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Slit-slide-sew bijections for oriented planar maps

Jérémie Bettinelli* Éric Fusy† Baptiste Louf‡

December 19, 2024

Abstract

We construct growth bijections for bipolar oriented planar maps and for Schnyder woods.
These give direct combinatorial proofs of several counting identities for these objects.

Our method mainly uses two ingredients. First, a slit-slide-sew operation, which consists
in slightly sliding a map along a well-chosen path. Second, the study of the orbits of natural
rerooting operations on the considered classes of oriented maps.

1 Introduction

1.1 Growth bijections for trees and maps

The main theme of this paper is that of growth bijections for combinatorial structures: in simple
words, given a combinatorial family (Fn)n≥0 indexed by a size parameter n, a growth bijection is
a procedure that bijectively constructs all the objects of Fn from those of Fn−1, using only a slight
modification. For this to be possible, the objects of the smaller size (n − 1) bear some additional
markings, and those of the larger size (n) also bear different additional markings. Such growth
bijections are in general inspired by pre-existing simple recursive counting identities linking the
cardinalities |Fn| and |Fn−1|.

A famous instance of a growth bijection is the so-called Rémy’s bijection [Rém85], which pro-
vides a proof of the identity

(n+ 1)Catn = 2 (2n− 1)Catn−1, (1)

where Catn = 1
n+1

(
2n
n

)
is the n-th Catalan number, which, in particular, counts binary trees on

n + 1 leaves (and thus with 2n + 1 edges). As a result, this identity (1) can be interpreted as an
equinumerosity between the sets of

⋄ binary trees on n+ 1 leaves with a marked leaf.

⋄ binary trees on n leaves with a marked edge, as well as a parameter either left or right;
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Consequently, there exists a bijection between these two sets and the idea is to find a simple con-
structive one, in the sense that the modification needed to pass from one set to the other one is as
minimal as possible. In this example, the bijection is quite straightforward to find and we invite
the reader unknowing of it to find it as a warm-up exercise.

For plane forests and planar maps, a family of growth bijections relying on slit-slide-sew opera-
tions has been introduced by the first author [Bet14, Bet20, BK23]. Such an operation also appears
(under the name “cut-and-slide”) in a work by the third author [Lou19] that extends Rémy’s bijec-
tion to all planar maps. We must also mention that growth bijections have also inspired probabilistic
growth schemes both for trees and planar maps [LW04, AB14, Fle24].

1.2 Families of oriented maps

In the present paper, we will focus on three specific classes of oriented planar maps, namely:

⋄ bipolar oriented quasi-triangulations;

⋄ bipolar oriented maps;

⋄ Schnyder woods.

We will show that slit-side-sew bijections can be successfully applied to these families, yielding a
simple proof to a counting formula in each case (Propositions 1, 2 and 3). However, contrary to
previous bijections of this type, an additional ingredient is needed here: we will have to compute
the probability that a given edge possess a certain “good” property. This will be done bijectively
by averaging over orbits of a natural rerooting operation.

Bipolar oriented maps. The considered maps are all specific classes of bipolar oriented maps;
for Schnyder woods it reduces to such a class via a known easy bijection. First, a planar map is an
embedding of a finite connected graph (possibly with multiple edges and loops) into the sphere,
considered up to orientation-preserving homeomorphisms. Then a bipolar oriented map is a planar
map whose edges are all oriented as follows. One oriented edge is distinguished and called the
root edge. Its tail and head are respectively called the South Pole and North Pole, and denoted by S
and N. The South Pole is a source, which means that all the edges incident to it are outgoing, that
is, oriented away from it; the North Pole is a sink, which means that all the edges incident to it are
incoming, that is, oriented toward it; every non-pole vertex is neither a source nor a sink, that is, is
incident to at least one incoming and one outgoing edge. Finally, there are no directed cycles. See
Figure 1.

The external face is taken as the face on the left of the root edge. In figures, we will always draw
the external face as the unbounded component of the plane, in white; we will use a yellowish
coloring for internal faces. The vertices incident to the external face make up the boundary of the
map and are called external vertices. The other vertices are called internal vertices.

Bipolar oriented quasi-triangulations. A quasi-triangulation is a rooted map where the external
face has simple contour, of any degree larger than or equal to 2, and the internal faces all have
degree 3. A bipolar oriented quasi-triangulation is a bipolar map whose underlying map is a quasi-
triangulation.
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Figure 1: Left. A bipolar oriented map. The poles are in purple; the root is in red; the internal vertices are in green.
Right. A bipolar oriented quasi-triangulation: all the internal faces have degree 3.

Local rules. It is well known (see e.g. [dFdMR95]) that a bipolar oriented map satisfies the fol-
lowing local properties, illustrated in Figure 2.

⋄ Every non-pole vertex has its incident edges partitioned into a nonempty group of consecu-
tive incoming edges and a nonempty group of consecutive outgoing edges.

⋄ Every internal face has its contour partitioned into two directed paths sharing the same ex-
tremities: a left lateral path (having the face on its right) and a right lateral path (having the
face on its left). The left length (resp. right length) of an internal face is the length of its left
(resp. right) lateral path.

⋄ The path formed by the right outer boundary is a directed path from the source to the sink.

Moreover these local properties easily guarantee acyclicity, hence actually characterize bipolar
oriented maps.

S

N

Figure 2: The local rules around the vertices and faces of a bipolar oriented map. Here, the right length of the face is 2.
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Schnyder woods. We consider a triangulation t, that is, a planar map whose faces are all of
degree 3, with a distinguished face, drawn as the unbounded face in the plane. We denote by ρ1,
ρ2, ρ3 the incident vertices, in clockwise order. A Schnyder wood [Sch89] of t is a partition of its
internal edges into three trees t1, t2, t3 satisfying the following two conditions. See Figure 3.

(1) For every i ∈ {1, 2, 3}, the tree ti spans all the internal vertices and the external vertex ρi,
which is its root.

(2) If we orient the trees toward their roots, one has the local rule depicted on the right side of
Figure 3 around each internal vertex, namely: in clockwise direction, one always sees the
outgoing edge of t1, the incoming edges of t3, the outgoing edge of t2, the incoming edges
of t1, the outgoing edge of t3, and finally the incoming edges of t2. For each tree, the number
of incoming edges might be null.

ρ1ρ2

ρ3

t1 t1

t2

t2

t3

t3

Figure 3: Left. A Schnyder wood on 9 vertices. The edges of three trees are oriented toward the respective tree roots.
Right. The local rule around an internal vertex.

It is well known [FPS09] that Schnyder woods are in bijection with bipolar oriented maps such
that every internal face has right length 2. The bijection is recalled and illustrated in Figure 4.

1.3 Enumeration

Counting formulas. We consider the following counting coefficients:

⋄ the number Tk,j of bipolar oriented quasi-triangulations with k internal vertices and an exter-
nal face of degree j, for any k ≥ 0, j ≥ 2 ;

⋄ the number Bk,ℓ,j of bipolar oriented maps with k internal vertices, ℓ internal faces, and an
external face of degree j, for any k ≥ 0, ℓ ≥ 1, j ≥ 2 ;

⋄ the number Sk,j of Schnyder woods on k + j + 1 vertices and such that ρ1 has degree j, for
any k ≥ 0, j ≥ 3. Equivalently, by the bijection of Figure 4, Sk,j is the number of bipolar
oriented maps with k internal vertices, an external face of degree j, and such that all internal
faces have right length 2.
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Figure 4: Left. To obtain the bipolar oriented map from the Schnyder wood, remove the edges of t1, the vertex ρ1 and the
two external edges incident to ρ1, revert the edges of t2, set S := ρ2, N := ρ3, and the root as the remaing external edge,
oriented from S to N. Observe that the degree of ρ1 becomes the degree of the external face. Right. The internal vertices
of the Schnyder wood naturally correspond to the faces of the bipolar oriented map and these all have right length 2.

