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A B S T R A C T

Context: Landscape intensity is a major driver of biodiversity and ecosystem functioning in agricultural land
scapes, and is often used to inform environmental quality. It is commonly described by land cover alone, as 
farming practices are assumed to be correlated with crop types. Despite their potential impact on field quality, 
distribution of farming practices at landscape scale is poorly understood, due to the lack of methods for sum
marizing the numerous farming practices at field and landscape levels.
Objectives: The main objective was to develop a modelling approach that synthesizes the intensity of farming 
practices at field and landscape levels. Additionally, we sought to assess the importance of considering farming 
practices in addition to land cover when studying landscape quality.
Methods: Using survey data collected in two contrasting French agricultural areas, we selected and summarized 
PCA components using an equation adapted from Herzog et al. (2006; DOI: 10.1016/j.eja.2005.07.006) to 
compute practice intensity indices integrating levels of fertilization, pesticides, tillage, mowing/harvesting, or of 
all practices. We compared the distribution of these indices between crops, landscapes, and study areas. Finally, 
we compared landscape patch richness as an indicator of their (dis)similarities on the basis of land cover, in
tensity, and the two superimposed, comparing the use of 2 to 20 intensity classes.
Results and conclusion: We found significant differences between land cover intensities, which were not consistent 
depending on the level of practice considered. Furthermore, for similar crops, we found significant differences 
between areas. This shows that land cover may not be a good indicator of practice intensity at field level. 
Moreover, landscape structure described by patch richness differs significantly according to the classification 
systems studied, and depends on the number of intensity classes considered, which we likened to the sensitivity 
of a response variable. Thus, landscape intensity based on land cover does not effectively describe that caused by 
agricultural practices either.
Significance: The method we developed allows studying farming practice intensity at the landscape scale, using 
any number of numerical descriptors of the intensity of farming practices, to be used flexibly, depending on the 
objectives and hypotheses of the researchers and the finesse of the practice data available. It also demonstrates its 
value insofar as land cover proves insufficient to describe the distribution of farming practices between fields 
and, consequently, the resulting landscape quality. Our method can be used to study a wide range of phenomena 
linked to landscape intensity, and to reconsider previous assumptions based solely on land cover.

1. Introduction

Agricultural intensity is the main driver of biodiversity and 
ecosystem services in agricultural landscapes (Estrada-Carmona et al., 

2022; Tscharntke et al., 2021). In general, agricultural intensity is 
defined as the ratio of inputs and outputs within a farming system, i.e., 
yields per land area and per unit of inputs, or as the sum of different 
categories of input costs and the farm’s total usable agricultural area, i. 
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e., the fraction of arable land that is harvested (Ruiz-Martinez et al., 
2015). A more restrictive view of agricultural intensity is, however, 
commonly taken at the landscape scale, where it is often only linked — 
implicitly or explicitly — to land cover patterns. Among the most 
frequent hypotheses of linkage are the size of fields, the diversity of crop 
rotations and the quantity of semi-natural elements (Herzog et al., 2006; 
Kuemmerle et al., 2013). Despite the fact that this view of agricultural 
intensity obscures the importance that farming management practices 
can play in defining the degree of landscape intensity (Armengot et al., 
2011; Marrec et al., 2022), to date a very small number of studies have 
been interested in characterizing the effect of practices as such on 
biodiversity and associated ecosystem services at landscape scale (see 
Brusse et al., 2024). And therefore, few studies have defined agricultural 
intensity in terms of the negative impact of all — or a set of — farming 
operations on biodiversity and environmental quality, as we do in the 
present study.

Despite numerous examples of the impact of the intensity of indi
vidual farming practices on biodiversity and other environmental pa
rameters, there is indeed a lack of landscape metrics that would make it 
possible to synthesize and study intensity linked to practices at this 
scale. The most common method, which focuses on the land cover-based 
structure of the landscape as a descriptor of the suitability of fields and 
their surroundings (Diehl et al., 2013; Elliott et al., 2018; Jeanneret 
et al., 2021), presumably suggests that the land cover reflects the 
average intensity of associated practices. However, it can be highly 
simplistic in the case of management variability between fields of 
similar land cover type. Another, increasingly common, approach is to 
describe farming management from a farming system perspective — 
mainly organic vs. non-organic farming (Petit et al., 2020). However, 
the contrast between organic and non-organic farming is not always 
obvious due to the variety of farming practices implemented in each of 
the two systems, which can even sometimes overlap (Gosme et al., 2012; 
Puech et al., 2014). In addition, the impact of organic farming can at 
times be confounded with that of landscape structural heterogeneity 
(Tscharntke et al., 2021). Indeed, the proportion of organic farming 
often positively correlates with greater land cover diversity, smaller 
fields, and a greater proportion of semi-natural habitats (Gabriel et al., 
2009; Levin, 2007).

