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We take a novel approach based on differential games to the study of criminal networks. We 
extend the static crime network game (Ballester et al., 2006, 2010) to a dynamic setting where 
criminal activities negatively impact the accumulation of total wealth in the economy. We derive a 
Markov Feedback Equilibrium and show that, unlike in the static crime network game, the vector 
of equilibrium crime rates is not necessarily proportional to the vector of Bonacich centralities. 
Next, we conduct a comparative dynamic analysis with respect to the network size, the network 
density, and the marginal expected punishment, finding results in contrast with those arising in the 
static crime network game. We also shed light on a novel issue in the network theory literature, 
i.e., the existence of a voracity effect. Finally, we study the problem of identifying the optimal 
target in the population of criminals when the planner’s objective is to minimize aggregate crime 
at each point in time. Our analysis shows that the key player in the dynamic and the static setting 
may differ, and that the key player in the dynamic setting may change over time.

1. Introduction

It is natural to think about criminal and delinquent activities in terms of networks, and more specifically, social networks. Indeed, 
as argued in Lindquist and Zenou (2019), social network analysis can be quite useful for understanding more about the root causes of 
crime and delinquency, and for designing crime prevention policies. Not surprisingly, there exists a vast literature devoted to crime 
and networks (see, e.g., Lindquist and Zenou, 2019, for an overview). However, dynamic considerations in the context of criminal 
networks have not received enough attention so far. The present paper contributes to the network and crime literature, by proposing 
a novel (dynamic) approach to the study of criminal networks, i.e., a differential game approach.

The natural fit between crime and social networks comes particularly from the fact that crime is primarily considered as a group 
activity and that social interactions heavily affect criminal behavior.1 Indeed, the importance of social networks and peer influences in 
criminal activities has been acknowledged for a long time in the criminology and sociology literature (e.g., Sutherland, 1947; Haynie, 
2001; Sarnecki, 2001; Warr, 2002). Also, the economic literature is very active in the study of peer and network effects in crime. 
Sah (1991) and Glaeser et al. (1996) were the first to develop economic models of social interactions and crime, and were followed 
by others that proposed various theoretical foundations on peer and network effects in criminal activities (e.g., Calvó-Armengol and 
Zenou, 2004; Ballester et al., 2006, 2010; Cortés et al., 2019). In parallel to theoretical investigations, there is also strong empirical 
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https://doi.org/10.1016/j.jet.2024.105951

Received 21 June 2023; Received in revised form 27 November 2024; Accepted 8 December 2024 

J. Econ. Theory 223 (2025) 105951 

Available online 11 December 2024 
0022-0531/© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
( http://creativecommons.org/licenses/by/4.0/ ). 



L. Colombo, P. Labrecciosa and A. Rusinowska 

evidence of peer effects in crime (e.g., Ludwig et al., 2001; Kling et al., 2005; Patacchini and Zenou, 2012; Bayer et al., 2009; Damm 
and Dustmann, 2014).

There exists a sizeable literature on applications of differential games in the field of crime and crime control (e.g., Feichtinger, 
1983; Dawid and Feichtinger, 1996; Dubovik and Parakhonyak, 2014; Faria et al., 2019), government corruption (e.g., Kemp and 
Long, 2009; Ngendakuriyo and Zaccour, 2013, 2017), counterfeiting (e.g., Crettez et al., 2020) and terrorism (e.g., Nova et al., 2010; 
Wrzaczek et al., 2017). This literature has been able to shed light on a number of important issues related to the dynamics of illegal 
activities carried out by individuals, firms, and governments. However, it has abstracted from the widely recognized fact that criminals 
are embedded in social networks (see Ballester et al., 2010). In this paper, we aim to fill this gap in the literature by merging two so 
far disjoint strands of research, namely, the research on the dynamics of crime without social networks, and the research on social 
networks without dynamics. Indeed, to the best of our knowledge, ours is the first analysis of criminal networks in a full-fledged 
dynamic game.

Identifying the optimal targets and key players in social networks is a fundamental problem in various social, economic and 
political situations. In parallel to information diffusion, technology adoption, marketing or political campaigning, this problem is 
of particular importance in crime, delinquency and terrorism; for overviews on targeting and pricing, and key players in different 
contexts, see Bloch (2016) and Zenou (2016), respectively. Numerous studies in the economics literature characterize optimal targets 
by well established or new centrality measures (e.g., Ballester et al., 2006; Galeotti and Goyal, 2009; Candogan et al., 2012; Bloch and 
Querou, 2013; Banerjee et al., 2013, 2019; Bimpikis et al., 2016; Demange, 2017; Grabisch et al., 2018; Galeotti et al., 2020). Some 
works consider network formation in the setting of Ballester et al. (2006). Liu et al. (2012) develop a network formation model to 
determine key criminals, i.e., those who, once removed, generate the highest possible reduction in aggregate crime level in a network. 
At each period of time, a criminal is chosen at random and decides with whom she/he wants to form a link, anticipating the criminal 
effort game played by all criminals after a new link has been added. König et al. (2014) develop a two-stage game where agents play 
the game of Ballester et al. (2006) in the first stage, which is followed by a linking-formation process in the second stage. Network 
formation is also considered by Lee et al. (2021), who empirically identify the key player defined in Ballester et al. (2006).

Our analysis takes a different (dynamic) road and is conducted in terms of a differential game (see Başar and Olsder, 1995; 
Dockner et al., 2000; Haurie et al., 2012, and Long, 2010 for concepts and applications). As is well known, differential games are 
particularly useful for modeling economic problems which involve both dynamics and strategic behavior. We propose and analyze an 
infinite-horizon linear quadratic differential game based on the seminal papers by Ballester et al. (2006, 2010).2 In our differential 
game, the state variable is the stock of total wealth legally produced in the economy. At each point in time, criminals embedded in a 
social network decide on the level of criminal activities, taking as given the criminal activities of the other criminals. Aggregate crime 
negatively affects the evolution of the state variable. As such, part of total wealth in the economy is transferred from the legal to the 
illegal sector.3 We assume that players use Markov strategies, i.e., they condition their level of criminal activities on the current state 
variable, and derive a Markov Feedback Equilibrium. Next, we perturb the equilibrium by changing the network size, the network 
density, the marginal expected punishment, and the implicit growth rate. Finally, we study the problem of identifying the key player, 
i.e., the player who, if removed, leads to the largest drop in aggregate crime.

Our main results can be summarized as follows. First, in the static game by Ballester et al. (2006), each player’s action in a Nash 
equilibrium is proportional to the Bonacich centrality (Bonacich, 1987). In our dynamic setting, instead, this proportionality does 
not hold in general. However, we do recover the result by Ballester et al. (2006) as a particular case, when the shadow price of total 
wealth in the economy is the same for all players (e.g., in a regular network). Second, we show that a social multiplier effect, which 
occurs when an increase in the number of criminals, or links, or both, leads to an increase in aggregate crime, does not necessarily 
arise. In general, the results of our comparative dynamic analysis with respect to the network size and density4 and with respect to 
the expected marginal punishment suggest that some of the conclusions reached in the static literature on criminal networks do not 
necessarily carry over to a Markovian environment. Conditions exist such that more criminals or more connected criminals induce 
lower crime in the economy, and conditions exist such that the impact on aggregate crime of an increase in the marginal expected 
punishment in the static and the dynamic setting differ. This holds true both in the short run and at the steady-state equilibrium. In 
order to sharpen our intuition and highlight the network effect, we consider the two extreme network structures, namely, the empty 
and the complete network, and find results in contrast with the static analysis. Third, we show that a faster growing economy (in 
the absence of crime) may cause an increase in aggregate crime, which, in the end, may dampen economic growth. This is related to 
the so called voracity effect (see Tornell and Lane, 1999), which, to the best of our knowledge, has not been studied in the network 
literature so far. Fourth, we extend the analysis of the key player in Ballester et al. (2006, 2010), and show that the identification 
of the key player is more nuanced than in the static setting. In our dynamic game, the key player does not necessarily correspond to 
the player with the highest intercentrality measure. This is so because, compared with the static game, for each criminal, there exists 
an additional intertemporal marginal cost captured by the shadow price of total wealth in the economy. Moreover, in our dynamic 
game, it is possible that the key player changes over time. Beyond theoretical interest, this finding has clear policy implications: 

2 On the class of linear-quadratic differential games see Dockner et al. (2000, Chapter 7). Some examples of applications of linear-quadratic differential games in 
economics include Fershtman and Kamien (1987), Tsutsui and Mino (1990), Dockner and Long (1993), Dockner and Sorger (1996), Benchekroun (2003, 2008), Jun 
and Vives (2004), and Colombo and Labrecciosa (2015).

3 In a similar vein, there exists a (static) literature studying situations where power and coercion govern the exchange of resources, and stronger agents are able to 
take resources from weaker agents (see, e.g., Piccione and Rubinstein, 2004; Jordan, 2006; Piccione and Rubinstein, 2007).

4 The density of a network is a relative fraction of possible links that are present in the network. In other words, it is the average degree of all 𝑛 nodes in the network 
divided by 𝑛 − 1.
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under certain circumstances, it is optimal (from an aggregate crime minimization perspective) to imprison a specific criminal only 
for a finite time, after which the same criminal should be reintegrated into society, and “substituted in jail” with a different criminal, 
either temporarily or ad infinitum.

The rest of the paper is organized as follows. In Section 2, we present the model, first by recalling the static setting of Ballester et 
al. (2010) in Section 2.1 and then by introducing our dynamic framework in Section 2.2. Section 3 is devoted to the Markov Feedback 
Equilibrium and the vector of Bonacich centralities. In Section 4, we conduct a comparative dynamic analysis with respect to the 
network size, the network density, the marginal expected punishment, and the implicit growth rate. In Section 5, we address the issue 
of identifying the key player in the network. Section 6 concludes. All the proofs are presented in the Appendices A till H.

2. Model

2.1. Static setting

The static crime network game Our point of departure is the framework of Ballester et al. (2010) as recalled below. We consider a 
criminal network game with a set 𝑁 = {1,… , 𝑛} of players (criminals) embedded in a network 𝑔 of social connections.5 Let 𝐆 = [𝑔𝑖𝑗 ]
denote the 𝑛-square adjacency matrix of network 𝑔, keeping track of the (direct) connections in the network. Criminals 𝑖 and 𝑗 are 
connected in 𝑔 if and only if 𝑔𝑖𝑗 = 1, and 𝑔𝑖𝑗 = 0 otherwise. By convention, 𝑔𝑖𝑖 = 0. We denote by 𝑔𝑁 the complete network, i.e., the 
network where each node is connected to every other node with a direct link, and by 𝑔∅ the empty network, i.e., the network with 
no connections between nodes. The criminals decide how much crime effort to exert. Let 𝐱 = (𝑥1,… , 𝑥𝑛) denote the population crime 
profile, with 𝑥𝑖 ≥ 0 being crime effort exerted by criminal 𝑖 ∈ 𝑁 .

Following Becker (1968), Ballester et al. (2010) assume that criminals trade off the costs and benefits of criminal activities when 
deciding about their crime efforts. The expected gains to criminal 𝑖 are given by

𝑢𝑖(𝐱, 𝑔) = 𝑧𝑖(𝐱)
⏟ ⏟ ⏟
proceeds 

− 𝑝𝑖(𝐱, 𝑔)
⏟ ⏟ ⏟

apprehension

𝑓
⏟ ⏟ ⏟

fine 

. (1)

The proceeds 𝑧𝑖(𝐱) correspond to the gross crime payoffs of criminal 𝑖. Ballester et al. (2010) assume that the higher the criminal 
connections to a criminal and/or the higher the involvement in criminal activities of these connections, the lower 𝑖’s probability to 
be caught 𝑝𝑖(𝐱, 𝑔). Furthermore, for the sake of tractability, they restrict attention to the following expressions:

𝑧𝑖(𝐱) = 𝑥𝑖 max

{
1 − 𝛿

𝑛 ∑
𝑗=1 

𝑥𝑗 ,0

}
, (2)

𝑝𝑖(𝐱, 𝑔) = 𝑝0𝑥𝑖 max

{
1 − 𝜙

𝑛 ∑
𝑗=1 

𝑔𝑖𝑗 𝑥𝑗 ,0

}
, (3)

where 𝛿 > 0 is the global substitutability parameter, 𝜙 > 0 is the local complementarity parameter, and 𝑝0 is the marginal probability 
of being caught for an isolated criminal.6 It is assumed that, at an equilibrium 𝐱∗,

1 − 𝛿
𝑛 ∑

𝑗=1 
𝑥∗

𝑗 ≥ 0 and 1 − 𝜙
𝑛 ∑

𝑗=1 
𝑔𝑖𝑗 𝑥∗

𝑗 ≥ 0. (4)

Then, by substituting 𝑧𝑖(𝐱) and 𝑝𝑖(𝐱, 𝑔) given in (2) and (3) into 𝑢𝑖(𝐱, 𝑔) given in (1), we get the following utility function7 of criminal 
𝑖:

𝑢𝑖 (𝐱, 𝑔) = (1 − 𝜋)𝑥𝑖 − 𝛿
𝑛 ∑

𝑗=1 
𝑥𝑖 𝑥𝑗 + 𝜋𝜙

𝑛 ∑
𝑗=1 

𝑔𝑖𝑗 𝑥𝑖 𝑥𝑗 , (5)

where 𝜋 = 𝑝0𝑓 is the marginal expected punishment cost for an isolated criminal. We assume (following Ballester et al., 2010) that 
𝜋 < 1.

The Bonacich centrality and Nash equilibrium Let 𝐆𝑘 = [𝑔[𝑘]
𝑖𝑗 ] denote the 𝑘th power of 𝐆, where 𝑘 ∈ 𝑁 , keeping track of the indirect 

connections in the network. In particular, 𝐆0 = 𝐈. Every coefficient 𝑔[𝑘]
𝑖𝑗 ≥ 0 measures the number of walks of length 𝑘 ≥ 1 in 𝑔 between 

5 Ballester et al. (2010) focus on petty crimes and therefore consider delinquents rather than criminals. In the present paper, we consider criminal networks.
6 Note that 𝑝𝑖(𝐱, 𝑔) given in (3) is constant. This will be different in our dynamic setting, where the probability of being caught is going to depend on the entire 

history of the game (summarized by the evolving stock of total wealth in the economy).
7 The crime network game of Ballester et al. (2010) is developed by using the network model of Ballester et al. (2006) to the case of criminal networks. Ballester et 

al. (2006) consider the utility function 𝑢𝑖(𝑥1, ..., 𝑥𝑛) = 𝛼𝑥𝑖 −
1
2
(𝛽 − 𝛾)𝑥2

𝑖 − 𝛾
𝑛 ∑

𝑗=1
𝑥𝑖 𝑥𝑗 + 𝜆

𝑛 ∑
𝑗=1

𝑔𝑖𝑗 𝑥𝑖 𝑥𝑗 . Hence, we have the following parameterization: 𝛼 = 1 − 𝜋, 𝜆 = 𝜋 𝜙, 
𝛾 = 𝛽 = 𝛿.
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𝑖 and 𝑗, where a walk of length 𝑘 ≥ 1 between 𝑖 and 𝑗 is a sequence (𝑖0,… , 𝑖𝑘) of players such that 𝑖0 = 𝑖, 𝑖𝑘 = 𝑗, 𝑖𝑝 ≠ 𝑖𝑝+1 and 𝑔𝑖𝑝 𝑖𝑝+1
= 1

for all 0 ≤ 𝑝 ≤ 𝑘 − 1.

Definition 1. Consider a network 𝑔 with adjacency 𝑛-square matrix 𝐆 and a scalar 𝑎 ≥ 0 such that the matrix

𝐌(𝑔, 𝑎) = [𝑚𝑖𝑗 (𝑔, 𝑎)] = [𝐈− 𝑎𝐆]−1 =
+∞ ∑
𝑘=0

𝑎𝑘𝐆𝑘

is well defined and nonnegative.8 Hence, the coefficients 𝑚𝑖𝑗 (𝑔, 𝑎) =
+∞ ∑
𝑘=0

𝑎𝑘 𝑔[𝑘]
𝑖𝑗 count the number of walks in 𝑔 that start at 𝑖 and end 

in 𝑗, where walks of length 𝑘 are weighted by 𝑎𝑘.

(i) The vector of Bonacich centralities of parameter 𝑎 in 𝑔 is

𝐛(𝑔, 𝑎) = [𝐈− 𝑎𝐆]−1 ⋅ 𝟏,

where 𝟏 is the 𝑛-dimensional vector of ones.9 Hence, the Bonacich centrality of node 𝑖 given by

𝑏𝑖(𝑔, 𝑎) =
𝑛 ∑

𝑗=1 
𝑚𝑖𝑗 (𝑔, 𝑎)

counts the total number of walks in 𝑔 that start at 𝑖, where walks of length 𝑘 are weighted by 𝑎𝑘. Note that 𝑏𝑖(𝑔, 𝑎) ≥ 1, with equality 
when 𝑎 = 0.

(ii) The vector of weighted Bonacich centralities of parameter 𝑎 in 𝑔 is

𝐛𝐰(𝑔, 𝑎) = [𝐈− 𝑎𝐆]−1 ⋅𝐰

with 𝐰 = (𝗐1, ...,𝗐𝑛)𝑇 .

Let 𝑏 (𝑔, 𝑎) denote the sum of the Bonacich centralities of all criminals, i.e.,

𝑏 (𝑔, 𝑎) =
𝑛 ∑

𝑖=1 
𝑏𝑖 (𝑔, 𝑎) .

Define 𝜃 = 𝜋𝜙∕𝛿. The numerator of 𝜃 is the weight given to local interactions whereas the denominator of 𝜃 is the weight given to 
global interactions (see (5)). Therefore, 𝜃 measures the relative importance of local interactions in terms of global interactions. In the 
right-hand-side sum of 𝑚𝑖𝑗 (𝑔, 𝜃) =

∑+∞
𝑘=0 𝜃𝑘 𝑔[𝑘]

𝑖𝑗 , 𝜃 is a decay (or attenuating) factor that reduces the weight of longer walks; a generic 
coefficient 𝑚𝑖𝑗 (𝑔, 𝜃) is the sum of the direct and indirect influence of 𝑖 on 𝑗, where indirect influence is via all arbitrarily long walks, 
with longer walks discounted according to the decay parameter 𝜃. Note that an increase in 𝜃 leads to an increase in the Bonacich 
centralities since the weight given to 𝑔[𝑘]

𝑖𝑗 increases. Ballester et al. (2006) show that if 𝜃𝜌(𝑔) < 1, where 𝜌(𝑔) is the spectral radius 
of the adjacency matrix 𝐆, i.e., the largest eigenvalue of 𝐆, there exists a unique Nash equilibrium 𝐱∗

𝑆
= (𝑥∗

𝑆 ,1,… , 𝑥∗
𝑆 ,𝑛

)𝑇 , which is 
interior, and given by

𝐱∗𝑆 = (1 − 𝜋)𝐛 (𝑔, 𝜃)
𝛿 [1 + 𝑏 (𝑔, 𝜃)]

.