Note in particular that Bk,ℓ,2 is the the number of bipolar oriented maps with k + 2 vertices
and ℓ faces (by doubling the root edge), and that Sk,3 is the number of Schnyder woods on k + 3
vertices (by addition of a new external vertex ρ′1 adjacent to ρ1, ρ2, ρ3, and taking (ρ′1, ρ2, ρ3) as
external face).

These coefficients are given by the following explicit formulas:

Tk,j = j (j − 1)
(3k + 2j − 4)!

k! (k + j − 1)! (k + j)!
k ≥ 0, j ≥ 2 ; (2)

Bk,ℓ,j = j (j − 1)
(k + ℓ− 2)! (k + ℓ+ j − 2)! (k + ℓ+ j − 3)!

k! (k + j)! (k + j − 1)! ℓ! (ℓ− 1)! (ℓ− 2)!
k ≥ 0, ℓ ≥ 1, j ≥ 2 ; (3)

Sk,j = j (j − 1) (j − 2)
(2k + 2j − 4)! (2k + j − 3)!

k! (k + j)! (k + j − 1)! (k + j − 2)!
k ≥ 0, j ≥ 3 . (4)

The first two formulas are obtained in [BM11] via a recursive decomposition of bipolar oriented
maps and an application of the obstinate kernel method. They can also be obtained from known
bijections: in [Bor17, KMSW19] for the first formula, and in [AP15, FPS09] for the second one. The
third one can be obtained from the bijection in [BB09] (see Section 5.2 for more details on how
these bijections yield the formulas).

Combinatorial identities. From the above formulas, we easily obtain the following “growth
identities”, for which we will give a bijective interpretation in the present work.

Proposition 1 (Bipolar oriented quasi-triangulations). Let k ≥ 1 and j ≥ 2. Then

k Tk,j =

(
1− 2

j + 1

)(
3k + 2j − 4

)
Tk−1,j+1 . (5)
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Proposition 2 (Bipolar oriented maps). Let k ≥ 1, ℓ ≥ 1, and j ≥ 2. Then the following identity holds:

k Bk,ℓ,j =

(
1− 2

j + 1

)(
k + ℓ− 2

)
Bk−1,ℓ,j+1 . (6)

Proposition 3 (Schnyder woods). Let k ≥ 1 and j ≥ 3. Then the following identity holds:

k Sk,j =

(
1− 3

j + 1

)(
2k + j − 3

)
Sk−1,j+1 . (7)

Bijective interpretation. The three combinatorial identities (5), (6), (7) all possess the same struc-
ture (seeing the third one as counting bipolar oriented maps with internal faces of right length 2).
The structure is as follows:

⋄ On the left-hand side, there is the coefficient with parameters k and j, together with the
prefactor k, which counts internal vertices.

⋄ On the right-hand side, there is the coefficient with parameters k−1 and j+1, together with
two prefactors:

(a) the first one has the form
(
1− λ

j+1

)
, where j + 1 is the external face degree;

(b) the second one counts (most) edges.

We will use a unified framework. To fit this framework, we will need to adopt some slightly differ-
ent points of view depending on the class of maps into consideration. This bears the consequence
that the prefactor (b) has a slightly different interpretation for each class. More precisely, using
Euler’s characteristic formula, one easily obtains that the maps counted by Bk−1,ℓ,j+1 all possess
k + j + ℓ − 1 edges. Furthermore, in the particular case of quasi-triangulartions, one obtains that
the maps have ℓ = 2k + j − 3 internal faces, and thus 3k + 2j − 4 edges. In the case of bipolar
oriented maps corresponding to Schnyder woods, the condition on the right lengths yields that
the number of edges is 2ℓ+ 1, and thus 2k + 2j − 3. As a result, the prefactor (b) counts

⋄ all the edges in (5) on quasi-triangulations;

⋄ all but j+1 edges, that is, edges having internal faces on both sides in (6) on general bipolar
oriented maps;

⋄ all but j edges, that is, edges having an internal face on their right in (7) on bipolar oriented
maps corresponding to Schnyder woods.

The prefactor (a) will be seen as a probability that an edge from the class-specific proper set
of edges satisfies an extra property called boundary-reaching and whose definition will be given in
Section 2.2. It will be shown that the set of maps we consider can be partitioned into orbits of a
rerooting operation, and that the probability given by (a) holds over each orbit.

Summing up, in the proper class of bipolar oriented maps, the left-hand side counts maps car-
rying a distinguished internal vertex and the right-hand side counts maps with the same number
of vertices in total but one more on the boundary, carrying a distinguished edge satisfying proper
constraints.
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1.4 Organization of the paper

The aim of the present paper is to exhibit a bijective interpretation of the identities (5), (6), (7). We
start by presenting in Section 2 our bijection and its specializations to the three specific classes of
bipolar oriented maps we consider here. In Section 3, we come back to the enumerative conse-
quences of the bijections and compute the probabilities (a) that edges are boundary-reaching.

Since our method provides alternate proofs to the identities (5), (6), (7), we also recover the
counting formulas (2), (3), (4), from the easy to obtain initial conditions postponed in Section 4.

Acknowledgments. Special thanks are given to the funding project ANR-23-CE48-0018 CartesEt-
Plus and its participants, since this work originated from its launching gathering.

2 Slit-slide-sew bijection

In this section, we only consider bipolar oriented maps. As a consequence, all the edges are ori-
ented. For an edge e, we respectively denote its tail and head by e− and e+.

Paths. A path from a vertex v to a vertex v′ is a finite sequence γ = (e1, e2, . . . , ek) of edges such
that e−1 = v, for 1 ≤ i ≤ k − 1, e+i = e−i+1, and e+k = v′. Beware that a path is only made of
edges oriented in the underlying orientation; they cannot be used “backward”. Also, since the
orientations we consider are always acyclic, all paths are simple, in the sense that the vertices they
visit are all distinct.

Among all the paths from a vertex v to the North Pole N, one will be of particular interest.
Recall that, around a given non-pole vertex, the edges are partitioned into a consecutive group
of incoming edges then a consecutive group of outgoing edges. The rightmost path from v to N
is the path that takes at each vertex the rightmost outgoing edge, that is, the first outgoing edge
in counterclockwise order after the group of incoming edges. If v is the South Pole S, then the
first edge of the path is the one having the external face to its right. Similarly, for an edge e, the
rightmost path from e to N is the path made of e followed by the rightmost path from e+ to N.

Note that, as soon as the rightmost path γ from a vertex v (resp. from an edge e) to N reaches
the boundary of the map, it stays on it until the Pole N. Thus, γ is made of an internal part γi,
followed (once the boundary is reached) by an external part, which is included in the boundary.
Clearly, the internal part has length 0 if and only if v (resp. e) is external. We call external index with
respect to v (resp. e) the length of the external part.

