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DISCRETIZATION OF THE LOTKA-VOLTERRA

SYSTEM AND ASYMPTOTIC FOCAL AND

PREFOCAL SETS

J.P. FRANÇOISE AND D. FOURNIER-PRUNARET

Abstract. We revisit the Kahan-Hirota-Kimura discretization of
a quadratic vector �eld. The corresponding discrete system is gen-
erated by successive iterations of a birational map Fh. We include
a proof of a formula for the Jacobian of this map. In the following,
we essentially focus on the case of the Lotka-Volterra system. We
discuss the notion of focal points and prefocal lines of the map Fh

and of its inverse F−1
h . We show that the map Fh is the product

of two involutions. The nature of the �xed points of Fh is studied.
We introduce the notion of asymptotic focal and prefocal sets. We
further provide a proof of the theorem of Sanz-Serna. We show
that the mapping Fh is integrable for h = 1 and that it preserves
a pencil of conics (generic hyperbolas). To conclude, we provide
several numerical simulations for 0 < h < 1.

Keywords: Kahan-Hirota-Kimura discretization, quadratic planar
vector �elds, birational mappings, discrete Lotka-Volterra system, fo-
cal point, knot point, prefocal set, asymptotic focal set, asymptotic
prefocal set, theorem of Sanz-Serna, numerical simulations

1. Introduction

The Kahan discretization was introduced in the unpublished lec-
ture notes of a AMS congress organized at the Fields Institute in 1993
([Kahan(1993)]). The next appearance of this discretization was in
two articles of Hirota and Kimura in 2000 ([Hirota & Kimura(2000),
Kimura & Hirota(2000)]) where it was shown that in several cases the
method preserves integrability. According to a proposal of T. Ratiu,
discretizations of KHK type should be considered for numerous in-
tegrable systems ([Ratiu(2006)]). In this paper, we mainly focus on
Quadratic Planar Vector Fields and more precisely on the KHK dis-
cretization of the Lotka-Volterra system.

ż = f(z) = Q(z) +B(z) + c

z = (x, y) ∈ R2.
(1)

1
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Each component of Q : R2 → R2 is a quadratic form, while B ∈
Gl(2,R), the group of invertible 2x2 matrices with real entries under
matrix multiplication, and c ∈ R2.
The Kahan-Hirota-Kimura (KHK) discretization of the Quadratic

Planar Vector Fields is the mapping z 7→ z′ de�ned as:

z′ − z

h
= Q1(z, z

′) +
1

2
B(z + z′) + c,

z = (x, y) ∈ R2, z′ = (x′, y′) ∈ R2
(2)

where Q1(z, z
′) = 1

2
[Q(z+z′)−Q(z)−Q(z′)] is the symmetric bilinear

form corresponding to the quadratic form Q.
In the case of quadratic vector �eld, this mapping can be identi�ed

with the (implicit) Runge-Kutta discretization ([Celledoni et al.(2013)])
:

z′ − z

h
= −1

2
f(z) + 2f(

z + z′

2
)− 1

2
f(z′),

(3)

Expanding the Taylor series about z shows that ([Celledoni et al.(2013)])
:

z′ − z

h
= f(z) +

1

2
Df(z)(z′ − z).(4)

where Df(z) is the Jacobian matrix of f at z. This yields an explicit
KHK rational map:

z′ = Fh(z) = z + h(I − h

2
Df(z))−1f(z),(5)

Another remarkable point is that:

F−1
h (z) = F−h(z),(6)

and thus, in particular, the KHK-map is birational. Further refer-
ences on the subject include ([Celledoni et al.(2015), Celledoni et al.(2014),
Celledoni et al.(2013), Duistermaat(2010), Francoise & Ragnisco(1999),
Gálvez-Carrillo & Mañosa(2015), Van der Kamp et al.(2021), Quispel et al.(1988),
Quispel et al.(1989), Petrera et al.(2019)]).
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2. The discrete Lotka-Volterra system, focal points,

prefocal lines and asymptotic focal and prefocal sets

2.1. A key formula for the Jacobian.

Theorem 1. Consider a KHK-map of a quadratic vector �eld in any
dimension n :

Fh : z = (x1, ...xn) 7→ z′ = (x′
1, ...x

′
n).(7)

Set ∆ = ∆(z, h) = Det(I − h
2
Df(z)) and denote ∆′ := ∆(z′,−h);

the following formula can be shown:

dx1 ∧ ... ∧ xn

∆
=

dx′
1 ∧ ... ∧ x′

n

∆′ .(8)

Be careful that this relation cannot be interpreted as the conservation
of a volume.

