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B Ising-Like Model Hasn’t Yet Said Its Last Word: Exact and
@i® Mean-Field Investigations of 2, 3 and 4-Body Interactions in

1D Ising Chain of Binuclear Spin-Crossover Solids

Kamel Boukheddaden,* Nour El Islam Belmouri,” and Nicolas di Scala®

We investigate the static properties of a new class of 1D Ising-
like Hamiltonian for binuclear spin-crossover materials account-
ing for two-, three-, and four-body short-range interactions
between binuclear units of spins (s%,s5) and (s5,s5). The
following 2-, 3-, and 4-body J; (s} + s5)(s; + s3), KiS{s3(sh +53),
and K, (sis5)(sas5) terms are considered, in addition to intra-
binuclear interactions, such as effective ligand-field energy and
exchange-like coupling. An exact treatment is carried out within
the frame of the transfer matrix method, leading to a 4x4
matrix from which, we obtained the thermal evolution of the
thermodynamic quantities. Several situations of model parame-
ter values were tested, among which that of competing intra-

1. Introduction

Spin-crossover (SCO) materials are extensively studied due to
their potential applications as sensor devices, molecular memo-
ries, displays etc."™ as well as for their fascinating fundamental
aspects related to the coupling between their electronic and
elastic structures. Such spin transition materials have been
commonly investigated in iron(ll) complexes with 3d°® config-
uration in octahedral symmetry. From the magnetic properties
point view, they exhibit two kinds of electronic configuration,
high-spin state (HS) at high-temperature and low-spin state (LS)
at low-temperature with their total spin, S=2 (paramagnetic
state) and S=0 (diamagnetic state), respectively. From an
optical and elastic point of view, the switching between HS and
LS states, which is achieved by light,”"" temperature,7%1°1213!
magnetic' and electrical field," pressure!®'® etc, is accom-
panied by a change of color and a significant variation of
molecular volume related to the variations of the bond lengths
between Fe and N atoms. So, the Fe—N bond lengths increase
between ~2.00 A in the LS state and ~2.2 A in the HS state,”#'
leading to an abrupt expansion by around 30% of the
molecular volume of the coordination sphere™ At the same
moment, the expansion of the unit cell is ~3-5%,?” very small
compared to that of the coordination sphere. Indeed, this
important difference of volume result from the crystal packing
whose a large part of the molecular volume expansion is
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and inter-molecular interactions, leading to the occurrence of
(i) one-step spin transition, (ii) two-, three-, and four-step
transitions, obtained with a reasonable number of parameters.
To reproduce first-order phase transitions, we accounted for
inter-chains interactions, treated in the mean-field approach.
Hysteretic multi-step transitions, recalling experimental obser-
vations, are then achieved. Overall, the present model not only
suggests new landscapes of interaction configurations between
SCO molecules but also opens new avenues to tackle the
complex behaviors often observed in the properties of SCO
materials.

absorbed inside the lattice in the form of reorientations of the
ligands and others local degrees of freedom which do not affect
the unit cell volume, but induce huge distortions of the crystal.
Indeed, in cooperative spin-crossover systems, the nucleation
and the growth of the spin states during the spin transition
arise with local volume expansions which take place at several
regions in the lattice (short-range nature of the interactions)
and their propagation (coalescence) and interference in the
whole lattice (due to the long-range character of the inter-
actions) cause a global volume expansion accompanied by a
large deformation of the crystal lattice, which produces
inhomogeneous mechanical stresses inside the system. The
interplay between the spin-crossover and the lattice properties
of the spin transition compounds has been studied experimen-
tally as well as theoretically in the way to understand the main
mechanisms that lead to the spin-crossover phenomenon. From
the experimental point of view, the investigations on the
molecular complexes relate to the experiments of x-ray
diffraction, optical microscopy, calorimetry, Méssbauer and uv-
Vis spectroscopies, diffuse reflectivity, photoluminescence!'#?'=*"
etc. and show many features of these materials such as gradual
transition which follows the Boltzmann statistics, first-order
transition with hysteresis, incomplete spin transition with
residual HS fraction at low-temperature, two- and multi-step
transition characterized by intermediate plateaus in which the
spin states are self-organized."?*** Theoretically, the mecha-
nism behind all of these behaviors are investigated using
macroscopic or microscopic descriptions such as the regular
solutions model*” based on a thermodynamical approach
where the interaction parameters related to the weak intermo-
lecular interactions in iron(lll) compounds are introduced in a
phenomenological way, continuous medium model*" which

© 2024 Wiley-VCH GmbH


http://orcid.org/0000-0003-0464-1609
http://orcid.org/0000-0003-4290-0640
http://orcid.org/0000-0002-2275-3842
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcphc.202400238&domain=pdf&date_stamp=2024-10-07

Chemistry
Europe

European Chemical
Societies Publishing

Research Article

ChemPhysChem doi.org/10.1002/cphc.202400238

does not explicitly describe the particular micro-organization of
the HS and the LS domains, and also Ising-like models“**-®
which has a microscopic origin. Among the Ising-like models,
we distinguish the vibrational models such as the spin-phonon
model™ accounting for the coupling between spin and phonon
in the lattice, which discard the deformation of the lattice, and
the models with anharmonic potentials such as Lennards-Jones
pair potential®™ which contains a repulsive short-range and
attractive long-range contributions or Morse potential,”” me-
chanoelastic model,”® harmonic electroelastic model®* ac-
counting for the lattice deformation. All these models are based
on the interactions (short- and long-range) between the SCO
neighboring atoms whose amplitude of forces (weak or strong)
provides information about the degree of cooperativity of these
systems. Indeed, in the electroelastic model®**® the spins of the
SCO sites as well as their positions are combined to study the
spatiotemporal and thermodynamic features of spin-crossover
solids. This model reproduces several SCO behaviors and offers
a lot of possible extensions. For example, in recent works,* =
we used it to describe the photoexcitation of the long-lived
metastable HS state and also the light-induced thermal
transition effects as well as multi-step transitions with symmetry
breaking in the plateau region for different modeled
situations.’**%¥

Binuclear spin-crossover complexes represent an important
step in the study of polynuclear spin transition systems. They
constitute good examples to investigate the intimate relation
between the spin transition and the intra- and inter-molecular
interactions. Since 1992, where the first deep studies emerged
in the literature®7® a large number of binuclear SCO systems
have been synthesized. Most of them present a double-step
spin transition with temperature, with the presence of a plateau
during the transition. The nature of this plateau has been
deeply studied and in most of the cases”” it was found that the
two atoms within the molecule occupy the configuration [HS-
LS]. It was concluded, that steric anti-ferro elastic interactions
are responsible for this behavior. However, since the last ten
years, several new binuclear complexes have shown different
types of thermal-dependence of the HS fraction, like a one-step
sharp first-order transition where the binuclear unit switches
from the LS-LS to the HS-HS configuration without any
intermediate state and others where one or sometimes several
intermediate states are got through the transition from the LS
to the HS state.