2.1 The construction, from maps with a distinguished internal vertex

Let B denote the set of bipolar oriented maps, and B• denote the set of bipolar oriented maps
carrying a distinguished internal vertex, that is, the set of pairs (m, v), where m ∈ B and v is an
internal vertex of m. For such a pair, the marked face is defined as the internal face f at the right
of v, that is, the one at the right of the rightmost outgoing edge at v. The external index, denoted
by δ, is the external index with respect to v.

Let (m, v) ∈ B•. We break down the process into the following steps. See Figure 5 (from top
left to top right in counterclockwise order).
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Ψ
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sew

slide up

slide down

ℓ0

ℓ
r

ℓ̃k+1

ℓ̃
r̃

v

δN

S

γi

f ẽ

N

S

δ̃

γ̃i

f̃

Figure 5: The slit-slide-sew bijections Φ, Ψ between bipolar oriented maps with a marked internal vertex and bipolar
oriented maps with a marked right-internal boundary-reaching edge. The little arrows show at which corner to enter in
the slitting step. The marked face is highlighted in red and sees its left length decrease or increase by one.

A. Sliding path
We consider the internal part γi = (e1, e2, . . . , ek) of the rightmost path from v to N. We
let ℓ0 be the edge preceding e1 in clockwise order around v. Since v is internal and e1 is the
rightmost outgoing edge of v, ℓ0 is incoming at v, with the marked face f at its right.

B. Slitting, sliding, sewing
We slit along γi, entering at v from the corner in f and exiting through the external face. This
doubles the path γi, making up two copies: ℓ = (ℓ1, . . . , ℓk) to the left, and r = (r1, . . . , rk) to
the right.
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We then sew back ℓ onto r after sliding down the right side by one unit, in the sense that
we match ℓi−1 with ri, for every 1 ≤ i ≤ k. For further reference, we denote by ℓi−1 ⋊⋉ ri the
resulting edge.

C. Output
In the resulting map m̃, we set ẽ := ℓ0 ⋊⋉ r1. The output of the construction is the pair
Φ(m, v) := (m̃, ẽ).

Before presenting the reverse bijection, let us first see what properties the output must satisfy.

2.2 Edge constraints

An edge may satisfy the following properties, which are crucial for our purposes.

Boundary-reaching edge. An edge e in a bipolar oriented map m is boundary-reaching if the right-
most path from it to the North Pole N reaches the boundary of m before N, that is, if the external
index with respect to e is strictly positive. Equivalently, by planarity, e is not boundary-reaching if
all the paths from it to N reach the boundary at N. See Figure 6.

S

N

Figure 6: The thick blue edge is boundary-reaching whereas the thick green one is not. The rightmost path from them
to N reach the boundary at the vertices with corresponding color.

Right-internal edge. An edge e in a bipolar oriented map m is called right-internal if the face to
its right is an internal face. Note that, except in the trivial case of a map with no internal faces, the
root edge is always right-internal. In fact, all the edges are right-internal, except those on the right
part of the boundary.

Proposition 4. Let (m, v) ∈ B•, of external index δ ≥ 0, and let Φ(m, v) := (m̃, ẽ). Then m̃ is a bipolar
oriented map, with ẽ a right-internal edge. Moreover, the external index of (m̃, ẽ) is equal to δ + 1, so that,
in particular, ẽ is boundary-reaching.

9



Proof. We rely on the characterization of bipolar oriented maps by the local rules given in Sec-
tion 1.2. The local condition at any internal faces still holds, the left length and right length being
preserved, except for the marked face f , whose left length decreases by 1. Note in passing that f is
at the right of ẽ, so that ẽ is right-internal. The local condition for the external boundary also still
holds.

The only nonstraightforward property remaining to check for m̃ is that the local rules still hold
at vertices along the sliding path. Note that the edges to the right of γi are directed toward γi (by
definition of rightmost paths). Hence, for each vertex along γi, we replace, between an incoming
and an outgoing edge, a (possibly empty) consecutive group of incoming edges with an other
(possibly empty) consecutive group of incoming edges.

Besides concluding the proof that m̃ is a bipolar oriented map, this property also ensures that
the path γ̃i := (ℓ0 ⋊⋉ r1, . . . , ℓk−1 ⋊⋉ rk) is prefix to the rightmost path from ẽ to N in m̃. These
edges preserve the property of having an internal face on each side, hence they form a path of
internal edges in m̃, ending at the origin of ℓk, which becomes an external edge after the sewing
operation. Hence, γ̃i is the internal part of the rightmost path from ẽ to N, while the edge ℓk has
been transferred to its external part. The external index of (m̃, ẽ) is thus δ + 1, as claimed. □

2.3 The construction, from maps with a distinguished proper edge

We now present the inverse construction. Let B∂ denote the set of bipolar oriented maps carrying
a distinguished boundary-reaching right-internal edge, and let (m̃, ẽ) ∈ B∂ . For such a pair, the
marked face is the internal face f̃ at the right of ẽ, and the external index, denoted by δ̃, is the external
index with respect to ẽ. Note that δ̃ ≥ 1 since ẽ is boundary-reaching.

As above, we break down the process into 3 steps. See Figure 5, to be read from top right to
top left in clockwise order.

1. Sliding path
We consider the internal part γ̃i = (ẽ1 = ẽ, ẽ2, . . . , ẽk) of the rightmost path from ẽ to N.

2. Slitting, sliding, sewing
We slit along γ̃i, entering at ẽ− from the corner in the marked face f̃ and exiting through the
external face. This doubles the path γ̃i, making up two copies, one to the left, ℓ̃ = (ℓ̃1, . . . , ℓ̃k),
and one to the right, r̃ = (r̃1, . . . , r̃k). We also let ℓ̃k+1 be the external edge whose origin is
the end of ℓk (this edge exists since δ̃ ≥ 1).

We then sew back ℓ̃ onto r̃ after sliding up the right side by one unit, in the sense that we
match ℓ̃i+1 with r̃i, for every 1 ≤ i ≤ k.

3. Output
In the resulting map m, we denote by v the vertex ℓ̃+1 . The output of the construction is the
pair Ψ(m̃, ẽ) := (m, v).

Proposition 5. For any (m̃, ẽ) ∈ B∂ , the output (m, v) = Ψ(m̃, ẽ) of the above construction is in B•.
Moreover, if δ̃ ≥ 1 denotes the external index of (m̃, ẽ), then the external index of (m, v) is δ̃ − 1.

Proof. Very similarly to the proof of Proposition 4, the construction preserves the local condition
of bipolar oriented maps (left and right lengths of internal faces are preserved, except for the left
length of the marked face that increases by 1).

10



The sewn path is the internal part of the rightmost path from v to N. Moreover, there is one less
edge (ℓ̃k+1) in the external part, in comparison with the rightmost path from ẽ to N in the original
map m̃. Note also that the marked face f̃ becomes the face at the right of v in m, so that v has to
be an internal vertex. □

2.4 Bijections and specializations

Bijections. Let us prove that the previous mappings are indeed bijection.

Theorem 6. The slit-side-sew mappings Φ: B• → B∂ and Ψ: B∂ → B• are inverse bijections. Fur-
thermore, the mapping Φ

⋄ lets the external index and the external degree increase by one,

⋄ lets the number of internal vertices decrease by one,

⋄ and preserves the number of internal faces, as well as their left and right lengths, except for the marked
face, whose left length decreases by one.