A more complex method for describing agricultural intensity in the 
landscape is to use management information for individual fields 
(Brusse et al., 2024). As the full set of data on farming practices carried 
out on each field is rarely available at landscape scale, most studies focus 
on specific farming practices (e.g., crop rotation, intercropping, nitrogen 
fertilization, tillage, etc.) (Aguilera et al., 2021; Garratt et al., 2011; 
Kurhak et al., 2023; Le Féon et al., 2013; Tamburini et al., 2016; Wang 
et al., 2021) and less frequently a wider set of practices (Büchi et al., 
2019). Two main approaches to synthesize farming practices have been 
investigated in the literature. The first one is the additive aggregation of 
a very small number of uncorrelated operations to characterize each 
category of practices and their relative effects based on an a priori se
lection. The most commonly used method is the one of Herzog et al. 
(2006), adapted from Legendre and Legendre (1998): 

I =
∑n

i=1

yi − ymin

ymax − ymin
×

1
n

(1) 

where I is the overall intensity index based on i farming practice cate
gories, yi the observed value for the variable i in the considered field, ymin 
and ymax the minimum and maximum observed values among all fields, 
and n the number of variables (here, all farming practice indices). 
Another index used by Shriar (2000) associated weights to each practice 
in order to mitigate the effect of each on intensity relatively to the 
others. While these methods are useful to summarize uncorrelated 
practice metrics in one index, they overestimate intensity when input
ting correlated aspects of farming practices such as operation frequency, 
product diversity, or applied quantity.

To avoid a preliminary — and often subjective — selection of vari
ables, a second approach based on Principal Component Analysis (PCA) 
has been investigated (Armengot et al., 2011; Büchi et al., 2019). This 
approach allows taking into account the correlation between the vari
ables it incorporates, and thus to combine as many variables as desired. 
In addition, it offers researchers the flexibility needed to construct in
tensity indices for competing hypotheses on the relationship between 
landscape intensity and biological/ecological/environmental patterns 
and processes of interest, involving potentially very different combina
tions of variables. Yet, each component must be investigated indepen
dently as they represent different aspects of the imputed practices’ 
variability.

Nevertheless, none of these methods allows us to synthesize the 
farming practices of the fields into a single index that would integrate 
numerous variables associated with several aspects of farming practices, 
which would be useful for calculating meaningful landscape metrics. In 
this study, we combined these two approaches to develop an index that 
incorporates the multiple aspects of farming practices (i.e., the PCA 
components) at field and landscape levels into a single index. We illus
trate its use on two distinct datasets collected in two contrasting agri
cultural areas in France, where surveys were carried out among 151 
farmers to inform farming practices in 541 fields within 50 landscapes. 
First, we describe an adaptation of the model proposed by Herzog et al. 
(2006) that allows us to compute intensity at the field and landscape 
levels based on PCA components integrating numerous — and poten
tially correlated — practice variables. We illustrate the flexibility of this 
approach by considering and comparing the intensity due to four prac
tice categories (pesticide use, fertilization, tillage, and mowing) and the 
overall intensity. Second, to acknowledge the interest of integrating 
practices in addition to land cover when quantifying landscape in
tensity, we compare landscape intensity maps computed as a product of 
either land cover, farming intensity, or both, following an approach to 
good modelling practices (Jakeman et al., 2024). As so, we carry out a 
sensitivity analysis to assess the extent to which the resulting patch 
richness varies according to the number of landscape intensity classes to 
give an insight of the impact of scaling on our model output as a tool for 
decision making. Finally, we discuss the strengths and limitations of our 
approach, and argue that it allows synthetizing farming practice in
tensity at both field and landscape levels and integrating any number of 
practices, whatever the biological and environmental object of study.

2. Materials and methods

2.1. Study area

The study took place in two contrasted French agricultural areas: the 
Northern France area (hereafter, NF; 45◦01′N – 0◦43′E to 50◦55′N – 
4◦54′E) and the Moselle area (hereafter MS; 48◦38′N – 6◦29′E to 48◦55′N 
– 7◦01′E; Fig. 1). In both areas, we considered landscapes as indepen
dent, as they do not overlap and do not share farmers. The surveyed NF 
landscapes are mainly dedicated to cash crop production, with winter 
wheat (41 ± 12 %; mean ± standard deviation) and sugar beet (17 ± 8 
%) being the main crops, while grassland accounts for 6 ± 9 % of the 
surface. The average field size is 7 ± 6.7 hectares. In contrast, the MS 
area is dominated by livestock production, with 66 ± 33 % of the 
landscape’s surveyed area occupied by meadows and pastures. The main 
crops are winter wheat (13 ± 21 %), oilseed rape (5 ± 15 %), and barley 
(4 ± 10 %). The average field size is 7.6 ± 8.3 hectares.

2.2. Surveys of farming operations

Surveys were carried out among 94 farmers in 32 landscapes in NF 
and 57 farmers in 18 landscapes in MS areas, for a total of 343 and 198 
fields, respectively (Table 1). The surveys were carried out in two 
separate projects, in landscapes surrounding the central fields sampled 
for biodiversity data (data not used in this article), resulting in 
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differences in the total area considered for each landscape. In NF, the 
fields targeted for survey included the central field and all fields in a 500 
m radius doughnut-shaped buffer zone starting at the margins of the 
central field. In MS, the targeted fields intersected a circular buffer zone 
of 500 m radius centered on the centroid of the central field. The surface 
of surveyed landscapes was on average 144 ± 61 hectares and ranged 
from 79 to 341 hectares. Farmers were interviewed by telephone or 
directly at the farm to find out about farming practices implemented on 
their arable land and grassland (used as meadows and pastures) fields in 
2019 and 2020 cropping periods (i.e., a cropping period started from soil 
preparation for sowing to harvesting) for NF, and 2021 cropping period 
for MS using the exact same questionnaire. On average, 66.0 ± 20.6 %) 
of the utilized agricultural area (UAA) of selected landscapes was 
informed in NF and 91.4 ± 9.9 %) in MS. The surveys focused on 
farming operations which fall into four categories of practices: (1) 
pesticide use, including insecticide, herbicide, and fungicide applica
tions; (2) nitrogen, phosphorus, and potassium fertilization; (3) tillage 
intensity; and (4) grassland mowing and crop harvesting intensity. For 
each operation, the date and main characteristics (e.g., products, tools, 
quantities) were recorded.