Proof. Denote A = ∂z′

∂z
the Jacobian matrix of the coordinates z′ rela-

tively to z.
From the formula (3), we deduce

A− I = −h

2
Df(z) +

h

2
2Df(

z + z′

2
)(I + A)− h

2
Df(z′)A.(9)

Using the fact that Df() is linear, this yields

A = I − h

2
Df(z) +

h

2
(Df(z) +Df(z′))(I + A)− h

2
Df(z′)A,(10)

which displays:

(I − h

2
Df(z))A = (I +

h

2
Df(z′)),(11)

this implies:

∆DetA = ∆′.(12)

□
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2.2. The discrete Lotka-Volterra system. After some scaling, the
famous Lotka-Volterra system modeling the interaction of predator
with prey can be written as

ẋ = x(1− y)

ẏ = y(x− 1).
(13)

This system is not Hamiltonian for the usual symplectic form but it
is "generalized Darboux" integrable with H = xye−(x+y).
In order to avoid the appearance of various powers of 2, we change

h/2 into h (cf. [Petrera et al.(2009)]). The KHK discretization yields
to:

x′ − x = h[(x′ + x)− (x′y + xy′)]

y′ − y = h[(x′y + xy′)− (y′ + y)],
(14)

and this displays:

∆ := ∆(x, y, h) = 1− h2 − h(1− h)x+ h(1 + h)y,(15)

x′ =
x

∆
[(1 + h)2 − h(1 + h)x− h(1− h)y] =

xN1(x, y)

∆(x, y)

y′ =
y

∆
[(1− h)2 + h(1 + h)x+ h(1− h)y] =

yN2(x, y)

∆(x, y)
.

(16)

A �rst study of this map has been introduced in [Francoise & Fournier-Prunaret(2023)],
where the model has been given, as well as some preliminary simula-
tions, but the role of focal points and prefocal lines was not considered.
In this paper, we study the properties of the map (16) by introducing
the focal points and prefocal lines, that are speci�c to maps with de-
nominators.
It should be noted that this KHK map leaves invariant both x = 0

and y = 0 (for h ̸= 1), that are denoted :

D0 = {(x, y) | y = 0}
D′

0 = {(x, y) | x = 0}(17)

At this point, we add another important property which relates Fh

and its inverse. Let σ : (x, y) 7→ (y, x) be the symmetry which ex-
changes the two canonical coordinates.
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Proposition 2. The inverse F−1
h is conjugated to Fh through the sym-

metry σ:

F−1
h = σ(Fh(σ

−1)).(18)

If we denote sh = Fh◦σ, then sh is an involution ; hence Fh is the
product of two involutions :

Fh = sh◦σ.(19)

The proof is quite immediate and is left to the reader.

2.3. Focal points and prefocal lines. Denote the three lines:

D = {(x, y) | ∆(x, y) = 0}
D1 = {(x, y) | N1(x, y) = 0}
D2 = {(x, y) | N2(x, y) = 0} .

(20)

The straight lines D, D1 and D2 respectively correspond to the can-
cellation of the denominator and the numerators of x′ and y′ in (16).
Let us de�ne the points B = (1 + 1

h
, 0) and C = (0, 1− 1

h
), then

B = D ∩D1 ∩D0

C = D ∩D2 ∩D′
0.