From the theoretical point of view, Ising-like models,
due to their high adaptability and despite their phenomeno-
logical character, remain a source of an important activity in the
description of SCO materials, helping in the understanding of
several of their physical properties. In particular, 1D Ising-like
models benefited in the past in several investigations concern-
ing the static properties of spin-crossover chains®*" by
combining nearest-neighbor short-range interactions with infin-
ite long-range interactions.”®®" One of the advantages of these
models is the possibility of accessing their exact thermodynam-
ic properties using the analytical transfer matrix method.
Extensions including next-nearest neighbor interactions have
also been investigated using the same method and the main

[43,78-86]
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results of these approaches®*®%?? can be summarized as follows:
(i) thermal hysteresis may occur due to the competition of
short- and long-range interactions; (ii) the shape of the
hysteresis loop changes from “S” to “Z” on increasing the ratio
of the short-range interaction; two kind of microscopic organ-
izations have been found for the plateau region, HS-LS-HS-LS-
HS-LS or HS-HS-LS-LS-HS-HS-LS-LS depending on the sign of
the interaction parameters involved in the model. These studies
concerned only mononuclear SCO materials and the extension
to binuclear SCO chains is still an open problem.

In the present study, we deal with the case of 1D SCO
chains made of binuclear SCO units. Then, each molecule
contains two atoms, denoted A and B, which may be high-spin
(HS) or low-spin (LS). This work is inspired by experimental
results which showed that in some two-step transitions, in the
intermediate plateau, the spin states configuration is of the
form (HS-HS)-(LS-LS)-(HS-HS)-(LS-LS), while in most of the cases,
the antiferro configuration (HS-LS) which can be ordered like
(HS-LS)-(HS-LS)-(HS-LS)®® or disordered such as (HS-LS)-(LS-HS)-
(LS-HS)-(HS-LS) is found. In the case of the presence of an
ordered intermediate state, one speaks about the presence of
symmetry breaking, a concept that will be explicitly discussed
in this work. On the other hand, the stabilization of config-
urations like (HS-HS)-(LS-LS)-(HS-HS)-(LS-LS) indicates that the
binuclear units react as a single object due to the presence of a
strong intra-molecular correlation. To reproduce such behavior,
it is then necessary to go beyond the classical Ising-like model
and to include interactions between strongly correlated
binuclear units, that is the origin of the presence of four- and
three- body interactions in the present model. As we will see,
according to the sign of these interactions, several interesting
behaviors can be obtained, allowing to reproduce a large panel
of experimental spin transitions, going from incomplete, to first-
order and multi-step transitions.

Historically, the two-level microscopic models developed for
cooperative spin-crossover solids are based on the Ising-like
Hamiltonian, following the pioneering work of Wajnsflasz and
Pick."**** Such two-state model can be viewed as a simple Ising
model under an applied field (a temperature-dependant field to
account for the different degeneracies of the levels).® Its
dynamical extension” led exactly to the phenomenological
formula given by Hauser, Spiering and Giitlich® for the
sigmoidal relaxation. Here we extend this model to study
exactly 1D binuclear SCO systems.

The manuscript is organized as follows: Section 2 introduces
the model's Hamiltonian and the method of resolution;
Section 3 summarizes the obtained results and the discussion of
the thermal behavior of the system’s order parameters accord-
ing to the sign of the interactions (ferro-, antiferro-type).
Section 4 is devoted to summary.

© 2024 Wiley-VCH GmbH
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2. 1D Hamiltonian of Binuclear SCO System and
Transfer Matrix Method

We present an exact examination of thermodynamic properties
of one-dimensional binuclear Ising-like model,****” in which
nearest and next-nearest neighbor interactions are included.
Let's denote by A and B the two atoms of a dimer, by J,; the
intra-dimer interaction, and by K,, Kz K. the inter-dimer
interaction between the respective AA, BB, and AB atoms,
located on different molecules. The ligand field energy is
denoted by A and the degeneracy of the high spin (HS), g, plays
a role of an additional entropic term —kzTIng, equivalent to a
temperature-dependent field term, h=A—kgTIng. It is necessary
to recall that all the interaction parameters of the model are
elastic in nature.®™ A schematic view of the chain is given in
Figure 1. The Hamiltonian of a binuclear chain of SCO system
writes

H= Z H/ntra + Z Hmter. )

Here H™ and H™, respectively express the intra-binuclear
and the inter-binuclear interactions.

The intramolecular interactions contain the ligand-field
energies of both sites belonging to the binuclear i and the
intramolecular interaction between the two sites A and B inside
the binuclear. At site i, H" writes:

H::nna — _JABS;‘S? + h(SIA + S?)7 @

with h=A—kTIng.

The interactions between the binuclear units involve several
types of contributions, between A—A, B-B, and A-B sites
belonging to nearest-neighbors (nn) binuclear sites. In addition,
we introduce in this work a new type of interaction which
considers that the binuclear unit may also respond as a single
and compact object, which then leads to three body inter-
actions of type (s +s7)s’'s’ as well as to four body interactions
of type, si's; - 57s7.

A schematic view of the various types of couplings between
the binuclear molecules are sketc.hed in Figure 1 which

summarizes the intra- and inter-binuclear interactions consid-
ered in the present study.

In the general case, the Hamiltonian including the inter-
actions between the binuclear species can be written as follows

HI = —(Kus)'s! + Kegs?s})
Ko (! + 57)sfs] + 5157 (5] + 7)) =

- KAB(SI/"S,"3 + 5?5}4)
3
Kos/sis)s?. ®
In addition, we assume periodic boundary conditions,
sy, =S, and sy, = s}, where N is the number of A (B) spins in
the chain and so the chain contains 2N atoms.
With the notation S=1/k;T, where kg is the Boltzmann
constant, the partition function is given by

ZZZSSSS

shsB o s)sh st

73/"/ B, A B
Z="Trle™” T(sh,s5; 57, s5).

(4)

The kernel T is defined by
T(s),57:55,53)
= expﬁ{ (s7s8 4 s )] exp B[Kus;s) + Kegsiss]

h
< explfa(sist + sshlexp |- 515 st st s )
x exp[BK (s}s(s; + 55) + s5s5(s; + 59))]
x exp[BK,s]s?s5s3] .

The kernel T is symmetric by construction, i.e.
T(st,s%,50,s5)=T(s},s5;57,5%) and has a dimension 4x4. Follow-
ing standard studies, like those of ANNNI (axial next-nearest
neighbour Ising) model,””*® where similar four-point kernel
T(s4, S5, S3, S4) @re obtained, the partition function can be written
as Z = Tr[T]", where the matrix T contains 16 matrix elements
whose expressions are given in the Appendix.

To find the eigenfunctions 1; of the transfer matrix T we
only solve one integral equation. The matrix T writes

ZZT ’517 27 2 ¢(5A S) /1,»’(/),‘(5/2‘,55), (6)

Here, 1 ; corresponds to the eigenvalue associated with the
eigenfunction ;(s5,s5). It is known from Perron-Frobenius

Figure 1. Schematic views of the chain and interaction configuration between the binuclear SCO molecules whose thermal properties are exactly studied
using the transfer matrix method. Each metallic center A (resp. B) of the dimer molecule is associated with a fictitious spin s* (resp. s). Intra-binuclear two-
bodies interactions coexist with inter-molecular two-, three- and four-bodies couplings.
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theorem® that the biggest eigenvalue is real and non-
degenerate. The transfer matrix of Eq. (6) can be expressed as
an expansion in terms of eigenvalues and eigenfunctions by

4
T(s},5%:53,52) = D Aabi(s}, ) wi(s), 5)- 7)
i=1

Let us denote by A, the largest eigenvalue. Using the
Frobenius theorem, we know that 4, is real and unique. We
have also verified numerically that all the other eigenvalues are
also non-degenerate. The partition function Z, is the trace of T",
so that in the thermodynamic limit it is simply given by

Zy=A). (®)
The free energy is
F=—ksTInZy = —NkgT In 4,. (9)

Hence, by simple numerical derivation, we can obtain the
heat-capacity C, through the relation, C, = —T%.