Proof. We already know from Propositions 4 and 5 that Φ and Ψ take their values in the proper
sets B∂ and B•.

We need to see that, for (m, v) ∈ B•, we have Ψ(Φ(m, v)) = (m, v). For this, notice that the
sliding path of (m, v) becomes the sliding path of Φ(m, v) through the mapping Φ and that the
operations of sliding up and sliding down are clearly inverse one from another. For the same
reason, Φ ◦Ψ is the identity on B∂ .

Finally, the stated parameter correspondences of the mapping Φ are also direct consequences
of the construction. □

Specializations. We now state the specializations to the three families under consideration. We
define the following subsets of B:

⋄ the set Tk,j of bipolar oriented quasi-triangulations with k internal vertices and an external
face of degree j (so that Tk,j = |Tk,j |) for any k ≥ 0, j ≥ 2 ;

⋄ the set Bk,ℓ,j of bipolar oriented maps with k internal vertices, ℓ internal faces, and an exter-
nal face of degree j (so that Bk,ℓ,j = |Bk,ℓ,j |) for any k ≥ 0, ℓ ≥ 1, j ≥ 2 ;

⋄ the set Sk,j of bipolar oriented maps with k internal vertices, an external face of degree j,
and such that all internal faces have right length 2 (so that Sk,j = |Sk,j |) for any k ≥ 0, j ≥ 3.

Similarly as we did above for B, we define for any of these subsets X two variations:

⋄ the set X • of pairs (m, v) where m ∈ X and v is an internal vertex of m;

⋄ the set X ∂ of pairs (m, e) where m ∈ X and e is a boundary-reaching right-internal edge.

We readily obtain the following from Proposition 6.

Corollary 7. The slit-side-sew correspondence specializes into bijections between:

⋄ the set B•k,ℓ,j and the set B∂k−1,ℓ,j+1 for any k ≥ 0, ℓ ≥ 1, j ≥ 2 ;

⋄ the set S•k,j and the set S∂k−1,j+1 for any k ≥ 0, j ≥ 3.

11



Quasi-triangulations. Because of the drop of degree in the marked face (at the right of the dis-
tinguished vertex), we will need to perform an extra “squeezing” step for quasi-triangulations. As
a result, the property that, via Φ, the distinguished edge is right-internal will no longer hold in
this case; we rather define the set T ∂ (resp. T ∂

k,j ) as the set of pairs (m, e) where m ∈ T (resp.
m ∈ Tk,j) and e is a boundary-reaching edge of m.

We then amend the bijections Φ and Ψ as follows. Let (m, v) ∈ T •
k,j and (m̃, ẽ) := Φ(m, v). We

add an extra step at the end:

D. Shrinking the degree 2-face
The face f̃ at the right of ẽ is a degree 2-face. Let ê be the edge on the right of f̃ . Note that
it has same origin and end as ẽ. We collapse f̃ by sewing ê onto ẽ, and denote by m̂ the
resulting map. We set Φ̂(m, v) := (m̂, ê⋊⋉ ẽ).

Conversely, we take (m̂, ê) ∈ T ∂
k−1,j+1 and add an extra step at the beginning:

0. Blowing the distinguished edge
We replace the distinguished edge ê with an extra degree 2-face by doubling the edge, while
keeping the orientation of the doubled edge. Among the two edges resulting from the dou-
bling of ê, we let ẽ be the one having the extra degree 2-face to its right. We then let m̃ be the
resulting map and set Ψ̂(m̂, ê) := Ψ(m̃, ẽ).

Since these two extra steps are clearly inverse one from another, we obtain the following.

Corollary 8. The slit-side-sew correspondence extends into bijections Φ̂ : T • → T ∂ and Ψ̂ : T ∂ → T •,
inverse one from another, which, for k ≥ 0, j ≥ 2, specialize into bijections between T •

k,j and T ∂
k−1,j+1.

3 Boundary-reaching probabilities

Cardinalities. We come back to the prefactor (b) from the end of Section 1.3. We add several new
variations to a subset X ⊆ B: for any symbol x ∈ { , , }, we define the set X x of pairs (m, e)
where m ∈ X and e is

⋄ any edge of m if x = ;

⋄ an internal edge of m, that is, an edge having internal faces on both sides, if x = ;

⋄ a right-internal edge of m if x = .

Furthermore, we define the subset X ∂x of pairs (m, e) ∈ X x where e is also boundary-reaching.
With this notation, the enumeration at the end of Section 1.3 yields

|Tk−1,j+1| =
(
3k + 2j − 4

)
Tk−1,j+1,

|Bk−1,ℓ,j+1| =
(
k + ℓ− 2

)
Bk−1,ℓ,j+1,

|Sk−1,j+1| =
(
2k + j − 3

)
Sk−1,j+1,

for the values of k, ℓ, j where those are defined.
Note that, for any given map, the internal edges are also right-internal. On the contrary, the

only edge that is right-internal but not internal is the root. Since the root is obviously never
boundary-reaching, we actually have X ∂ = X ∂ . The reason why we consider internal edges
rather than right-internal edges in the case of general bipolar oriented maps should become clear
in what follows.
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Boundary-reaching probabilities. We now introduce the boundary-reaching probabilities, defined
as the ratios

τk,j :=
|T ∂

k,j |
|Tk,j |

, βk,ℓ,j :=
|B∂k,ℓ,j |
|Bk,ℓ,j |

, σk,j :=
|S∂k,j |
|Sk,j |

. (8)

In words, those are the probabilities that the distinguished edge e is boundary-reaching, for a
uniformly chosen random pair (m, e) in a given class (Tk,j , Bk,ℓ,j , or Sk,j).

Recalling that B∂k,ℓ,j = B∂k,ℓ,j , Corollaries 7 and 8 then provides a proof to Propositions 1, 2, 3,
provided that the following identities hold.

Proposition 9. We have

τk,j = 1− 2

j
k ≥ 0, j ≥ 2, (9)

βk,ℓ,j = 1− 2

j
k ≥ 0, ℓ ≥ 1, j ≥ 2, (10)

σk,j = 1− 3

j
k ≥ 0, j ≥ 3. (11)

These will be obtained as consequences of properties satisfied by orientations grouped into
orbits of a rerooting operation. We will actually see that for the first two cases, the ratio formula
holds in a much stronger sense, namely the probability that e is boundary-reaching is equal to
1−2/j for any fixed pair (m, e), taking a uniformly random bipolar orientation of m, upon allowing
the root edge to be any external edge. For the third case, the ratio formula holds in a similarly
strong sense when translated to quasi-triangulations.

3.1 Rerooting operator for bipolar oriented maps

In this section, we focus on (9) and (10). Since these obviously hold when j = 2, we will restrict
ourselves to the case j ≥ 3.

Rerooting operator. For a planar map m and a marked oriented edge ρ⃗ = (u, v) of m, a bipolar
orientation of m rooted at ρ⃗ is an orientation of all the edges of m in such a way that the resulting
oriented map is a bipolar oriented map with root edge ρ⃗. It is known [LEC67] that m admits a
bipolar orientation rooted at ρ⃗ if and only if m is 2-connected, that is, loopless and such that the
deletion of any single vertex does not disconnect m.