(21)

B and C are candidates as focal points in the sense of Bischi-Gardini-
Mira [Bischi et al.(1999), Bischi et al.(2003), Bischi et al.(2005), Bischi et al.(2011),
Gardini et al.(1999), Gardini et al.(2000), Tramontana(2016)]. The au-
thors were mainly interested in the case where the mapping is nonin-
vertible but the tools they introduced are also useful to understand the
dynamics when the mapping is birational and invertible. Moreover,
our case is di�erent from those previously studied because the points
B and C both cancel numerator and denominator of both components
of the map Fh.
The formula F−1

h (x, y) = F−h(x, y) allows to easily compute the in-
verse of Fh by changing h into −h. This de�nes three linear forms so
that:

N ′
1(x, y) = (1− h)2 + h(1− h)x+ h(1 + h)y

N ′
2(x, y) = (1 + h)2 − h(1− h)x− h(1 + h)y

∆′(x, y) = 1− h2 + h(1 + h)x− h(1− h)y,

(22)
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and the application F−h:

x′ =
x

∆′ [(1− h)2 + h(1− h)x+ h(1 + h)y] =
xN ′

1(x, y)

∆′(x, y)

y′ =
y

∆′ [(1 + h)2 − h(1− h)x− h(1 + h)y] =
yN ′

2(x, y)

∆′(x, y)
.

(23)

Denote

D′ = {(x, y) | ∆′(x, y) = 0}
D′

1 = {(x, y) | N ′
1(x, y) = 0}

D′
2 = {(x, y) | N ′

2(x, y) = 0} .
(24)

Let us de�ne B′ = (1− 1
h
, 0) and C ′ = (0, 1 + 1

h
), then

B′ = D′ ∩D′
1 ∩D0

C ′ = D′ ∩D′
2 ∩D′

0.
(25)

B′ and C ′ may also be focal points for F−1
h .

Let us recall that a point Q is a focal point ([Bischi et al.(1999)])
if at least one component of the map takes the form 0/0 in Q and
if there exist smooth simple arcs γ(u), with γ(0) = Q, such that
limu→0(Fh(γ(u))) is �nite. The set of all such �nite values, obtained
by taking di�erent arcs γ(u) through Q is the prefocal set δQ.
Let us consider �rst the point B, we obtain the following result :

Corollary 1.

For h ̸= 0 and h ̸= 1, let us consider the arc γ(u) given by u =
x− (h+ 1)/h and y = un, n integer, n > 0, then

(i) γ(0) = B,
(ii) when n = 1, limu→0(Fh(γ(u))) ∈ D′

2,
(iii) when n > 1, limu→0(Fh(γ(u))) ∈ D0.

Proof. Obviously, γ(0) = B. From (16), it is easy to check that :

• when n = 1, limu→0(Fh(γ(u))) = (−(h+1)2

h2 , h
2+1
h2 ),

so, as the equation of D′
2 in the plane (u, y) is y = 2− 1−h

1+h
u,

the point (−(h+1)2

h2 , h
2+1
h2 ) belongs to D′

2.

• when n > 1, limu→0(Fh(γ(u))) = (2(h+1)
1−h

, 0), which belongs to
the line D0.

□

Similar results can be proved regarding the points B′ with lines D2

and D0, C with lines D′
1 and D′

0 and C ′ with lines D1 and D′
0. From
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the corollary regarding the point B and complementary calculations for
the other points, we can write the following proposition and conjecture
:

Proposition 3.

For h ̸= 0 and h ̸= 1,
(i) B and C are focal points of Fh,
(ii) B′ and C ′ are focal points of F−1

h .

Proof. (i) for point B comes from Corollary 3.1, limu→0(Fh(γ(u))) has
�nite values for some arcs (here γ(u) = (u, un)), so B is a focal point
and the set of �nite values gives the prefocal set of B. It is not possible
to calculate all values for all kind of arcs, anyway, as we obtain points
of the two lines D0 and D′

2, we can conjecture that these two lines
constitute the prefocal set of B. Similar results are obtained for C, B′,
and C ′, so we have the following conjecture: □

Conjecture

For h ̸= 0 and h ̸= 1, the prefocal sets of the focal points are :

δB = D0 ∪D′
2, δC = D′

0 ∪D′
1, δB′ = D0 ∪D2, δC′ = D′

0 ∪D1.(26)

The following proposition permits to reinforce the conjecture.