The fraction of molecules in the HS state, ny, is related to
the average magnetization (s) per site through
nus = (14 (5))/2. In the calculations, we will mainly plot (s)
which is equal to —1 in the LS state and + 1 in the HS state. The
average fictitious magnetization (s) is obtained from the
knowledge of the eigenfunction of the fundamental state as:

6= 30 S wolst s (5 el ). (10

A B
5 5

Despite the rather simple procedure for obtaining the
partition function, the average magnetization in the previous
calculations, the two-spin correlation functions require the
knowledge of both eigenvalues and eigenfunctions of the
whole energy spectrum. For the present model, we are
interested in the pair correlation function, (s/s}) which gives
information about the intra-binuclear organization of the spin
states. Following the general method introduced in Ref. [99], we
obtain in the thermodynamical limit, i.e. N — oo

RGN Db B) BINCRIETICRS)

i=1 5 S (11)
(1/)0(5?7 sf)sf’l/}/’(sﬁ Sf))

It is worth mentioning that the higher order spin-spin
correlations, like (s/sis;) or even (s}s’s)s3) can be calculated
using the same procedure described above or by differentiating
the total free energy with respect to the interaction term
associated with the quantity of interest.

ChemPhysChem 2024, 25, 202400238 (4 of 16)

3. Transfer Matrix Results

We have performed the numerical calculations of the eigenval-
ues and the eigenfunctions at each temperature using the
routine FO2EBF of the NAG library,"® where all the eigenvalues
and eigenvectors have been obtained with a precision of less
than 107 We calculate the thermal behavior of the HS fraction
and its corresponding heat capacity for different situations
using the exact formulation of the transfer matrix method. In
the present contribution, we aim to stress on several aspects
related to the effect of the nearest (nn) and next-nearest (nnn)
neighbors’ interactions on the emerging thermal behavior of
the HS fraction and that of the average state of the binuclear
units (s"s*), which will be developed below.

3.1. On the Role of Each Model Parameter

The total Hamiltonian H,,,,+ Hier given in Egs.(2) and (3)
contains several contributions whose energetic effects merit to
be dissected in a detailed way. Obviously, in the intra-molecular
part (Eq. (2)), the ligand-field energy, A stabilizes the LS state
while the intra-binuclear interaction J,; <0 favors the config-
urations —+ and + — inside the binuclear, where + and —
stand for the HS and LS configurations, respectively. Already at
this stage, we can see the existence of a competition between
A and J,; To consider the general case including the inter-
binuclear interactions, K, Kz Kis K; and K, one may examine
the energy spectrum of two interacting binuclear units at
0 Kelvin for several situations of interaction parameters. How-
ever, since there are 16 energy levels, it is a heavy task to
handle all situations by this way. In contrast, it is possible to
discuss qualitatively the effect of all these parameters on the
electronic configurations. Thus, for example, positive K, Kz,
parameters favors the appearance of ferro-type interactions
between A-A and B-B sites of neighboring binuclear units.
Within these signs, the following configurations of neighboring
binuclear units, (+ +)-(+ +), (==)-(==), (+-)-(+-), (=+)-
(—+) have the same energy. However, with K,; >0, one
stabilizes the configurations (+ +)-(++), (—=)-(—-), (+-)-
(—+), (= +)-(+ =) which have the same energy and destabilizes
the configuration (+ —)-(+—) (—+)-(—+) as well as (££)-(FF)
which are favoured when K,; <0. The coupling K, >0 (resp. K;
<0) favors the configuration (+ +)-(+ +) (resp. (——)-(—-))
even at low-temperature which then clearly indicates that
strong positive K; values may lead to recovering the HS state at
low-temperature for K; >0, thus producing re-entrant phases.
The final coupling parameter, K, >0 (resp. K, <0) stabilizes all
configurations leading to a positive (resp. negative) product
s}sisyss, like (+ +)-(+ +), (——)-(—=), (+ +)-(——) etc. So, with-
out even reviewing all possible configurations, we see clearly
that the present model opens a large possibility of thermal
behaviors for the HS fraction and the spin-spin correlations. In
the following, we examine some of these thermodynamic
behaviors. We note in passing that in calculations that follow,
we will consider, as is customary in statistical physics, the

© 2024 Wiley-VCH GmbH
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Boltzmann’s constant as equal to 1, so all energies will be given
in Kelvin.

3.2. Case of Short-Range Interactions

The first part of the study is devoted to the case of short-range
interactions only, which is exactly the case of the total
Hamiltonian (Eq. (1)), combining the intramolecular contribution
(Eq. (2)) and the intermolecular one (Eq. (3)). Several config-
urations of interactions, including ferro- and antiferro types in
the intra- and inter-binuclear units will be considered in this
section. Although the absence of long-range interactions
prevents the emergence of hysteretic transitions in this case,
the competition between ferro- and antiferro short-range
interactions is at the origin of a rich variety of thermal behaviors
and spin organization, as will be shown in this section.

3.2.1. Case of Non-Interacting Binuclear Species

The case of non-interacting binuclear species is quite obvious
to investigate, however, it has the merit to help to understand
the system behavior when all intra- and inter-binuclear
interactions are suppressed. The results are summarized in
Figure 2 which shows a simple gradual and continuous
transition of the average fictitious spin state, (s) and the free
energy F, which appears as a decreasing function of temper-
ature, as expected by basic thermodynamics. On one hand the
transition temperature, obtained for (s) = 0, has the expression:

=2 —120K. On the other hand, the average correlation

eq ~ kglng

function inside the dimers, <sAsB>, shows a peak around the
transition temperature, with a value (s"s®)=0 indicating a
disordered state in the configurations of the dimers at this

transition.

1.0 Jo
<S>
1-4 —~
N 054 F <s"s®> e,
(D N N
< {-800 &
1)) o
V 0.0 o
'O; {-1200
o
5057 1-1600 &’
-1.0- 12000
50 100 150 200 250
T (K)

Figure 2. Thermal evolution of the average fictitious magnetization, (s)
(black curve) and intramolecular spin-spin correlation pair (s"s®) (red curve)
and corresponding free energy per site (blue curve) for the case of non-
interacting binuclear units. The parameter values are:
Jip=Kiy=Kes=Kis=K,=K,=0K, A=600 K and Ing=5.
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3.2.2. Sharp One Step Transition: Case K,z > 0, Kyp > 0 and Kgg
>0

In the restricted case of ferro intra-binuclear interactions J,; >0,
and when K, =Kg;=K,; >0 and K; =K, =0, our problem can be
solved analytically.”” The expected effect of these ferro-like
short-range interactions is to steep the slope of the HS fraction
nys (related to the average fictitious magnetization through
Nys :#) curve at the transition temperature, i.e. for an:%
((s)=0).