Moreover, for another marked directed edge ρ⃗ ′ = (u′, v′) of m, it is known [dFdMR95] that
the bipolar orientations of m rooted at ρ⃗ are in bijection with the bipolar orientations of m rooted
at ρ⃗ ′. Consequently, the number of bipolar orientations of m does not depend on the choice of
the marked directed edge. In the special case – the one we will used in the present work – where
u′ = v, the bijection, called rerooting operator, works as follows: given a bipolar orientation of m
rooted at ρ⃗, an edge is flipped (in the sense that its orientation is reverted) if and only if there does
not exist a directed path from it to v′. See Figure 7.

Orbits. A rooted map is a planar map with a marked oriented edge, called the root edge, all the
other edges not being oriented. As above, the external face is the one on the left of the root edge,
and is always drawn as the unbounded component of the plane.
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ρ⃗

ρ⃗′

u

u′v = u′

v′v′

Figure 7: Rerooting operator in the case where the tail of the new root edge is the head of the former root edge. In this
context, we represent North poles with red squares and South poles with blue disks. The 4 edges to be flipped are circled
in green.

For a 2-connected map m with root edge ρ⃗, and external face degree j ≥ 3, let ρ⃗ = ρ⃗0, . . . , ρ⃗j−1

be the oriented edges in clockwise order around the external face. We denote by Bi(m) the set of
bipolar oriented maps on m rooted at ρ⃗i, and set B(m) :=

⋃j−1
i=0 Bi(m).

The rerooting operator from the previous paragraph thus yields a bijection σ fromB(m) toB(m),
specializing into a bijection from Bi(m) to Bi+1(m) for every 0 ≤ i < j. Note that the bijection σ
amounts to flipping the edges that are not boundary-reaching, and take ρ⃗i+1 as the new root edge.

An orbit of B(m) is a cyclic sequence Orb of distinct elements in B(m) such that for any pair x,
x′ of successive elements of Orb, one has x′ = σ(x). See Figure 8 for an example. Note that the
length of any orbit has to be a multiple of j, since the index i of the root edge goes up by 1 from
one orbit element to the next one.

Boundary-reaching submap. Given a bipolar oriented map x ∈ B(m), we define its boundary-
reaching submap x̃ as the set of all boundary-reaching edges of x. It is easy to see that it forms
a connected submap that contains all the vertices of the boundary of x except the North pole.
Since we assume that j ≥ 3, the North pole has two neighbors on the boundary of x: the South
pole and another vertex v. We define the separating path P as the leftmost path that is incoming
at v and starts from the South Pole, or, equivalently, the unique directed path from S to v such
that any edge e on P is the leftmost incoming edge at e+. By definition, all the edges of P are
boundary-reaching; moreover, P actually separates x̃ from its complement in x, in the sense that
the boundary-reaching edges of x are exactly those on P or to its right. See Figure 9.

One can then rephrase the rerooting operation in terms of these objects: to obtain σ(x) from x,
flip all edges of x \ x̃ and set the new root edge as the one succeeding the original one along
the boundary in clockwise order, that is, the one from the original North pole to the tip of the
separating path.

Orbit property. Let us now compute the average probability over a given orbit that a given edge
is boundary-reaching.

Lemma 10. Let m be a rooted 2-connected map of external face degree j ≥ 3. Let Orb be an orbit of B(m).
Then, for any edge e of m, there is a proportion 2/j of elements in Orb for which e is not boundary-reaching.

Proof. For a fixed orbit Orb, the multiplicity of an edge e of m is the number of elements in Orb such
that e is not boundary-reaching, that is, is to be flipped in the transition to the next element of Orb.
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ρ⃗0

ρ⃗3

ρ⃗2

ρ⃗1

ρ⃗0

ρ⃗3

ρ⃗2

ρ⃗1

ρ⃗0

ρ⃗3

ρ⃗2

ρ⃗1

Figure 8: An orbit of length 12 on bipolar oriented maps with external face degree j = 4. At each step, the edges that
are not boundary-reaching are circled in green; these are the edges to be flipped. One can note that for any given edge e,
there are exactly 6 elements of the orbit such that e is not boundary-reaching.

Letting a := |Orb|/j, we thus have to prove that every edge has multiplicity 2a. The property is
very easy to check for edges incident to the external face. Indeed, for 0 ≤ i < j, the elements
in Orb such that the (nonoriented) edge corresponding to ρ⃗i is not boundary-reaching are exactly
those where the root edge is either ρ⃗i−1 or ρ⃗i.

We now show that the property propagates step by step to any edge by showing that two
edges e, e′ consecutive in clockwise order around a vertex v have the same multiplicity. This clearly
allows to conclude the proof since, for every edge e, one can find a sequence of edges starting with
an external edge (for which the property is known), ending at e, and where two successive edges
in the sequence are consecutive around a vertex. We may assume that the corner c between e and e′

is in an internal face since, otherwise, it means that e and e′ are in the external face and we already
know that they have same multiplicity.

We introduce a bit of terminology. For any orientation of the edges of m, the corner c is called
extremal if e and e′ are either both incoming or both outgoing, and is called lateral otherwise. We
call special the elements of Orb for which e and e′ have a different status (boundary-reaching or
not boundary-reaching). Let x ∈ Orb; the following holds.
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x̃

P −→

P

e′e
v

e′e
v

Pe′

e
v e′

e
v

x σ(x)

−→

−→

Figure 9: Left. Two successive elements x, σ(x) in an orbit; the flipped edges are those that are not boundary-reaching,
that is, those outside of x̃. The separating path P is in blue and the boundary-reaching submap x̃ in turquoise. Right.
For two consecutive edges e, e′ around a vertex v (with the corner they delimit in an internal face), the two situations
where only one of e, e′ is flipped in the transition from x to σ(x).

⋄ If x is not special, then e and e′ both belong to the same submap x̃ or x\ x̃. So, they are either
both flipped or both left unchanged by the rerooting operation. As a result, c has the same
status (lateral or extremal) in x and in σ(x).

⋄ If x is special, then there are two possibilities, shown on the right of Figure 9.

Top case. If e is not boundary-reaching (and thus e′ is boundary-reaching) in x, then it means
that e is just on the left of P and e′ is on P , both e and e′ going out of v. Then c is extremal
in x and lateral in σ(x).

Bottom case. If e is boundary-reaching (and thus e′ is not boundary-reaching) in x, then it
means that e is on P and e′ is just on the left of P (possibly, e being the last edge on the
right boundary of m), with e incoming and e′ outgoing at v. Then c is lateral in x and
extremal in σ(x).

Monitoring the status of c along the orbit Orb, we see that the special elements in Orb alternate
between the top case and the bottom case; the number of these special elements is thus evenly
spread among the two cases. This entails that e and e′ have the same multiplicity. □

Remark 1. For every external edge ρ of m, there is a clear j-to-2 correspondence between the
elements of Orb and the elements of Orb such that ρ is not boundary-reaching: indeed, for j
consecutive elements of Orb there are exactly two elements where ρ is not boundary-reaching (the
one mentioned at the beginning of the proof of Lemma 10). Moreover, for any two edges e, e′ of m
that are consecutive around a vertex v, the proof ensures that there is a bijection ιe,e′ from Orb to
Orb such that e is boundary-reaching in x ∈ Orb if and only if e′ is boundary-reaching in ιe,e′(x):
if x is not special, we set ιe,e′(x) := x, and otherwise, we let ιe,e′(x) be the next special element
along the orbit. By propagation, we thus obtain, for each edge e of m, a bijection ιe from Orb to Orb
such that e is boundary-reaching in x iff an arbitrarily fixed external edge ρ is boundary-reaching
in ιe(x). Via this bijection we thus have a j-to-2 correspondence between the elements of Orb and
the elements of Orb such that e is not boundary-reaching.
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Corollary 11. Let m be a rooted 2-connected map of external face degree j ≥ 3. Then, for any edge e of m,
there is a proportion 2/j of elements in B(m) for which e is not boundary-reaching.