Proposition 4.

For h ̸= 0 and h ̸= 1,
(i) The inverse image by Fh of the line D′

2 minus the point C ′,
F−h(D

′
2 \ {C ′}), is the focal point B, which is also a knot point of

F−1
h .

(ii) The inverse image by Fh of the line D′
1 minus the point B′, F−h(D

′
1\

{B′}), is the focal point C, which is also a knot point of F−1
h .

(iii) The image by Fh of the line D1 minus the point B, Fh(D1 \ {B}),
is the focal point C ′, which is also a knot point of Fh.
(iv) The image by Fh of the line D2 minus the point C, Fh(D2 \ {C}),
is the focal point B′, which is also a knot point of Fh.

Proof. Let F−h(D
′
2) = {(x′, y′) | N ′

2(x, y) = 0}. By de�nition we obtain
y′ = 0, so that: F−h(D

′
2) = {(x′, 0) | N ′

2(x, y) = 0}. In other words, the
coordinate x′ is

x′ =
xN ′

1(x, y)

∆′(x, y)
| N ′

2(x, y) = 0.(27)

First of all, this displays:
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N ′
1(x, y) | (N ′

2(x, y) = 0) = (1− h)2 + (1 + h)2,(28)

furthermore, when (x, y) ̸= (0, 1 + 1
h
):

∆′(x, y) = h(1− h)[
1 + h

h
+

1 + h

1− h
x− y],(29)

∆′(x, y) | (N ′
2(x, y) = 0) = h(1− h)[

1 + h

1− h
+

1− h

1 + h
]x,(30)

and �nally:

x′ =
(1− h)2 + (1 + h)2

h(1− h)[1+h
1−h

+ 1−h
1+h

]
=

h+ 1

h
,(31)

so, (x′, 0) = B.
This proves also that the point B is a knot point for the map F−1

h ,
as the image of a line by F−1

h .
The proofs that F−h(D

′
1 \ {B′}) is the point C, Fh(D1 \ {B}) is the

point C ′ and Fh(D2 \ {C}) is the point B′ are quite similar.
□

Remark. The case h = 1 is considered in next section. When h = 0,
Fh = Id and the focal points are rejected to in�nity.

So, as it is mentionned in [Bischi et al.(1999), Gardini et al.(2000)]
regarding invertible maps, D′

2, which is focalized on B, should be a
part of the prefocal set of B for Fh, as well as D0, which is invariant by
Fh and contains the point B. Moreover, as F−1

h (D′
2 \ {C ′}) is reduced

to a single point, the map F−1
h cannot be locally invertible in the points

of D′
2 and its jacobian in each point of D′

2 cancels. That property has
been checked by using the software Maple.
We get equivalent properties for the points B′ and C ′ by reversing

the role of F−1
h and Fh. Properties are detailed in Tables 1-2.

The Figure 1 shows the focal/knot points and the prefocal lines in
the plane(x, y).
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Figure 1. The focal/knot points and the corresponding
prefocal lines are shown for h = 0.5234, an oval obtained
for the initial condition (1,0.328) is plotted.
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Fh

focal points B C

knot points B′ C ′

prefocal sets D0 ∪D′
2 D′

0 ∪D′
1

non de�nition D
set

Property F−1
h (D′

2 \ {C ′}) = B F−1
h (D′

1 \ {B′}) = C

Asymptotic

{
lim

k→+∞
(F−nk

h (x))x∈I,I⊂D

}
focal set when bounded

Asymptotic

{
lim

k→+∞
(F nk

h (x))x∈I,I⊂D′
1

}
prefocal set

{
lim

k→+∞
(F nk

h (x))x∈I,I⊂D′
2

}
when bounded

Table 1. Summary table of the particular sets of Fh.
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F−1
h

focal points B′ C ′

knot points B C

prefocal sets D0 ∪D2 D′
0 ∪D1

non de�nition D′

set

Property Fh(D2 \ {C}) = B′ Fh(D1 \ {B}) = C ′

Asymptotic

{
lim

k→+∞
(F nk

h (x))x∈I,I⊂D′

}
focal set when bounded

Asymptotic

{
lim

k→+∞
(F−nk

h (x))x∈I,I⊂D1

}
prefocal set

{
lim

k→+∞
(F−nk

h (x))x∈I,I⊂D2

}
when bounded

Table 2. Summary table of the particular sets of F−1
h .