Hence, the aggregate crime level 𝑥∗
𝑆
=
∑𝑛

𝑖=1 𝑥∗
𝑆 ,𝑖

is equal to

𝑥∗
𝑆 = (1 − 𝜋)𝑏 (𝑔, 𝜃)

𝛿 [1 + 𝑏 (𝑔, 𝜃)]
.

2.2. Dynamic setting

We extend the static game previously described to a dynamic setting.10 Time is continuous and denoted by 𝑡 ∈ [0,∞). Let 𝑦(𝑡) ≥ 0
denote the aggregate stock of wealth which is legally produced and 𝑥(𝑡) =

∑𝑛
𝑖=1 𝑥𝑖(𝑡) the aggregate crime rate in the economy at 𝑡, 

with 𝑥𝑖(𝑡) ≥ 0 denoting the rate of criminal activities by criminal 𝑖 at 𝑡. We assume that crime is constrained by wealth. While in the 
static model crime is unconstrained, or it is implicitly assumed that the wealth constraint is not binding, we explicitly consider the 
intertemporal relationship between 𝑦(𝑡) and 𝑥(𝑡), which is captured by the following differential equation:

�̇�(𝑡) = 𝜇𝑦(𝑡) − 𝑥(𝑡),  𝑦(0) = 𝑦0 ≥ 0, (6)

8 For any matrix 𝐆, the matrix 𝐌= [𝐈− 𝑎𝐆]−1 is called the Leontief inverse of 𝐆 with parameter 𝑎.
9 More precisely, 𝐛(𝑔, 𝑎) is obtained from Bonacich centrality (Bonacich, 1987) by an affine transformation and 𝐛(𝑔, 𝑎) = 𝟏+ 𝐤(𝑔, 𝑎) with 𝐤(𝑔, 𝑎) being Katz prestige 

measure (Katz, 1953). In the literature, Bonacich centrality is also called Katz-Bonacich centrality, as the measure is due to both authors.
10 Henceforth, we use players and criminals interchangeably and interpret effort levels in Ballester et al. (2010) as crime rates.
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with 𝜇 > 0 denoting the implicit rate of growth of total wealth and 𝑦0 the initial level of total wealth in the economy. Crime is assumed 
to be wealth-reducing: one unit of criminal activities corresponds to one unit of wealth expropriation. The idea behind (6) is that 
criminal activities such as robberies and tax evasion have a negative impact on the accumulation of total wealth in the economy. 
Clearly, in the absence of crime, the growth rate of total wealth in the economy is strictly positive; otherwise, it can be negative (or 
nil).

Criminal 𝑖’s objective functional is given by

𝐽𝑖 =

∞ 

∫
0 

𝑒−𝑟𝑡 𝑢𝑖(𝑥1 (𝑡) , ..., 𝑥𝑛 (𝑡) , 𝑔)𝑑 𝑡, (7)

with 𝑢𝑖(𝑥1(𝑡), ..., 𝑥𝑛(𝑡), 𝑔) being the dynamic counterpart of (5) and 𝑟 > 0 the discount rate. Criminal 𝑖 seeks to maximize 𝐽𝑖 w.r.t. 𝑥𝑖(𝑡)
subject to (6). Note that, in the maximization problem, 𝑔 is time-invariant.

We consider a closed-loop information structure: at every point in time, criminal 𝑖 chooses a level of the control variable 𝑥𝑖(𝑡)
after having observed the current state variable, 𝑦(𝑡), which summarizes the entire history of the game.11 As such, strategies are of 
the Markovian type. We define criminal 𝑖’s strategy space as follows.

Definition 2. (Stationary) Markov Strategy Space. Let 𝐿 be a domain of the state space. Player 𝑖’s (stationary) Markov strategy 
space 𝐿𝑆𝑖 is such that 𝐿𝑆𝑖 ≡ {𝑥𝑖

|| 𝑥𝑖 ≡ 𝜓𝑖(𝑦) is continuous in 𝑦 ∈ 𝐿, 𝜓𝑖(𝑦) ≥ 0, and ||𝜓𝑖(𝑦) − 𝜓𝑖(𝑦′)|| ≤ 𝐾 ||𝑦 − 𝑦′|| for some 𝑥𝑖-independent 
constant 𝐾 ≥ 0}.

Admissible strategies are of the stationary type due to the structure of the game: the equation of motion is autonomous, and the 
instantaneous payoffs as well as the feasible sets do not explicitly depend on time. Stationarity implies that the payoff for player 𝑖
of the game that starts at 𝑦 at 𝑡 = 𝜏 is equal to the payoff for player 𝑖 of the game that starts at 𝑦 at 𝑡 = 0.12 Given our definition of 
admissible strategies, from (6), we have

�̇� = 𝜇𝑦 −
𝑛 ∑

𝑖=1 
𝜓𝑖(𝑦),  𝑦(0) = 𝑦0 ∈ 𝐿. (8)

For each 𝑛-tuple of (stationary) Markov strategies (𝜓1, ..., 𝜓𝑛) ∈ 𝐿𝑆1 × ⋯ × 𝐿𝑆𝑛, Cauchy’s theorem guarantees the existence of a 
solution to (8), 𝑦∗(𝑡).

Definition 3. (Stationary) Markov Feedback Equilibrium. Let 𝐿 be a domain of the state space. An 𝑛-tuple of (stationary) Markov 
strategies 𝝍∗ = (𝜓∗

1 , ..., 𝜓∗
𝑛 ) ∈ 𝐿𝑆1 ×⋯ × 𝐿𝑆𝑛 is a (stationary) Markov Feedback Equilibrium if for every 𝑦 ∈ 𝐿,

𝐽𝑖

(
𝑦;𝝍∗) ≥ 𝐽𝑖

(
𝑦;𝜓𝑖 ,𝝍∗

−𝑖

)
for every 𝜓𝑖 ∈ 𝐿𝑆𝑖, 𝝍∗

−𝑖 being the (𝑛 − 1)-tuple of (stationary) Markov strategies 𝜓∗
𝑗 , with 𝑗 = 1, ..., 𝑛, 𝑗 ≠ 𝑖.

Markov Feedback Equilibrium strategies are computed via dynamic programming, which implies that the solution is Markov 
perfect by construction and satisfies the perfectness property introduced by Selten (1975) for extensive form games. It is common in the 
differential game literature to refer to the equilibrium computed via dynamic programming as a feedback (or closed-loop) equilibrium, 
whereas such equilibrium is usually referred to as Markov-perfect equilibrium in economic applications. Markov Feedback Equilibrium 
strategies are perfect state-space equilibria because the necessary optimality conditions are required to hold for all admissible values 
of the state variable (in the case of a unique state variable), and not just the values that lie on the optimal state-space trajectories. 
Therefore, the solutions obtained continue to remain optimal at each point in time after the game has begun. As is well-known in 
the differential game literature, the Markov perfect property is not lost when the domain of the state space is explicitly taken into 
account (see, e.g., Tsutsui and Mino, 1990; Dockner and Long, 1993; Dockner et al., 2000; Dockner and Wagener, 2014).13 In contrast 
to the open-loop equilibrium, where controls depend only on time and, consequently, the Markov perfect property does not hold in 
general, in a feedback equilibrium, controls are allowed to depend on past history through the current value of the state variable. 
Moreover, in a feedback equilibrium, players consider how changes in controls affect the state variable and, in turn, rivals’ strategies. 
This feedback effect is by definition nil in an open-loop equilibrium, where players precommit to future actions at the beginning of 
the game and stick to them over the entire planning horizon.

11 This restriction captures the notion that bygones are bygones (see Başar and Olsder, 1995; Dockner et al., 2000; Maskin and Tirole, 2001). By definition, history 
dependent strategies, such as trigger strategies, are ruled out.
12 Note that stationarity alone is not sufficient to rule out equilibria involving non stationary strategies. However, as pointed out in Dockner et al. (2000), non 

stationary equilibria are of less interest and therefore they are generally not considered.
13 Dockner and Wagener (2014), in particular, make a distinction between local and global Markov Perfect Equilibria.
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3. Markov feedback equilibrium and Bonacich centrality

In this section, we look for a Markov Feedback Equilibrium and, in the same spirit as Ballester et al. (2006), study the relationship 
between the equilibrium of the dynamic game and the vector of Bonacich centralities for general networks. In order to derive the 
equilibrium strategies, we adopt the value function approach. Let 𝑉𝑖(𝑦) denote criminal 𝑖’s value function, representing the discounted 
value of the stream of utilities for a game that starts at 𝑦 in network 𝑔. By standard arguments (see Starr and Ho, 1969), Markov 
Feedback Equilibrium strategies must satisfy the following Hamilton-Jacobi-Bellman (HJB) equations (𝑖 = 1, ..., 𝑛):

𝑟𝑉𝑖(𝑦) = max
𝑥𝑖≥0 

{
𝑢𝑖(𝑥𝑖 ,𝝍∗

−𝑖 , 𝑔) + 𝑉 ′
𝑖 (𝑦)

[
𝜇𝑦 − 𝑥𝑖 −

𝑛 ∑
𝑗=1,𝑗≠𝑖

𝜓∗
𝑗 (𝑦)

]}
, (9)

where 𝑉 ′
𝑖 (𝑦) = 𝜕𝑉𝑖(𝑦)∕𝜕𝑦 denotes the nonnegative shadow price of total wealth for criminal 𝑖. 𝑉 ′

𝑖 (𝑦) can be interpreted as criminal 
𝑖’s intertemporal marginal cost of committing crime. Suppose that 𝑉 ′

𝑖 (𝑦) ≤ 𝜕𝑢𝑖(𝑥𝑖 ,𝝍∗
−𝑖 , 𝑔)∕𝜕𝑥𝑖 (to ensure nonnegative criminal rates). 

Then, maximization of the RHS of (9) yields the following necessary and sufficient condition (given the concavity of 𝑢𝑖 ):

𝜕𝑢𝑖(𝑥𝑖 ,𝝍∗
−𝑖 , 𝑔)

𝜕𝑥𝑖
− 𝑉 ′

𝑖 (𝑦) = 0. (10)

Given the linear-quadratic structure of the game, we guess a value function of the form

𝑉𝑖(𝑦) = 𝐴𝑖
𝑦2

2 
+ 𝐵𝑖 𝑦 + 𝐶𝑖 ⇒

𝜕𝑉𝑖(𝑦)
𝜕𝑦 

= 𝐴𝑖 𝑦 + 𝐵𝑖 ≥ 0,

and consider (stationary) linear Markov strategies

𝜓𝑖(𝑦(𝑡)) = 𝛼𝑖 𝑦(𝑡) + 𝛽𝑖 ≥ 0,

where 𝛼𝑖 and 𝛽𝑖 are constants that depend on the parameters of the model. The linearity of 𝜓𝑖(𝑦(𝑡)) ensures that, given 𝛼𝑖 and 
𝛽𝑖, the initial value problem 

⋅ 
𝑦(𝑡) = 𝜇𝑦(𝑡) −

∑𝑛
𝑖=1 𝜓𝑖 (𝑦 (𝑡)) = (𝜇 −

∑𝑛
𝑖=1 𝛼𝑖)𝑦(𝑡) −

∑𝑛
𝑖=1 𝛽𝑖, 𝑦(0) = 𝑦0 ∈ 𝐿 has a unique solution. Let 

𝑦 =
∑𝑛

𝑖=1 𝛽𝑖∕(𝜇 −
∑𝑛

𝑖=1 𝛼𝑖) denote the steady-state equilibrium. We assume that the domain of the state space 𝐿 is such that 𝑦 ∈ 𝐿. 
This guarantees that 𝑦∗(𝑡) ∈ 𝐿 for all 𝑡 ∈ [0,∞). Moreover, for analytical tractability, we focus on the domain of the state space 𝐿
such that interior solutions prevail: the nonnegativity constraints on the control variables and the nonnegativity constraints on the 
shadow prices are not binding (implying that criminals play nondegenerate Markovian strategies). A sufficient but not necessary 
condition for the shadow price of total wealth in criminal 𝑖’s maximization problem to be nonnegative is 𝜓𝑖(𝑦) ≤ 𝑥∗

𝑆 ,𝑖
(see (10)). In 

addition, 𝜓𝑖(𝑦) ≤ 𝑥∗
𝑆 ,𝑖

implies that the assumptions specified in (4), which have to hold in the static game, also hold in our dynamic 
game. Constructing an equilibrium that involves corner solutions with active and inactive players would require the use of nonlinear 
strategies (for value functions to be continuously differentiable). Also, considering levels of 𝑦 for which the nonnegativity constraint 
on the shadow price of total wealth in the economy is binding for some players but not for others could lead to possible discontinuities 
in the value functions. In such a case, one would need to check that there are no incentives for players to deviate from their linear 
strategies.14

In the next theorem, we provide a characterization of the equilibrium for interior solutions.

Theorem 1. Assume that 𝐌(𝑔, 𝜃) = [𝐈− 𝜃𝐆]−1 satisfies the condition 𝜃𝜌(𝑔) < 1, and let

𝝍
∗ = 𝐱∗𝑆 −

𝐛𝐕′ (𝑔, 𝜃)
𝛿 [1 + 𝑏 (𝑔, 𝜃)]

for 𝑦 ∈ 𝐿

where

𝐱∗𝑆 = (1 − 𝜋)𝐛 (𝑔, 𝜃)
𝛿 [1 + 𝑏 (𝑔, 𝜃)]

,

and 𝐛 (𝑔, 𝜃) and 𝐛𝐕′ (𝑔, 𝜃) are the vector of Bonacich centralities of parameter 𝜃 in 𝑔 and the vector of weighted Bonacich centralities of 
parameter 𝜃 in 𝑔 with weights 𝐕′ = (𝑉

′
1 , ..., 𝑉

′
𝑛 )

𝑇 = (𝐴1𝑦 + 𝐵1, ..., 𝐴𝑛 𝑦 + 𝐵𝑛)𝑇 , respectively. The 𝑛-tuple of (stationary) Markov strategies 
𝝍

∗ = (𝜓∗
1 , ..., 𝜓∗

𝑛 ) ∈ 𝐿𝑆1 ×⋯ × 𝐿𝑆𝑛 constitutes a (stationary) Markov Feedback Equilibrium.

The condition 𝜃𝜌(𝑔) < 1 is needed for the matrix 𝐌(𝑔, 𝜃) = [𝐈−𝜃𝐆]−1 to be well-defined and nonnegative. This is the same condition 
as in the static game. As argued in Ballester et al. (2010), it relates the payoff function to the network topology and guarantees that local 
complementarities are not too large compared to own concavity. The condition 𝜃𝜌(𝑔) < 1 implies that instantaneous best responses 
are downward sloping, i.e., criminal rates are instantaneous “strategic substitutes”. Although criminals learn from their peers, there 
exists competition among them: for any given level of total wealth in the economy, an increase in crime by criminal 𝑗 leads to a 
decrease in crime by criminal 𝑖, with 𝑗 ≠ 𝑖.

14 For the characterization of an asymmetric equilibrium involving corner solutions in the context of a two-player linear quadratic differential game of exploitation 
of a common-pool renewable resource see Benchekroun et al. (2014).
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As we will show later in the paper, an explicit characterization of the upper and the lower bound of 𝑦 such that interior solutions 
prevail can be obtained analytically in the case of a regular network, i.e., a network where each node has the same degree, or, 
equivalently, the same number of connections. Regular networks encompass the extreme cases of an empty and a complete network. 
For nonregular networks, instead, such thresholds can be computed numerically (once parameter values have been assigned).

The next two remarks are about the relationship between the Markov Feedback Equilibrium and the vector of Bonacich centralities.

Remark 1. Unlike in the static game studied in Ballester et al. (2006, 2010), the vector of equilibrium crime rates, 𝝍∗, is not 
necessarily proportional to the vector of Bonacich centralities, 𝐛 (𝑔, 𝜃).

Remark 2. When 𝑉 ′
𝑖 = 𝑉 ′ for all 𝑖 = 1, ..., 𝑛, since 𝐛𝐕′ (𝑔, 𝜃) = 𝑉 ′𝐛 (𝑔, 𝜃), 𝝍∗ given in Theorem 1 becomes

𝝍
∗ =

(
1 − 𝜋 − 𝑉 ′)𝐛 (𝑔, 𝜃)

𝛿 [1 + 𝑏 (𝑔, 𝜃)]
.

In this case, as in the static game studied in Ballester et al. (2006, 2010), the vector of equilibrium crime rates is proportional to the 
vector of Bonacich centralities; if 𝑉 ′

𝑖 = 𝑉 ′ = 0 for all 𝑖 = 1, ..., 𝑛 then 𝝍∗ corresponds to 𝐱∗
𝑆

given in Theorem 1.

Corollary 1 below characterizes aggregate crime as a function of total wealth in the economy.

Corollary 1. The Markov Feedback Equilibrium aggregate crime rate is given by

𝑥∗(𝑦) = 𝑥∗
𝑆

[
1 − 1 

1 − 𝜋

𝑏𝐕′ (𝑔, 𝜃)
𝑏 (𝑔, 𝜃)

]
for 𝑦 ∈ 𝐿

where

𝑥∗
𝑆 = (1 − 𝜋)𝑏 (𝑔, 𝜃)

𝛿 [1 + 𝑏 (𝑔, 𝜃)]
, (11)

and 𝑏𝐕′ (𝑔, 𝜃) and 𝑏 (𝑔, 𝜃) are the sum of the coordinates of the vector of weighted Bonacich centralities of parameter 𝜃 in 𝑔, with weights 
𝐕′ = (𝑉

′
1 , ..., 𝑉

′
𝑛 )

𝑇 = (𝐴1𝑦 + 𝐵1, ..., 𝐴𝑛 𝑦 + 𝐵𝑛)𝑇 , and the sum of the coordinates of the vector of Bonacich centralities of parameter 𝜃 in 𝑔, 
respectively.

