

Each class is represented in at least five datasets, except for erythro-
blasts which are only in three datasets. For this class, recall and precision
are higher than 0.8 over all three datasets, including Munich 2021 dataset
which contains 27,395 erythroblasts from 700 patients. We thus conclude
that generalization capacity of our workflow also applies to erythroblasts.

Interestingly, performances of the model are not the highest for theMu-
nich 2021 dataset, even if one of the source datasets comes from the same
laboratory. This can be explained by various factors: cells come from
terval of confidence obtained with bootstrapping.
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Fig. 7. Precision vs Recall curve of the model predictions after fine-tuning on each dataset. Each curve averages the results over all classes.

Table 4
Precision (Pre) and Recall (Rec) per class after fine-tuning the model for every target dataset. Precision and recall are computed, respectively, to their class.

Dataset Bas Eos Ery Lym Mon Neu

Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec

Rabin 0.88 0.36 0.78 0.72 0.87 0.97 0.73 0.79 0.96 0.98
Munich 2021 0.64 0.13 0.75 0.80 0.78 0.93 0.76 0.88 0.91 0.28 0.89 0.96
Lisc 0.96 1.0 1.0 0.70 0.96 0.93 0.70 0.97 0.88 0.91
Jslh 1.00 1.00 1.00 1.00
Jin woo choi 1.0 0.87 0.72 1.0
Jiangxi tecom 0.58 1.0 0.80 0.60 0.88 0.85 0.96 0.97
Bccd 0.70 0.67 0.94 0.94 0.81 0.92 0.77 0.71
Tianjin 0.95 0.73 0.81 0.99 0.77 0.94 0.93 0.92 0.98 0.98

Table 5
Classification results under various experimental conditions. The ablation studywas
performed for every dataset and then averaged. Accuracy is defined as the overall
accuracy; computed with the total number of rightly classified images. Precision
and recall are the average of precision and recall over the six classes (i.e., macro-
measures). p-values are computed between every pair of successive experimental
conditions (Condition 1 with Condition 2, Condition 2 with Condition 3…etc.).
p-values lower than 1e-5 are approximated as∼0.

Experimental conditions Accuracy Precision Recall p value

1.Without source train 0.48 0.38 0.34
2. Without fine-tuning 0.59 0.48 0.50 ∼0
3. Head only fine-tuning 0.71 0.65 0.60 ∼0
4. Mixed sources fine-tuning 0.74 0.62 0.58 0.024
5. Fine-tuning without color transform 0.84 0.83 0.76 ∼0
6. Proposed workflow 0.89 0.85 0.84 ∼0
bonemarrow in one dataset and from peripheral blood in the other, and the
conditions of acquisition are significantly different (camera, magnification
power, resolution, format of the image, date). This contributed to make the
visual aspects of these two datasets drastically different.

Ablation study

To better understand the contribution of each step of our approach, we
carried out a series of complementary experiments. The comparison was
drawn between the following experimental settings.

1) Without source train; we directly trained a newmodel on each dataset,
without any pretraining on the source dataset.

2) Without fine-tuning; the model that was trained on the source dataset
was directly tested on images from the target dataset.

3) Head only fine-tuning; only the head of the model was fine-tuned, the
encoder was frozen.

4) Mixed sources; the model was fine-tuned with images from mixed
sources, i.e., from both the target dataset and the source dataset (100
+ 100 images from Barcelona + Tianjin).

5) Fine-tuning without color transform; the model was fine-tuned with-
out applying color transform on target images.

6) Proposed workflow; the model was fine-tuned under the previously
described experimental conditions (c.f. workflow presented in
“Methods”).

The ablation studywas conducted for each dataset, and the average per-
formances are presented in Table 5. Detailed results can be found in Appen-
dix C.We calculated p-values using a pairwiseWilcoxon test, demonstrating
that the differences in accuracy observed between two experimental condi-
tions were significant. The outcomes of this study confirm the superiority of
6

our workflow over other experimental setups. Furthermore, it can be no-
ticed that performance improvement comes principally from fine-tuning.
The addition of color transform only slightly influences results; in general,
fine-tuning ismore important than color transform to improve classification
on images from a new dataset, even if their coloration is different.