2.4. Asymptotic prefocal and focal sets. Considering the map Fh,
we introduce the following de�nitions :

De�nition 1. We call asymptotic focal set (AFS) the set of bounded
limits of the preimages by Fh of points from a bounded subset I of the

non-de�nition set D of Fh, that means

{
lim

k→+∞
(F−nk

h (x))x∈I,I⊂D

}
, if

this set exists.
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De�nition 2. We call asymptotic prefocal set (APS) the set of bounded
limits of the iterates by Fh of points from a bounded subset I of the

prefocal set S of Fh, that means

{
lim

k→+∞
(F nk

h (x))x∈I,I⊂S

}
, if this set

exists.

It is important to denote that such limits have not always �nite
values, due to the possible existence of divergent orbits. Let us remark
that equivalent de�nitions can be introduced for F−1

h = F−h. The
corresponding de�nitions are given in Tables 1-2. Those de�nitions are
illustrated in the paragraph devoted to numerical simulations.

2.5. Theorem of Sanz-Serna and sympletic birational trans-

formation of the plane. First, we include some results on the �xed
points of this mapping.

Proposition 5. The �xed points of Fh are (0, 0), (1, 1). The point
(0, 0) is a saddle. The linearized map at the point (1, 1) is a rotation.

Proof. The list of �xed points can be easily found by direct analysis of
the equations Fh(x, y) = (x, y) and it coincides with the zeros of f(x, y).
In the case of the Lotka-Volterra system, this yields to (x, y) = (0, 0)
and (x, y) = (1, 1). To study the nature of the �xed points, it is quite
convenient to use the equation (after changing h into 2h) :

(I − hDf(z))A = (I + hDf(z′)).(32)

In case of a �xed point z′ = z = z0, this yields:

det(A− λI) = det([I − hDf(z0)]
−1[I + hDf(z0)]− λ(I − hDf(z0))]),(33)

so that the eigenvalues λ of the jacobian matrix of Fh at a �xed point
are solutions of

det[(1− λ)I + (1 + λ)hDf(z0)] = 0.(34)

For the Lotka-Volterra case, from equations (1) and (13), it comes:

(35) Df(z0) =

(
1− y0 −x0

y0 x0 − 1

)
,

So, in the case (x0, y0) = (0, 0), this yields:

λ = λ1 =
1 + h

h− 1
, λ = λ2 =

1− h

1 + h
,(36)
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hence the two eigenvalues satisfy | λ1 || λ2 |= 1. If h ̸= 1, the point
(0, 0) is a saddle.
Let us consider now the case (x0, y0) = (1, 1). Then this yields:

λ = λ1 =
1 + ih

1− ih
, λ = λ2 = λ1 =

1− ih

1 + ih
,(37)

| λ1 |=| λ2 |= 1,(38)

so that:

λ1 = exp(iθ), λ2 = exp(−iθ),(39)

so the linearized map at the point (x0, y0) = (1, 1) is a rotation.
□

We include a proof of the theorem of Sanz-Serna:

Theorem 6. The KHK map of the Lotka-Volterra system preserves
the (singular) volume form:

Ω =
dx ∧ dy

xy
.(40)

Proof. Consider

∆ := ∆(x, y, h) = 1− h2 − h(1− h)x+ h(1 + h)y,(41)

and change in ∆, both (x, y) into (x′, y′) and h into −h. This yields

∆′ := ∆(x′, y′,−h) = 1− h2 + h(1 + h)x′ − h(1− h)y′.(42)

Next compute directly the di�erentials and obtain:

dx ∧ dy

∆
=

dx′ ∧ dy′

∆′ .(43)

Now from (16), it follows:

(
x′

x
+

y′

y
)∆ = (1 + h)2 + (1− h)2 = 2(1 + h2).(44)