Define

𝜔 (𝑔, 𝜃) =
𝑏𝐕′ (𝑔, 𝜃)

𝑏 (𝑔, 𝜃)
≥ 0. (12)

𝑥∗(𝑦) given in Corollary 1 can then be rewritten as

𝑥∗(𝑦) = 𝑥∗
𝑆

[
1 − 𝜔 (𝑔, 𝜃)

1 − 𝜋

]
for 𝑦 ∈ 𝐿. (13)

For regular networks, 𝜔 (𝑔, 𝜃) given in (12) corresponds to the shadow price of total wealth in the economy, 𝑉 ′. Hence, it can be 
interpreted as the intertemporal marginal cost of committing crime, the same for each criminal. For nonregular networks, instead, 
the intertemporal marginal cost of committing crime will be different for players with different Bonacich centralities. In this case, 
𝜔 (𝑔, 𝜃) =

∑𝑛
𝑖=1 𝑏𝑖(𝑔, 𝜃)𝑉 ′

𝑖 (𝑦)∕𝑏(𝑔, 𝜃) can be interpreted as a weighted average of intertemporal marginal costs of committing crime, with 
weights given by (𝑏1(𝑔, 𝜃)∕𝑏(𝑔, 𝜃),⋯ , 𝑏𝑛(𝑔, 𝜃)∕𝑏(𝑔, 𝜃)). Clearly, for criminal 𝑖, the intertemporal marginal cost of committing crime is 
weighted by the relative influence that criminal 𝑖 exerts over the other criminals embedded in the network.

Corollary 2 below characterizes aggregate crime as a function of time.

Corollary 2. Take 𝑦0 ∈ 𝐿. The Markov Feedback Equilibrium trajectory of aggregate crime is given by

𝑥∗ (𝑡) = 𝑥∗
𝑆

[
1 −

𝑏𝐀 (𝑔, 𝜃)𝑦∗ (𝑡) + 𝑏𝐁 (𝑔, 𝜃)
(1 − 𝜋)𝑏 (𝑔, 𝜃)

]
,

where

𝑦∗ (𝑡) = 𝑦 +
(

𝑦0 − 𝑦
)
exp

[
𝑡

(
𝜇 +

𝑏𝐀 (𝑔, 𝜃)
𝛿 [1 + 𝑏 (𝑔, 𝜃)]

)]
,

and

𝑦 =
(1 − 𝜋)𝑏 (𝑔, 𝜃) − 𝑏𝐁 (𝑔, 𝜃)

𝜇𝛿 [1 + 𝑏 (𝑔, 𝜃)] + 𝑏𝐀 (𝑔, 𝜃)
∈ 𝐿,

and 𝑏𝐀 (𝑔, 𝜃) and 𝑏𝐁 (𝑔, 𝜃) are the sum of the coordinates of the vector of weighted Bonacich centralities of parameter 𝜃 in 𝑔 with 
weights 𝐀=(𝐴1, ..., 𝐴𝑛)𝑇 and the sum of the coordinates of the vector of weighted Bonacich centralities of parameter 𝜃 in 𝑔 with weights 
𝐁 =(𝐵1, ..., 𝐵𝑛)𝑇 , respectively. The Markov Feedback Equilibrium trajectory of aggregate crime converges to 𝑥 = 𝜇𝑦 as 𝑡 →∞ provided that
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�

�
𝑡

𝑥∗(𝑡)

𝑥

𝑦0 > 𝑦

𝑦0 < 𝑦

𝑥∗(0)

𝑥∗(0)

0 

Fig. 1. Equilibrium trajectory of aggregate crime. 

𝜇 +
𝑏𝐀 (𝑔, 𝜃)

𝛿 [1 + 𝑏 (𝑔, 𝜃)]
< 0.

A necessary condition for the steady-state equilibrium to be stable is that 𝑏𝐀 (𝑔, 𝜃) < 0, which implies that 𝑏𝐕′ (𝑔, 𝜃) = 𝑏𝐀 (𝑔, 𝜃)𝑦 +
𝑏𝐁 (𝑔, 𝜃) is decreasing in 𝑦. Hence, recalling from Corollary 1 that 𝑥∗ is decreasing in 𝑏𝐕′ (𝑔, 𝜃), steady-state stability implies that 
aggregate crime be increasing in 𝑦. Our theory then predicts that, ceteris paribus, higher (resp. lower) levels of aggregate crime should 
be observed in richer (resp. poorer) economies. A sufficient condition for this to occur is that 𝐀 < 𝟎, which also guarantees that each 
criminal’s quadratic value function be concave, and therefore bounded on any bounded interval of the state space. 𝐀 < 𝟎 implies 
that there exists “intertemporal strategic substitutability”: an increase in crime by criminal 𝑗 at time 𝑡0 leads to a decrease in crime 
by criminal 𝑖 at time 𝑡1 > 𝑡0, with 𝑗 ≠ 𝑖. Each criminal realizes that an increase in own crime today will cause a reduction in total 
wealth in the economy in the future. Intuitively, given that equilibrium strategies are increasing in 𝑦, there exists a dynamic strategic 
incentive for criminal 𝑖 to commit more crime today in order to reduce crime committed by the other criminals in the future.

Aggregate crime as a function of time is depicted in Fig. 1.

As an illustration of Corollaries 1 and 2, let us consider a regular network with 𝑛 ≥ 2 criminals, each having the same degree 𝑑.15

Regular networks encompass two important extreme cases, namely, the empty and the complete network. The former occurs when 
𝑑 = 0 and the latter when 𝑑 = 𝑛 − 1. Routine calculations lead to

𝑏𝑖 (𝑔, 𝜃) = 1 
1 − 𝑑 𝜃

,

which implies that

𝑏 (𝑔, 𝜃) = 𝑛 
1 − 𝑑 𝜃

.

From (11) and given that 𝜃 = 𝜋𝜙∕𝛿, we obtain

𝑥∗
𝑆 = 𝑛 (1 − 𝜋)

𝛿 (1 + 𝑛) − 𝑑 𝜋𝜙
.

Next, we verify that, for regular networks, 𝑏𝐕′ (𝑔, 𝜃) = 𝑉 ′𝑏 (𝑔, 𝜃) and therefore (from Corollary 1)

𝑥∗ = 𝑥∗
𝑆

(
1 − 𝑉 ′

1 − 𝜋

)
.

By definition, 𝑏𝐕′ ,𝑖 (𝑔, 𝜃) =
∑𝑛

𝑗=1 𝑚𝑖𝑗 (𝑔, 𝑎)𝑉
′

𝑗 , where [𝑚𝑖𝑗 (𝑔, 𝑎)] = [𝐈 − 𝑎𝐆]−1. Regular networks imply that 𝑉
′

𝑗 = 𝑉 ′ for all 𝑗 = 1, ..., 𝑛. 
Hence, 𝑏𝐕′ ,𝑖 (𝑔, 𝜃) = 𝑉 ′∑𝑛

𝑗=1 𝑚𝑖𝑗 (𝑔, 𝑎). Given that 𝑏𝑖 (𝑔, 𝜃) =
∑𝑛

𝑗=1 𝑚𝑖𝑗 (𝑔, 𝑎), it follows that 𝑏𝐕′ ,𝑖 (𝑔, 𝜃) = 𝑉 ′𝑏𝑖 (𝑔, 𝜃) and that 𝑏𝐕′ (𝑔, 𝜃) =
𝑉 ′𝑏 (𝑔, 𝜃).

15 It can be easily checked that, for regular networks, the condition 𝜃𝜌(𝑔) < 1 is satisfied when 𝜃 < 1∕𝑑.
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Maximization of the RHS of (9) yields

𝜓∗ = 1 − 𝜋 − 𝑉 ′

𝛿 (1 + 𝑛) − 𝑑 𝜋𝜙
. (14)

For each criminal, we guess a value function of the form 𝑉 = 𝐴𝑦2∕2 + 𝐵𝑦 + 𝐶 . Using (9) and (14), the coefficients of 𝑉 can be 
obtained by identification:

𝐴 = (𝑟 − 2𝜇) [𝛿 (1 + 𝑛) − 𝑑 𝜋𝜙]2

2
[

𝛿𝑛2 − (𝑛 − 1)𝑑 𝜋𝜙
] , (15)

𝐵 =
(𝜋 − 1) (𝑟 − 2𝜇)

[
𝛿
(

𝑛2 + 1
)
− (𝑛 − 1)𝑑 𝜋𝜙

]
2𝜇

[
𝛿𝑛2 − (𝑛 − 1)𝑑 𝜋𝜙

] , (16)

and

𝐶 =
(𝐵 + 𝜋 − 1)

[
𝛿
(

𝐵𝑛2 + 𝜋 − 1
)
− 𝐵 (𝑛 − 1)𝑑 𝜋𝜙

]
𝑟 [𝛿 (1 + 𝑛) − 𝑑 𝜋𝜙]2

.

We know that a necessary condition for the steady-state equilibrium to be stable is that 𝑏𝐀 (𝑔, 𝜃) < 0, therefore 𝐴 < 0. Since 
𝜃𝜌(𝑔) < 1 implies 𝛿 − 𝑑 𝜋𝜙 > 0 it follows that 𝛿𝑛2 − (𝑛 − 1)𝑑 𝜋𝜙 > 0 and that 𝛿

(
𝑛2 + 1

)
− (𝑛 − 1)𝑑 𝜋𝜙 > 0. Hence, for 𝑟 < 2𝜇, we have 

𝐴 < 0 and 𝐵 > 0 (since 𝜋 − 1 < 0). Note that 𝐴 < 0 implies that 𝜓∗
𝑖 be increasing in 𝑦.

The Markov Feedback Equilibrium aggregate crime can be written as

𝑥∗(𝑦) = 𝑥∗
𝑆

(
1 − 𝐴𝑦 + 𝐵

1 − 𝜋

)
, (17)

with 𝐴 and 𝐵 given in (15) and (16), respectively. The admissible range for 𝑦 is 𝐿 = {𝑦| 𝑦 ≤ 𝑦 ≤ 𝑦}, where 𝑦 = (1− 𝜋 − 𝐵)∕𝐴 > 0 and 
𝑦 = −𝐵∕𝐴 > 0, with 𝑦 − 𝑦 = (𝜋 − 1)∕𝐴 > 0.

The Markov Feedback Equilibrium trajectory of aggregate crime is given by

𝑥∗(𝑡) = 𝑥∗
𝑆

[
1 − 𝐴𝑦∗(𝑡) + 𝐵

1 − 𝜋

]
, (18)

where

𝑦∗(𝑡) = 𝑦 +
(

𝑦0 − 𝑦
)
exp

[
𝑡

(
𝜇 + 𝐴𝑛 

𝛿 (1 + 𝑛) − 𝑑 𝜋𝜙

)]
, (19)

and

𝑦 = 𝑛 (1 − 𝜋 − 𝐵)
𝐴𝑛 + 𝜇 [𝛿 (1 + 𝑛) − 𝑑 𝜋𝜙]

,

with 𝐴 and 𝐵 previously defined. Aggregate crime increases (resp. decreases) over time if 𝑦0 <(resp. >)𝑦. (19) corresponds to 𝑦∗(𝑡)
given in Corollary 2. Indeed,

𝑏𝐀 (𝑔, 𝜃)
𝛿 [1 + 𝑏 (𝑔, 𝜃)]

= 𝐴𝑛 
𝛿 (1 + 𝑛) − 𝑑 𝜋𝜙

,

since 𝑏𝐀 (𝑔, 𝜃) = 𝐴𝑛∕(1 − 𝑑 𝜃), with 𝜃 = 𝜋𝜙∕𝛿. Moreover, we have

𝑥 = 𝑥∗
𝑆

(
1 − 𝐴𝑦 + 𝐵

1 − 𝜋

)
,

which corresponds to 𝑥 given in Corollary 2 since, for regular networks, 𝑏𝐀 (𝑔, 𝜃) = 𝐴𝑏 (𝑔, 𝜃) and 𝑏𝐁 (𝑔, 𝜃) = 𝐵𝑏 (𝑔, 𝜃).
We now provide two numerical examples of Corollaries 1 and 2.16 The first example is based on the regular network case discussed 

above. The second is based on the simplest possible nonregular network, which is the star network with one central criminal and two 
periphery criminals. In these numerical examples, and also in all the numerical examples presented in the subsequent sections, we 
are going to use the following baseline parameter values: 𝜋 = 0.05, 𝜙 = 0.1, 𝛿 = 0.025, 𝜇 = 0.03 and 𝑟 = 0.0001. Parameters 𝜙, 𝛿 and 
𝑟 will be kept constant, whereas parameters 𝜋 and 𝜇 will be changed in Sections 4.2 and 4.3, respectively. Note that the implied value 
of 𝜃 = 𝜋𝜙∕𝛿 is 0.2, which was also used in the numerical examples in Ballester et al. (2006, Table I) and Ballester et al. (2010, Table 
I).17 A value of 𝜇 equal to 0.03 means that the implicit growth rate of total wealth in the economy is 3%, which is a plausible growth 
rate, and a value of 𝑟 equal to 0.0001 means that criminals slightly discount future payoffs (i.e., they are forward-looking).18 Note 
also that the considered parameter values are for illustration only. With reference to the comparative dynamics in Section 4, as long 

16 In all numerical examples in the paper, we obtain exact values which we report rounded to four decimal places.
17 𝜃 = 0.2 guarantees that 𝐌(𝑔, 𝜃) = [𝐈− 𝜃𝐆]−1 satisfies the condition 𝜃𝜌(𝑔) < 1 for all the network structures considered in this paper.
18 In numerical simulations of discrete-time models with forward-looking agents, the discount factor 1∕(1 + 𝑟)𝑡 is usually taken to be very close to unity, implying a 

very low 𝑟. The continuous-time discount factor counterpart is 𝑒−𝛿𝑡 with 𝛿 = ln (1 + 𝑟).
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Fig. 2. Star network with three criminals. 

as the general conditions stated in the relevant propositions are satisfied, the qualitative results of the numerical examples (meant to 
illustrate those propositions) remain unchanged. Indeed, we have run several simulations using different parameter values and found 
the same qualitative results as those in Section 4, and similarly for the numerical example about the key player in Section 5.19

Example 1. Consider a regular network with 𝑛 = 4 and 𝑑 = 2. From (17) and (18), we have, respectively,

𝑥∗(𝑦) = −2.1739 + 0.0372𝑦,

for 𝑦 ∈ 𝐿 = [58.3823,945.8097] and

𝑥∗ (𝑡) = −2.1739 + 0.0372𝑦∗(𝑡),

for 𝑡 ∈ [0,∞), where

𝑦∗(𝑡) = 300.4607 + (𝑦0 − 300.4607) exp(−0.0072𝑡), (20)

for 𝑦0 ∈ 𝐿 = [58.3823,945.8097]. It can be easily checked that (20) corresponds to 𝑦∗(𝑡) in Corollary 2. If 𝑦0 <(resp. >)300.4607, 
aggregate crime increases (resp. decreases) over time; as 𝑡 →∞, aggregate crime converges to 9.0138.

Example 2. Consider network 𝑔 in Fig. 2. 
Routine calculations lead to 𝑏1 (𝑔, 𝜃) = 1.5217 and 𝑏𝑖 (𝑔, 𝜃) = 1.3043 with 𝑖 = 2,3. It follows that 𝑏 (𝑔, 𝜃) = 4.1304 and that 𝑥∗

𝑆
=

30.5932.

In order to compute 𝑥∗ we need 𝑏𝐕′ (𝑔, 𝜃). Performing the maximization indicated in (9) leads to the following value functions:

𝑉1 = 𝐴1𝑦2∕2 + 𝐵1𝑦 + 𝐶1,

and

𝑉𝑖 = 𝐴𝑖 𝑦2∕2 + 𝐵𝑖 𝑦 + 𝐶𝑖,

with 𝑖 = 2,3, where 𝐴1 = −0.0012, 𝐵1 = 1.0431, 𝐶1 = 29811.8260, 𝐴𝑖 = −0.0013, 𝐵𝑖 = 1.0712, and 𝐶𝑖 = 23498.1967. Hence, 𝑉 ′
1 =

1.0431 − 0.0012𝑦, 𝑉 ′
𝑖 = 1.0712 − 0.0013𝑦, and 𝑏𝐕′ (𝑔, 𝜃) = 4.3817 − 0.0051𝑦. It can be easily checked that 𝜔 (𝑔, 𝜃) = 1. 0608 − 0.0012𝑦. 

From Corollary 1, we then get

𝑥∗(𝑦) = −3.5692 + 0.0396𝑦,

for 𝑦 ∈ 𝐿 = [108.7184,856.7616]. The resulting equilibrium trajectory of aggregate crime is given by

𝑥∗(𝑡) = −3.5692 + 0.0396𝑦∗(𝑡),

where

𝑦∗(𝑡) = 371.3222 + (𝑦0 − 371.3222) exp(−0.0096𝑡), (21)

for 𝑦0 ∈ 𝐿. It can be easily checked that (21) corresponds to 𝑦∗(𝑡) in Corollary 2. If 𝑦0 <(resp. >)371.3222, aggregate crime increases 
(resp. decreases) over time; as 𝑡 →∞, aggregate crime converges to 11.1397.

4. Comparative dynamics

In this section, we conduct a comparative dynamic analysis with respect to the network size, the network density, the marginal 
expected punishment, and the implicit growth rate of total wealth in the economy.

4.1. Network size and density

In the static game studied in Ballester et al. (2010), aggregate crime is increasing in either network size or density or both, a 
feature often referred to as social multiplier effect. In the absence of dynamic considerations, policies aimed at reducing aggregate 
crime should be designed so as to reduce the number of criminals or the number of links or both. In our dynamic game, instead, 
things are more involved, and a social multiplier effect does not necessarily exist.