This indicates that the chain approaches a "first-order”
phase transition-like behavior, even if we know that there is no
true first-order transition with (nn) and (nnn) interactions in 1-D
systems. However, including later a weak long-range ferro- or
antiferro-like interaction will lead to producing the genuine
first-order transitions. In the present case, the ferro-type
interaction, considered inside the dimer means that the
molecular “cage” is not rigid enough to prevent the breathing
of each dimer and to cause steric effects between them. As a
result, the sharp transition, observed in Figure 3 indicates a
direct transition from LS-LS (5*=—1, S=—1) dimer state to a
HS-HS ("= +1, S°=41) state, as proved by the thermal
behavior of the average (s"s®) order parameter which stays
almost equal to +1 for all temperatures, except around the
transition temperature where a sharp peak (with a low
amplitude) appears.

3.2.3. Case of Antiferro-Like Intra-Binuclear Interaction: ),z <0

Here, we investigate the case of non-interacting binuclear
entities with intra-molecular coupling, J,; <0. Due to this
antiferro-like interaction, which favors the appearance of HS-LS
species, along the thermal transition, a two-step transition is
obtained, as shown in Figure 4a. Although not shown here the
width of the plateau depends on the strength of the intra-
antiferro interaction, which originates from steric effects
between the two constituents of the dimer. To confirm the self-
organization of the chain in the plateau region, we calculate the
thermal dependence of the average two-spins correlations
function, (s"s®) (red curve in Figure 4a) which shows peaks in
this region around the value (s"s®)~ — 0.5, which means that
75% of the dimers occupy the state HS-LS. The corresponding
heat capacity (blue curve in Figure 4a) displays a double
Schottky anomaly whose peaks correspond to the splitting of
the previous transition temperature of Figure 2 to two transition
temperatures, estimated as qugﬁij/z (~70 and ~170 K).
To predict this behavior, we depict in Figure 4b, the field h (h=
A—kzTIng) dependence of the energy of the sixteen config-
urations of two neighboring SCO binuclear units. Here, strongly
negative (resp. positive) h-values correspond to high- (resp.
low) temperatures. According to this energy diagram, we see
that starting from highly positive values of h and following the
minimum energy curves leads to (——;——) as a fundamental
state. When decreasing h, a crossover occurs for h™=J,;=
—100 K with the state (— +;—4) which is four times degenerate
[(£F—+) and (£F;+ -)]. Later, this state ceases being the
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Figure 3. Thermal evolution of the average fictitious magnetization, (s) showing a sharp spin transition between the LS and HS states in the case of ferro-type
interactions inside and between the binuclear units. Left inset is the intramolecular spin-spin correlation pair <s"s”> which remains almost equal to + 1 and
the right inset is the corresponding heat capacity, given in k; units. The parameter values are: J,;=K,, = Kz =K,z =100 K and K, =K,=0 K, A=600 K and

Ing=>5.
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Figure 4. a) Thermal evolution of the average fictitious magnetization, (s) (black curve) and intramolecular spin-spin correlation pair <5ASE> (red curve) and
corresponding heat capacity per site (blue curve), given in kg units, showing two peaks for the case of non-interacting binuclear units. b) Evolution of the
energy spectrum as a function of the field h=A—k;TIn g indicating the evolution of the configuration energies of two (nn) binuclear units. The parameter

values are: K,y =Kgs=Ks=K,=K,=0K - J,;=—100 K.

fundamental one below h* =-J,;,=100 K for the benefit of the
non-degenerate state (+ +;+ +). From the thermodynamic
point of view, these two values, h™, of the effective field
correspond the temperatures T* = Tg + kjjl’:’g, which are valued
to 80 and 160 K, in excellent agreement with the maximums of
the heat capacity of Figure 4, obtained at T =75 and T"=
160 K.

It is interesting to mention that the plateau observed in
Figure 4 does not consist in an ordered state of the HS and LS
spins species, and so no symmetry breaking occurs during this
double transition. Indeed, keeping nonzero only the intra-
molecular coupling parameters, J,; and A, leads to Hamiltonian
(Eq. (2)), which is invariant by the permutation of the spins s*
and s%, which makes them equivalent. On the other hand, one
always has in this case, (s*) =(s*), where (s*) and (s°) are the

ChemPhysChem 2024, 25, 202400238 (6 of 16)

average thermodynamic of s* and s?. Consequently, the plateau
region in Figure 4 is constituted of a disordered state mixing,
(+,—) and (—,+) binuclear states. Later on, the case of
symmetry breaking in the plateau will be discussed when we
introduce the long-range interactions between the binuclear
units.

3.2.4. Case of Antiferro Inter-Binuclear Short-Range Interaction:
K, <0

The special case of antiferro interactions (K, <0) between
binuclear entities is considered here, where only the interaction
parameter K, is nonzero (K,,=Kg =K,z =K, =0). According to
the previous discussions, and the Hamiltonian Eq. (1), this
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situation favors the emergence of (+ +;+7F), (——;=F) config-
urations and their symmetric forms (£F+ +), (£F—-)
between (nn) binuclear molecules. At the same time, the
effective ligand, h=A—k;TIng stabilizes the (——;——) and
(+ +,+ +) configurations in the low temperature (LT) and high
temperature (HT) regions, respectively. First of all, it is important
to notice that in the present situation where only h and K, are
non-zero, the total Hamiltonian becomes invariant by exchang-
ing 57 and s. As a result, we have (s*) =(s*)=(s)

3.2.4.1. Thermal Dependence of the Configuration Probabil-
ities

To characterize the self-organization of the spin states along
the spin transition, let’s derive the probability of each of the 16
configurations of two neighboring binuclear units. Let's denote
by P(s;,5,....Sy), the global probability of finding the chain at
temperature, T, with the spin values, s, for the 1% site, s, for the
2" site etc. Remarking that the quantity 3 (1 +s;s]) is equal to
+1 for s;=s; and to 0 for s;=—s; (doing this we run over all
possible values of s’;= 4 1), one can write the following identity
for the general case of N spins:

(1+ 515,1)(1 + SiS;)
18 1=Cts) 12)

(T4 SS PSSy ey Sy)

1
P(S1,S3, -5 5n) =55

where {s}={s,,s,....5s} and {s;} = {s,,s,,...,sy}. The previous
expression can be written as follows:

P(517527 <y SN

1 : ,
)= FH 2(1 +5:5,)(1 +555,)
=1 s (13)

(14 5uSy)P(S), Sy -vvr S1)

Although these developments can be continued in the
general version, we limit ourselves from now to the case of two
binuclear units (s?,s%, 52, s8), which will be denoted here (s;, s,,
s;, s, for the sake of simplicity. In the present case, the
probability of each configuration for four neighboring sites (N=
4) leads to the following equation:

P(S17527537S4)

14 : :
:?H 2(1 +515,) (1 +555,)

i=1 5;:i5r (14)
(14 5355) (1 4 545,)P(S), 55, 53, 5,)

After simple developments, Eq. (14) can be re-written as a
function of the macro-variables of the system:

ChemPhysChem 2024, 25, 202400238 (7 of 16)

P(s1,52,53,54) = 1+ZS m+ZSS U+Zsisj$k
i# i#j#k
(15)
Ry + Z SiSiSkSe Qijkl:|
ikt
Where m; = (s,} =D }S,P(S’ Skvsf) = <5 5;) =