By the same transformation, we obtain:

(
x′

x
+

y′

y
)∆ = (

x

x′ +
y

y′
)∆′,(45)



14 J.P. FRANÇOISE AND D. FOURNIER-PRUNARET

and this yields:

dx ∧ dy

xy
=

dx′ ∧ dy′

x′y′
.(46)

□

The set of birational transformations of the plane which preserves
the volume form dx∧dy

xy
is more shortly called "symplectic birational

transformations of the plane" in the litterature. For instance, this is the
terminology used in the article [Blanc (2003)]. In this article the author
proves the following remarkable result which looks in particular useful
for further studies of discretized Lotka-Volterra of the plane (indeed,
theorem 2 proves that the map Fh belongs to that set) :

Proposition 7. The group of symplectic birational transformations of
the plane is generated by the group of 2x2 matrices with determinant
equal to 1, SL(2,Z), the torus C∗2 and a special map of order 5: P :
(x, y)−− > (y, (y + 1)/x).

The mapping P is a special case of the so-called Lyness map ([Duistermaat(2010),
Gálvez-Carrillo & Mañosa(2015), Gardini et al.(2000)]).

2.6. Integrability of the discretized Lotka-Volterra in the case

h = 1. In this section we focus in the special case where the parameter
h = 1. Replacing h = 1 in the formula (16) yields to the map:

∆ := 2y,(47)

x′ =
x

y
(2− x)

y′ =
y

y
(x) = x.

(48)

Moreover, the inverse map is given by :

x′ = y

y′ =
y(2− y)

x
.

(49)

It is easy to see that as h tends to 1, C is merging with the origin
and B = (2, 0). The focal points of the inverse map are B′ = (0, 0)
and C ′ = (0, 2). A direct calculus allows to check that Proposition 2
remains true for h = 1. We obtain :
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D1 : x = 2, D2 : x = 0, D′
1 : y = 0, D′

2 : y = 2,(50)

F−1
h (D′

2 \ {C ′}) = B,F−1
h (D′

1 \ {B′}) = C,(51)

Fh(D2 \ {C}) = B′, Fh(D1 \ {B}) = C ′.(52)

We consider then

x′ + y′ − 2 =
(x− y)(2− x)

y
,(53)

x′ − y′ =
x(2− x− y)

y
,(54)

(x′ + y′ − 2)(x′ − y′)

x′y′
= −(x+ y − 2)(x− y)

xy
,(55)

so that we deduce that the mapping preserves the pencil of conics:

[(x+ y − 2)(x− y)]2 = µ[xy]2.(56)

Figure 2 shows the pencil of conics for µ = α2, α varying from -2 to
2 with step 0.05.

Figure 2. The pencil of conics
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Furthermore, existence of cycles of order 4 can be shown in the case
h = 1:

Proposition 8. For all x real, x ̸= 0, the points (x, x), (2− x, x), (2−
x, 2− x), (x, 2− x) form a cycle of order 4.

This can be easily checked by direct computation. Moreover, there
are numerical evidences that the map is not periodic of period 4, that
means that F 4

h=1 ̸= Fh=1. Indeed, some orbits turn successively around
the �xed point A(1, 1) and go towards in�nity. For instance, the initial
conditions chosen in Figure 3 give rise to orbits that go towards in�nity
asymptotically to the lines y = 2− x or y = x.

Figure 3. Three orbits obtained numerically for h = 1,
initial conditions are (0.58,1.4), (0.58,1.41), (0.58,1.417).
D2 and D′

1 are merged with the axis x = 0 and y = 0.

3. Numerical simulations and basin boundaries in the case

0 < h < 1

Numerical simulations in the case 0 < h < 1 are proposed in Fig-
ures 4-14. All �gures have been plotted using Matlab (Figures 1 - 8)
or a Fortran speci�c software (Figures 9 - 14).
In the plane(x, y), some orbits are ovals, that means invariant closed

curves, or order k cyclic ovals, that means k invariant closed curves
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whose points exchange cyclically, one on each of the k curves. An oval
or an order k cyclic oval is an invariant set by Fh.
In Figure 4, h is small and the plotted ovals around the center �xed

point A(1, 1) look very similar to the trajectories of the Lotka-Volterra
system. When h increases between 0 and 1 (see Figures 5-14), the
ovals change their shape and some of them are cyclic. For instance, in
Figure 6, an order 20 cyclic oval is obtained and in Figure 7, an order
55 cyclic oval and an order 9 cyclic one are obtained from di�erent
initial conditions.