19 The results of these simulations are available upon request from the authors.

Journal of Economic Theory 223 (2025) 105951 

10 



L. Colombo, P. Labrecciosa and A. Rusinowska 

Consider two networks, 𝑔 with associated adjacency matrix 𝐆 and 𝑔′ with associated adjacency matrix 𝐆′, with 𝑔 ⊂ 𝑔′ (meaning 
that 𝑔′ contains either more criminals or more links or both). Formally: for all 𝑖, 𝑗, 𝑔′

𝑖𝑗 = 1 if 𝑔𝑖𝑗 = 1. Recall that 𝑏 (𝑔, 𝜃) counts the 
total number of weighted walks in 𝑔. Hence, 𝑏 (𝑔, 𝜃) is an increasing function in 𝑔 (for the inclusion ordering), as more links imply 
more such walks. Call Δ𝑥∗

𝑆
= 𝑥∗

𝑆
(𝑔′) − 𝑥∗

𝑆
(𝑔).20 We have

Δ𝑥∗
𝑆 =

(1 − 𝜋)𝑏
(

𝑔′, 𝜃
)

𝛿 [1 + 𝑏 (𝑔′, 𝜃)]
− (1 − 𝜋)𝑏 (𝑔, 𝜃)

𝛿 [1 + 𝑏 (𝑔, 𝜃)]

= (1 − 𝜋)
𝛿

[
[1 + 𝑏 (𝑔, 𝜃)]𝑏

(
𝑔′, 𝜃

)
−
[
1 + 𝑏

(
𝑔′, 𝜃

)]
𝑏 (𝑔, 𝜃)

[1 + 𝑏 (𝑔′, 𝜃)] [1 + 𝑏 (𝑔, 𝜃)]

]
,

implying that

Δ𝑥∗
𝑆

𝑠 
= [1 + 𝑏 (𝑔, 𝜃)]𝑏

(
𝑔′, 𝜃

)
−
[
1 + 𝑏

(
𝑔′, 𝜃

)]
𝑏 (𝑔, 𝜃) = 𝑏

(
𝑔′, 𝜃

)
− 𝑏 (𝑔, 𝜃) > 0,

where 
𝑠 
= means same sign as.

4.1.1. Short-run impact

First, we evaluate how aggregate crime responds to a change in the number of criminals, or the number of links, or both, in the 
neighborhood of a given initial stock of total wealth (short-run impact). Henceforth, for the sake of consistency, we redefine 𝑥∗(𝑦)
given in (13) as follows

𝑥∗(𝑔) = 𝑥∗
𝑆 (𝑔)

[
1 − 𝜔 (𝑔, 𝜃)

1 − 𝜋

]
,

and denote Δ𝑥∗ = 𝑥∗(𝑔′) − 𝑥∗(𝑔). Note that 𝑥∗(𝑔) remains a function of the state 𝑦 via 𝜔 (𝑔, 𝜃). The state is simply suppressed for 
brevity. The total effect of an increase in the number of criminals, or the number of links, or both, can be decomposed into the sum 
of two effects, a static effect, which is positive, and a dynamic effect, the sign of which is a priori ambiguous:

Δ𝑥∗ = Δ𝑥∗
𝑆

⏟ ⏟ ⏟
static effect

+
𝜔 (𝑔, 𝜃)𝑥∗

𝑆
(𝑔)−𝜔

(
𝑔′, 𝜃

)
𝑥∗

𝑆
(𝑔′)

1 − 𝜋
⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

dynamic effect 

.

Δ𝑥∗ can be rewritten as

Δ𝑥∗ = 𝑥∗
𝑆 (𝑔′)

[
1 −

𝜔
(

𝑔′, 𝜃
)

1 − 𝜋

]
− 𝑥∗

𝑆 (𝑔)
[
1 − 𝜔 (𝑔, 𝜃)

1 − 𝜋

]
.

When 𝜔 is decreasing in 𝑔, therefore an increase in the number of criminals, or the number of links, or both, leads to a decrease in the 
weighted average of intertemporal marginal costs of committing crime, Δ𝑥∗ 𝑠 

=Δ𝑥∗
𝑆

> 0 since 𝑥∗
𝑆
(𝑔′) >𝑥∗

𝑆
(𝑔) and 1−𝜔

(
𝑔′, 𝜃

)
∕(1−𝜋) >

1− 𝜔 (𝑔, 𝜃) ∕(1− 𝜋). When instead 𝜔 is increasing in 𝑔, it is possible that Δ𝑥∗ < 0. Take, for instance, 𝜔
(

𝑔′, 𝜃
)
→ 1− 𝜋. It follows that 

lim𝜔(𝑔′ ,𝜃)→1−𝜋 Δ𝑥∗ = −𝑥∗
𝑆
(𝑔)[1 − 𝜔 (𝑔, 𝜃) ∕(1 − 𝜋)] < 0.

The above discussion leads to the following proposition.

Proposition 1. Take 𝑦 = 𝑦0 ∈ 𝐿. If 𝜔
(

𝑔′, 𝜃
)

< 𝜔 (𝑔, 𝜃) then Δ𝑥∗ > 0 (as in the static game). However, if 𝜔
(

𝑔′, 𝜃
)

> 𝜔 (𝑔, 𝜃) then it is 
possible that Δ𝑥∗ = 𝑥∗(𝑔′) − 𝑥∗(𝑔) < 0.

𝜔
(

𝑔′, 𝜃
)

> 𝜔 (𝑔, 𝜃) means that, on average, a marginal increase in the stock of total wealth in the economy is more valuable (in 
terms of value functions) in network 𝑔′ than in network 𝑔. Consequently, given that crime is wealth reducing, committing crime is 
more costly, on average, in the former than in the latter. Observe that a necessary condition for 𝜔

(
𝑔′, 𝜃

)
> 𝜔 (𝑔, 𝜃) is 𝑏𝐕′

(
𝑔′, 𝜃

)
>

𝑏𝐕′ (𝑔, 𝜃), since 𝑏
(

𝑔′, 𝜃
)

> 𝑏 (𝑔, 𝜃). Then, aggregate crime may decrease and therefore a social multiplier effect may not exist when ∑𝑛
𝑖=1 𝑏𝑖(𝑔′, 𝜃)𝑉 ′

𝑖 (𝑦) >
∑𝑛

𝑖=1 𝑏𝑖(𝑔, 𝜃)𝑉 ′
𝑖 (𝑦).

In order to illustrate such a possibility result, we now consider the two extreme cases of an empty and a complete network, and 
show analytically that, in our dynamic game, in contrast with the static game, when the number of links is increased from 0 to 𝑛 − 1
for each criminal a social multiplier effect does not arise.

Proposition 2. Take 𝑦 = 𝑦0 ∈ 𝐿. Δ𝑥∗ = 𝑥∗(𝑔𝑁 ) − 𝑥∗(𝑔∅) < 0.

The intuitive explanation is as follows. The shadow price of total wealth in the economy can be written as:

𝑉 ′
𝑖 (𝑦) = 𝑉 ′ (𝑦)||𝑔∅

+ Ω𝑖 (𝑦) , (22)

20 In this subsection and Section 5, we add explicitly 𝑔 and 𝑔′ to the notation of aggregate crime, as we compare the aggregate crime in different networks.
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where 𝑉 ′ (𝑦)||𝑔∅
is the shadow price of total wealth in the empty network (the same for all criminals given the symmetry of 𝑢𝑖), 

and Ω𝑖(𝑦) is the residual, i.e., what is left in the explanation of 𝑉 ′
𝑖 (𝑦) after accounting for 𝑉 ′ (𝑦)||𝑔∅

. Ω𝑖(𝑦) can be interpreted as the 
“network effect”. Such effect can be either positive or negative (or nil). From (22), the shadow price of total wealth in the economy 
in the complete network can be decomposed as follows:

𝑉 ′ (𝑦)||𝑔𝑁
= 𝑉 ′ (𝑦)||𝑔∅

+ Ω(𝑦) . (23)

In Appendix E, we show that the network effect Ω(𝑦) in (23) is positive, implying that, for each criminal, the intertemporal marginal 
cost of committing crime is higher (and therefore the level of criminal activities is lower) in the complete than in the empty network.

We now evaluate the impact of an increase in 𝑛 in the two extreme cases previously considered. Let 𝑔′
∅ and 𝑔′

𝑁
denote the enlarged 

empty and complete network, respectively. In the next proposition, we show that, both in the empty and the complete network, if 
the stock of total wealth in the economy is relatively large, aggregate crime decreases as the number of criminals increases.

Proposition 3. Take 𝑦 = 𝑦0 ∈ 𝐿. (i) There exists 𝑦𝐸 𝑁 such that Δ𝑥∗ = 𝑥∗(𝑔′
∅) − 𝑥∗(𝑔∅) <(resp. >)0 for 𝑦 >(resp. <)𝑦𝐸 𝑁 . (ii) There exists 

𝑦𝐶 𝑁 such that Δ𝑥∗ = 𝑥∗(𝑔′
𝑁
) − 𝑥∗(𝑔𝑁 ) <(resp. >)0 for 𝑦 >(resp. <)𝑦𝐶 𝑁 .

Intuitively, both in the empty and the complete network, when the stock of total wealth in the economy is relatively large, an 
increase in the number of criminals leads to an increase in the shadow price of total wealth in the economy. As a consequence, for each 
criminal, the intertemporal marginal cost of committing crime increases. Each incumbent criminal then decreases her/his criminal 
activities. Such a reduction outweighs the increase in criminal activities due to the added criminals, and therefore, aggregate crime 
drops.

In the next two numerical examples, we show that an increase in the number of criminals, or the number of links, can lead to a 
decrease in aggregate crime (in the neighborhood of a given 𝑦0) beyond the two extreme cases considered in Propositions 2 and 3.

Example 1.1. Consider the regular network 𝑔′ resulting from an increase in 𝑑 from 2 to 3. All the other parameters of the model 
remain unchanged with respect to Example 1 (i.e., 𝜋 = 0.05, 𝜙 = 0.1, 𝛿 = 0.025, 𝜇 = 0.03 and 𝑟 = 0.0001). Routine calculations lead 
to 𝑉 ′(𝑦)||𝑔′ = 1.0152−0.001𝑦. From Corollary 1, it follows that 𝑥∗(𝑔′) = −2.3711+0.0371𝑦 for 𝑦 ∈ 𝐿 = [63.8760,994.4904]. By setting 
𝑦0 = 100, at 𝑡 = 0, we get

𝑥∗(𝑔′′) =
{

1.5496 for 𝑔′′ = 𝑔 with 𝑑 = 2
1.3410 for 𝑔′′ = 𝑔′ with 𝑑 = 3

In the static game, instead,

𝑥∗
𝑆 (𝑔′′) =

{
33.0435 for 𝑔′′ = 𝑔 with 𝑑 = 2
34.5455 for 𝑔′′ = 𝑔′ with 𝑑 = 3

In this example, unlike in the static game, more connected criminals are associated with lower aggregate crime. The reason is that 
an increase in 𝑑 leads to an increase in the shadow price of total wealth in the economy ( 𝑉 ′(𝑦)||𝑔′ ,𝑦=𝑦0

= 0.9131 > 𝑉 ′(𝑦)||𝑔,𝑦=𝑦0
=

0.9054), thus making criminal activities more costly for all criminals. We can use (22) to see how much of the difference in shadow 
prices is due to the network effect. From (22), we have

Δ𝑉 ′ (𝑦) = Δ 𝑉 ′ (𝑦)||𝑔∅
+ ΔΩ(𝑦) .

Since, in this example, Δ 𝑉 ′ (𝑦)||𝑔∅
= 0, the difference in shadow prices is solely attributed to the network effect.

Example 2.1. Consider the network 𝑔′ resulting from adding one periphery criminal to the network 𝑔 depicted in Fig. 2, so that the 
total number of criminals increases from 3 to 4. All the other parameters of the model remain unchanged with respect to Example 2. 
Routine calculations lead to 𝑏1

(
𝑔′, 𝜃

)
= 1.8182 and 𝑏𝑖

(
𝑔′, 𝜃

)
= 1.3636 with 𝑖 = 2,3,4. It follows that 𝑏

(
𝑔′, 𝜃

)
= 5.9091 and 𝑥∗

𝑆
(𝑔′) =

32.5000. Performing the maximization indicated in (9) leads to the following value functions:

𝑉1 = 𝐴1𝑦2∕2 + 𝐵1𝑦 + 𝐶1,

and

𝑉𝑖 = 𝐴𝑖 𝑦2∕2 + 𝐵𝑖 𝑦 + 𝐶𝑖,

with 𝑖 = 2,3,4, where 𝐴1 = −0.0010, 𝐵1 = 0.9939, 𝐶1 = 20347.5012, 𝐴𝑖 = −0.0011, 𝐵𝑖 = 1.0194, and 𝐶𝑖 = 14623.8491. Hence, 
𝑉 ′
1 (𝑦)|||𝑔′

= 0.9939 − 0.0010𝑦, 𝑉 ′
𝑖 (𝑦)|||𝑔′

= 1.0194 − 0.0011𝑦, and 𝑏𝐕′
(

𝑔′, 𝜃
)
= 5.9773 − 0.0064𝑦. From Corollary 1, we then get 

𝑥∗(𝑔′) = −2.1055 + 0.0373𝑦 for 𝑦 ∈ 𝐿 = [73.7826,913.7767]. Recall that 𝑥∗(𝑔) = −3.5692 + 0.0396𝑦. Let 𝑦0 = 800. It follows that 
aggregate crime at 𝑡 = 0 is given by

𝑥∗(𝑔′′) =
{

28.1205 for 𝑔′′ = 𝑔 with 𝑛 = 3
27.7200 for 𝑔′′ = 𝑔′ with 𝑛 = 4
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and

𝑥∗
𝑆 (𝑔′′) =

{
30.5932 for 𝑔′′ = 𝑔 with 𝑛 = 3
32.5000 for 𝑔′′ = 𝑔′ with 𝑛 = 4

In this example, unlike in the static game, more criminals are associated with lower aggregate crime. For each criminal, the shadow 
price is higher and the weight associated with the shadow price is lower in network 𝑔′ than in network 𝑔, with the increase in 
the shadow price exceeding the decrease in the respective weight. As a consequence, the increase in the number of criminals leads 
to an increase in the (weighted) average intertemporal marginal cost of committing crime. Indeed, it can be easily checked that 
𝑏𝐕′

(
𝑔′, 𝜃

)|||𝑦=𝑦0
= 0.8256 > 𝑏𝐕′ (𝑔, 𝜃)||𝑦=𝑦0

= 0.3172 and that 𝜔
(

𝑔′, 𝜃
)
= 0.1397 > 𝜔 (𝑔, 𝜃) = 0.0768.21 Each incumbent criminal de-

creases her/his criminal activities. The sum of the reductions in crime by the incumbent criminals outweighs the increase in crime 
by the added criminal, causing a reduction in aggregate crime. An intertemporal business stealing effect occurs, which is responsible 
for Δ𝑥∗ < 0.

We conclude this example with the decomposition of Δ𝑉 ′
𝑘
(𝑦):

Δ𝑉 ′
𝑘 (𝑦) = Δ 𝑉 ′ (𝑦)||𝑔∅

+ ΔΩ𝑘 (𝑦) ,

with 𝑘 = 1,2. For 𝑘 = 1, we have Δ𝑉 ′
1 (𝑦) = 0.0818 and ΔΩ1 (𝑦) = −0.0011; for 𝑘 = 2, we have Δ𝑉 ′

2 (𝑦) = 0.0560 and ΔΩ2 (𝑦) = −0.0269. 
Moreover, Δ 𝑉 ′ (𝑦)||𝑔∅

= 0.0828. For both types of players, the network effect is negative, stronger for a periphery criminal than for 
criminal 1, and the vast majority of the difference in shadow prices, especially for criminal 1, is explained by Δ 𝑉 ′ (𝑦)||𝑔∅

. Unlike in 
Example 1.2, here the network effect goes in the opposite direction to Δ𝑉 ′

𝑘
(𝑦).

4.1.2. Long-run impact

Next, we evaluate how aggregate crime responds at the steady-state equilibrium (long-run impact). Denote Δ𝑦 = 𝑦(𝑔′) − 𝑦(𝑔), 
where 𝑦(𝑔′′) for 𝑔′′ = 𝑔, 𝑔′ is implicitly given by

𝜇𝑦(𝑔′′) = 𝑥∗
𝑆 (𝑔′′)

[
1 −

𝜔
(

𝑔′′, 𝜃
)

1 − 𝜋

]
. (24)

The RHS of (24) is increasing in 𝑦 (since 𝜔
(

𝑔′′, 𝜃
)

is decreasing in 𝑦) and intersects the LHS of (24) from below (for steady-state 
stability). Take 𝑦0 = 𝑦(𝑔). Hence, Δ𝑥∗ >(resp. <) 0 implies that Δ𝑦 <(resp. >) 0. Clearly, if Δ𝑥∗ > 0, which occurs, for instance, when 
𝜔
(

𝑔′, 𝜃
)

< 𝜔 (𝑔, 𝜃), then 𝑥∗(𝑔′) > 𝜇𝑦. Consequently, 𝑥∗(𝑔′) intersects 𝜇𝑦 at a point to the left of 𝑦(𝑔). From Corollary 2, we know that 
𝑦 and 𝑥 are positively correlated. Hence, we can write the following proposition.

Proposition 4. Take 𝑦0 = 𝑦(𝑔). If Δ𝑥∗ >(resp. <) 0 then Δ𝑥 <(resp. >) 0.

The case Δ𝑥 < 0 in Proposition 4 is illustrated in Fig. 3.

As can be seen in Fig. 3, there exists a trade-off between short and long run: aggregate crime increases in the short run and 
decreases in the long run. Starting from point A, aggregate crime moves up to point B, then down to point C (moving along 𝑥∗(𝑔′)). 
Indeed, when Δ𝑥 < 0 a social multiplier effect exists only in the short run.

A numerical example of the case Δ𝑥 > 0 is provided below.

Example 1.1 (continued). For the regular network, the trajectories of aggregate crime are given by

𝑥∗(𝑔′′, 𝑡) =
{

9.0138 +
(
0.0372𝑦0 − 11.1877

)
exp (−0.0072𝑡) for 𝑔′′ = 𝑔 with 𝑑 = 2

9.9892 +
(
0.0371𝑦0 − 12.3604

)
exp (−0.0071𝑡) for 𝑔′′ = 𝑔′ with 𝑑 = 3

Clearly, as 𝑡 →∞, aggregate crime converges to 9.0138 with 𝑑 = 2 and to 9.9892 with 𝑑 = 3. Therefore, in line with the static game, 
long-run aggregate crime is lower with 𝑑 = 2 than with 𝑑 = 3. The reason is that the steady-state shadow price of total wealth in the 
economy is higher with 𝑑 = 2 than with 𝑑 = 3 (�̂� (𝑔, 𝜃) = 0.6909 > �̂�

(
𝑔′, 𝜃

)
= 0.6753). At the steady state, it is more costly, for each 

criminal, to commit crime in the network with fewer links. However, as previously shown in Example 1.1, for 𝑡 = 0 and 𝑦0 = 100, in 
contrast with the static game, aggregate crime is higher with 𝑑 = 2 than with 𝑑 = 3. This implies that, for the given parameter values, 
the trajectories of aggregate crime in 𝑔 and 𝑔′ intersect.