Additionally, a study on the influence of the fine-tuning sample size on
accuracy, precision, and recall is provided in Appendix D. This analysis was
conducted on the four largest datasets, each containingmore than 1000 im-
ages, where 100 images were used for fine-tuning. We observed that the
number of samples had only a small effect on final accuracy. However, it
positively impacted the precision and recall of rare classes, such as eosino-
phils and basophils, in the Rabin dataset. In conclusion, we selected a sam-
ple size of 100 images for this study. Increasing the number would have
significantly prolonged the annotation process, whereas reducing it
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Fig. 8. t-SNE representation of images from different datasets before and after transform. Each point is obtained by flattening the corresponding image and performing
dimensionality reduction. For each dataset, only 200 images are represented.
would have lowered the diversity of images in certain classes. For the
smaller datasets, we had no choice but to use 1/10th of the dataset for
fine-tuning while preserving enough images for evaluation.

Relevance of color transformation

Visual transformation aimed to reduce color disparities resulting from
the variety of possible imaging conditions. This transformpresented several
advantages, including computational efficiency, alignment with color stan-
dards familiar to clinicians, and the prevention of image distortion. The rep-
resentation of images from each dataset is shown in Fig. 8, which evidenced
the impact of transform. Each point corresponded to a flattened image after
t-SNE dimensionality reduction.43 After transform, the distributions of
pixels in 2D overlapped better among different datasets.
Fig. 9. t-SNE of the embeddings output by the encoder of the model, after the model was
dots, whereas Munich 2018 images are represented with crosses. The transform brings

7

In general, color transform was efficient at reducing domain shift, at a
very low cost. In Fig. 9, the embeddings of the images from the source
dataset were visualized following a t-SNE dimensionality reduction. The
plots illustrated how the transform function could bring images from differ-
ent datasets closer togetherwhen they belonged to the same class. Thus, the
use of a transform yielded tighter clusters of classes irrespective of the
image's source dataset. The workflow was a form of domain adaptation
method.

Relevance of fine-tuning

The fine-tuning strategy leveraged classification performances on the
target datasets, enabling satisfactory results even with a limited number of
annotated images. In Fig. 10, the visualization of embeddings from Rabin
trained with or without the color transform. Barcelona images are represented with
together images from different datasets when they belong to the same class.
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Fig. 10. t-SNE of the embeddings output by the encoder of the model, before and after fine-tuning the model with 100 annotated images from the Rabin dataset.
images illustrated how fine-tuning could improve classification perfor-
manceswhen applied to a target dataset. Notably, fine-tuning allowed a bet-
ter recognition of basophils, monocytes and eosinophils. Given that color
plays a decisive role in identifying these cell categories, we can suppose
that fine-tuning leads to a better comprehension of the coloration in the
newly encountered dataset. Additionally, it allowed the classification to
be very fast on large datasets, with the fine-tuning process completed
quickly, and requiring the labeling of only 100 images by experts.

Wrong-prediction analysis

To have a deeper understanding of these results, we conducted an anal-
ysis of wrong predictions on Rabin dataset as depicted in Figs. 11–12. Our
focus was directed towards wrongly classified neutrophils. We showed
their corresponding representation within the embedding space using a
black circle. Beside the possible impact of nucleus shape, we observe that
neutrophils showing purple granulation are inaccurately categorized as ba-
sophils, whereas those with more orange granulations are wrongly
Fig. 11. Embedding space projected in 2D with t-SNE. Colors on the left correspond to
wrongly predicted neutrophils from each dark circle region.

8

identified as eosinophils. Neutrophils featuring an indistinct nucleus and
blurred granulation are often misclassified as lymphocytes. Additionally,
neutrophils presenting a blue coloration in their cytoplasm frequently
lead tomispredictions of monocytes. It is worth noticing that t-SNE clusters
are not exactly aligned with the predictions, and there are a few exceptions
of images belonging to a cluster but being predicted in another category
(e.g., eosinophils in neutrophil cluster in Fig. 11 right).

To conclude this analysis, we examined the output probability vector
for incorrectly predicted neutrophils (Fig. 13). In themajority of wrong pre-
dictions, the second highest probability corresponds neutrophil, which
aligns with the true class of the cell.

Limitations and perspectives

The results of this study exhibit some limitations. Firstly, whereas the
results were promising in terms of generalizability, further research
would be necessary to improve classification performances for the clinical
implementation of this algorithm. This could be achieved by using active
ground truth labels, and colors on the right are rightly predicted labels. We studied
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Fig. 12. Analysis of images of neutrophils wrongly predicted in each category. Factors contributing to prediction errors in each category include image quality, granulation
color, nucleus shape, and cytoplasm color.

Fig. 13. Output probability vector for wrongly predicted neutrophils by the model. Even if the highest probability is given to a wrong prediction label, the second highest
probability corresponds neutrophil, which aligns with the true class of the cell.