Z{S}SSP(S,, j,sk,sf ,,k = <sssk> Z{s}s,
Quu = (S5iS5k50) =15 /5 sks,P(s,,sj Sy S,)-

In the case where the total Hamiltonian is invariant through
permutations of spin s; and s; (Vi#j), one can write (s;) =m,
(si5;) =1, {sis;5¢) = R, and (5;5;5,5,) = Q leading to the following
expression of the configuration probabilities:

(,, l,s,“s[) and

1
P(s1,52,53,54) :?[1 +(S1+ 52+ 53+ 5,)m
(5152 + 5153 + 5154 + 5253 + 5254 + S354)r
(515283 + 515254 + 515354 + 525354)R

+515,5354Q]

(16)

The derivation of the previous probabilities (Eq. (12)) is a
strong tool allowing the determination of the dominant
contributions in the system while accounting for all spin-spin
correlations. In the following, we will use (Eq. (16)) to derive the
thermal dependence of the spin configuration probabilities of
two neighboring dimers to understand the microscopic mecha-
nism of the evolution of microscopic populations of states and
their competition as a function of temperature. In the particular
case of antiferro interactions between the binuclear units, the
access to the occupation probabilities is of great help in
identifying the microscopic self-organization of the system,
which can not be easily disentangled from the macroscopic
variables, due to the highly degenerate nature of the energy
levels. In the end, one can easily write down the possible states
with degeneracies Q as follows:

1
P(4,+,+,+) = —6(1+4m+6r+4R+Q);Q:1
1
P(4+,—,+,+) = E(1+2m 2R—-Q); Q=4
1
P(+,— — ) =7g(1-2m+2R—Q); Q=4
1 (17)
P(‘i‘7 , +, ) ﬁ(1—2r+Q) =4
1
P(+,+——):—6(1—2r+Q) =2
P(—, =)= ) = 11—6(1—4m+6r—4R+Q) —1

3.2.4.2. Results of the Numerical Calculations
Let's now go back to discussing the results of the simulation

presented in Figure 5. First of all, from Figure 5a depicting the
thermal dependence of the total magnetization, we identify a
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Figure 5. a) Thermal evolution of the average fictitious magnetization, (s) showing multi-step transitions caused by the antiferro short-range intermolecular
coupling, K,. b) Evolution of the energy spectrum of two coupled binuclear units as a function of the field h=A—k;TIn g, indicating several crossovers
corresponding to the multistep transitions. Large negative [resp. positive] h values correspond to the high temperature (HT) [resp. low temperature (LT)]
region. c) Corresponding thermal evolution of the intramolecular spin-spin correlation pair (sAsE> and corresponding d) heat capacity per site (in kg units)

showing several peaks located at the transition temperatures. e) Thermal evolution of the four spin correlation (s/'s’ s;S;

55458 ) in blue showing a minimum at

108 K with a value (s%s®s*s® ) = —0.72. f) Thermal dependence of four spin configuration probabilities where the' black, magenta, cyan, red, blue, green curves

i 2i%j 2j

correspond to the configurations (4 +;+ +), (+ +;—=), (+—;+ =), (+ +;+ =), (——;— +), (——;——) respectively. The parameter values used for the simulation

are: A=600K, Ing=>5, J;3=0K, K=K,z =Kzp=0K, K,=0K and K,=—100 K.

three-step spin transition which is obtained by adjusting only
the parameter K,. This multi-step transition reflects in the
energetic behavior of the phase diagram given in Figure 5b, as
well as in the intramolecular nn correlation (s,s;) (Figure 5¢), in
the heat capacity (Figure 5d) and in the other order parameters
(Figure 5e) and probability occupations of the energy levels
(Figure 5f). Thus, starting from the HT phase (~200 K), where
the HS state is dominant, a first partial and very smooth
transition occurs around 170 K corresponding to the first “peak”
in Figure 5d representing the thermal dependence of the heat
capacity. In this region, the order parameter, (s), it changes
from 1 to 1/2 (nys =3) as shown in Figure 5a. This behavior
announces the existence of spin configurations of type
(£F,+ +) as well as their symmetric forms (+ +,+F) for
consecutive binuclear units. To predict the consecutive tran-
sitions observed in Figure 5a, we calculate the energetic phase
diagram of a couple of two interacting binuclear units related
to the present case. The following energy levels are obtained

E(s1,52,53,54) = h(s1 + 5, + 53 +54) =Ky - 515,53+ 5, (18)
where h=A—kgTIng. Thus, the negative (resp. positive) value of
h corresponds to the high- (resp. low-) temperature phase. Due
to the highly symmetric form of the expression of the energy in
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Eq. (18), the system presents only five levels whose three are
degenerate, as depicted in Figure 5b, which depicts the
effective field-dependence of the energies of the accessible
spin state configurations. Based on the crossing lines of the
energy diagram of Figure 5b, the configurations (£, + +) are
the most favorable to appear first on cooling as a crossing
between the energy of the fourth degenerate (+F,+ +)
configuration and the (+ +;+ +) configuration. The intersec-
tion occurs for h ~—200 K, which corresponds to T=180 K).
This is further supported by the increase in the probability of
the (+ +;+4 —) configuration represented by the red curve in
Figure 5f, obtained from Eq.(16). Indeed, the value of
P(+,4+,4,—) in the curve representing the total probability of
the four equivalent forms (+ +;+-), (++;—+), (+—+ +),
and (—+;+ +) increases as the temperature decreases and the
species transform from HS to LS state, while the value
P(+,4,+,+) decreases and the probability of all the other
configurations stay almost equal to zero indicating that at the
microscopic level, the appearance of the (++;+—) self-
organization and its symmetric forms are favored upon the first
gradual conversion. In addition, to ensure the predicted
dominant configuration is obtained in the simulation, we plot
the thermal dependence of the mean value of the correlation

7st.s7.,) in Figure 5e, where we also see a decrease of the

A
<Si Si Si+1 Si+1
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four body correlation from (sis’s} s’.) ~1 at 250K, to

(s'sPsl s7.,) = —0.13=—-0.13 at 170K, thus indicating a
change in the order of the spin states towards the predicted
configuration (+ +,4+—).

By lowering the temperature, a second transition occurs at
118 K (Figure 5a) which corresponds to the second sharp peak
(maximum) in the heat capacity curve, where this time the
order parameter in Figure 5a goes to 0, indicating a new phase
transition with the appearance of a new ordering of the
binuclear units in the form of (£F,——) and its symmetric form
(——,£7F). Interestingly, at T=118 K, the correlation function
(s"s®) drops to zero abruptly, as a result of the coexistence of
the above-mentioned configurations and the (+ +,+F) and
(£F,+ +) ones. This behavior is anticipated by the phase
diagram plot in Figure 5b, which shows that at h=0 corre-
sponding to T=T,,), a crossing between the (—+;+ +) and the
(=—;—+) configurations takes place, indicating that at T=T,,=
117 K, these configurations would be the dominant ones.