2.3. Field level intensity

Step 1 – Computation of farming practices’ intensity variables
On the basis of the survey responses, we summarized the information 

per type of operations carried out on each field by calculating four types 
of variable relating to the intensity of farming practices (Table 2, step 1 
in Fig. 2): (1) the number of individual operations (e.g., the number of 
insecticide applications) illustrating the weight of each farming practice 
in the field management; (2) the diversity (e.g., the number of different 
active molecules of applied insecticides) illustrating the diversity of 
products and so, the effect range; (3) the quantity (e.g., the treatment 
frequency index) illustrating the pressure generated by each practice; 
and (4) the average time interval between two operations in days (if only 
one operation has been performed, the value of 365 has been assigned as 
one per year) illustrating the frequency of implementation for each 
practice. For the types of operations associated with pesticide use, 
fertilization, and tillage, variables were averaged for each individual 
operation (diversity and quantity) and summed up for all operations 
carried out during the cropping period (number of operations, diversity, 
quantity, and mean time interval/mineral rate). For instance, when 
considering nitrogen (N) fertilization, we computed: 

– the average number of fertilizer products applied per operation 
(diversity);

– the total number of fertilizer products applied during the cropping 
period (diversity);

– the average amount in kg.ha− 1 applied per operation (quantity);
– the total amount in kg.ha− 1 applied during the cropping period 

(quantity);
– the rate of mineral nitrogen applied.

For the types of operations associated with mowing and harvesting, 
only frequency was computed. In order to be able to compare the in
tensity levels of the two areas studied, information on grassland grazing 
has not been taken into account, as it is very incomplete in the NF 
dataset.

Intensity variables were computed so that higher values reflected a 
higher level of intensity of farming practices (in other words, the higher 
the value, the higher the level of intensity, for all variables). For 

Fig. 1. Map of surveyed landscapes in the NF (blue) and MS (orange) agricultural areas.

Table 1 
Number of fields surveyed in the two agricultural areas per land cover type.

Land cover type Northern France (NF) area (2019 
and 2020)

Moselle (MS) area 
(2021)

Wheat (Triticum 
aestivum)

377 22

Barley (Hordeum 
vulgare)

63 10

Oilseed rape (Brassica 
napus)

67 9

Sugar Beet (Beta 
vulgaris)

120 0

Flax (Linum 
usitatissimum)

55 0

Maize (Zea mays) 26 11
Potato (Solanum 

tuberosum)
70 0

Grassland 101 135
Other crops 68 11
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instance, shorter intervals between pesticide applications are assumed 
to be more intensive, so we calculated the inverse of the time interval, 
making the shorter intervals the higher values. All analyses were per
formed using the R language (R Core Team, 2022).

Step 2 – PCA analysis on intensity variables

We used Principal Component Analyses (PCA), run independently for 
each practice, to synthetize the information linked to intensity variables 
related to the given practice (see Table 2 and step 2 in Fig. 2). This 
approach allows reducing the dimensionality of each practice while 
integrating potentially correlated variables (Armengot et al., 2011). 

Table 2 
Synthesis of the studied farming practices (grouped by practice category and overall) and their related intensity variables. The quantity refers to the treatment fre
quency index for pesticides (applied dose/registered dose), the amount of nitrogen, potassium, and phosphorus for fertilizers (kg.ha− 1) and the maximum depth for 
tillage (cm). Frequency is the occurrence of the practice over a cropping period. The diversity refers to the number of different active molecules for pesticides, of 
different products for fertilizers, and of different tools for tillage. See Table A1.1 in Supplementary Material for extended definitions of variables.

Practice 
category

Overall

Pesticide use Fertilization Tillage Mowing/Harvesting

Related 
practice

​ – Herbicide
– Insecticide
– Fungicide

– Nitrogen
– Potassium
– Phosphorus

– –

Related 
variables

by cropping 
period

– number of operations
– diversity
– quantity

– number of operations
– diversity
– quantity

– number of operations
– diversity
– quantity

number of events (=1 for 
crops)

by operation – mean diversity
– mean quantity

– mean diversity
– mean quantity

– mean diversity
– mean quantity

–

other – average time interval between 
operations

– mineral fertilization 
rate

– average time interval between 
operations

–

Fig. 2. Overview of the intensity estimation process at field level, using pesticide use and tillage-related intensity as an illustrative example. Variables 1 to n are the 
variables related to each practice described in Table 2.
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Fields from both agricultural areas were included in the same PCA so 
that they could be compared. Indeed, the PCA coordinates of the fields 
(and therefore their intensity) are relative to each other. Because vari
ables included in a same PCA are on different scales, we standardized the 
variables by dividing them by one standard deviation and 
mean-centering them. For each PCA, principal components (PCs) were 
selected according to Kaiser’s criterion (λ > 1, where λ is their eigen
value; Kaiser, 1960). We extracted the coordinates of each field along 
each of these selected dimensions. These fields’ coordinates were used as 
synthetic intensity variables summarizing each farming practice in the 
following calculations.