9
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learning: images where the model hesitates between different classes as in
Fig. 13 could be re-annotated by the clinician to improve performances. In-
troducing human-in-the-loop annotation could overcome this limitation.

Secondly, the diverse datasets presented highly imbalanced cell distri-
butions. Whereas some target datasets were large and exhibited a wide
range of cell types, others consisted of only two classes or contained only
a very limited number of cells. We did not discard small or heavily
unbalanced datasets based on a minimum number of images criterion,
as it appeared that they were accepted and used by the expert
community.11,16,20,26 However, the representativeness of the results for
these datasets should be studied to a greater extent. Although this diversity
shows that our approach leads to a good capacity for generalization, some
representations do not align with the diversity observed in real blood cell
populations. In addition, further research should confirm these results
with a broader system of classes, including earlier stages of white blood
cell maturation that are commonly observed in bone marrow samples.

Lastly, the study of wrong predictions by the algorithm has underscored
the importance of accurate annotation and high-quality images. The algo-
rithm faced particular challenges when cells exhibited granulations that
low resolution failed to display, or when there was there was an ambiguity
about the cell's ground truth label (see Appendix E).

Nonetheless, this study introduced an easy-to-implement workflow to
obtain robust classification performances. This was the first study to ex-
plore the generalizability capacity of models at low computational cost,
and with so many datasets. The workflow was elaborated by taking into
consideration the diversity of coloration images could take. Furthermore,
it was specifically designed to be fast in computations, and to cut down
on the necessary annotation time. Hence, this article provides an approach
that can be used on images with various visual aspect and was applied to a
local dataset with good performances.

Conclusion

In this study, we proposed a workflow to enable a classification
EfficientNet network to accurately label cells from 10 different sources
with low computational cost. The key aspect of our approach lies in com-
bining a color transformation to standardize the visual style of images
10
with a fine-tuning technique. Fine-tuning significantly improved classifica-
tion performance, resulting in an overall accuracy exceeding 80% for all
datasets. Furthermore, the benefits of fine-tuning and color transformation
were visually confirmed by plotting the embeddings of the images gener-
ated by the model, highlighting the model's improved ability to cluster im-
ages by cell classes.

Further research should be conducted, firstly to enhance classification
accuracy for specific datasets and secondly to create larger and more di-
verse datasets of cell images.

Funding source

This research did not receive any specific grant from funding agencies in
the public, commercial, or not-for-profit sectors.

Declaration of competing interest

The authors declare that they have no known competing financial inter-
ests or personal relationships that could have appeared to influence the
work reported in this article.

Acknowledgments

We would like to acknowledge Klara Lunte and Grégoire Salas for their
important preliminary work that paved the way for this study. We also ac-
knowledge the clinical centers that answered our request and gave us access
to their data, without which we could not have carried out our comparison.
Among them, a special thanks to TianjinMedical University AffiliatedMed-
ical Center, Japan Society of Diagnostics Hemtaology, Ruijing Hospital,
Shanghai Jiaotong University School of Medicine, Razi Hospital in Rasht,
Gholhak Laboratory, Shahr-e-Qods Laboratory, and Takht-e Tavous Labora-
tory in Tehran, Institute of Computational Biology, Helmholtz Zentrum
München–German Research Center for Environmental Health,
Hematology-Oncology and BMT Research Center of ImamKhomeini hospi-
tal in Tehran, Roboflow in Singapore, Seoul National University Hospital,
Jiangxi Tecom Science Corporation, Core Laboratory the Hospital Clinic,
Barcelona.