A final remark is in order. Proposition 4 establishes that if 𝑦0 = 𝑦(𝑔) then the long-run response of an increase in the number of 
criminals, or the number of links, or both, is the opposite in sign to the short-run response. However, if 𝑦0 ≠ 𝑦(𝑔) we can have either 
an increase or a decrease in aggregate crime, not only in the short run but also at the steady state. The case of a decrease in aggregate 
crime is illustrated in Fig. 4 as well as in Example 2.1 below.

Starting from point A, aggregate crime moves down first to point B, then to point C (moving along 𝑥∗(𝑔′)).

21 Recall that 𝑏𝐕′

(
𝑔′, 𝜃

)
> 𝑏𝐕′ (𝑔, 𝜃) is a necessary condition for 𝜔

(
𝑔′, 𝜃

)
> 𝜔 (𝑔, 𝜃).
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�

�� � � � � � 
𝑦𝑦0 = 𝑦(𝑔)𝑦(𝑔′)

𝑥(𝑔)

𝑥∗(𝑔′)||𝑦0

𝑥(𝑔′)

𝑥∗, 𝜇𝑦

𝑥∗(𝑔)

𝜇𝑦

0 

∙ C 

∙
A 

∙B 

𝑥∗(𝑔′)

Fig. 3. Comparative steady-state analysis with 𝑦0 = 𝑦(𝑔). 

�

�� � � � � � � � 
𝑦𝑦0𝑦(𝑔′) 𝑦(𝑔)

𝑥(𝑔)

𝑥∗(𝑔′)||𝑦0

𝑥(𝑔′)

𝑥∗, 𝜇𝑦

𝜇𝑦

0 

∙ C 

∙ B 

∙A 

∙

𝑥∗(𝑔)|𝑦0

D 

𝑥∗(𝑔′)𝑥∗(𝑔)

Fig. 4. Comparative steady-state analysis with 𝑦0 ≠ 𝑦(𝑔). 

Example 2.1 (continued). For the star network, the trajectories of aggregate crime are given by

𝑥∗(𝑔′′, 𝑡) =
{

11.1397 + (0.0396𝑦0 − 14.7088) exp(−0.0096𝑡) for 𝑔′′ = 𝑔 with 𝑛 = 3
8.6743 + (0.0373𝑦0 − 10.7798) exp(−0.0073𝑡) for 𝑔′′ = 𝑔′ with 𝑛 = 4

Clearly, as 𝑡 →∞, aggregate crime converges to 11.1397 with 𝑛 = 3 and to 8.6743 with 𝑛 = 4. Therefore, in contrast with the static 
game, long-run aggregate crime is higher with 𝑛 = 3 than with 𝑛 = 4. It can be checked that, at the steady state, �̂� (𝑔, 𝜃) = 0.6041 <
�̂�
(

𝑔′, 𝜃
)
= 0.6964. Hence, the (weighted) average intertemporal marginal cost of committing crime is lower with 𝑛 = 3 than with 

𝑛 = 4. The reduction in criminal activities by the three incumbent criminals more than compensate for the criminal activities by the 
added criminal. Moreover, in contrast with the static game, as previously shown in Example 2.1, for 𝑡 = 0 and 𝑦0 = 800 aggregate 
crime is higher with 𝑛 = 3 than with 𝑛 = 4. This implies that, in this example, more criminals are associated with a lower aggregate 
crime both in the short and the long run.
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We conclude this example with the decomposition of Δ𝑉 ′
𝑘
(𝑦) = 𝑉 ′

𝑘
(𝑦(𝑔′)) − 𝑉 ′

𝑘
(𝑦(𝑔)):

Δ𝑉 ′
𝑘

(
𝑦
)
=Δ 𝑉 ′ (𝑦

)|||𝑔∅
+ ΔΩ𝑘

(
𝑦
)

,

with 𝑘 = 1,2, where Δ 𝑉 ′ (𝑦
)|||𝑔∅

= 𝑉 ′ (𝑦(𝑔′)
)|||𝑔∅

− 𝑉 ′ (𝑦(𝑔)
)|||𝑔∅

and ΔΩ𝑘

(
𝑦
)
=Ω𝑘

(
𝑦(𝑔′)

)
−Ω𝑘

(
𝑦(𝑔)

)
. For 𝑘 = 1, we have Δ𝑉 ′

1
(

𝑦
)
=

0.0963 and ΔΩ1
(

𝑦
)
= −0.0135; for 𝑘 = 2, we have Δ𝑉 ′

2
(

𝑦
)
= 0.0899 and ΔΩ2

(
𝑦
)
= −0.0200. Moreover, Δ 𝑉 ′ (𝑦

)|||𝑔∅
= 0.1099. For 

both types of players, the steady-state network effect is negative, stronger for a periphery criminal than for criminal 1 (as in the short 
run), and the vast majority of the difference in steady-state shadow prices, especially for criminal 1, is explained by Δ 𝑉 ′ (𝑦

)|||𝑔∅
.

4.2. Marginal expected punishment

In the static game studied in Ballester et al. (2010), the impact of 𝜋 on 𝑥∗
𝑆

can be decomposed into the sum of a direct and an 
indirect effect as follows:

𝜕𝑥∗
𝑆

𝜕𝜋
=
(
−

𝑥∗
𝑆

1 − 𝜋

)
⏟ ⏞⏞⏞⏟ ⏞⏞⏞⏟

direct effect 

+
(

𝜕𝑥∗
𝑆

𝜕𝜃

𝜙

𝛿

)
⏟ ⏞⏞⏞⏟ ⏞⏞⏞⏟

(static) indirect effect

where

𝜕𝑥∗
𝑆

𝜕𝜃
= (1 − 𝜋)

𝛿 [1 + 𝑏 (𝑔, 𝜃)]2
𝜕𝑏 (𝑔, 𝜃)

𝜕𝜃
> 0.

The direct effect is negative, whereas the (static) indirect effect is positive, implying that the impact of 𝜋 on 𝑥∗
𝑆

is ambiguous.

4.2.1. Short-run impact

In our dynamic setting, a change in 𝜋 has an impact not only on the Bonacich centralities, as in the static game, but also on the 
weighted Bonacich centralities with weights given by the vector of shadow prices. The short-run impact of 𝜋 on 𝑥∗ is given by

𝜕𝑥∗

𝜕𝜋
=
(
−

𝑥∗
𝑆

1 − 𝜋

)
⏟ ⏞⏞⏞⏟ ⏞⏞⏞⏟

direct effect 

+
(

𝜕𝑥∗
𝑆

𝜕𝜃

𝜙

𝛿

)
⏟ ⏞⏞⏞⏟ ⏞⏞⏞⏟

+ 

static indirect effect

(
𝜕𝑥∗

𝑆

𝜕𝜃

𝜙

𝛿

𝜔 (𝑔, 𝜃)
𝜋 − 1 

+
𝑥∗

𝑆

𝜋 − 1
𝜕𝜔
𝜕𝜋

)
⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

dynamic indirect effect 

=
(
−

𝑥∗
𝑆

1 − 𝜋

)
⏟ ⏞⏞⏞⏟ ⏞⏞⏞⏟

direct effect 

+
𝜕𝑥∗

𝑆

𝜕𝜃

𝜙

𝛿

(
1 − 𝜔 (𝑔, 𝜃)

1 − 𝜋

)
+

𝑥∗
𝑆

𝜋 − 1
𝜕𝜔
𝜕𝜋

⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
total indirect effect 

(25)

While the static indirect effect is always positive, the total indirect effect can be negative. Indeed, it is easy to verify that the total 
indirect effect is negative if

𝜕𝑥∗
𝑆

𝜕𝜃

𝜙

𝛿
[1 − 𝜋 − 𝜔 (𝑔, 𝜃)] < 𝑥∗

𝑆
𝜕𝜔
𝜕𝜋

. (26)

Letting 𝐸𝑘 𝑓 (𝑧, 𝑘) = [𝑘∕𝑓 (𝑧, 𝑘)]𝜕𝑓 (𝑧, 𝑘)∕𝜕𝑘 denote the elasticity of 𝑓 (𝑧, 𝑘) with respect to 𝑘, and recalling that 𝜃 = 𝜋𝜙∕𝛿, (26) can be 
rewritten as

𝐸𝜋 𝜔 
𝐸𝜃 𝑥∗

𝑆

>
1 − 𝜋 − 𝜔 (𝑔, 𝜃)

𝜔 (𝑔, 𝜃)
. (27)

Clearly, a necessary condition for (27) to hold is that 𝜔(𝑔, 𝜃) be increasing in 𝜋 (since the RHS of (27) and 𝐸𝜃 𝑥∗
𝑆

are both positive). 
When 𝜔(𝑔, 𝜃) is decreasing in 𝜋, the total indirect effect has the same sign as the static indirect effect, i.e., it is positive. In this case, 
as in the static game analyzed in Ballester et al. (2010), the impact of 𝜋 on aggregate crime is ambiguous. When instead 𝜔(𝑔, 𝜃) is 
increasing in 𝜋, the total indirect effect is negative. In this case, an increase in 𝜋 unambiguously leads to a decrease in aggregate 
crime.

The above discussion leads to the following proposition, which provides sufficient conditions for short-run aggregate crime to be 
decreasing in the marginal expected punishment.

Proposition 5. If 𝐸𝜋 𝜔∕𝐸𝜃 𝑥∗
𝑆

> [1 − 𝜋 − 𝜔(𝑔, 𝜃)] ∕𝜔(𝑔, 𝜃) then 𝜕𝑥∗∕𝜕𝜋 < 0 for 𝑦 = 𝑦0 ∈ 𝐿.

When the dynamic indirect effect is positive (resp. negative), we have 𝜕𝑥∗∕𝜕𝜋 >(resp. <)𝜕𝑥∗
𝑆
∕𝜕𝜋. Assume that 𝜕𝑥∗∕𝜕𝜋 > 𝜕𝑥∗

𝑆
∕𝜕𝜋. 

There are two cases in which the sign of one derivative implies the sign of the other. If 𝜕𝑥∗∕𝜕𝜋 < 0 then 𝜕𝑥∗
𝑆
∕𝜕𝜋 < 0, or if 𝜕𝑥∗

𝑆
∕𝜕𝜋 > 0

then 𝜕𝑥∗∕𝜕𝜋 > 0. Assume now that 𝜕𝑥∗∕𝜕𝜋 < 𝜕𝑥∗
𝑆
∕𝜕𝜋. There are two cases in which the sign of one derivative implies the sign of 

the other. If 𝜕𝑥∗
𝑆
∕𝜕𝜋 < 0 then 𝜕𝑥∗∕𝜕𝜋 < 0, or if 𝜕𝑥∗∕𝜕𝜋 > 0 then 𝜕𝑥∗

𝑆
∕𝜕𝜋 > 0. Interestingly, the qualitative impact of 𝜋 on aggregate 
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crime in the static and the dynamic model may differ: when 𝜕𝑥∗∕𝜕𝜋 > 𝜕𝑥∗
𝑆
∕𝜕𝜋 we can have 𝜕𝑥∗∕𝜕𝜋 > 0 together with 𝜕𝑥∗

𝑆
∕𝜕𝜋 < 0; 

when, instead, 𝜕𝑥∗∕𝜕𝜋 < 𝜕𝑥∗
𝑆
∕𝜕𝜋 we can have 𝜕𝑥∗∕𝜕𝜋 < 0 together with 𝜕𝑥∗

𝑆
∕𝜕𝜋 > 0.

In order to illustrate the possibility of a divergence between the static and the dynamic model in terms of impact of 𝜋 on aggregate 
crime, we now consider the two extreme cases of an empty and a complete network.

Proposition 6. Take 𝑦 = 𝑦0 ∈ 𝐿. (i) In the empty network, 𝜕𝑥∗∕𝜕𝜋 > 0. (ii) In the complete network, there exists 𝑦𝐶Π such that 
𝜕𝑥∗∕𝜕𝜋 <(resp. >)0 for 𝑦 >(resp. <)𝑦𝐶Π.

In the empty network, aggregate crime decreases in the static model but increases in the dynamic model. In the static model, the 
total indirect effect is nil (since 𝜕𝑏 (𝑔, 𝜃) ∕𝜕𝜃 = 0), and therefore an increase in the marginal expected punishment leads to a decrease 
in aggregate crime. In the dynamic model, instead, from (25), the total indirect effect is given by 𝑥∗

𝑆
(𝑔∅)∕(𝜋 −1)𝜕 𝑉 ′ (𝑦)||𝑔∅

∕𝜕𝜋. It can 
be verified that 𝜕 𝑉 ′ (𝑦)||𝑔∅

∕𝜕𝜋 < 0, implying that 𝑥∗
𝑆
(𝑔∅)∕(𝜋 − 1)𝜕 𝑉 ′ (𝑦)||𝑔∅

∕𝜕𝜋 > 0. Aggregate crime increases since the (positive) 
total indirect effect outweighs the (negative) direct effect.

In the complete network, the total indirect effect depends on 𝑦 not only through the impact of the marginal expected punishment 
on the shadow price of total wealth in the economy but also through the shadow price of total wealth in the economy itself. The total 
indirect effect is given by

𝜕𝑥∗
𝑆
(𝑔𝑁 )

𝜕𝜃

𝜙

𝛿

(
1 −

𝑉 ′ (𝑦)||𝑔𝑁

1 − 𝜋

)
+

𝑥∗
𝑆
(𝑔𝑁 )

𝜋 − 1 

𝜕 𝑉 ′ (𝑦)||𝑔𝑁

𝜕𝜋
. (28)

As in the static game, criminals react strategically to an increase in the marginal expected punishment by increasing their involvement 
in criminal activities (since 𝜕𝑏 (𝑔, 𝜃) ∕𝜕𝜃 > 0). In addition to this static indirect effect, in our dynamic game, there exists another 
indirect effect, which depends on how the shadow price of total wealth in the economy changes as 𝜋 changes. It can be checked that 
𝜕 𝑉 ′ (𝑦)||𝑔𝑁

∕𝜕𝜋 >(resp. <)0 if the stock of total wealth in the economy is relatively large (resp. small). This implies that the total 
indirect effect in (28) is positive for relatively small 𝑦 and ambiguous otherwise. Proposition 6 establishes that when the stock of total 
wealth in the economy is relatively large (resp. small), aggregate crime decreases (resp. increases). 𝜕𝑥∗∕𝜕𝜋 can then take either sign 
depending on 𝑦. For parameter values such that 𝜕𝑥∗

𝑆
∕𝜕𝜋 > 0, a relatively large 𝑦 would lead to 𝜕𝑥∗∕𝜕𝜋 < 0. Vice versa, for parameter 

values such that 𝜕𝑥∗
𝑆
∕𝜕𝜋 < 0, a relatively small 𝑦 would lead to 𝜕𝑥∗∕𝜕𝜋 > 0.

In what follows, we provide two numerical examples illustrating the possible divergence between the static and the dynamic 
model in terms of impact of 𝜋 on aggregate crime beyond the two extreme cases of an empty and a complete network considered in 
Proposition 6.

Example 1.2. Consider an increase in parameter 𝜋 from 0.05 to 0.1 in the regular network 𝑔 of Example 1. Let 𝑦0 = 100.22 At 𝑡 = 0, 
aggregate crime is given by

𝑥∗ =
{

1.5496 for 𝜋 = 0.05
1.2400 for 𝜋 = 0.1

In the static game, instead,

𝑥∗
𝑆 =

{
33.0435 for 𝜋 = 0.05
34.2857 for 𝜋 = 0.1

In this example, an increase in the expected marginal punishment leads to a decrease in aggregate crime in the dynamic game and to 
an increase in aggregate crime in the static game. More precisely, in the former, the total indirect effect is positive but outweighed 
by the negative direct effect. In the latter, the opposite holds true.

Example 2.2. Consider an increase in parameter 𝜋 from 0.05 to 0.1 in the star network 𝑔 of Example 2. Let 𝑦0 = 800.23 At 𝑡 = 0, 
aggregate crime is given by

𝑥∗ =
{

28.1205 for 𝜋 = 0.05
27.4152 for 𝜋 = 0.1

In the static game, instead,

𝑥∗
𝑆 =

{
30.5932 for 𝜋 = 0.05
31.3636 for 𝜋 = 0.1

As in Example 1.2, in this example, an increase in the expected marginal punishment leads to a decrease in aggregate crime in the 
dynamic game and to an increase in aggregate crime in the static game. In the dynamic (resp. static) game, the negative direct effect 
outweighs (resp. is outweighed by) the positive total indirect effect.

22 Admissible values for 𝑦0 are [66.4827,945.8097].
23 Admissible values for 𝑦0 are [148.6540,897.7852].
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4.2.2. Long-run impact

Next, we look at the steady-state equilibrium. Denote

𝐹 = 𝜇𝑦 − 𝑥∗
𝑆

[
1 − 𝜔 (𝑔, 𝜃)

1 − 𝜋

]
.

By implicit differentiation, we have

𝑑 𝑦

𝑑 𝜋
= −

𝜕𝐹∕𝜕𝜋

𝜕𝐹∕𝜕𝑦 
=

−
𝑥∗

𝑆

1 − 𝜋

(
1 + 𝜕𝜔

𝜕𝜋

)
+

𝜕𝑥∗
𝑆

𝜕𝜃

𝜙

𝛿

(
1 − 𝜔 (𝑔, 𝜃)

1 − 𝜋

)
𝜇 +

𝑥∗
𝑆

1 − 𝜋
𝜕𝜔
𝜕𝑦 

.

Since

𝜇 +
𝑥∗

𝑆

1 − 𝜋
𝜕𝜔
𝜕𝑦 

< 0

is required for steady-state stability, it follows that

𝑑 𝑦

𝑑 𝜋

𝑠 
= − 𝜕𝑥∗

𝜕𝜋
.

From Corollary 2, we know that 𝑦 and 𝑥 are positively correlated. Hence, we can write the following proposition.

Proposition 7. Take 𝑦0 = 𝑦(𝑔). If 𝜕𝑥∗∕𝜕𝜋 >(resp. <) 0 then 𝑑 𝑥∕𝑑 𝜋 <(resp. >) 0.

Proposition 7 is illustrated in the two examples below.