This is further established by the thermal dependence of
the configuration probabilities curves of Figure 5f, as the red
curve representing the probability of the four times degenerate
state (+ +;+ —) which was at a maximum value after the first
transition decreases, while the blue curve representing
P(—,—,—,+), the probability of the four equivalent forms
(===, (==i+-), (=+;=—), and (+—;——) increases from
zero to its maximum value at the end of the second transition,
with a crossing between the two curves at T=T,, temperature
at which although being dominant, these eight configurations
coexist with the two times degenerated state (+ +;——) and
the four times degenerated state (+ —;+ —), whose contribu-
tions appear as marginal. The results yielded by the simulation
are in agreement with these predictions as the value of the four
body correlation stays at its minimum as shown in Figure 5e
with (s's’s? s )~—0.5, which can be observed only if the
dominant configurations are the (+ +;+ —) and (——;— +) ones.

The third and last transition occurs at 67 K as seen in the
heat capacity plot of Figure 5d which peaks at low temperature,
as well as from the mean value of the magnetization curve
Figure 5a where the order parameter changes from —1/2 to —1,
indicating the appearance of (——,——) short-range binuclear
units. This transition is also predicted by the phase diagram of
Figure 5b which depicts a crossing point between the (——;—+)
and the (——;——) energetic lines for h~200 K, corresponding
to T~80 K, a value which is in fair agreement with simulations
findings. After this transition, the system goes to the LS state
with only the (——;——) configuration existing as confirmed by
the thermal dependence of the configuration probabilities in
Figure 5f.

3.3. Case of Interacting Chains and Thermal Hysteresis

Let's consider now the case where the SCO chains interact with
each other. The purpose of this section is to get closer to
experience by considering inter-chain interactions in order to
produce first-order transitions. Indeed, in real 1D SCO solids, the
chains are not isolated and steric or/and electrostatic inter-
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actions play an important role in driving abrupt and hysteretic
transitions."®" This is the case in SCO chain compounds"®'* in
which non-coordinated water molecules and counter-anions
connect the polymeric chains, leading to the existence of true
first-order phase transitions, accompanied with wide thermal
hysteresis.

To extend the present model, in order to account for inter-
chain interactions,”>'*'%) we use the previous Hamiltonian of
the isolated chain as a starting point. First of all, to simplify the
presentation of the equations, we adopt from now the
following new variables to describe the spin states or spin
configurations of the binuclear unit

ti=s's® and S, =s'+sb (19)

In Eq. (19), the knowledge of t; and S; for the ith-binuclear
site, uniquely defines its state. Within these notations, the
previous total Hamiltonian (Eqg. (1)) of an isolated chain of
interacting dinuclear SCO units, can be simply written in a
compact form as,

H = Z(hsi - JABti) - Z(K5i5i+1
i i (20)
—kK; (Siti+1 + tisi+1) — Ktitiys )

Within this new formulation, the interaction constant K does
not depend on sites A and B, we implicitly assume that K,,=
K, =Kz = K. However, we'll come back to the general case later
when we give the expression for the transfer matrix.

The total Hamiltonian including inter-chain effects writes

_ C—C
o=+ 3V @

where H® is the Hamiltonian of the chain, given by Eq. (20), and
Vi, € is the interchain interaction potential energy. Let us denote
by i and j two neighbouring chains as depicted in Figure 6, and
by (i,k) and (j,¢) the coordinates of two SCO dinuclear units
belonging respectively to chains i and j and labelled by the
indices k and /, respectively.

Let us denote by S,,, S;, t;x and t;, their associated fictitious
“spins”. The inter-chain interaction potential between two-
chains i and j writes,

Vic=—J Z SuSie — Ky Z(Si‘ktj[ +tuS;0) — K Z tikties 22)
Kl Kl ]

where J, K, and K, are the inter-chain interactions, which are
schematized in Figure 6. Obviously, one may solve this new
Hamiltonian (21) using Monte Carlo simulations (exact calcu-
lations). Here, we choose to keep the exact treatment for the
intra-chain Hamiltonian and treat the inter-chain contribution in
the mean-field approach, which is known to be equivalent to
considering infinite homogeneous long-range interactions
between the chains, where the coupling has the same strength,
whatever the distance between the sites. Within this approach,
the inter-chain potential (22) becomes,
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i-th chain

j-thchain

Figure 6. Schematic view of two SCO chains, some interchain interaction configurations between the binuclear units to enlighten the connections between
the chains. See text for more explanations; in particular the structure of the V7 interchain potential (22) helps to identify the set of considered inter-chain

interactions.

Vi © =~ 2S48~ Kun D (S48 +845)) — Kun D00, (3

i

where, the previous interchain interaction constants are now
noted: J;5 Ky and Ky, It is worth noticing that the present
infinite long-range interactions are well-adapted with their
elastic nature in SCO materials. These elastic interactions
between mononuclear units was found to belong to the mean-
field universality class, as proven in Ref. [106].

Finally, the resulting total mean-field Hamiltonian, account-
ing for intra- and inter-chain interactions can be written under
the following form

H = (h — Jia(S) — Kya(t) Z S,
—(Jas + Kt (S) + Kaua () Z t;
K> 5Si

i
—K, Z titir,

(24)
— KD (Sitir +1:5:1)

i

where the index i runs along the chain.
It is useful at this point to recall the following notations:

S = (s + ), t = '8, (5) = 1) and (1) = (sts?),

Thus, the total mean-field Hamiltonian (24) expresses a self-
consistent problem in the basis of the 1D chain Hamiltonian (1).
The thermodynamic properties of the system are then obtained
self-consistently using the Transfer Matrix method. The new
kernel T, given here in the general case, using the intra-chain
interaction constants K,,, K,; and Kz =K, is defined by:

ChemPhysChem 2024, 25, 202400238 (10 of 16)

T(st, 5550, s%)

11229

— expﬁ |:JAB + K1LR<S> + K2LR<t>

. i+ 510

X exp f3[KuuS;sh + Kegssss + Kag(s)ss + s355)]

(25)
K, —h
x exp 3 {J—MS) + Z”R<t> (sh+ 558+ sg)}
x exp B[Ki (sis5 (s + 55) + s5s5(s? +59))]
x exp B[Kys7s75555)

where Jiz (Usg), Kigr (K1), and K,5 (K,) are respectively the long-
range (resp. short-range) 2-, 3-, and 4-body interaction parame-
ters.

The calculations of the order parameters (s*), (s*) and
(s"s") from the transfer matrix lead to three self-consistent
equations which are solved numerically using Newton-Raphson
method. The procedure is very simple: we first start the
calculations from the HS state, by fixing all average “order
parameters” to their expected values ((S) = 1, (t) = 1) and then
we diagonalize numerically the transfer matrix, from which we
derive the greatest eigenvalue, noted 4, and therefore the free
energy per site f=—kgTIn 4,.

There are two ways of calculating (S) and (t) at each
iteration. One may simply calculate numerically the following
derivatives (S) = —/% and (t) = /%AE or determine these
average values by using the eigenvectors of the transfer matrix
through Egs.(10) and (11). We have checked that both
procedures lead to the same results. In addition, high-order
moments like (s}s3(s5 +5s3)) *1/2/52; and (s}s3s)s5) = (t,t,) =
ﬁOK, can be achleved using the first method, without having to
go through the eigenvectors of the transfer matrix.