Step 3 – Calculation of intensity indices for each farming practice at 
the field level

For each field surveyed, we calculated an intensity index for each 
farming practice independently, which cumulates the relative intensity 
of each selected PC for the considered farming practice (step 3 in Fig. 2). 
On the basis of the index developed by Herzog et al. (2006), we modified 
Eq. (1) to consider selected PCs as synthetic intensity variables. Since, by 
definition, each of these synthetic variables (PCs) explains inter-field 
variability in different magnitudes, we have weighted the equation ac
cording to the cumulative eigenvalues of the selected PCs rather than by 
the number of variables included, as is the case in Eq. (1): 

I =
∑n

i=1

yi − ymin

ymax − ymin
×

1
∑n

j=1λj
(2) 

where yj is the coordinate of the field along the PC j, λj, the eigenvalue of 
the PCj, ymin and ymax the minimum and maximum observed values 
among all fields for the considered PC, and n the number of PCs for 
which λj is above 1. Weighting by the cumulated eigenvalues of selected 
PCs is necessary to compare intensity indices between practices and 
allow mixing them in integrative indices (step 4 below).

Step 4 – Calculation of intensity indices for each category of practice 
at the field level

For each field, we finally calculated the intensity index of five 
groupings of practice categories: pesticide use, fertilization level, tillage 
intensity, mowing intensity, and all combined. Using Eq. (1), we 
considered intensity indices of each corresponding practice computed at 
step 3 as variables. We computed intensity with a practice level 
approach, however a PCA can be performed directly on practice cate
gories or overall to associate practices that have been identified to be 
correlated or to have a similar effect on a given subject of study. The 
advantage of the practice level approach is that it allows us to distin
guish between fields with different levels of intensity, whereas the 
overall approach associates only one intensity value with each field. In 
addition, it estimates practice intensity on temporal, quantitative and 
diversity aspects while getting rid of correlations between the corre
sponding variables. We chose to compute the intensity of grouped 
practices with Eq. (1) instead of (2) so each practice would contribute 
equally to the intensity.

Step 5 – Statistical analyses at the field level
Using fields per cropping period as individual observations, we 

investigated whether the distributions of intensity indices were signifi
cantly associated with crop types, for each grouping of practice cate
gories. To do this, we performed Kruskal-Wallis tests by ranks, as the 
conditions were not met for parametric tests. In case of significant as
sociation with crop type (p-value < 0.05), we computed pairwise 
Fisher’s LSD (least-significant difference) tests to determine which crops 
differed from each other.

2.4. Landscape level intensity

To test the value of taking practices into account at landscape level, 
we calculated a patch richness index for each landscape, based on three 
types of patch classification schemes: (1) intensity (IT), (2) land cover 
(LC), and (3) the two superimposed (LCIT). We have chosen patch 

richness to characterize classification schemes, as this metric is linked to 
many other aspects of landscape conformation such as patch number, 
aggregation, or edge density.

As patch richness is a raster-based index, it requires pixels to be 
assigned to classes, as by maintaining continuous values, the slightest 
difference in value would distinguish each patch from the others in an 
exaggerated and unreasonable manner. We therefore had to group the 
fields into classes of intensity value. However, landscape metrics are 
greatly impacted by the number of patch categories (Huang et al., 2006), 
and choosing the right number of classes is not trivial, and should be 
determined by the expected sensitivity of the response variable to in
tensity, as well as the variability of that intensity. In addition, we expect 
the relative difference between classifications based on land cover, in
tensity, or both, to depend on the number of intensity classes used, since 
this number of classes defines the difference in the number of landscape 
categories. Consequently, for classification schemes involving farming 
intensity, we calculated patch richness indices for intensity classes of 
equal size ranging from 2 to 20, to cover a wide range around the 
number of land cover classes, which is 9 for NF and 5 for MS.

Patch richness was computed for each classification scheme in both 
study areas and for each grouping of practices using the function 
lsm_l_pr() from the package landscapemetrics (Hesselbarth et al., 2019). 
We rasterized the land cover data for cropland and grassland from the 
French Land Parcel Identification System (https://geoservices.ign. 
fr/rpg) at a resolution of 20 × 20 m, maintaining the original crop 
classes. We then compared the patch richness values of studied land
scapes based on the different classifications (LC, IT, or LCIT) using a 
pairwise Wilcoxon-Mann-Whitney test. To illustrate the differences, we 
computed the average patch richness deviation between schemes 
depending on the number of intensity classes.

Finally, we compared landscape intensity between NF and MS to see 
if the agricultural areas differ in terms of intensity of practices in addi
tion to land cover. Landscape-level intensity indices were estimated as 
the area-weighted mean of field intensity. The two regions were then 
compared using non-parametric tests for each intensity category 
(Kruskal-Wallis and Wilcoxon-Mann-Whitney tests). The surface that 
could be surveyed was considered to be representative of the total sur
face of the UAA of each landscape, and we therefore extrapolated the 
landscape intensity value to the entire area occupied by UAA.

3. Results

3.1. Field level intensity

The relative intensity index for each crop varies considerably for 
each practice category, except grassland, which remains the least 
intensive land cover type in both regions (Fig. 3; see Tables A2.1-A2.4 in 
Supplementary Material for statistical details). Significant and complex 
overlaps exist between annual crop types, partly due to important 
variability between fields of similar type. When we look at overall in
tensity (Fig. 3A), we see that in NF, sugar beet (0.71 ± 0.13; mean ±
standard deviation) and potato (0.70 ± 0.13) are significantly the most 
intensive annual crops, followed by flax (0.61 ± 0.12), and that wheat 
(0.54 ± 0.12), maize (0.55 ± 0.09), and barley (0.55 ± 0.11) are the 
least intensive annual crops (Fig. 3A). No significant differences are 
found between annual crops in MS, even if maize (0.49 ± 0.12) tends to 
be the most intensive annual crop, and oilseed rape (0.33 ± 0.23) the 
least intensive one (Fig. 3A).