Example 1.2 (continued). For the regular network, the trajectories of aggregate crime are given by

𝑥∗(𝑡) =
{

9.0138 +
(
0.0372𝑦0 − 11.1877

)
exp (−0.0072𝑡) for 𝜋 = 0.05

10.5458 +
(
0.0370𝑦0 − 13.0055

)
exp (−0.0070𝑡) for 𝜋 = 0.1

Clearly, as 𝑡 →∞, aggregate crime converges to 9.0138 with 𝜋 = 0.05 and to 10.5458 with 𝜋 = 0.1. Therefore, in line with the static 
game, long-run aggregate crime is higher with 𝜋 = 0.1 than with 𝜋 = 0.05. However, for 𝑡 = 0 and 𝑦0 = 𝑦(𝑔) = 300.4607, in contrast 
with the static game, aggregate crime is lower with 𝜋 = 0.1 than with 𝜋 = 0.05. This implies that, for the given parameter values, the 
trajectories of aggregate crime with 𝜋 = 0.05 and 𝜋 = 0.1 intersect.

Example 2.2 (continued). For the star network, the trajectories of aggregate crime are given by

𝑥∗(𝑡) =
{

11.1397 + (0.0396𝑦0 − 14.7088) exp(−0.0096𝑡) for 𝜋 = 0.05
12.8970 + (0.0392𝑦0 − 16.8641) exp(−0.0092𝑡) for 𝜋 = 0.1

Clearly, as 𝑡 →∞, aggregate crime converges to 11.1397 with 𝜋 = 0.05 and to 12.8970 with 𝜋 = 0.1. It is immediate to check that, for 
𝑦0 = 𝑦(𝑔) = 371.3222, short run aggregate crime is higher with 𝜋 = 0.05 than with 𝜋 = 0.1. This implies that, for the given parameter 
values, the trajectories of aggregate crime intersect.

4.3. Implicit growth rate and voracity effect

In this subsection, we investigate the possibility that an increase in the implicit growth rate of total wealth in the economy such 
as a productivity gain lowers economic growth, i.e., whether a voracity effect (see Tornell and Lane, 1999) arises. Formally, a voracity 
effect exists when 𝜕(�̇�∗ (𝑡) ∕𝑦∗ (𝑡))∕𝜕𝜇 < 0. Note that, in the absence of crime, �̇�∗ (𝑡) ∕𝑦∗ (𝑡) = 𝜇, therefore a voracity effect never arises. 
The question addressed here is new in the network theory literature. In this respect, the focus of this subsection is different from that 
of the previous subsections, which was on the comparison between the static and the dynamic impact of an increase in the number 
of criminals or links (or both), or an increase in the marginal expected punishment.

Let 𝜂∗(𝑡) = �̇�∗ (𝑡) ∕𝑦∗ (𝑡). Take 𝑦0 ∈ 𝐿. From Corollary 2, we obtain:

�̇�∗(𝑡) =
(

𝑦0 − 𝑦
)(

𝜇 +
𝑏𝐀 (𝑔, 𝜃)

𝛿 [1 + 𝑏 (𝑔, 𝜃)]

)
exp

[
𝑡

(
𝜇 +

𝑏𝐀 (𝑔, 𝜃)
𝛿 [1 + 𝑏 (𝑔, 𝜃)]

)]
.

It follows that the rate of growth of 𝑦∗(𝑡) can be written as

𝜂∗(𝑡) =

(
𝑦0 − 𝑦

)(
𝜇 +

𝑏𝐀 (𝑔, 𝜃)
𝛿 [1 + 𝑏 (𝑔, 𝜃)]

)
exp

[
𝑡

(
𝜇 +

𝑏𝐀 (𝑔, 𝜃)
𝛿 [1 + 𝑏 (𝑔, 𝜃)]

)]
𝑦 +

(
𝑦0 − 𝑦

)
exp

[
𝑡

(
𝜇 +

𝑏𝐀 (𝑔, 𝜃)
𝛿 [1 + 𝑏 (𝑔, 𝜃)]

)] .
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Differentiating 𝜂∗(𝑡) with respect to 𝜇 and evaluating the derivative at 𝑡 = 0 gives

𝜕𝜂∗(𝑡)
𝜕𝜇

||||𝑡=0
= 𝛿𝑦0 [1 + 𝑏 (𝑔, 𝜃)]

(
𝑦0 − 𝑦

){
𝛿 [1 + 𝑏 (𝑔, 𝜃)] +

𝜕𝑏𝐀 (𝑔, 𝜃)
𝜕𝜇

}
−
{

𝛿𝜇 [1 + 𝑏 (𝑔, 𝜃)] + 𝑏𝐀 (𝑔, 𝜃)
} 𝜕𝑦

𝜕𝜇
. (29)

Observe that (29) is quadratic in 𝑦0 and concave (resp. convex) in 𝑦0 if 𝛿[1 + 𝑏(𝑔, 𝜃)] + 𝜕𝑏𝐀(𝑔, 𝜃)∕𝜕𝜇 < (resp. >)0. Call 𝑦0,1 and 𝑦0,2
the real roots of the RHS of (29), with 𝑦0,1 < 𝑦0,2. We can then state the following proposition.

Proposition 8. Take 𝑦0 ∈ 𝐿 and 𝑡 sufficiently close to zero. If 𝛿[1+𝑏(𝑔, 𝜃)]+𝜕𝑏𝐀(𝑔, 𝜃)∕𝜕𝜇 < (resp. >)0 then 𝜕𝜂∗(𝑡)∕𝜕𝜇 < 0 (i.e., a voracity 
effect exists) for 𝑦0 ∉(resp. ∈)

(
𝑦0,1, 𝑦0,2

)
.

Proposition 8 establishes that the likelihood of a voracity effect crucially depends on initial conditions as well as the network 
structure.24 In general, depending on the position of 𝑦0,1 and 𝑦0,2 and the sign of 𝛿[1+ 𝑏(𝑔, 𝜃)] + 𝜕𝑏𝐀(𝑔, 𝜃)∕𝜕𝜇, several cases can arise. 
For regular networks, which encompass the two extreme cases of an empty and a complete network, we can show analytically that 
𝛿[1 + 𝑏(𝑔, 𝜃)] + 𝜕𝑏𝐀(𝑔, 𝜃)∕𝜕𝜇 < 0, implying that a voracity effect arises for values of 𝑦0 outside the interval 

(
𝑦0,1, 𝑦0,2

)
.

In order to shed some light on the impact of a change in the network structure on the likelihood of a voracity effect, defined as the 
ratio between the interval of 𝑦0 where a voracity effect occurs and the length of the domain 𝐿, we consider a change in the network 
size and density with the baseline parameter values of Examples 1 and 2. We take the following approach: for each network size, we 
start from player 1 in the empty network and keep adding one link at the time connecting player 1 to the other players (following 
the numbering of players) until exhausting all possible links in the network of the given size. Then, for 𝑛 ≥ 3, we move to player 
2 and keep adding one link at the time connecting player 2 to the other players (starting from player 3, given that a link between 
players 1 and 2 was established before) until exhausting all possible links, and so on so forth. Table T1 below reports the likelihood 
of a voracity effect in the several network structures considered25:

0 links 1 link 2 links 3 links 4 links 5 links 6 links 10 links

𝑛 = 2 0.5259 0.4649∗∗ N/A N/A N/A N/A N/A N/A

𝑛 = 3 0.6843 0.6883 0.6594∗ 0.6270∗∗ N/A N/A N/A N/A

𝑛 = 4 0.7649 0.7658 0.7667 0.7505∗ 0.7517 0.7342 0.7147∗∗ N/A

𝑛 = 5 0.8142 0.8143 0.8145 0.8146 0.8043∗ 0.8047 0.8050 0.7700∗∗

(T1)

where the starred and the double starred numbers refer to the likelihood of a voracity effect in the star and the complete networks, 
respectively. From Table T1, we can see that, for any number of links considered from 0 to 6, an increase in the network size leads 
to an increase in the likelihood of a voracity effect. A positive relationship between network size and likelihood of a voracity effect 
can also be inferred for the complete and the star networks. As to the impact of the number of links on the likelihood of a voracity 
effect for a given network size, except for the case 𝑛 = 2, we can observe a nonmonotonic relationship. Finally, for any given 𝑛 > 2, 
it is possible to compare the empty, the complete, and the star network, and conclude that the likelihood of a voracity effect is the 
highest in the empty and the lowest in the complete network.

The intuitive explanation for the occurrence of a voracity effect is that the indirect effect of an increase in total crime, which, 
given the wealth-reducing nature of crime, is negative, outweighs the direct positive effect of an increase in 𝜇. Consequently, an 
increase in the implicit growth rate of total wealth in the economy depresses economic growth.26 We conclude this subsection with 
two additional numerical examples illustrating Proposition 8.

Example 1.3. Consider the regular network with the parameter values of Example 1. We now increase parameter 𝜇 marginally 
(starting from 0.03). Recall that the admissible values for 𝑦 are [58.3823,945.8097]. We have 𝛿[1+ 𝑏(𝑔, 𝜃)] + 𝜕𝑏𝐀(𝑔, 𝜃)∕𝜕𝜇 = −0.0466, 
implying that the rate of growth of total wealth in the economy (evaluated at 𝑡 = 0) is negative for 𝑦0 ∉

(
𝑦0,1, 𝑦0,2

)
. Since 𝑦0,1 =

5.1663 < 58.3823 and 𝑦0,2 = 295.2944 < 945.8097 we can conclude that a voracity effect exists for 𝑦0 ∈ (𝑦02,945.8097]. Take for 
instance 𝑦0 = 𝑦 = 300.4607. It is immediate to verify that 𝜕𝜂∗(𝑡)∕𝜕𝜇|𝑡=0 = −13.6323. If we consider 𝑦0 < 𝑦02, for instance, 𝑦0 = 290, 
we get 𝜕𝜂∗(𝑡)∕𝜕𝜇|𝑡=0 = 13.4754.

Example 2.3. Consider the star network with the parameter values of Example 2. We now increase parameter 𝜇 marginally (starting 
from 0.03). Recall that the admissible values for 𝑦 are [108.7184,856.7616]. We have 𝛿[1+𝑏(𝑔, 𝜃)]+𝜕𝑏𝐀(𝑔, 𝜃)∕𝜕𝜇 = −0.0414, implying 
that the rate of growth of total wealth in the economy (evaluated at 𝑡 = 0) is negative for 𝑦0 ∉

(
𝑦0,1, 𝑦0,2

)
. Since 𝑦0,1 = 7.8384 <

108.7184 and 𝑦0,2 = 363.4839 < 856.7616 we can conclude that a voracity effect exists for 𝑦0 ∈ (𝑦02,856.7616]. Take for instance 

24 We thank an anonymous referee for suggesting the analysis of the relationship between the network structure and the voracity effect.
25 𝑛 < 6 ensures that the condition 𝜃𝜌(𝑔) < 1 is satisfied for all the network structures considered in T1.
26 A similar result can be found in a number of related papers (e.g., Tornell and Lane, 1999; Long and Sorger, 2006; Van der Ploeg, 2011). However, to our knowledge, 

it has never been derived in the context of criminal networks.
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𝑦0 = 𝑦 = 371.3222. It is immediate to verify that 𝜕𝜂∗(𝑡)∕𝜕𝜇|𝑡=0 = −15.1207. If we consider 𝑦0 < 𝑦02, for instance, 𝑦0 = 350, we get 
𝜕𝜂∗(𝑡)∕𝜕𝜇|𝑡=0 = 24.4853.

5. Key player

In this section, building on Ballester et al. (2006, 2010), we study the problem of identifying the optimal target in the population 
of criminals when the planner’s objective is to minimize aggregate crime at each point in time. Let 𝑔−𝑖 denote the network resulting 
from removing criminal 𝑖 from network 𝑔, and let 𝑥∗(𝑔−𝑖 , 𝑡) denote the level of aggregate crime associated with network 𝑔−𝑖 at time 
𝑡 ∈ [0,∞). Take 𝑦0 such that all criminals in 𝑔 and 𝑔−𝑖 are active and play nondegenerate Markovian strategies for all 𝑖 = 1, ..., 𝑛 and 
all 𝑡 ∈ [0,∞).

From Corollary 2, the trajectory of aggregate crime in 𝑔−𝑖 for 𝑡 ∈ [0,∞) is given by

𝑥∗(𝑔−𝑖 , 𝑡) = 𝑥∗
𝑆

(
𝑔−𝑖

)[
1 −

𝑏𝐀
(

𝑔−𝑖 , 𝜃
)

𝑦∗ (𝑔−𝑖 , 𝑡
)
+ 𝑏𝐁

(
𝑔−𝑖 , 𝜃

)
(1 − 𝜋)𝑏

(
𝑔−𝑖 , 𝜃

) ]
,

where

𝑥∗
𝑆

(
𝑔−𝑖

)
=

(1 − 𝜋)𝑏
(

𝑔−𝑖 , 𝜃
)

𝛿
[
1 + 𝑏

(
𝑔−𝑖 , 𝜃

)] ,

and

𝑦∗ (𝑔−𝑖 , 𝑡
)
= 𝑦

(
𝑔−𝑖

)
+
[

𝑦0 − 𝑦
(

𝑔−𝑖

)]
exp

[
𝑡

(
𝜇 +

𝑏𝐀
(

𝑔−𝑖 , 𝜃
)

𝛿
[
1 + 𝑏

(
𝑔−𝑖 , 𝜃

)])]
,

with

𝑦
(

𝑔−𝑖

)
=

(1 − 𝜋)𝑏
(

𝑔−𝑖 , 𝜃
)
− 𝑏𝐁

(
𝑔−𝑖 , 𝜃

)
𝜇𝛿

[
1 + 𝑏

(
𝑔−𝑖 , 𝜃

)]
+ 𝑏𝐀

(
𝑔−𝑖 , 𝜃

)
being the corresponding (locally stable) steady-state level of 𝑦.

The planner’s problem is to remove the criminal who is associated with the largest drop in aggregate crime at each 𝑡. Formally:

min
{

𝑥∗(𝑔−𝑖 , 𝑡)|| 𝑖 = 1, ..., 𝑛
}
=min

{
𝑥∗

𝑆

(
𝑔−𝑖

)[
1 − 1 

1 − 𝜋

𝑏∗𝐕′
(

𝑔−𝑖 , 𝜃
)

𝑏
(

𝑔−𝑖 , 𝜃
) ]|||||| 𝑖 = 1, ..., 𝑛

}
, ∀𝑡 ∈ [0,∞),

with 𝑏∗𝐕′
(

𝑔−𝑖 , 𝜃
)
= 𝑏𝐀

(
𝑔−𝑖 , 𝜃

)
𝑦∗ (𝑔−𝑖 , 𝑡

)
+ 𝑏𝐁

(
𝑔−𝑖 , 𝜃

)
. We denote with 𝑖∗ the solution to the above problem.

In the static game, where 𝐀 = 𝐁 = 𝟎, the planner’s problem becomes

min
{

𝑥∗
𝑆

(
𝑔−𝑖

)||| 𝑖 = 1, ..., 𝑛
}

,

which is equivalent to

min
{

𝑏
(

𝑔−𝑖 , 𝜃
)||| 𝑖 = 1, ..., 𝑛

}
,

since 𝑥∗
𝑆

(
𝑔−𝑖

)
is increasing in 𝑏

(
𝑔−𝑖 , 𝜃

)
. We denote with 𝑖∗

𝑆
the solution to the static problem. From Ballester et al. (2006, 2010), we 

know that 𝑖∗
𝑆

is the criminal with the highest intercentrality of parameter 𝜃 in 𝑔, defined as

𝑐𝑖 (𝑔, 𝜃) = 𝑏 (𝑔, 𝜃) − 𝑏
(

𝑔−𝑖 , 𝜃
)
=

𝑏𝑖 (𝑔, 𝜃)2

𝑚𝑖𝑖 (𝑔, 𝜃)
,

where 𝑚𝑖𝑗 (𝑔, 𝜃) are the coefficients of 𝐌(𝑔, 𝜃) = [𝐈 − 𝜃𝐆]−1 =
∑∞

𝑝=0 𝜃𝑝𝐆𝑝 counting the number of walks from 𝑖 to 𝑗 with walks of 
length 𝑝 being discounted by 𝜃𝑝. As pointed out in Ballester et al. (2006, 2010), the intercentrality measure 𝑐𝑖 (𝑔, 𝜃) is equal to the 
sum of 𝑖’s Bonacich centrality and 𝑖’s contribution to every other player’s Bonacich centrality. Keeping 𝑏𝑖 (𝑔, 𝜃) fixed, 𝑐𝑖 (𝑔, 𝜃) decreases 
with the proportion of 𝑖’s Bonacich centrality due to self-loops, 𝑚𝑖𝑖 (𝑔, 𝜃) ∕𝑏𝑖 (𝑔, 𝜃).

In our dynamic game, things are more involved, and maximizing 𝑐𝑖 (𝑔, 𝜃) (or, equivalently, minimizing 𝑏
(

𝑔−𝑖 , 𝜃
)
) does not nec-

essarily lead to the largest drop in aggregate crime. Keeping 𝑏∗𝐕′
(

𝑔−𝑖 , 𝜃
)

fixed, 𝑥∗(𝑔−𝑖 , 𝑡) is still increasing in 𝑏
(

𝑔−𝑖 , 𝜃
)
. However, the 

removal of player 𝑖 from 𝑔 is not only captured by 𝑏
(

𝑔−𝑖 , 𝜃
)
, but also by 𝑏∗𝐕′

(
𝑔−𝑖 , 𝜃

)
, which negatively impacts 𝑥∗(𝑔−𝑖 , 𝑡).

Theorem 2. (i) A necessary (but not sufficient) condition for 𝑖∗ ≠ 𝑖∗
𝑆

is

𝑏∗𝐕′

(
𝑔−𝑖∗

𝑆
, 𝜃

)
𝑏
(

𝑔−𝑖∗
𝑆

, 𝜃
) <

𝑏∗𝐕′
(

𝑔−𝑖 , 𝜃
)

𝑏
(

𝑔−𝑖 , 𝜃
) ,
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Fig. 5. Bridge network with eleven criminals. 

for some 𝑖 ≠ 𝑖∗
𝑆

. (ii) A sufficient (but not necessary) condition for 𝑖∗ = 𝑖∗
𝑆

is

𝑏∗𝐕′

(
𝑔−𝑖∗

𝑆
, 𝜃

)
> 𝑏∗𝐕′

(
𝑔−𝑖 , 𝜃

)
,

for all 𝑖 ≠ 𝑖∗
𝑆

.