M. Chossegros et al. Journal of Pathology Informatics 15 (2024) 100405
Appendix A. Appendices
Table A.1

Dataset detailed description.
Name
B

C

Ji

Ji

B

LI

M

M

R

R

JS

T

Centre
 Nb
 Classes
11
Imaging system and format
 Magnification
 PBS
or
BMS
Healthy or
pathological
arcelona31
 Core Laboratory the Hospital Clinic,
Barcelona
17,092
 NEU, EOS, BAS, LYT, MON, PMO,
MYB, EBO, PLA, THO
CellaVision DM96 (.jpg)
 0.1 μm per
pixel (360 ×
363 pixels)
PBS
 Healthy
ella Vision
Blog33
100
 BAS, EOS, LYT, NEU, MON
 CellaVision (.bmp)
 (300 × 300
pixels)
angxi Tecom33
 Jiangxi Tecom Science Corporation
 300
 BAS, EOS, LYT, NEU, MON
 Motic Moticam Pro 252A optical
microscope camera (.bmp)
(120 × 120)
n Woo Choi34
 Seoul National University Hospital.
 2174
 NGB, NGS, ERB, MMZ, MYO, MYB,
ERO, ERP, PMO, PBL
(.jpg)
 x1000
magnification,
(144 × 144
pixels)
BMS
CCD35
 Roboflow
 3500
 EOS LYT, MON, NEU
 (.jpeg)
 (320 × 240
pixels)
PBS
SC36
 Hematology-Oncology and BMT
Research Center of Imam Khomeini
hospital in Tehran
257
 BAS, EOS, LYT, NEU, MON
 Light microscope
(Microscope-Axioskope 40) and
digital camera Sony Model No.
SSCDC50AP(.png)
x100 (250 ×
250 pixels)
PBS
 Healthy
unich 20214
 Helmholtz Zentrum
München–German Research Center
for Environmental Health,
171,373
 NGB, NGS, LYT, MON, EOS, BAS,
MMZ, MYB, PMO, BLA, PLM, KSC,
OTH, ART, NIF, PEB, EBO, HAC, ABE,
LYI, FGC
CCD camera mounted on a
brightfield microscope (Zeiss
Axio Imager Z2) (.jpg)
x40 (250 ×
250 pixels)
BMS
 Pathological
unich 201932
 Helmholtz Zentrum
München–German Research Center
for Environmental Health,
18,365
 BAS, EBO, EOS, KSC, LYT, LYA, MMZ,
MYO, MON, NGB, NGS, PMB
M8 digital microscope Scanner
(Precipoint GmbH, Freising) (.
tiff)
x100 (400 ×
400 pixels)
PBS
 Pathological
aabin37
 Razi Hospital in Rasht, Gholhak
Laboratory, Shahr-e-Qods Laboratory,
and Takht-e Tavous Laboratory in
Tehran,
16,633
 EOS, LYT, MON, NEU
 Smartphones mounted to occular
lenses of microscopes (Olympus
CX18 and Zeiss) (.jpg)
x100 (575 ×
575 pixels)
PBS
 Both
uinjing44
 Ruijing Hospital, Shanghai Jiaotong
University School of Medicine
1647
 BLA, LYT, LYA
 Cella Vision (.jpg)
 x100 (360 ×
363)
PBS
 Pathological
LH38
 Japan Society of Diagnostics
Hemtaology
148
 NGB, ERB, MMZ, MYO, ERO, ERP,
PEB, PMO, NGS
(.png)
 (85 × 74
pixels)
ianjin39
 Tianjin Medical University Affiliated
Medical Center
6228
 BAS, EOS, LYT, NEU, MON
 Nikon DS-Ri2 Color Camera (.
png)
x100 (250 ×
250 pixels)
PBS
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Appendix B. Precision vs. Recall Curve per class for each dataset
Fig. B.1. Precision–recall curve per class for each dataset.
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Appendix C. Ablation study per dataset
Table C.1

Results under various experimental conditions for each dataset.
Experimental conditions
1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

Dataset
13
Accuracy
 Precision
 Recall
) no_source_train
 Munich 2021
 0.31
 0.34
 0.29

) no fine_tune
 Munich 2021
 0.75
 0.69
 0.63

) head_only
 Munich 2021
 0.77
 0.74
 0.62

) mixed_train
 Munich 2021
 0.78
 0.74
 0.63

) no_transform
 Munich 2021
 0.83
 0.78
 0.65

) our_workflow
 Munich 2021
 0.82
 0.79
 0.66
6
) no_source_train
 Rabin
 0.49
 0.48
 0.34

) no fine_tune
 Rabin
 0.65
 0.47
 0.46

) head_only
 Rabin
 0.82
 0.85
 0.67

) mixed_train
 Rabin
 0.80
 0.70
 0.55

) no_transform
 Rabin
 0.92
 0.76
 0.68

) our_workflow
 Rabin
 0.92
 0.85
 0.76
6
) no_source_train
 LISC
 0.56
 0.46
 0.50

) no fine_tune
 LISC
 0.46
 0.38
 0.45

) head_only
 LISC
 0.67
 0.68
 0.67

) mixed_train
 LISC
 0.71
 0.71
 0.70

) no_transform
 LISC
 0.93
 0.93
 0.93

) our_workflow
 LISC
 0.89
 0.90
 0.90
6
) no_source_train
 JSLH
 0.45
 0.18
 0.25