Regarding fertilization intensity (Fig. 3B), we observe similar con
trasts and relative positions of annual crop types in NF except for wheat 
(0.36 ± 0.19) and barley (0.39 ± 0.18) that are less intensive than maize 
(0.46 ± 0.19). Also, the variability within each crop type (0.20 ± 0.01) 
is much higher than for overall intensity (0.12 ± 0.02; Fig. 3B). In MS, 
wheat (0.20 ± 0.14) and oilseed rape (0.25 ± 0.178) are the least 
intensive and maize (0.43 ± 0.18) the most intensive (Fig. 3B).

Concerning the intensity due to pesticide use (Fig. 3C), sugar beet 
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(0.66 ± 0.13) and potato (0.71 ± 0.18) remain the most intensive crops 
in NF, followed by oilseed rape (0.59 ± 0.09) and wheat (0.59 ± 0.14), 
and maize (0.40 ± 0.13) is the least intensive crop, followed by flax 
(0.53 ± 0.13) and barley (0.54 ± 0.13; Fig. 3C). In MS, wheat (0.49 ±
0.17) is the most intensive crop, followed by barley (0.39 ± 0.24) and 
maize (0.35 ± 0.09), and oilseed rape (0.25 ± 0.25) is the least intensive 
crop (Fig. 3C).

Tillage intensity (Fig. 3D) is significantly the lowest for wheat (0.45 
± 0.11) and oilseed rape (0.43 ± 0.11) and the highest for sugar beet 
(0.72 ± 0.14), followed by potato (0.66 ± 0.15), in NF (Fig. 3D). In MS, 
tillage intensity is the lowest in oilseed rape (0.43 ± 0.11) and there are 
no statistical differences between other crops (Fig. 3D). Variability is 
quite high in MS, particularly for oilseed rape (0.31 ± 0.31) and barley 
(0.42 ± 0.17), for which the number of fields surveyed is rather low (n =
9 and 10, respectively).

For common land covers, differences between agricultural areas (MS 
and NF) also depend on the index of intensity selected (Fig. 3). Meadow 
management differs between the two areas for fertilization (0.18 ± 0.22 
for NF; 0.13 ± 0.18 for MS), pesticide use (0.04 ± 0.09 for NF; 0.00 ±
0.00 for MS), and mowing intensity, but not for overall (0.16 ± 0.17 for 
NF; 0.12 ± 0.10 for MS) and tillage intensity (0.00 ± 0.00 for NF; 0.00 ±
0.00 for MS). Overall and fertilization intensities are quite variable be
tween fields in both regions, contrary to tillage (null for all fields) and 
pesticide use (null for the majority of fields except a few fields in NF that 
could be considered outliers). Mowing intensity in MS was significantly 

higher than in NF (Wilcoxon-Mann-Whitney, p = 0.004) with a mean of 
0.31 ± 0.39 and 0.29 ± 0.18 for MS and NF, respectively. Even if most 
grasslands in NF were less intensive than in MS on average, some highly 
intensive fields in NF rise the average of this study area (see Fig. A3.1 in 
Supplementary Material).

Wheat and oilseed rape are more intensive for overall, fertilization, 
and pesticide intensity in NF than in MS. For tillage intensity, maize is 
more intensive in NF than in MS. Intensity of barley is different between 
areas only for overall intensity.

3.2. Landscape scale intensity

IT (i.e., intensity-based) patch richness increases with the number of 
classes for all intensity categories in NF (Fig. 4) but only for overall 
intensity in MS (Fig. 5). In NF, average intensity patch richness signifi
cantly differs from LC (i.e., land cover-based) patch richness except 
when the number of intensity classes approaches the number of LC 
categories: non-significant from 9 to 12 classes for overall intensity; for 
8, 9, 10 and 12 classes for fertilization; from 10 to 16 classes for pesticide 
use and from 10 to 18 classes for tillage.

Patch richness resulting from the combination of land cover and 
intensity (LCIT) is always significantly higher than that resulting from 
land cover or patch richness, and increases as the number of classes 
increases (pairwise Wilcoxon-Mann-Whitney test, α = 0.05). Patch 
richness deviation between LCIT and LC in NF ranges from 1.17 to 5.48 

Fig. 3. Overall (A), fertilization (B), pesticide use (C), and tillage (D) normalized intensity depending on land cover type for Moselle (MS; in red and on the left) and 
Northern France (NF; in blue and on the right). Letters indicate significant differences between land covers for each agricultural area independently (Kruskall-Wallis 
Bonferonni adjusted with post-hoc LSD Fisher test, α = 0.05): in red and at the top for MS and in blue and at the bottom for NF. Asterisks indicate significant 
differences between the two areas for each land cover independently (Wilcoxon-Mann-Whitney test, α = 0.05; *: p < 0.05, **: p < 0.01, ***: p < 0.001).
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for overall intensity, 1.62 to 5.88 for fertilization, 1.00 to 3.47 for 
pesticide use, and 0.95 to 3.17 for tillage. In MS, LC and IT did not differ 
except for overall intensity for 2 and 11 to 20 classes and fertilization for 
6, 12, 16 and 17 classes. Patch richness deviation between LCIT and LC 
ranges from 0.06 to 1.33 for overall intensity, 0.33 to 1.05 for fertil
ization, 0.06 to 0.11 for pesticide use, and 0.00 to 0.83 for tillage.