Theorem 2 establishes that the key player in the static and the dynamic game may differ, either temporarily or ad infinitum (since 
𝑏∗𝐕′ changes over time). Moreover, in the dynamic game, the key player in the short and the long run are not necessarily the same. 
In the remainder of this section, we provide an illustrative example of the possible divergence between the key player in the static 
and the dynamic game and between the key player in the short and the long run.

Example 3. Consider the network 𝑔 in Fig. 5 (see Ballester et al., 2006, 2010). 
As can be seen in Fig. 5, there are three types of players, Type 1 (Player 1), Type 2 (Players 2,6,7,11) and Type 3 (Players 

3,4,5,8,9,10). We consider the baseline parameter values of Examples 1 and 2. Note that the implied value of 𝜃 (𝜃 = 0.2) is also 
considered in the static analysis of the key player in Ballester et al. (2006, Table I) and Ballester et al. (2010, Table I). T2 below 
gives the Bonacich and the intercentrality measures together with the sum of the coordinates of the vector of weighted Bonacich 
centralities of parameter 𝜃 in 𝑔−𝑖, with weights 𝐕′ = (𝐴1𝑦∗ (𝑔−𝑖 , 𝑡

)
+ 𝐵1, ..., 𝐴𝑛 𝑦∗ (𝑔−𝑖 , 𝑡

)
+ 𝐵𝑛)𝑇 (i.e., evaluated along the equilibrium 

trajectories of 𝑦 resulting from permanently removing criminal 𝑖 from 𝑔) for the three types of players.

Player Type 𝑏𝑖 𝑐𝑖 𝑏∗𝐕′
(

𝑔−𝑖 , 𝜃
)

1 8.3333 41.6667 43.0621 + 𝑒−0.0029𝑡
(
4.8697 − 0.0420𝑦0

)
2 9.1667 40.3333 44.2484 + 𝑒−0.0029𝑡

(
4.9581 − 0.0431𝑦0

)
3 7.7778 32.6667 50.8248 + 𝑒−0.0029𝑡

(
5.7336 − 0.0494𝑦0

) (T2)

The trajectories of aggregate crime associated with 𝑔−1 , 𝑔−2, and 𝑔−3 are given by

𝑥∗ (𝑔−1, 𝑡
)
= 3.4807 + (0.0329𝑦0 − 3.8194) exp(−0.0029𝑡),

𝑥∗ (𝑔−2, 𝑡
)
= 3.4534 + (0.0329𝑦0 − 3.7896) exp(−0.0029𝑡),

and

𝑥∗ (𝑔−3, 𝑡
)
= 3.4835 + (0.0329𝑦0 − 3.8224) exp(−0.0029𝑡),

respectively, with 𝑦0 ∈ 𝐿 = [15.7521,1120.5136]. Aggregate crime converges to 3.4807 in 𝑔−1, to 3.4534 in 𝑔−2, and to 3.4835 in 𝑔−3 as 
𝑡 →∞. Clearly, in the long run, the key player is Type 2. This is in contrast with Ballester et al. (2006, 2010), in which the key player 
is Type 1, the one with the highest intercentrality.27 It can be checked that for some 𝑦0 the trajectories of aggregate crime intersect. 
Take, for instance, 𝑦0 = 115.5. Aggregate crime in 𝑔−1 and 𝑔−3 is increasing, whereas aggregate crime in 𝑔−2 is decreasing over time. 
For 𝑡 ∈ [0,31.8000), we have 𝑥∗ (𝑔−3, 𝑡

)
< 𝑥∗ (𝑔−1, 𝑡

)
< 𝑥∗ (𝑔−2, 𝑡

)
. This implies that, initially, the key player is Type 3. At 𝑡 = 31.8000, 

we have 𝑥∗ (𝑔−3, 𝑡
)
= 𝑥∗ (𝑔−1, 𝑡

)
= 𝑥∗ (𝑔−2, 𝑡

)
= 3.4650. For 𝑡 ∈ (31.8000,∞), instead, we have 𝑥∗ (𝑔−2, 𝑡

)
< 𝑥∗ (𝑔−1, 𝑡

)
< 𝑥∗ (𝑔−3, 𝑡

)
. 

Hence, after the initial phase where the key player is Type 3, the key player becomes Type 2. Interestingly, Type 1, who is the 
key player in the static game, is never the key player in the dynamic game (see Figs. 6a and 6b, where 𝑥∗ (𝑔−1, 𝑡

)
, 𝑥∗ (𝑔−2, 𝑡

)
, and 

𝑥∗ (𝑔−3, 𝑡
)

are indicated with xwithout1, xwithout2, and xwithout 3, respectively).

It can be checked that the necessary condition for 𝑖∗ ≠ 𝑖∗
𝑆

given in Theorem 2 is satisfied. Indeed, for 𝑡 ∈ [0,∞), we have

𝑏∗𝐕′
(

𝑔−1, 𝜃
)

𝑏
(

𝑔−1, 𝜃
) <

𝑏∗𝐕′
(

𝑔−3, 𝜃
)

𝑏
(

𝑔−3, 𝜃
) ,

where 𝑏∗𝐕′
(

𝑔−𝑖 , 𝜃
)

is given in Table T2 and 𝑏
(

𝑔−𝑖 , 𝜃
)
= 𝑏 (𝑔, 𝜃) − 𝑐𝑖 (𝑔, 𝜃), with 𝑖 = 1,3.

The intuitive explanation for having different key players in the static and the dynamic model is as follows. In the dynamic 
model, for each criminal, there exists an additional intertemporal marginal cost captured by the shadow price of total wealth in the 

27 For 𝜋 = 0.05, 𝜙 = 0.1 and 𝛿 = 0.025, aggregate crime levels in the static game are given by 𝑥∗
𝑆
(𝑔−1) = 37.2549, 𝑥∗

𝑆
(𝑔−2) = 37.2739, and 𝑥∗

𝑆
(𝑔−3) = 37.3667.
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Fig. 6a. Key player over time with 𝑡 ∈ [0,50]. 

Fig. 6b. Key player over time with 𝑡 ∈ [50,1000]. 

economy. Aggregate crime is decreasing in 𝜔 (𝑔, 𝜃) = 𝑏𝐕′ (𝑔, 𝜃) ∕𝑏 (𝑔, 𝜃), which, as previously mentioned, corresponds to the weighted 
average of shadow prices in network 𝑔 with weights given by (𝑏1 (𝑔, 𝜃) ∕𝑏 (𝑔, 𝜃) ,⋯ , 𝑏𝑛 (𝑔, 𝜃) ∕𝑏 (𝑔, 𝜃)). In the bridge network with 
eleven criminals depicted in Fig. 5, we have 𝜔 (𝑔, 𝜃) = 0.9569−0.0008𝑦. Interestingly, the average shadow price of total wealth in the 
economy, (𝑉 ′

1 + 4𝑉 ′
2 + 6𝑉 ′

3 )∕11, is approximately equal to 𝜔 (𝑔, 𝜃). It can be checked that for 𝑦0 = 115.5 previously considered, the 
highest 𝜔 (𝑔, 𝜃), or, equivalently, the highest average shadow price of total wealth in the economy, is that associated with 𝑔−3 . Hence, 
in the short run, committing crime is more costly, on average, in the network without a Type 3 criminal than in the other networks 
resulting from removing either a Type 1 or a Type 2 criminal. In contrast with the static analysis, short-run aggregate crime is the 
lowest in 𝑔−3, implying that, in the short run, the key player is Type 3. At the steady state, we have 𝜔

(
𝑔−2, 𝜃

)
> 𝜔

(
𝑔−1, 𝜃

)
> 𝜔

(
𝑔−3, 𝜃

)
(and similarly for the order relationship between average shadow prices of total wealth in the economy). It follows that, in the long 
run, it is more costly, on average, to commit crime in 𝑔−2 than in 𝑔−1 than in 𝑔−3. The steady-state aggregate crime ranking follows 
the reversed 𝜔 (𝑔, 𝜃) ranking: steady-state aggregate crime is the lowest in 𝑔−2 and the highest in 𝑔−3. By contrast, in the static model, 
𝜔 (𝑔, 𝜃) is always nil, and the identification of the key player relies on the intercentrality measure ranking, exclusively.

6. Concluding remarks

In this paper, we have taken a novel approach, namely, a differential game approach, to the study of criminal networks, with the 
aim to reconsider some results derived in the static literature, and to answer a new set of questions related to the network structure 
and its impact on the evolution of crime.

The existing literature on criminal networks abstracts from dynamic intertemporal considerations. Both the benefits and the costs 
of crime for criminals are assumed to be static, thus precluding the analysis of important topics such as the impact of network 
structure on the evolution of crime and the relationship between productivity shocks, crime and growth. Besides theoretical interest, 
these topics have real-world relevance and their understanding is of paramount importance for designing effective policies.

An established result in the static literature is that the vector of Nash equilibrium crime efforts is proportional to the vector 
of Bonacich centralities. We have challenged this result by showing that such an established proportionality between the Nash 
equilibrium and the Bonacich centrality does not hold in general in a dynamic setting.

One of the key lessons that can be drawn from the static literature on criminal networks is the existence of a social multiplier 
effect: networks with a higher number of criminals or links or both are associated with higher levels of aggregate crime. This lesson 
is valid as long as time does not play any role. Indeed, our dynamic analysis, which, to our knowledge, is novel in the network theory 
literature, has shown that more criminals or more connected criminals or both may lead to the counterintuitive opposite result, i.e., a 
decrease in aggregate crime. This holds true not only in the short run, but also at the steady state. Intuitively, the intertemporal cost of 
committing crime, which our dynamic framework is able to capture, may increase as a result of an increase in either network size or 
density or both to such an extent that aggregate crime is reduced. Conditions exist under which forward-looking criminals anticipate 
that an increase in network size or density or both will lead to an increase in crime by all the other criminals, and, therefore, to a 
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decrease in total wealth in the economy. Consequently, each criminal will find it optimal to decrease their own criminal activities 
(since equilibrium crime levels are increasing in total wealth), leading to an equilibrium in which aggregate crime is lower.

Another lesson that can be drawn from the static literature on criminal networks is that the impact of an increase in the marginal 
expected punishment on aggregate crime can be either positive or negative (or nil) depending on the interplay between two effects, 
namely, a direct and an indirect effect. Our dynamic analysis has shown that, together with these (static) effects, there exists also 
a dynamic effect, which, in some cases, outweighs the static effects, thus profoundly changing policy recommendations aimed at 
reducing aggregate crime.

In this paper, we have also highlighted the presence of a voracity effect, occurring when the implicit growth rate of total wealth 
in the economy is increased and, as a consequence of that, economic growth is reduced. This finding points to the counterintuitive 
conclusion that, in the presence of crime, positive productivity shocks may have a detrimental effect on economic growth.

Finally, we have reconsidered the problem of identifying the key player in the network, i.e., the player who, if removed, leads to 
the largest drop in aggregate crime. A well-known result in the static literature is that the key player is the player with the highest 
intercentrality measure, defined as the difference between the sum of Bonacich centralities in the original network and the sum of 
Bonacich centralities in the network without the removed player. We have shown that conditions exist under which the key player 
in the static and the dynamic setting differ: the key player in the dynamic setting is not necessarily the player with the highest 
intercentrality measure, due to the presence of an intertemporal marginal cost of committing crime. We have also shown that the key 
player in the dynamic setting may change over time. The policy implication of this finding is that it might be optimal for a planner 
seeking to minimize aggregate crime at each point in time to remove (through imprisonment) some criminals up to a certain point, 
at which they should be reintegrated into society. From this point onwards, other criminals should be removed, either temporarily 
or ad infinitum, depending on the specific network structure and the parameter values.

Given the complexities of the problems under study, it is not surprising that our model is based on several simplifying assumptions, 
which could be addressed in future works. First, we have assumed that the network structure is exogenously given. As such, we don’t 
allow for the possibility that criminals choose who to commit crime with. Second, in our model, the network structure is time invariant. 
One could consider a network which expands or shrinks over time. Third, we have assumed that total wealth in the economy evolves 
in a deterministic manner. One could model the evolution of the state variable by means of a stochastic process and study how 
uncertainty impacts on crime. Fourth, but this is in common with the static analysis, it would be interesting to investigate the extent 
to which the assumed quadratic utility function drives the results.
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Appendix A. Proof of Theorem 1

For the proof of the necessary and sufficient condition for [𝐈−𝜃𝐆]−1 to be well-defined and nonnegative, see the proof of Theorem 
1 in Ballester et al. (2006).
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By standard arguments (see Starr and Ho, 1969), Markov Feedback Equilibrium strategies must satisfy the following HJB equations 
(𝑖 = 1, ..., 𝑛):

𝑟𝑉𝑖(𝑦) = max
𝑥𝑖≥0 

{
𝑢𝑖(𝑥𝑖 ,𝝍∗

−𝑖 , 𝑔) + 𝑉 ′
𝑖 (𝑦)

[
𝜇𝑦 − 𝑥𝑖 −

𝑛 ∑
𝑗=1,𝑗≠𝑖

𝜓∗
𝑗 (𝑦)

]}
,

where 𝑉 ′
𝑖 (𝑦) = 𝜕𝑉𝑖(𝑦)∕𝜕𝑦 denotes the shadow price of total wealth for criminal 𝑖. Assuming that 𝜃𝜌(𝑔) < 1, maximization of the RHS 

of the above HJB implies that28

[𝛿𝐈+ 𝛿𝐔− 𝜋𝜙𝐆]𝝍∗ = (1 − 𝜋)𝟏−𝐕′,

where 𝐔 is the 𝑛-square matrix of ones, or equivalently,

𝝍
∗ = [𝛿𝐈+ 𝛿𝐔− 𝜋𝜙𝐆]−1

[
𝟏− 𝝅 −𝐕′] ,

where 𝐕′ = (𝑉 ′
1 , ..., 𝑉 ′

𝑛 )
𝑇 .

Recall that 𝜃 = 𝜋𝜙∕𝛿. Since 𝐔𝝍∗ = 𝜓∗𝟏, where 𝜓∗ =
∑𝑛

𝑖=1 𝜓∗
𝑖 , then

𝛿[𝐈− 𝜃𝐆]𝝍∗ =
[
1 − 𝜋 − 𝛿𝜓∗]𝟏−𝐕′,

and

𝛿𝝍∗ =
[
1 − 𝜋 − 𝛿𝜓∗] [𝐈− 𝜃𝐆]−1𝟏−[𝐈− 𝜃𝐆]−1𝐕′.

Using the definitions of 𝐛 (𝑔, 𝜃) and 𝐛𝐕′ (𝑔, 𝜃), we obtain

𝛿𝝍∗ =
[
1 − 𝜋 − 𝛿𝜓∗]𝐛 (𝑔, 𝜃)−𝐛𝐕′ (𝑔, 𝜃) ,

and since 𝜓∗ = 𝟏𝑇
𝝍

∗ it follows that, at an interior solution,

𝝍
∗ =

(1 − 𝜋)𝐛 (𝑔, 𝜃)−𝐛𝐕′ (𝑔, 𝜃)
𝛿 [1 + 𝑏 (𝑔, 𝜃)]

.

Hence, we have

𝜓∗
𝑖 =

(1 − 𝜋)𝑏𝑖 (𝑔, 𝜃) − 𝑏𝐕′ ,𝑖 (𝑔, 𝜃)
𝛿 [1 + 𝑏 (𝑔, 𝜃)]

,

which, using 𝑥∗
𝑆 ,𝑖

given in Theorem 1, can be rewritten as

𝜓∗
𝑖 = 𝑥∗

𝑆 ,𝑖

[
1 − 1 

1 − 𝜋

𝑏𝐕′ ,𝑖 (𝑔, 𝜃)
𝑏𝑖 (𝑔, 𝜃)

]
,

where 𝑏𝐕′ ,𝑖 (𝑔, 𝜃) is the 𝑖 − 𝑡ℎ coordinate of the vector 𝐛𝐕′ (𝑔, 𝜃), with 𝐕′ = (𝑉
′
1 , ..., 𝑉

′
𝑛 )

𝑇 = (𝐴1𝑦 + 𝐵1, ..., 𝐴𝑛 𝑦 + 𝐵𝑛)𝑇 .

Appendix B. Proof of Corollary 1

From 𝝍∗ in Theorem 1, for interior solutions, we get

𝟏𝑇
𝝍

∗ =
(1 − 𝜋)𝟏𝑇 𝐛 (𝑔, 𝜃) − 𝟏𝑇 𝐛𝐕′ (𝑔, 𝜃)

𝛿 [1 + 𝑏 (𝑔, 𝜃)]
,

implying that

𝑥∗ =
(1 − 𝜋)𝑏 (𝑔, 𝜃)−𝑏𝐕′ (𝑔, 𝜃)

𝛿 [1 + 𝑏 (𝑔, 𝜃)]
= 𝑥∗

𝑆

[
1 − 1 

1 − 𝜋

𝑏𝐕′ (𝑔, 𝜃)
𝑏 (𝑔, 𝜃)

]
,

where

𝑥∗
𝑆 = (1 − 𝜋)𝑏 (𝑔, 𝜃)

𝛿 [1 + 𝑏 (𝑔, 𝜃)]
.

Appendix C. Proof of Corollary 2

The trajectory of 𝑦 is the solution to the following first-order linear differential equation

�̇�(𝑡) = 𝜇𝑦(𝑡) − 𝑥∗
𝑆

[
1 −

𝑏𝐀 (𝑔, 𝜃)𝑦 (𝑡) + 𝑏𝐁 (𝑔, 𝜃)
(1 − 𝜋)𝑏 (𝑔, 𝜃)

]
,

28 This solution represents a maximum since the expression in curly brackets in (9) is concave in 𝑥𝑖.
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with initial condition 𝑦(0) = 𝑦0 ∈ 𝐿. Routine calculations lead to 𝑦∗ (𝑡) given in Corollary 2. We have lim𝑡→∞ 𝑦∗ (𝑡) = 𝑦 provided 
that 𝜇 + 𝑏𝐀 (𝑔, 𝜃) ∕{𝛿[1 + 𝑏 (𝑔, 𝜃)]} < 0. The trajectory of 𝑥, 𝑥∗ (𝑡), can be computed from 𝑥∗ given in Corollary 1 by evaluating 
𝑏𝐕′ (𝑔, 𝜃) = 𝑏𝐀 (𝑔, 𝜃)𝑦 + 𝑏𝐁 (𝑔, 𝜃) at 𝑦 = 𝑦∗ (𝑡).