Finally, the variational free energy per site of this self
consistent system writes
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1 where i runs now along the chain sites. It is quite easy to
f=—kTInky —kTIng + EJLR<S>2 demonstrate that the interaction potential (28) renormalizes the

5 Kaun 1) HKua(5) 1)

According to the values and the sign of the interaction
parameters J,z, Kz and K,z one may obtain simple first-order
transitions with hysteresis or hysteretic multi-step transitions.
Several cases can be distinguished in the long-range inter-
actions’ effects, which we report in the following sections.

3.3.1. Effect of Two Bodies J,z Long-Range Interaction and
Symmetry Breaking

Here we analyze the simple case where only two body long-
range interactions are acting between the chains, considering a
general interaction scheme, where A—A, A—B and B-B sites
belonging to different chains may interact differently. The
interaction potential writes in this specific case,

== ZZZM‘? STkSje + JRSieSis
i# ok (27)
JAB( k][+51k )]

In the mean-field approximation, and after absorbing the
coordination number in the interaction parameters, for which
we keep, for convenience, the same notation, the previous
contribution becomes

Vi€ = = DU +AS)

+IR (51 (s”) + 57,

(28)

a)

1.04
0.5
A
) 0.01
v

-0.54

-1.04
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Figure 7. a) Thermal evolution of the average fictitious magnetization, (s) =

interaction parameter values J# =300 K and J% =100 K. A symmetry breaking behavior is revealed through the thermal-dependence of ~—— {+

<3‘+s >

previous effective ligand field energies (h=A—k;TIng) of sites A
and B which now become,

e = A —ksTIng — JG(s") — J(s")
(29)
hi = A —ksTIng — J(s") — Ji(s").

In the general case, the coupling parameters, J4, /%8 and /%
can be different, which automatically breaks the symmetry
between the sublattices A and B. A similar study was done in
detail a long-time ago using a two-bodies interaction within the
Ising-like model by Bousseksou et al.”*’® and demonstrated a
rich variety of the phase diagram of this model with the
occurrence of a symmetry breaking between the sub-lattices A
and B in the plateau region.

For simplicity and to show the case of symmetry breaking in
the plateau region, we considered the situation where the long-
range coupling S = J% and J/£=0. In this situation, exchanging
st by s in the Hamiltonian does not keep it invariant. The
obtained results are summarized in Figure 7a where we display

SA B
the thermal-dependence of the two-order parameters @

A_B
(black curve) and @ (blue dotted curve). Contrasting with
the upcoming case of Figure 8, the present two-step transition

shows a symmetry breaking in the plateau region where the

parameter <5A:B> =0, which means that the A and B sublattices
become inequivalent in this region. This result is confirmed by
the thermal behavior of (s*) and (s%), shown in Figure 7b,
depicting the existence of two bifurcation points on heating
and cooling between the two order parameters.

1.01

0.5+

SE>

~ 0.0

> <

<Sh

-0.5

-1.0

0 50 100 150 200 250 300
T (K)

(bold black curve) showing a double step transition for the long-range

f) (blue dotted

curve) which shows a characterlstlc behavior |nd|cat|ng the existence of a partial order HS=LS—HS=LS—HS=LS in cooling and LS=HS—LS= HS LS=HS in heating
between the binuclear units. b) Thermal-dependence of (s*) and (s°) showing the different behavior of the two sites ({s*) in red and (s°) in blue) around the
plateau region. On both heating and cooling processes, B sites switch first then followed by A sites. The other parameter values are : J,;=—100K,

Kun=Kea=Ksg=K, =K,=0K, J¥=0K, A=600 K and Ing=>5.
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Figure 8. a) Thermal evolution of the average fictitious magnetization, (s) in black showing a double step transition for /i = J’%8 = J'¢ =250 K. Both order

parameter (s*) and (s*) remain equal at all temperatures. The intermediate state is disordered as confirmed by the behavior of (s*s®) in blue and @ in the
inset and so no symmetry breaking occurs in the plateau region. b) Temperature dependence of the free energy showing a decreasing function with
temperature allowing to see the true equilibrium transition temperatures, T, and T,,,. Inset: enlargement of the transition region showing the location of the
metastable states on heating and cooling. The other parameter values are: J,;=—100 K, Koy =Kz =Ks=K,=K,=0 K, A=600 K and Ing=>5.

To convince the reader about the existence of two-step
transitions without symmetry breaking, we performed similar
calculations by taking S = J% = /¥ =250 K for the same order
parameter values as those of Figure 7. In the present case, the
Hamiltonian becomes invariant with respect to the exchange of
s! and s¥ sites which guaranties the relation (s*)=(s*), thus
excluding the occurrence of a symmetry breaking, despite the
existence of a plateau at the transition, caused by the antiferro-
type intra-molecular interaction J,.

The obtained results, summarized in Figure 8a, show that
the double step transition takes place on both sublattices
concomitantly, with order parameters (s*)=(s") which proves
that the symmetry breaking is absent in this situation. Thus, the
plateau region, results in the existence of a disordered state in
both A and B sublattices, leading to (s*)=(s?)=0 to which
corresponds a value (s*s®) =—0.5. This is in very good agree-

ment with the behavior of the order parameter @ which is
equal to zero at all temperatures, proving definitely that there is
no self-organization in the plateau of Figure 8a. In addition, to
check the stability of the solutions in Figure 8a, we plot in
Figure 8b the corresponding temperature-dependence of the
variational free energy, given by Eq.(26), where we have
identified the equilibrium transition temperatures, which are
the temperatures at which the free energies of the ordered (LS
or HS) and disordered phases are equal. According to basic
thermodynamics, the free energy should be a decreasing
function with temperature, which is the case here, except for
metastable and unstable states, well characterized by the
presence of the cusps in the inset of Figure 8b. In addition, the
identified values, T,,,~60 K and T,,,~187.3 K, of the transition
temperatures, from the free energy panel of Figure 8b are in
excellent agreement with those deduced from the thermal
evolution of the fictitious magnetization, plotted in Figure 8a.

ChemPhysChem 2024, 25, 202400238 (12 of 16)

3.3.2. Three and Four Steps Transition Caused by Negative Four
Bodies Inter-Dimers Interactions

When negative short-range intra- (J,;3=-—200K) and inter-
dimers interactions, K, <0K, coexist with ferro long-range
couplings ¥ = J% = =250 K and ferro-type long-range of
four bodies inter-dimer interactions K,;; =300 K, three and even
more steps transitions are obtained and accompanied with
several hysteresis’. Figures9a and 9b report the thermal-
dependence of the average fictitious magnetization in two
cases corresponding to weak and strong anti-ferro short-range
4-bodies interactions (parameter K,=—100, —200K) in the
presence of ferro long-range 4-bodies coupling (K,,;=300 K).
The thermal-dependencies of their associated variational free
energies are given respectively in Figures 9c and 9d.

In the case of strong antiferro (K, <0) interactions, 3-step
transitions (Figure 9a) are obtained with intermediate plateaus
at (s)=0.5 and —0.5, corresponding to HS fractions values
equal to 3/4 and 1/4 which has been several times obtained in
Ref. [107]. The case of weaker | K, | values presented in Figure 9b
is even more spectacular since it leads to several steps
combining hysteretic and gradual transitions, denoting the
prominent role of competing interactions. Here also, similar
curves are often observed in the experiments®® and sometimes
without thermal hysteresis as in the case of the so-called “devil
staircase” reported in Ref. [108]. In most cases, these behaviors
relate to the presence of structural phase transitions and the
occurrence of symmetry breaking in the plateau regions, which
accompanies the spin transition process.