Proof of Proposition 9, Equations (9) and (10). Note that j |Tk,j | (resp. j |T ∂
k,j |) is the number of triples

(m,x, e) where m is a bipolar oriented quasi-triangulation with k internal vertices and j external
vertices, x ∈ B(m), and e is an edge (resp. a boundary-reaching edge) of m. Corollary 11 then
ensures that j |T ∂

k,j | =
(
1− 2

j

)
j |Tk,j |, so that τk,j = 1− 2/j, as desired.

Similarly, j |Bk,ℓ,j | (resp. j |B∂k,ℓ,j |) is the total number of triples (m,x, e) where m is a rooted
2-connected map with k internal vertices, ℓ internal faces, and j external vertices, x ∈ B(m), and e
is an internal edge (resp. a boundary-reaching internal edge) of m. Corollary 11 then ensures that
j |B∂k,ℓ,j | =

(
1− 2

j

)
j |Bk,ℓ,j |, so that βk,ℓ,j = 1− 2/j, as wanted. □

3.2 Rerooting operator for Schnyder woods

We now turn to (11). The overall strategy is the same as in the previous section.

3-orientations and rerooting mapping. For a Schnyder wood on a triangulation t, we convene
that the root edge of t is the external edge (ρ2, ρ3). Similarly to bipolar orientations, the number of
Schnyder woods of a simple planar triangulation t does not depend on the choice of the root edge.
In order to establish this claim, we use so-called 3-orientations, that is, orientations of the internal
edges such that every internal vertex has outdegree 3 and the 3 external vertices ρ1, ρ2, ρ3 have
outdegree 0.

It is known [Fel04] that, for each 3-orientation of t, there is a unique Schnyder wood whose
underlying orientation is the given 3-orientation. It is obtained by “propagating the colors” ac-
cording to the local rule depicted on the right of Figure 3. More precisely, for any internal edge e,
one considers the so-called straight path Pe of e, which is the unique directed path starting at e,
ending at one of the external vertices ρi and having one outgoing edge on each side at every ver-
tex it passes by; then the color assigned to e is that of ρi in the sense that e ∈ ti. Consequently,
once a root edge of t is fixed, its 3-orientations bijectively correspond to its Schnyder woods.

Let (ρ2, ρ3) be a directed edge of t, let ρ1 be the other vertex incident to the face on the left of
(ρ2, ρ3), and let z be the other vertex incident to the face on the left of (ρ1, ρ3). See the left column
in Figure 10. There is a simple bijection between the 3-orientations of t rooted at (ρ2, ρ3) and those
rooted at (ρ3, z), which proceeds as follows. We revert the straight path P of the unique outgoing
edge of z not leading to ρ1 or ρ3, we discard the orientations of (z, ρ1) and (z, ρ3), and we orient the
edges (ρ2, ρ3) and (ρ2, ρ1) outward of ρ2 (note that P corresponds to the unique path of t2 from z
to ρ2). See the middle column in Figure 10. The claim follows.

Rerooting operator on quasi-3-orientations. We will actually adapt this rerooting mapping to
the slightly different setting of quasi-triangulations. Given a simple quasi-triangulation q and ρ⃗
one of its j external edges, a quasi-3-orientation of q rooted at ρ⃗ is an orientation of all the edges
of q but ρ⃗, such that:

⋄ the two extremities of ρ⃗ have outdegree 0,

⋄ the other external vertices have outdegree 2,

⋄ the internal vertices have outdegree 3.
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ρ3

ρ2 ρ1

z

ρ3

ρ2 ρ1

z

ρ3

ρ2 ρ1

z

ρ2 ρ1

z

ρ3

ρ2 ρ1

z

ρ3

rerooting σ

Schnyder wood 3-orientation quasi-3-orientation

ρ⃗

ρ⃗′

P

P

Figure 10: The rerooting mapping on a 3-orientation, and the induced rerooting operator σ on the associated quasi-3-
orientation.

For a simple triangulation t rooted at (ρ2, ρ3), we obtain a quasi-triangulation q by deleting the
other vertex incident to the face on the left of (ρ2, ρ3) (denoted by ρ1 above), as well as its incident
edges. If t has k+j+1 vertices then q has external face degree j and k internal vertices. Moreover,
the 3-orientations of t clearly correspond to the quasi-3-orientations of q.

Let t be a simple triangulation, let ρ⃗ = (ρ2, ρ3) be an oriented edge of t, let q be the quasi-
triangulation corresponding to t rooted at ρ⃗, and let ρ⃗ ′ = (ρ3, z). Let x be a 3-orientation of t
rooted at ρ⃗, and x′ the 3-orientation obtained from the rerooting mapping described above. Let
finally y and y′ be the quasi-3-orientations of q corresponding respectively to x and x′.

It is easy to directly describe how y′ is obtained from y. The separating path for y is the unique
directed path P starting at z with the outgoing edge not leading to ρ3, ending at ρ2, and having a
single outgoing edge on its right at every vertex it passes by. Then, in order to obtain y′ from y,
we revert P , discard the orientation of ρ⃗ ′, and orient ρ⃗ from ρ2 to ρ3. Note that the root edge has
shifted by one unit in clockwise order along the external contour. We call rerooting operator the
mapping σ sending y to y′. See the right column in Figure 10.

Orbits. For a simple quasi-triangulation q with root edge ρ⃗ and external face degree j ≥ 3, let
ρ⃗ = ρ⃗0, . . . , ρ⃗j−1 be the oriented edges in clockwise order around the external face. For 0 ≤ i < j,
let Qi(q) be the set of quasi-3-orientations of q rooted at ρ⃗i, and set Q(q) :=

⋃j−1
i=0 Qi(q). Similarly

as in the previous section, the rerooting operator σ yields a bijection fromQi(q) toQi+1(q), hence
a bijection from Q(q) to Q(q).

As above, an orbit of Q(q) is a cyclic sequence Orb of distinct elements of Q(q) obtained by
subsequent applications of σ. Note that the length of any orbit is again a multiple of j. See Fig-

18



Figure 11: An orbit of length 15 of quasi-3-oriented quasi-triangulations with external face degree j = 5. For each
element, the root edge is bold-red, the separating path is purple, and the right and left regions are respectively light
yellow and turquoise. Each internal face appears 9 times in the right region (as ensured by the orbit property).

ure 11. For x ∈ Q(q), the separating path P of x yields a partition of the internal faces of q into
two regions: the one on the left (resp. right) of P is called the left region (resp. the right region) for x.

Orbit property. Similarly as above, the average probability over a given orbit that a given face is
in the right region can be computed.

Lemma 12. Let q be a rooted simple quasi-triangulation of external face degree j ≥ 3. Let Orb be an orbit
of Q(q). Then, for every internal face f of q, there is a proportion 3/j of elements in Orb for which f is in
the right region.

Proof. For a fixed orbit Orb, the multiplicity of an internal face f ∈ q is the number of elements in
Orb such that f is in the right region. Letting a = |Orb|/j we thus have to prove that every internal
face of q has multiplicity 3a.