Appendix D. Proof of Proposition 2

We need to show that Δ𝑥∗ = 𝑥∗(𝑔𝑁 ) − 𝑥∗(𝑔∅) < 0. From Corollary 1, we have

Δ𝑥∗ =
1 − 𝜋 − 𝑉 ′ (𝑦)||𝑔𝑁

𝛿 (1 + 𝑛) − (𝑛 − 1)𝜋𝜙
−

1 − 𝜋 − 𝑉 ′ (𝑦)||𝑔∅

𝛿 (1 + 𝑛)
,

where 𝑉 ′ (𝑦) = 𝐴𝑦 + 𝐵, with 𝐴 and 𝐵 given in (15) and (16), respectively. Δ𝑥∗ is linear in 𝑦 and the coefficient of 𝑦 is given by

(𝑛 − 1) (𝑟 − 2𝜇)𝜋𝜙 
2𝑛

[
𝑛2𝛿 − 𝜋𝜙 (𝑛 − 1)2

] . (D.1)

The numerator of (D.1) is negative since it must be that 𝑟 < 2𝜇 for steady-state stability. The denominator of (D.1) is positive if 
𝛿 > 𝜋𝜙(𝑛 − 1)2∕𝑛2, which is the case since it must be that 𝛿 > 𝜋𝜙(𝑛 − 1) for the condition 𝜃𝜌(𝑔) < 1 to be satisfied and 𝜋𝜙(𝑛 − 1) >
𝜋𝜙(𝑛 −1)2∕𝑛2. Hence, the denominator of (D.1) is positive, implying that Δ𝑥∗ is decreasing in 𝑦. Call 𝑦𝐶 𝐸 the root of Δ𝑥∗. It follows 
that Δ𝑥∗ >(resp. <) 0 for 𝑦 <(resp. >)𝑦𝐶 𝐸 . Define

𝑦 =
(1 − 𝜋)

[
−𝑟𝛿

(
1 + 𝑛2)+ 2𝛿𝜇 + 𝑑 𝜋𝑟𝜙 (𝑛 − 1)

]
𝜇 (2𝜇 − 𝑟) (𝛿 + 𝑛𝛿 − 𝑑 𝜋𝜙)2

,

𝑦 =
(1 − 𝜋)

[
𝛿
(
1 + 𝑛2)− 𝑑 𝜋𝜙 (𝑛 − 1)

]
𝜇 (𝛿 + 𝑛𝛿 − 𝑑 𝜋𝜙)2

.

For 𝑦𝐶 𝐸 to be admissible and for steady-state convergence in both the empty and the complete network, we must have 0 <

max{𝑦
|||𝑔∅

, 𝑦
|||𝑔𝑁

} < 𝑦𝐶 𝐸 < min{𝑦||𝑔∅
, 𝑦||𝑔𝑁

}, where 𝑦
|||𝑔∅

and 𝑦
|||𝑔𝑁

are equal to 𝑦 for 𝑑 = 0 and 𝑑 = 𝑛 − 1, respectively; 𝑦||𝑔∅
and 𝑦||𝑔𝑁

are equal to 𝑦 for 𝑑 = 0 and 𝑑 = 𝑛 − 1, respectively. We have 𝑦
|||𝑔∅

> 0 if 𝑟 < 2𝜇∕(1 + 𝑛2). We are going to show that 𝑟 < 2𝜇∕(1 + 𝑛2)
implies 𝑦𝐶 𝐸 < 0 and therefore Δ𝑥∗ < 0. The sign of 𝑦𝐶 𝐸 is given by

𝑟𝛿
(

𝑛4 + 2𝑛2 − 1
)
+ 2𝛿𝜇

(
1 − 2𝑛2)− 𝜋𝜙 (𝑛 − 1)2

(
𝑟 + 𝑟𝑛2 − 2𝜇

)
, (D.2)

which is linear in 𝑟. The coefficient of 𝑟 in (D.2) is equal to

𝛿
(

𝑛4 + 2𝑛2 − 1
)
− 𝜋𝜙 (𝑛 − 1)2

(
1 + 𝑛2) . (D.3)

(D.3) is increasing in 𝛿 and positive if 𝛿 > 𝜋𝜙 (𝑛 − 1)2
(
1 + 𝑛2)∕(𝑛4 + 2𝑛2 − 1

)
. It is easy to check that 𝜋𝜙 (𝑛 − 1)2

(
1 + 𝑛2)∕ (

𝑛4 + 2𝑛2 − 1
)

< 𝜋𝜙(𝑛 − 1), hence (D.3) is positive, implying that (D.2) is increasing in 𝑟. By equating (D.2) to zero and solving 
for 𝑟 we get

𝑟𝐶 𝐸 =
2𝜇

[
𝛿 − 2𝛿𝑛2 + 𝜋𝜙 (𝑛 − 1)2

]
𝜋𝜙 (𝑛 − 1)2

(
1 + 𝑛2

)
− 𝛿

(
𝑛4 + 2𝑛2 − 1

) .

A direct comparison between 𝑟𝐶 𝐸 and 2𝜇∕(1 + 𝑛2) gives

𝑟𝐶 𝐸 − 2𝜇

1 + 𝑛2 =
2𝑛2𝛿𝜇

(
𝑛2 − 1

)
𝛿
(

𝑛6 + 3𝑛4 + 𝑛2 − 1
)
− 𝜋𝜙 (𝑛 − 1)2

(
1 + 𝑛2

)2 ,

revealing that 𝑟𝐶 𝐸 > 2𝜇∕(1 + 𝑛2) if 𝛿 > 𝜋𝜙 (𝑛 − 1)2
(
1 + 𝑛2)∕(𝑛4 + 2𝑛2 − 1

)
. Since 𝜋𝜙(𝑛 − 1)2(1 + 𝑛2)∕(𝑛4 + 2𝑛2 − 1) < (𝑛 − 1)𝜋𝜙

then 𝛿 > 𝜋𝜙 (𝑛 − 1)2
(
1 + 𝑛2)∕(𝑛4 + 2𝑛2 − 1

)
, implying that 𝑟𝐶 𝐸 > 2𝜇∕(1 + 𝑛2) and that 𝑦𝐶 𝐸 < 0. We can then conclude that Δ𝑥∗ <

0.

Appendix E. The network effect

We aim to show that Ω(𝑦) = 𝑉 ′ (𝑦)||𝑔𝑁
− 𝑉 ′ (𝑦)||𝑔∅

> 0. By direct computation, we have

Ω(𝑦) =
𝜋𝜙 (𝑟 − 2𝜇)

{
(𝑛 − 1)2

[
𝜇𝑛2𝜋𝑦𝜙 + (𝜋 − 1)

]
− 𝑦𝛿𝜇

(
𝑛4 − 1

)}
2𝜇𝑛2

[
𝛿𝑛2 − 𝜋𝜙 (𝑛 − 1)2

] . (E.1)

The denominator of the RHS of (E.1) is positive given that 𝛿 > 𝜋𝜙 (𝑛 − 1) is required for 𝜃𝜌(𝑔) < 1. Since it must be that 𝑟 < 2𝜇 for 
steady-state stability, the sign of the numerator of the RHS of (E.1) is given by the sign of 𝑦𝛿𝜇

(
𝑛4 − 1

)
− (𝑛 − 1)2

[
𝜇𝑛2𝜋𝑦𝜙 + (𝜋 − 1)

]
. 

Collecting for 𝑦 gives [(𝑛4 − 1)𝛿𝜇 − (𝑛 − 1)2𝑛2𝜋𝜇𝜙]𝑦 + (𝑛 − 1)2(1 − 𝜋). By solving the coefficient of 𝑦 for 𝛿 we obtain the following 
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threshold 𝛿𝑐 = [𝑛2𝜋𝜙(𝑛 − 1)]∕(1 + 𝑛 + 𝑛2 + 𝑛3). It is immediate to verify that 𝛿𝑐 < 𝜋𝜙 (𝑛 − 1). It follows that the coefficient of 𝑦 is 
positive, and that the sign of 𝑦𝛿𝜇

(
𝑛4 − 1

)
− (𝑛 − 1)2

[
𝜇𝑛2𝜋𝑦𝜙 + (𝜋 − 1)

]
is positive if 𝑦 > 𝑦𝑐 , with

𝑦𝑐 =
(𝑛 − 1) (1 − 𝜋)

(𝑛 − 1)𝑛2𝜋𝜇𝜙 − (𝑛 + 1)
(
1 + 𝑛2

)
𝛿𝜇

. (E.2)

The denominator of the RHS of (E.2) is negative since 𝛿 > 𝜋𝜙 (𝑛 − 1) > (𝑛 − 1)𝑛2𝜋𝜙∕[(𝑛 + 1)
(
1 + 𝑛2)], implying that 𝑦𝑐 < 0 and that 

𝑦 > 𝑦𝑐 . We can then conclude that Ω(𝑦) > 0.

Appendix F. Proof of Proposition 3

(i) First, we evaluate the impact of an increase in 𝑛 on an empty network. Let Δ𝑥∗ = 𝑥∗(𝑔′
∅) − 𝑥∗(𝑔∅), where 𝑔∅ and 𝑔′

∅ denote 
the original empty network with 𝑛 criminals and the enlarged empty network with 𝑛′ criminals (𝑛′ > 𝑛), respectively. By direct 
computation, we have

Δ𝑥∗ =
(

𝑛′ − 𝑛
)
(1 − 𝜋)

{
𝑟
[

𝑛
(

𝑛′ − 1
)
− 𝑛′ − 1

]
+ 2𝜇

(
1 + 𝑛 + 𝑛′)}

2𝑛𝑛′𝛿𝜇 (1 + 𝑛) (1 + 𝑛′)
+

(
𝑛′ − 𝑛

)
(𝑟 − 2𝜇)

2𝑛𝑛′ 𝑦.

The coefficient of 𝑦 in Δ𝑥∗ is negative since 𝑟 − 2𝜇 < 0 for steady-state stability. Therefore, Δ𝑥∗ is decreasing in 𝑦. By equating Δ𝑥∗

to zero and solving for 𝑦 we get

𝑦𝐸 𝑁 =
(1 − 𝜋)

{
𝑟
[

𝑛
(

𝑛′ − 1
)
− 𝑛′ − 1

]
+ 2𝜇

(
1 + 𝑛 + 𝑛′)}

𝛿𝜇 (1 + 𝑛) (1 + 𝑛′) (2𝜇 − 𝑟)
.

Hence, Δ𝑥∗ >(resp. <)0 for 𝑦 <(resp. >)𝑦𝐸 𝑁 . For 𝑦𝐸 𝑁 to be admissible it must be that 𝑦
|||𝑔∅

< 𝑦𝐸 𝑁 < 𝑦||𝑔∅
. We now verify that 𝑦𝐸 𝑁

is admissible by means of a numerical example. Let 𝜋 = 0.05, 𝑛 = 9, 𝑛′ = 10, 𝜇 = 0.1, 𝑟 = 0.001, 𝜙 = 7, 𝛿 = 5. For these parameter 
values, we have 𝑦𝐸 𝑁 = 0.3533, 𝑦

|||𝑔∅
= 0.0113, 𝑦||𝑔∅

= 1.5580. We take 𝑦 = 1.55 > 𝑦𝐸 𝑁 . In this case, 𝑥∗(𝑔∅) = 0.1701 > 𝑥∗(𝑔′
∅) = 0.1688. 

Now we take 𝑦 = 0.1 < 𝑦𝐸 𝑁 . In this case, 𝑥∗(𝑔∅) = 0.0098 < 𝑥∗(𝑔′
∅) = 0.0101.

(ii) Next, we evaluate the impact of an increase in 𝑛 on a complete network. Let Δ𝑥∗ = 𝑥∗(𝑔′
𝑁
)− 𝑥∗(𝑔𝑁 ), where 𝑔𝑁 and 𝑔′

𝑁
denote 

the original complete network with 𝑛 criminals and the enlarged complete network with 𝑛′ criminals (𝑛′ > 𝑛), respectively. By direct 
computation, we obtain an expression for Δ𝑥∗ (omitted for brevity) which is linear in 𝑦. The sign of the coefficient of 𝑦 in Δ𝑥∗ is 
given by

−𝜋𝜙
[

𝑛′ (𝛿 − 𝜋𝜙) + 𝛿 + 𝜋𝜙
]
− 𝑛 (𝛿 − 𝜋𝜙)

[
𝑛′ (𝛿 − 𝜋𝜙) + 𝜋𝜙

]
,

which is negative (since 𝛿 > 𝜋𝜙 for the condition 𝜃𝜌(𝑔) < 1 to be satisfied). Therefore, Δ𝑥∗ is decreasing in 𝑦. Call 𝑦𝐶 𝑁 the value of 
𝑦 that solves Δ𝑥∗ = 0. Hence, Δ𝑥∗ >(resp. <)0 for 𝑦 <(resp. >)𝑦𝐶 𝑁 . For 𝑦𝐶 𝑁 to be admissible it must be that 𝑦

|||𝑔𝑁
< 𝑦𝐶 𝑁 < 𝑦||𝑔𝑁

. 
We now verify that 𝑦𝐶 𝑁 is admissible by means of a numerical example. As in part (i), let 𝜋 = 0.05, 𝑛 = 9, 𝑛′ = 10, 𝜇 = 0.1, 𝑟 = 0.001, 
𝜙 = 7, 𝛿 = 5. For these parameter values, we have 𝑦𝐶 𝑁 = 0.3970, 𝑦

|||𝑔𝑁
= 0.0131, 𝑦||𝑔𝑁

= 1.6528. We take 𝑦 = 1.55 > 𝑦𝐶 𝑁 . In this case, 
𝑥∗(𝑔) = 0.1698 > 𝑥∗(𝑔′) = 0.1685. Now we take 𝑦 = 0.1 < 𝑦𝐶 𝑁 . In this case, 𝑥∗(𝑔) = 0.0096 < 𝑥∗(𝑔′) = 0.0099.

Appendix G. Proof of Proposition 6

(i) In the empty network, we have

𝜕𝑥∗

𝜕𝜋
= −

𝑟
(
1 + 𝑛2)− 2𝜇

2𝑛𝛿𝜇 (1 + 𝑛)
> 0,

given that 𝑟 < 2𝜇∕
(
1 + 𝑛2) (required for 𝑦

|||𝑔∅
> 0, which is needed for steady-state stability).

(ii) Consider now the complete network. By direct computation, we obtain an expression for 𝜕𝑥∗∕𝜕𝜋 (omitted for brevity) which 
is linear in 𝑦. The coefficient of 𝑦 in 𝜕𝑥∗∕𝜕𝜋 is given by 𝛿𝜙𝑛 (𝑛 − 1) (𝑟 − 2𝜇) ∕{2[𝑛2𝛿 − 𝜋𝜙 (𝑛 − 1)2]2}, which is negative (since 𝑟 < 2𝜇
for steady-state stability). Therefore, 𝜕𝑥∗∕𝜕𝜋 is decreasing in 𝑦. Call 𝑦𝐶Π the value of 𝑦 that solves 𝜕𝑥∗∕𝜕𝜋 = 0. Hence, 𝜕𝑥∗∕𝜕𝜋 >
(resp. <)0 for 𝑦 <(resp. >)𝑦𝐶Π. We now verify that 𝑦𝐶Π is admissible by means of a numerical example. Let 𝜋 = 0.1, 𝑛 = 4, 𝜇 = 0.1, 
𝑟 = 0.001, 𝜙 = 7, 𝛿 = 9. For these parameter values, we have 𝑦𝐶Π = 0.1600, 𝑦

|||𝑔𝑁
= 0.0406, 𝑦||𝑔𝑁

= 0.7174. We take 𝑦 = 0.1 < 𝑦𝐶Π. In 
this case, 𝜕𝑥∗∕𝜕𝜋 = 0.0002. Now we take 𝑦 = 0.2 > 𝑦𝐶Π. In this case, 𝜕𝑥∗∕𝜕𝜋 = −0.0002.
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Appendix H. Proof of Theorem 2

By definition, 𝑖∗
𝑆

is such that 𝑥∗
𝑆

(
𝑔−𝑖∗

𝑆

) ≤ 𝑥∗
𝑆

(
𝑔−𝑖

)
and 𝑏

(
𝑔−𝑖∗

𝑆
, 𝜃

) ≤ 𝑏
(

𝑔−𝑖 , 𝜃
)
, for all 𝑖 ≠ 𝑖∗

𝑆
. Moreover, we have

𝑥∗
(

𝑔−𝑖∗
𝑆

)
= 𝑥∗

𝑆

(
𝑔−𝑖∗

𝑆

)⎡⎢⎢⎢⎣1 −
1 

1 − 𝜋

𝑏∗𝐕′

(
𝑔−𝑖∗

𝑆
, 𝜃

)
𝑏
(

𝑔−𝑖∗
𝑆

, 𝜃
) ⎤⎥⎥⎥⎦ .

(i) A necessary (but not sufficient) condition for 𝑥∗
(

𝑔−𝑖∗
𝑆

)
> 𝑥∗ (𝑔−𝑖

)
is

1 − 1 
1 − 𝜋

𝑏∗𝐕′

(
𝑔−𝑖∗

𝑆
, 𝜃

)
𝑏
(

𝑔−𝑖∗
𝑆

, 𝜃
) > 1 − 1 

1 − 𝜋

𝑏∗𝐕′
(

𝑔−𝑖 , 𝜃
)

𝑏
(

𝑔−𝑖 , 𝜃
)

which simplifies to

𝑏∗𝐕′

(
𝑔−𝑖∗

𝑆
, 𝜃

)
𝑏
(

𝑔−𝑖∗
𝑆

, 𝜃
) <

𝑏∗𝐕′
(

𝑔−𝑖 , 𝜃
)

𝑏
(

𝑔−𝑖 , 𝜃
) .

(ii) 𝑥∗
(

𝑔−𝑖∗
𝑆

)
< 𝑥∗ (𝑔−𝑖

)
if

𝑏∗𝐕′

(
𝑔−𝑖∗

𝑆
, 𝜃

)
𝑏
(

𝑔−𝑖∗
𝑆

, 𝜃
) >

𝑏∗𝐕′
(

𝑔−𝑖 , 𝜃
)

𝑏
(

𝑔−𝑖 , 𝜃
) .

A sufficient (but not necessary) condition for the above inequality to hold is

𝑏∗𝐕′

(
𝑔−𝑖∗

𝑆
, 𝜃

)
> 𝑏∗𝐕′

(
𝑔−𝑖 , 𝜃

)
.
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