The map presented in Fig. 6 illustrates the three classification 
schemes applied to the studied landscapes, and how land cover and 
intensity can differ and create new patches when associated. Areas that 
are not surveyed are either non-cultivated or non-grassland fields, or 
fields that could not be surveyed. For the represented NF landscape, 
there are 10 continuous patches when considering land cover only, 13 
patches when considering intensity due to practices (three classes), and 
19 patches when considering the two superimposed. Concerning patch 
richness, there are seven different land covers, three intensity levels, and 
nine different types of patches when superimposed. The MS landscape 
has three patches when considering land cover, one when considering 
the intensity due to practices, and three when considering the two 
superimposed. Patch richness in MS is two for land cover, one for in
tensity, and two for both superimposed.

3.3. Agricultural areas comparison

NF intensity is significantly higher than MS for every landscape scale 

intensity index except for mowing, for which MS is the most intensive 
(Fig. 7). The deviation between the two areas is higher for pesticide use 
followed by tillage, overall intensity, fertilization, and mowing. As this 
index is relative, when the proportion of intensive landscapes increases 
in one area, it decreases in the other. The variability in landscape in
tensity is higher in MS than in NF likely due to the lower number of 
surveyed landscapes and crop types as illustrated in Fig. 3.

4. Discussion

We have combined both existing approaches to develop a flexible 
index for estimating the intensity of farming management at field and 
landscape scale, considering five groupings of practice categories to 
illustrate it (i.e., overall intensity, and intensity due to either fertiliza
tion, pesticide use, tillage, and harvesting/mowing). The results showed 
that heterogeneity linked to intensity at field and landscape scale differs 
from that linked to land cover. In addition, the relationship between 
intensity and land-cover type depends on the agricultural area. Conse
quently, field intensity cannot be directly assimilated to land cover, but 
depends on the groupings of farming practices and the agricultural areas 
considered. We came to similar conclusions at landscape level, given 
that landscape intensity differs between areas and for each component 
of farming practices. Finally, we showed significant differences between 
the classification scheme based on land cover and land cover combined 

Fig. 4. NF’s overall (A), fertilization (B), pesticide use (C), and tillage (D) average patch richness for three patch classification schemes: land cover (LC; black dashed 
line), intensity (IT; blue line), and intensity and land cover superimposed (LCIT; red line). Ribbons represent standard deviation. Full points represent the number of 
intensity classes for which land cover diversity significantly differed from the corresponding patch classification schemes and hollow points those for which it did not 
(pairwise Wilcoxon-Mann-Whitney test, α = 0.05).

S. Maudet et al.                                                                                                                                                                                                                                 Ecological Modelling 501 (2025) 110975 

7 



with intensity. This was made possible by the large amount of practice 
data obtained, thanks to farmers’ interest in our survey. Our results 
suggest that the added value generated by the information contained in 
these data is paramount in describing the functional suitability of fields 
and landscapes more accurately than considering land cover alone.

Landscape structure can be defined by a "visible" mosaic of land 
covers and a "hidden" heterogeneity of farming practices associated to 
intensity (Marrec et al., 2022; Vasseur et al., 2013). To highlight the 
relationship between these two components, we compared the land
scape structure resulting from the use of three landscape classification 
schemes: land cover (LC), intensity (IT), and the two superimposed 
(LCIT) as illustrated in Fig. 6. We found that patch richness at landscape 
level diverged considerably depending on the classification scheme 
considered, particularly in NF. For any number of classes, classification 
based on LCIT always led to a greater patch richness than those based on 
LC and IT in NF (Fig. 4). As LCIT superimposes information on land 
cover and practices, this result is directly linked to the fact that, for each 
type of land cover, the intensity of practices varies widely. This is in line 
with our results and those of previous studies at field level (Gosme et al., 
2012; Kurhak et al., 2023; Puech et al., 2014): for both agricultural 
areas, we showed that intra-crop variability in farming practices is high 
for all crops and overlaps considerably between crop types (Fig. 3). 
Nevertheless, patch richness based on IT and LCIT classifications only 
poorly deviated from the one based on LC alone in MS. This result is due 

to the fact that utilized agriculture area in MS is strongly dominated by 
grasslands, while NF is more diversified and dominated by annual crops. 
Therefore, in most MS landscapes, intensity levels were predominantly 
distributed within grasslands or otherwise in only one or two crops. 
However, as grasslands have a very low level of intensity compared to 
the annual crops studied (Fig. 2), the divergence between classifications 
based on LC and IT is almost zero. Consequently, the most structuring 
effect in MS is linked to the grasslands vs. crops dichotomy. Yet while 
most studies have shown that grasslands are less intensive based on the 
consideration of individual practices (Landis et al., 2000), by taking 
multiple practices into account we have verified that this pattern is true 
for overall, fertilization, pesticide use, and tillage intensity, but not for 
mowing/harvesting intensity for which grasslands are more intensive. 
Even if some grasslands in our dataset had similar levels of pesticide and 
fertilization intensity than annual crops. As such, in MS, the intensity of 
fertilization in grasslands significantly overlapped with that of wheat 
and oilseed rape (Fig. 3B), which could be explained by a desire on the 
part of farmers to increase the productivity of their grasslands and in
crease the surface area on which they can spread the excess manure 
produced in this area dominated by cattle farming.