We proceed in two steps similarly as in Lemma 10, proving first the property for any internal
face f adjacent to the external face and then propagating it to any internal face. So let f be incident
to an external edge ρ⃗i (and possibly a second external edge). Precisely, we will show that for any j
consecutive elements x0, . . . , xj−1 of Orb, with x0 rooted at ρ⃗i, there are exactly 3 elements such
that f is in the right region; the situation is illustrated in Figure 12, where e is the nonoriented edge
corresponding to ρ⃗i.

Clearly, f is in the right region in x0 and in xj−1. Note that e is directed clockwise around the
outer contour in x1, and counterclockwise in xj−1. Hence, there is a smallest p ∈ {1, . . . , j − 2}
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x0 xp xp+1 xj−1

Figure 12: The situation in the proof of Lemma 12 for an internal face f incident to an external edge e. For each
depicted element, the root edge is bold-red, the separating path is purple, and the right and left regions are respectively
light yellow and turquoise.

such that e is clockwise in xp and counterclockwise in xp+1. Since e is reverted when applying σ
to xp, this means that e is on the separating path for xp. And necessarily, f is on its right, hence in
the right region.

Once e becomes counterclockwise (starting in xp+1), it has no chance of belonging to the sepa-
rating path (and thus being reverted) before e becomes the root edge again. This comes from pla-
narity and the fact that the separating path is a simple path. Thus xp is the only element among x1,
. . . , xj−2 for which e is on the separating path.

Note finally that, in each element of Orb not rooted either at ρ⃗i or at ρ⃗i−1, the only possibility
for f to be in the right region is that e is on the separating path with f on its right. Among x1,
. . . , xj−2, this only occurs for xp. Hence, among x0, . . . , xj−1, there are exactly 3 elements – x0, xp,
xj−1 – for which f is in the right region, as desired.

Next, we show that two internal faces f , f ′ sharing an edge e have the same multiplicity. We
call special of type L/R (resp. R/L) the elements of Orb for which f is in the left region while f ′ is
in the right region (resp. f is in the right region while f ′ is in the left region), that is, e is on the
separating path, with f on the left (resp. on the right). Hence, for a special element in Orb, the next
special element along the orbit is of the other type (these are the elements where e is flipped). This
ensures that f , f ′ have same multiplicity.

We conclude that any internal face f has multiplicity 3a, since there exists a sequence f0, . . . ,
fk of internal faces ending at f , such that f0 is incident to an external edge, and fi, fi+1 share an
edge for each i ∈ {0, . . . , k − 1}. □

Remark 2. Similarly to Remark 1, for each internal face f , one can design a j-to-3 correspondence
between the elements of Orb and those where f is in the right region. The correspondence is easy
to describe for f incident to an external edge, and can then be propagated from face to (adjacent)
face.

Corollary 13. Let q be a rooted quasi-triangulation of external face degree j ≥ 3. Then, for any internal
face f of q, there is a proportion 3/j of elements in Q(q) for which f is in the right region.

Proof of Proposition 9 Equation (11). LetQk,j be the set of quasi-3-oriented quasi-triangulations with
external face degree j having k internal vertices, and let Q△

k,j (resp. QL
k,j) be the set of pairs (x, f)

where x ∈ Qk,j and f is an internal face (resp. an internal face in the left region for x). Then j |Q△
k,j |

(resp. j |QL
k,j |) is the total number of triples (q,x, f) where q is a rooted simple quasi-triangulation
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with k internal vertices and j external vertices, x ∈ Q(q), and f is an internal face (resp. an internal
face in the left region for x). Corollary 13 then ensures that

j |QL
k,j | =

(
1− 3

j

)
j |Q△

k,j | . (12)

It remains to come back to bipolar oriented maps through the bijections we used. First of all,
recall that Sk,j corresponds to Qk,j via Schnyder woods, that is, through the bijection depicted in
Figure 4 and then the ones in the top row of Figure 10. Next, for an element q ∈ Qk,j corresponding
to m ∈ Sk,j , the following holds.

ρ3

ρ2 ρ1

z

ρ3

ρ2 ρ1

z

ρ3

ρ2 ρ1

z

Schnyder wood

quasi-3-orientation q

bipolar oriented map m

Figure 13: Illustration of the bijective correspondence between Qk,j (top right) and Sk,j (bottom right) via Schnyder
woods. For q ∈ Qk,j and the associated m ∈ Sk,j , the separating paths coincide (in reverse directions). Hence, in
the 1-to-1 correspondence between internal faces of q and right-internal edges of m, the internal faces in the left region
correspond to the right-internal edges that are boundary-reaching.

⋄ Each internal face f of q bijectively corresponds to a right-internal edge e of m: the face f is
the triangular face to the right of e upon superimposing q and m. See Figure 4.

⋄ The separating paths of q and of m coincide, with opposite edge directions. Indeed, the
outgoing blue edge of an internal vertex v in the Schnyder wood corresponds to the leftmost
incoming blue edge of v in the bipolar oriented map. See Figure 13.
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⋄ Hence, internal faces in the left region for q correspond to right-internal edges that are
boundary-reaching for m.

From these observations, the bijection between Qk,j and Sk,j yields a bijection between Q△
k,j

and Sk,j , which specializes into a bijection between QL
k,j and S∂k,j . As a result,

σk,j =
|S∂k,j |
|Sk,j |

=
|QL

k,j |
|Q△

k,j |
= 1− 3

j
,

where the last equality is given by (12). □

4 Base cases of the counting formulas

Since our bijections provide proofs to (5), (6), (7), we can recover (2), (3), (4), using the following
base cases. Clearly, T0,2 = 1.

Proposition 14. For j ≥ 3, the sets T0,j and S0,j are in bijection with rooted binary trees having j − 1
leaves, so that

T0,j = S0,j = Catj−2 =
(2j − 4)!

(j − 1)!(j − 2)!
.

For ℓ ≥ 1, j ≥ 2, the set B0,ℓ,j is in bijection with rooted plane trees having ℓ nodes and j − 1 leaves. These
are counted by Narayana numbers:

B0,ℓ,j = Narℓ,j−1 =
(ℓ+ j − 2)!(ℓ+ j − 3)!

ℓ!(ℓ− 1)!(j − 1)!(j − 2)!
.

Proof. We call dissection a rooted planar 2-connected map m where all the vertices are incident to
the external face. We claim that any dissection admits a unique bipolar orientation. Indeed, if we
order the vertices around the external contour in counterclockwise order as v0, . . . , vj−1 with v0
the origin of the root edge, then the condition for the right external boundary of bipolar oriented
maps ensures that every edge {vp, vp+1} has to be directed from vp to vp+1 for 0 ≤ p ≤ j − 2. And
the acyclicity implies that every internal edge {vp, vq}, with p < q, has to be directed from vp to vq .
Hence, dissections are in bijection with bipolar oriented maps with no internal vertices.

In particular T0,j is in bijection with dissections of external face degree j and internal faces
of degree 3, and B0,ℓ,j is in bijection with dissections with external face degree j and ℓ internal
faces. By duality, these respectively correspond to rooted binary trees with j − 1 leaves, and to
rooted plane trees with ℓ nodes and j − 1 leaves, which are respectively counted by Catj−2 and
by Narℓ,j−1.