Figure 4. h=0.01, ovals obtained with 4 di�erent initial
conditions (1,0.01), (1,0.1), (1,0.25), (1,0.5)



18 J.P. FRANÇOISE AND D. FOURNIER-PRUNARET

Figure 5. h=0.2, invariant curves or ovals obtained
with 6 di�erent initial conditions (1,2), (1,3), (1,3.7),
(1,4.1), (1, 4.3), (1,4.4)

Figure 6. h=0.2, focus on the order 20 cyclic oval ob-
tained with the initial condition (1,4.1). The Figure on
the right shows a magni�cation in the square [0, 0.5]2.
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Figure 7. h=0.38, ovals obtained with 4 di�erent ini-
tial conditions (0.55,0.5), (0.5,0.5), (0.5,0.35), (0.5,0.3).
(0.5,0.3) gives rise to an order 55 cyclic oval and (0.5,0.5)
gives rise to an order 9 cyclic oval.

We can de�ne the basin of ovals as the set of initial conditions giving
rise to an oval or a cyclic oval.
Figure 9 shows the basin of initial conditions giving rise to ovals.

The basin has been obtained using numerical simulations : each pixel
corresponds to an initial condition and is plotted in beige when the
orbit remains bounded after N iterations (in Figure 9, N = 10000).
Its shape looks "like a bat", as the larger oval obtained Figure 8 with
the initial condition (1, 0.328). The initial conditions taken outside this
basin give rise to unbounded trajectories in the plane (x, y). This basin
corresponds to the domain of stability of the map (16) in the sense of
Lagrange. We remark that the basin is located in the �rst quadrant
inside the area limited by the straight lines D1, D

′
2, D0 and D′

0. Let us
recall that D′

2 and D0 are the prefocal set of the focal point B for Fh

and D1 and D′
0 are the prefocal set of the point C ′ for F−1

h . D1 and
D′

2 are symmetrical each other with respect to the �rst bisector.
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Figure 8. h=0.5234, ovals obtained with 4 di�erent ini-
tial conditions (1,0.5), (1,0.4), (1,0.35), (1,0.328). The
oval obtained with the initial condition (1,0.328) seems
to be very close to the boundary of the basin (cf. Fig-
ure 9).
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Figure 9. h=0.5234, the basin of ovals has "the shape
of a bat". The lines D, D′

2 and D1, the point A(1, 1)
and the focal points B and C ′ are plotted. The basin is
located inside the area limited by the lines D1 and D′

2

and the two axis x = 0 and y = 0.
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Figure 10. h=0.5234, 250 preimages of points of the
line D, taken in the interval [−10, 10] with a step of 10−5,
are plotted in black. These points are a part of the as-
ymptotic focal set (AFS), as de�ned in De�nition 1. The
role of B as a knot for the map F−1

h appears: in�nitely
many curves of preimages of points of D are issuing from
B.
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Figure 11. h=0.5234, 250 images of points of the pre-
focal line D′

2, taken in the interval [−10, 10] with a step
of 10−5, are plotted in red. These points form part of
the asymptotic prefocal set (APS), as de�ned in De�ni-
tion 2. The role of C ′ as a knot for the map Fh appears:
in�nitely many curves of images of points of D′

2 are issu-
ing from C ′.
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Figure 12. h=0.5234, 250 images of points of the pre-
focal line D′

1, taken in the interval [−10, 10] with a step
of 10−5, are plotted in blue. These points form part of
the asymptotic prefocal set (APS), as de�ned in De�ni-
tion 2. D′

1 is fully located outside of the �rst quadrant,
so is not plotted on the Figure. C ′ is a knot point for Fh.