Fig. 5. MS’s overall (A), fertilization (B), pesticide use (C), and tillage (D) average patch richness for three patch classification schemes: land cover (LC; black dashed 
line), intensity (IT; blue line), and intensity and land cover superimposed (LCIT; red line). Ribbons represent standard deviation. Full points represent the number of 
intensity classes for which land cover diversity significantly differed from the corresponding patch classification schemes and hollow points those for which it did not 
(pairwise Wilcoxon-Mann-Whitney test, α = 0.05).
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Fig. 6. Maps showing the fields represented using classification schemes based on land cover (1; LC), categorized overall intensity (2; IT), and the two superimposed 
(3; LCIT) for two landscapes from Northern France (NF) and Moselle (MS). Here, overall intensity is categorized into three regular classes of levels of intensity (low, 
medium, and high).

Fig. 7. Intensity indices at landscape level for Moselle (MS) and Northern France (NF). Asterisks indicate significant differences between the two areas (Wilcoxon- 
Mann-Whitney test, α = 0.05; *: p-value <0.05, **: p-value < 0.01, ***: p-value < 0.001). Intensity at landscape level is the average intensity of the corresponding 
fields weighted by their surface.
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4.1. Interests of landscape characterization by intensity in addition and 
association with landcover

For both agricultural areas, but especially for NF, we observed that 
the divergence in patch richness between the sole consideration of land 
cover (LC) and the addition of agricultural practices (LCIT) increased as 
the number of classes increased. As LC classes are changeless, the patch 
richness based on LCIT increases at the same rate as the deviation be
tween LC and IT. Mechanically, the greater the variability of intensity 
classes there are, the greater the number of classes created in the LCIT 
classification, which increases the diversity of landscape patches. Even if 
this trend is true for all groupings of practices, we can add nuance by 
saying that the variability and intensity of practices within and between 
crops vary depending on the grouping (Fig. 3), thus modifying the de
gree of divergence between LC and IT/ LCIT. For instance, in NF, maize 
was less intensive than wheat for pesticide use but more intensive for 
soil tillage. Therefore, land cover could not be similarly associated with 
intensity, resulting in a different landscape structure in each case

Since the resulting structure of the landscape is dependent on both 
the number of IT classes and the nature of the practices considered, it 
seems more than important to apply an approach based on hypotheses 
when the response of a biological, ecological, or environmental variable 
is the object of study. In addition, these results indicate that the more 
sensitive the response variable is assumed to be to practices (including 
locally), the more critical it becomes to consider these practices in 
addition to land cover. The definition of the number of classes should 
therefore be based on the expected sensitivity of the response variable to 
farming practices. Thus, it is very likely that the abundance of a species 
highly sensitive to agricultural activities will vary in the face of small 
changes in intensity, and thus respond to smaller classes. In such real 
case studies, tools such as scaling functions could be used to optimize 
selecting an appropriate number of classes (Huang et al., 2006). In the 
same logic, land cover classes should be defined regarding their rela
tionship with the response variable. This could be done by estimating or 
assuming a positive or negative effect of each land cover class, but also 
based on functional traits, depending on the objectives and the nature of 
the object of study. In this methodological paper, we illustrate the use of 
the approach only considering the average landscape patch richness — 
along a gradient of class number (Fig. 4 and 5) —, as it has been shown 
to be linked to most landscape metrics (Huang et al., 2006). Neverthe
less, LC and IT classifications can also differ in other structural 
(compositional and configuration) aspects and their combination could 
be used to determine suitable hotspots or intensity barriers.

4.2. Similarities and differences between two contrasted territories

The average landscape intensity is lower in MS than NF for each 
intensity group, except mowing/harvesting (Fig. 7). This can be 
explained by the fact that MS crops are as much or less intensive as NF 
crops, depending on the considered intensity grouping (Fig. 3). In 
addition, the higher proportion of grasslands in MS (45 % vs. 5 % in NF), 
which are less intensive than other land covers except for mowing/ 
harvesting, drives MS landscape intensity down. Also, NF has a higher 
proportion of annual crops such as wheat and sugar beet, which tend to 
be more intensive (Fig. 3). This result illustrates that landscape intensity 
is greatly affected by the nature and diversity of the production systems 
chosen by all farmers in that landscape. This is in line with several 
previous studies, such as the one by Shriar (2005), that has shown that 
the intensity of farming systems in Petèn (Guatemala) varies at farm and 
regional scales depending on farmers’ needs, willingness, and capabil
ities to intensify their practices. Also, the farm production system and 
the landscape context in which it is embedded can greatly influence the 
probability of implementing agro-ecological measures, and thus 
"extensify" farming practices (Paulus et al., 2022).

At the field level, our results reveal that the land covers considered 
do not present the same levels of relative intensity according to the 

groupings of practices and agricultural areas considered. This implies 
that the ordering of crops in one territory cannot be directly transposed 
to other territories, which is a fundamental prerequisite when we as
sume that land cover describes crop intensity. It is therefore necessary to 
determine which practices can be used to discriminate between fields in 
a given territory, before formulating hypotheses on the most favorable 
or unfavorable land cover for the response variable under consideration. 
Above all, it is essential to identify which practices are discriminating in 
the study region under consideration, and avoid selecting one or more 
practices in particular that have been identified as discriminating in 
other studies and agricultural and regional contexts. For instance, our 
results show that oilseed rape, which is often studied in terms of polli
nator dependency and yield, is much more pesticide-intensive in NF 
than in MS. If this difference lies within the sensitivity range of polli
nator species, this could lead to a positive effect in MS and a reduced or 
even negative effect in NF. This could explain the regional differences 
observed in the literature and the unintended effect of pest management 
practices on pollination dependency in oilseed rape reviewed by Ouv
rard and Jacquemard (2019).