For both previously discussed situations, we have calculated
the thermal dependence of the free energy function, given by
Eqg. (26). In the case of 3-step transitions of Figure 9a, the
corresponding graph of the free energy (Figure 9¢) shows three
accidents at temperatures T, ~62.3 K, T,;,~119.2K and T,;;=
194.2 K which fall exactly in the regions of thermal transitions

© 2024 Wiley-VCH GmbH
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Figure 9. Thermal evolution of the average fictitious magnetization, (s) showing in a) a 3-step hysteretic transitions separated between them by large plateaus
and in b) a 4-step transition, for K,=—200 K and K,=—100 K respectively. c,d) plots are the respective thermal dependencies of the free energies showing the
three and four transition temperatures. The inset in panel ¢) is the enlargement of the transition regions, where the metastable phases, presenting cusps in
free energy behavior, are highlighted by the dashed ellipses. Similar metastable states are also identified in panel d). The other parameter values are:

S — BB — 8250 K, Kyp=300 K, Jug=—200 K, Kpy=Kgz=Kss= K, =0 K, #2=0K A=600 K and Ing=>5.

R =

of the corresponding effective magnetization. Similarly, Fig-
ure 9d which presents the free energy of the 4-step transitions
case (corresponding to Figure 9b) leads to transition temper-
atures, T.,;~977K, Tp~1120K T,;3=1267K and T,,=
147.8 K, in excellent agreement with those of panel b).

4. Conclusions

In conclusion, we have examined the case of binuclear SCO
materials in the frame of an extended version of the Ising-like
Hamiltonian that includes, in addition to the usual two bodies
interactions, new binuclear-binuclear couplings, where the
binuclear units which are considered as a single object (the
molecule). Indeed, when the two iron centers belonging to the
same dimer are strongly correlated, interactions between the
binuclear units, reacting as a single object, cannot be neglected
anymore. Previous Ising-like models, designed to describe the
thermodynamic properties of coupled binuclear systems,

ChemPhysChem 2024, 25, 202400238 (13 of 16)

accounted only for two-bodies intra- and inter-binuclear
interactions, where the intra-molecular one is considered as
antiferro-like and the inter-molecular interaction as ferro. These
competing interactions, lead naturally to two-step thermal
transitions of the HS fraction, which can be both of first-order
or gradual or one gradual and the other of first-order depend-
ing on the model parameters. Thus, in the former models, the
interaction terms, between two binuclear units labelled i and j
and containing spins (s7,s7) (binuclear /) and (s's) (binuclear j),
can only contain the mixing product (s\ +s;) - (s} 4 57), which
does not take into account for the total electronic information
contained in each binuclear. Indeed, each binuclear unit i is
totally defined by the knowledge of the sum (s? + s?) and the
correlation s* - s. Thus, in the general case, interactions of type
(s} +57) - (s +5), also (57 +7)(s]'s]) (and its symmetric form)
for the three-body as well as (s's;)(s's;) for the four-body,
should also be taken into account when treating the interaction
scheme between two binuclear units i and j. Thus the present
model can be viewed as a general extension of the Ising-like
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model for poly-nuclear SCO materials since similar issues can be
considered in strongly-coupled trinuclear and tetra-nuclear
systems. According to this new extended version in which, in
addition to the short-range interactions, we included long-
range interactions representing the stress-driven elastic nature
of the SCO phenomenon, new order parameters appear in the
model describing the additional degrees of freedom conferred
to the system. Here, the model is exactly solved in its 1D version
using the well-known transfer matrix method which leads to
diagonalizing an 8x8 matrix, similarly as for the 1D Ising model
with nearest and next-nearest neighbors interactions. Among
the various new results obtained with this extended model, one
can quote (i) the three steps gradual transitions, (ii) two steps
transitions with and without symmetry breaking, (iii) three steps
transitions with three hysteresis’ and (iv) finally four steps
transitions with open hysteresis’. All these results have been
obtained by analysing the phase diagrams of the evolution of
the energy spectrum of two coupled binuclear species as a
function of the ligand-field A. Moreover, one should notice that
by considering two (nn) binuclear units, one has 16 energetic
configuration levels. Thus by considering different interaction
parameters between A-A sites and B-B, for example, one may lift
additional degeneracies and access to more steps along the
thermal transition between the LS and the HS states. It is also
important to notice that the extension of the model to 2D
including 3- and 4-bodies interactions is quite obvious and is
planned as a next target. We expect in this case to realize
unprecedented self-organization of the spin states in the
plateau regions. Moreover, the extension of this study to
include polynuclear SCO materials, among which the case of 1D
trinuclear SCO chains, as the one reported by Pittala et al.,!"'”
is in progress.

APPENDIX

The matrix elements of the transfer matrix T(s,,s,55,5,) are given
in the basis (s,55) connecting two spins from the first dimer
(s1,5,) and two spins of the neighbouring dimer (s5,s,). Due to
the symmetric nature of the kernel, we only give the diagonal
and upper diagonal elements of the matrix; while the other
elements are deduced by symmetry.

ChemPhysChem 2024, 25, 202400238 (14 of 16)

T(+;+4) = T(+1,+1;4+1,+1)

— eﬁ(JA5+KAA+K35+2KA5+4K1 +K,—2h)

T(+;+—) = T(+1,41;41,-1)

— eﬂ(KAA —Kpg—2K —Kr—h)

T(44; =) = T(+1,+1; -1, +1)

— of(—KantKes—2K1—Ko—h)

T(h+;——) = T(+1,+1; -1,-1)
— eﬂ(JAB*KAA —Kpp—2Kpg+K;)
T(h—;4—) = T(+1,=1;41,-1)

— eﬁ(’JAB +Kpa+Kpp—2Kag+K2)

30
Tt —4) = T(+1, - 15 -1, 1) (30)
— eﬂ(*JAB*KAA*KBEJrZKAEJer)
T(+—;——) =T(+1,-1;-1,-1)
— eﬁ(—KAA+KBB+2K|—K2+h)
T(—+;—+) =T(=1,+1;-1,41)
— eﬁ(*JABJrKAAJrKBE*ZKAEJer)
T(—+;——) =T(-1,+1;-1,-1)
— eﬁ(KAA*KBerZKI*Kz*h)
T(————)=T(-1,-1;-1,-1)
— eﬂ(JAB+KAA +Kpg+2Kag —4K: +K;+2h)
The expression of the transfer matrix is then given by
+1,+1 +1,-1 -1,+1 -1,-1
+L,+1( T(++4++) T(++ =) T(++ —) T(+5—)
=L+ T(+=4++) T(+—=+=) T(+— —+) T(+——) (31)
=L+ T(—+) T(—+=) T(— —+) T(——)
=L\ P+ i— ) =)

The transfer matrix T has eigenvectors eigenvectors |y;),
corresponding to the eigenvalues 1,i=1,2,3,4. Each eigenvec-
tor, writes in the basis |s4, s5) as follows,

|1/J:> = a1,i‘+7 +> + az,i|+7 _> + a1,i|_7 +> + a1,i|_7 _>7 (32)

where the coefficients «; are obtained by the numerical
diagonalization of T, which then writes as

T= E [y A (il (33)
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