In Figures 10-12, we have plotted 250 preimages of points of the
line D and 250 images of points of the prefocal lines D′

1 and D′
2, these

points respectively form part of the asymptotic focal set (AFS) and
the asymptotic prefocal set (APS). It is easy to see that some of
these points accumulate along the boundary of the basin of ovals. This
property can be observed for one dimensional maps and also for some
two-dimensional maps [Bischi et al.(1999), Gardini et al.(1999)]. Let
us remark that the preimages of points of D1 and D2 are symmetrical
to images of points of D1 and D2, due to the property of the inverse
F−1
h = F−h. Some of these points also accumulate along the boundary.
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Figure 13. h=0.7, 250 preimages of points of the line
D, taken in the interval [−10, 10] with a step of 10−5, are
plotted. These points form part of the asymptotic focal
set (AFS), as de�ned in De�nition 1. An order 5 saddle
cycle (points in red) is obtained close to the boundary of
the basin.

So subsets of the (AFS) and (APS) sets permit to obtain the shape
of the boundary of the stable domain in the sense of Lagrange.
The same property is obtained for di�erent values of h. See Fig-

ures 13-14 for h = 0.7 and h = 0.9. Preimages of points of D have only
been plotted.
It is important to denote that these points do not give the boundary,

they are converging towards it. Indeed, the boundary separates the
basin of initial conditions giving rise to bounded trajectories from the
set of initial conditions giving rise to divergent trajectories going to
in�nity. So, this boundary is a repelling set for some orbits of Fh and
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Figure 14. h=0.9, 100 preimages of points of the line
D, taken in the interval [−10, 10] with a step of 10−5, are
plotted. These points form part of the asymptotic focal
set (AFS), as de�ned in De�nition 1. An order 4 saddle
cycle (points in red) is obtained close to the boundary of
the basin.

an attracting set for some orbits of the inverse map F−1
h . Anyway, the

AFS and APS sets permit to obtain the shape of this boundary.
Usually, the boundary of basins is related to the existence of saddle

points, indeed, attractive invariant manifolds of saddle points are parts
of the basin boundary. For the value of h = 0.5234, we have not found
order k saddle points close to the boundary with an order less than 20,
but for h = 0.7, we have found an order 5 saddle cycle (see Figure 13)
and for h = 0.9, an order 4 saddle cycle (see Figure 14).
Their attractive invariant manifolds are probably part of the bound-

ary of the basin of ovals.



L-V SYSTEM AND ASYMPTOTIC FOCAL AND PREFOCAL SETS 27

The Figures 10-14 permit also to put in evidence the role of knot
points B for F−1

h and C ′ for Fh. In�nitely many curves respectively
images of speci�c lines by F−1

h or Fh are issuing from these points.
Moreover, we can remark that the size of the basin of ovals decreases

when h increases from 0 to 1.
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4. Conclusion and perspectives

This article revisits a discretization of quadratic vector �elds called
the Kahan-Hirota-Kimura discrete dynamical systems (KHK map).
The study of this map relates with integrable systems and soliton the-
ory, in particular with QRT-maps ([Celledoni et al.(2015), Celledoni et al.(2014),
Celledoni et al.(2013), Duistermaat(2010), Francoise & Ragnisco(1999),
Gálvez-Carrillo & Mañosa(2015), Van der Kamp et al.(2021), Quispel et al.(1988),
Quispel et al.(1989), Petrera et al.(2019)]). The proof of the Jacobian
identity is included in the article. We focus on the discretization of
the classical Lotka-Volterra prey-predator system and we derive a di-
rect proof of the Sanz-Serna theorem from the Jacobian identity. The
discretization gives rise to a birational map with denominator that can
cancel. Such map can be studied by using speci�c tools as focal points,
prefocal sets and knot points that are involved in the dynamics. Sev-
eral numerical simulations are further discussed. They give evidences
that for some values of the parameter, the boundary of the domain of
Lagrange stability displays an interesting geometric structure and the
"shape of a bat". Moreover, we have de�ned asymptotic prefocal and
asymptotic focal sets, whose subsets permit to obtain the shape of the
boundary by another way.
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