Through the use of PCAs, our approach has the advantage of facili
tating the consideration of variability between agricultural areas by 
allowing several variables to be combined to characterize practices, 
without a priori selection. In addition, analysis of PCA alone enables us 
to identify, for each grouping of practices, those that are the most 
discriminating for the agricultural area under consideration. In future 
work, this may make it possible to better target the practices to be 
surveyed/quantified, and reduce the data collection effort. However, 
since the intensity of each field is relative to that of the other fields 
studied, if several agricultural areas are to be considered, the PCA steps 
must be carried out by assembling the entire dataset. Also, the resulting 
intensity index can be challenging to interpret, which can involve 
additional analysis when studying specific practices effects (Büchi et al., 
2019).

4.3. Implications and applications of our approach

Given the differences in landscape structure induced by land cover 
and intensity, there is a risk to improperly describe field suitability 
distribution by considering only land cover. In the current agricultural 
context, which relies heavily on intensive farming practices, it is more 
likely to overestimate the number of suitable fields, as the positive effect 
attributed to certain crops could be cancelled out by a high intensity 
level of some fields of these crops. While this effect has been studied for 
specific relationships, for instance for oilseed rape and solitary bees (Le 
Féon et al., 2013) or weed species diversity and cereal fields manage
ment (Armengot et al., 2011), our method could be used to mitigate this 
bias for every crop in the landscape and thus to describe agricultural 
landscapes more accurately than it is possible with land cover maps. 
Previous assumption on the suitability of fields depending on land cover 
only should be reconsidered before investing in unsuitable landscapes as 
the effect of practice intensity could negate the benefits of semi-natural 
environment preservation (Marrec et al., 2022). Nevertheless, the pro
cedure we used in this study is based on obtaining data on farming 
practices by means of surveys carried out directly with farmers. 
Although this strategy is the most accurate for collecting data on all 
farming practices, it cannot be used to scale up and consider larger 
spatial areas. The widespread use of freely accessible agricultural da
tabases or the use of indices derived from satellite remote sensing as 
proxies for practices are serious avenues for this scaling-up and the 
generalization of their use (e.g., Bégué et al., 2018; Karmakar et al., 
2023; Zhang et al., 2024).

One of the primary benefits of our method is its ability to investigate 
the impact of farming management intensity on a diverse range of 
research subjects and spatial scales (from field to landscape). For 
instance, biodiversity is a relevant example. Despite several studies 
exploring the effects of organic and conventional farming or farming 
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practices on biodiversity (Lichtenberg et al., 2017; Rusch et al., 2010), 
most of them did not account for the intensity of farming management. 
Similarly, our approach can investigate the impact of farming manage
ment intensity on environmental quality, with a specific focus on crucial 
components such as water and soil quality. Our method facilitates an 
objective analysis of how varying degrees of farming management in
tensity can potentially affect the quality of these essential environmental 
elements. For example, our approach may aid in examining the potential 
impact of high-intensity farming practices on water quality in relation to 
nutrient run-off (Dupas et al., 2015) and their influence on soil health 
and productivity (Guerra and Pinto-Correia, 2016). Additionally, our 
method can be utilized to investigate the impact of farming management 
intensity on various socio-economic factors, such as farmers’ profits, 
working practices, and attitudes (Cong et al., 2014; Vuillot et al., 2016). 
For example, researching the impact of farming management intensity 
on farmers’ income and its influence on the wider economic context of 
the agricultural industry could provide valuable insights.

Our method is versatile and can be applied across various spatial 
scales, from field to landscape. This adaptability provides opportunities 
for different applications in the farming management field. For instance, 
while our primary aim was to estimate the intensity of agricultural 
management at the landscape scale, this method can prove useful to 
those monitoring a set of fields who are solely concerned with the local 
effects of farming management. Furthermore, the approach can be 
adapted to all farming practice datasets, regardless of whether they 
encompass multiple practices or solely focus on a single practice, such as 
insecticide treatments. This adaptability makes it an ideal tool for any 
study interested in the notion of agricultural management intensity. 
Finally, it is important to note that while our work was conducted in an 
agricultural setting, our method is transferable to other environments. 
As an index of management intensity, it can be applied in any envi
ronment managed by humans, including forests, aquatic environments, 
and more. With regard to forests, our method could be used to assess the 
impact of forest management practices on biodiversity. It could help to 
identify areas where intensive management has led to a loss of biodi
versity and to propose mitigation strategies. In aquatic environments, 
our method could be used to assess the impact of human activities such 
as fishing or aquaculture on marine ecosystems. It could help identifying 
areas where these activities have a negative impact on marine biodi
versity and propose strategies to minimize this impact. In short, our 
method offers a flexible and adaptable approach for assessing the impact 
of human activities on biodiversity in a variety of environments. This 
opens many potential applications in environmental management and 
biodiversity conservation.

5. Conclusion

In view of our results and the recognized impact of farming practices 
on biodiversity and environmental quality, land cover cannot generally 
be considered sufficient to describe the quality and intensity of fields 
and landscapes, especially when multiple contrasting agricultural ter
ritories are taken into account — within and between which the in
tensity of the same crops can be highly variable. The method for 
estimating the intensity of agricultural practices developed in this article 
could help to solve this problem, as it allows multiple combinations of 
metrics associating farming practices and land cover to be easily inte
grated into models. By integrating the limitations of several other ap
proaches, we can better represent and understand the match between 
field “quality” and the response of the study model under consideration. 
The next step will be to test our method against response data in an 
environment with contrasting practices, thereby testing the effect of 
intensity as well as the effectiveness and limitations of our method.
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