) no fine_tune
 JSLH
 1.00
 1.00
 1.00

) head_only
 JSLH
 1.00
 1.00
 1.00

) mixed_train
 JSLH
 1.00
 1.00
 1.00

) no_transform
 JSLH
 1.00
 1.00
 1.00

) our_workflow
 JSLH
 1.00
 1.00
 1.00
6
) no_source_train
 Jin Woo Choi
 0.47
 0.16
 0.22

) no fine_tune
 Jin Woo Choi
 0.57
 0.18
 0.31

) head_only
 Jin Woo Choi
 0.81
 0.55
 0.54

) mixed_train
 Jin Woo Choi
 0.78
 0.32
 0.33

) no_transform
 Jin Woo Choi
 0.88
 0.89
 0.86

) our_workflow
 Jin Woo Choi
 0.90
 0.86
 0.94
6
) no_source_train
 Jiangxi Tecom
 0.69
 0.64
 0.47

) no fine_tune
 Jiangxi Tecom
 0.16
 0.20
 0.21

) head_only
 Jiangxi Tecom
 0.85
 0.51
 0.47

) mixed_train
 Jiangxi Tecom
 0.54
 0.34
 0.31

) no_transform
 Jiangxi Tecom
 0.77
 0.71
 0.52

) our_workflow
 Jiangxi Tecom
 0.90
 0.85
 0.88
6
) no_source_train
 BCCD
 0.53
 0.35
 0.36

) no fine_tune
 BCCD
 0.25
 0.17
 0.17

) head_only
 BCCD
 0.41
 0.40
 0.40

) mixed_train
 BCCD
 0.41
 0.40
 0.41

) no_transform
 BCCD
 0.84
 0.83
 0.85

) our_workflow
 BCCD
 0.81
 0.81
 0.81
6
) no_source_train
 Tianjin
 0.33
 0.41
 0.27

) no fine_tune
 Tianjin
 0.85
 0.69
 0.77

) head_only
 Tianjin
 0.82
 0.86
 0.77

) mixed_train
 Tianjin
 0.91
 0.76
 0.71

) no_transform
 Tianjin
 0.56
 0.73
 0.62

) our_workflow
 Tianjin
 0.91
 0.74
 0.76
6
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amplesAppendix D. Evolution of the results with the number of fine-tuning s
Fig. D.1. Evolution of the overall accuracywith the number of samples used for fine-tuning. For each sample size n ϵ , 45, 60, 75, 90, 100], we randomly picked n samples
and reproduced the experiment 10 times. The curve corresponds to the mean accuracy, and the envelopes to the standard deviation of the results for each sample size n over
the 10 experiments.

[30

Fig. D.2. Evolution of the precision per class with the number of samples used for fine-tuning. Each experiment has been performed 10 time, the envelopes correspond to the
standard deviation of the results.
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Fig. D.3. Evolution of the recall per class with the number of samples used for fine-tuning. Each experiment has been performed 10 time, the envelopes correspond to the
standard deviation of the results.
Appendix E. Examples of ambiguous ground-truth
Fig. E.1. Examples of images from Rabin dataset with ambiguous ground-truth. According to the dataset ground-truth, these cells are lymphocytes and monocytes, but they
present morphological properties of granulocytes (granulations, segmented nucleus).
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Glossary

Abbreviation: Meaning
ABE: Abnormal eosinophil
ART: Artifact
BAS: Basophil
BLA: Blast
BMS: Bone marrow smear
EBO: Erythroblast
EOS: Eosinophil
ERA: Acidophilic erythroblast
ERB: Basophilic erythroblast
ERO: Orthochromatic erythroblast
ERP: Polychromatic erythroblast
FGC: Faggott cell
GAN: Generative adversarial network
HAC: Hairy cell
KSC: Smudge cell
LYA: Lymphocyte (atypical)
LYA: Lymphoma
LYI: Immature lymphocyte
17
LYT: Lymphocyte
MGG:May-Grünwald Giemsa
MMZ:Metamyelocyte
MON:Monocyte
MYB:Myelocyte
MYO:Myeloblast
NEU: Neutrophil
NGB: Band neutrophil
NGS: Segmented neutrophil
NIF: Not identifiable
OTH: Other cell
PBL: Pronormoblast
PBS: Peripheral blood smear
PEB: Proerythroblast
PLA: Platelet
PLM: Plasma cell
PMB: Promyelocyte (bilobed)
PMO: Promyelocyte
THO: Thrombocyte
WBC:White blood cell
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