In order to deal with S0,j , it is convenient to observe that a bipolar oriented map has no internal
vertices if and only if every internal face has left length 1. Indeed, if there is an internal vertex v,
then the internal face f on the right of the rightmost outgoing edge of v has its left lateral path
passing by v, hence of length at least 2; and if an internal face f has its left lateral path of length at
least 2 then this path has to visit a vertex v having f on its right, so that v is necessarily an internal
vertex.

As a consequence, for bipolar oriented maps with no internal vertex, having all internal faces
of degree 3 is the same as having all internal faces of right length 2. Hence, T0,j = S0,j . □
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5 Concluding remarks

5.1 Growth bijections for the base cases

Catalan. Note that Rémy’s bijection [Rém85] (see also [Rod38]), which interprets the identity (1),
yields a growth bijection for maps in T0,j through the bijection via dissections from the previous
section. Hence, there is a complete growth process for maps in Tk,j : use Rémy’s bijection to grow
from ∅ to T0,k+j , then use our bijection (Corollary 8) k times to grow from T0,k+j to Tk,j . The same
holds for Sk,j .

Narayana. Regarding B0,ℓ,j , we have not been able to find in the literature a growth bijection
for structures counted by Narayana numbers. Recall that Nara,b counts rooted plane trees with a
nodes and b leaves, or, alternatively, rooted binary trees with a left and b right leaves.

For the sake of completeness, we briefly present such a bijection here. One easily obtains from
the formula for Nara,b the following simple identity

(a+ 1) a Nara+1,b = (b+ 1) b Nara,b+1, (13)

which, together with the base case Nar1,b = 1 yields the formula for Nara,b. Our bijection for (13)
relies on cutting/merging operations similarly to [Mar23]. We find it more convenient to describe
it on rooted binary trees counted by left and right leaves (though it can also be described for rooted
plane trees counted by nodes and leaves).

For a rooted binary tree, we call inner edges those connecting two nodes, and leaf edges those
incident to a leaf. An edge is called left or right according to whether it connects a parent to its
left child or to its right child. In this terminology, Nara,b counts rooted binary trees with a left leaf
edges and b right leaf edges. Such trees also have a− 1 right inner edges and b− 1 left inner edges.
Hence, if we let Fa,b (resp. Ga,b) be the set of rooted binary trees with a left leaf edges, b right leaf
edges, and having a marked left leaf edge and a marked right inner edge (resp. a marked right leaf
edge and a marked left inner edge), then (13) reads |Fa+1,b| = |Ga,b+1|.

The bijection between Fa+1,b and Ga,b+1 is actually the specialization of an involution χ on the
set of rooted binary trees with a marked leaf edge of some type (left or right) and a marked inner
edge of the other type. It is illustrated in Figure 14 and proceeds as follows. We cut the (red)
marked inner edge and attach to the (blue) marked leaf edge the cut tree that does not contain the
marked leaf edge. We keep the markings in the process.

Observe that, in the intermediate state, we obtain a pair of rooted binary trees with a marked
leaf edge of each types. In the end, the number of leaf edges of the type of the marked inner edge
increases by one (in the cutting step), while the number of leaf edges of the type of the marked
leaf edge decreases by one (in the attachment step). All in all, χ specializes into inverse bijections
between Fa+1,b and Ga,b+1.

This provides the following complete growth process for Bk,ℓ,j .

1. Start from right comb binary tree having 1 right leaf and k + ℓ+ j − 2 left leaves.

2. Apply k + j − 2 times the mapping χ and obtain a binary tree having k + j − 1 right leaves
and ℓ left leaves.

3. Take the corresponding element in B0,ℓ,k+j through the classical bijections.

4. Grow from B0,ℓ,k+j to Bk,ℓ,j using our bijection k times (Corollary 7).
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Figure 14: The involution χ interpreting (13). In the intermediate state, the two marked leaf edges may be in the same
tree (top row), or in the 2 trees (bottom row). In this example, the original tree has 5 left leaf edges and 4 right leaf edges.
Observe that the final tree has one less left leaf edges and one more right leaf edges, and that the types of the markings
are reversed.

5.2 Tableau interpretation of the identities

Hook formulas. Recall that the number of standard Young tableaux of given shape λ is given by
the so-called hook length formula (see e.g. [Sta99, Corollary 7.21.6]):

n!∏
x∈λ hx

, (14)

where n is the number of cells in λ and hx is the hook length of the cell x, that is, the number of cells
to its right in the same row or below it in the same column.

Recall also that the number of semistandard Young tableaux of shape λ whose entries are
bounded by some K is given by the so-called hook content formula (see e.g. [Sta99, Theorem 7.21.2]):∏

x∈λ

K + cx
hx

, (15)

where cx := b− a is the content of the cell x = (a, b).

Quasi-triangulations. It is known [Bor17, KMSW19] that Tk,j is in bijection with the set Yk,j of
standard Young tableaux of shape

λk,j = (k + j − 2, k + j − 2, k) =

k+j−2︷ ︸︸ ︷
··· ···
··· ···
···︸ ︷︷ ︸
k

,

which directly yields (2) via the hook length formula (14).
Identity (5) is also easy to see. Indeed, λk−1,j+1 is λk,j with the last entry in the third row

deleted. The deletion lets all entries preserve their hook length except those in the third row and
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k-th column, where the hook length decreases by 1. Hence, setting n = 3k + 2j − 4, Equation (5)
follows from the hook length formula (14):

|Yk,j |
|Yk−1,j+1|

= n

∏
x∈λk−1,j+1

hx∏
x∈λk,j

hx
= n

1

k

j − 1

j + 1
.

From this fact, it is also possible to derive an alternative bijective proof of (5) via tableaux.
Indeed, using the notation â for the integer set {1, . . . , a}, the bijective proof of the hook length
formula [NPS97] yields a bijection( ∏

x∈λk,j

ĥx

)
× Yk,j ≃ n̂×

( ∏
x∈λk−1,j+1

ĥx

)
× Yk−1,j+1.

Letting E be the multiset of integers formed by the hook lengths of the entries in λk,j , except for
the first entry in the third row and the first entry in the k-th column, we thus have( ∏

a∈E

â
)
× ĵ + 1× k̂ × Yk,j ≃

( ∏
a∈E

â
)
× ĵ − 1× n̂× Yk−1,j+1.

We set N :=
∏

a∈E a. We thus obtain an N -to-N correspondence between ĵ + 1 × k̂ × Yk,j and
ĵ − 1 × n̂ × Yk−1,j+1. Hence we also have an N -to-N correspondence between ĵ + 1 × k̂ × Tk,j
and ĵ − 1 × n̂ × Tk−1,j+1. Via Hall’s marriage theorem, a 1-to-1 correspondence can be extracted
from the N -to-N correspondence, but without an explicit description (this kind of argument was
previously used in bijective constructions, e.g. in [CFF13, Theorem 5]).

Remark 3. As the bijective proof of the hook length formula – and similarly that of the hook
content formula – proceeds via jeu-de-taquin operations, it seems unlikely that our bijective corre-
spondence between ĵ + 1×k̂×Tk,j and ĵ − 1×n̂×Tk−1,j+1 (see Remark 1) would have a simple link
with the one between ĵ + 1× k̂×Yk,j and ĵ − 1×n̂×Yk−1,j+1, if we relate the two correspondences
via the known bijections [Bor17, KMSW19] between Tk,j and Yk,j .

General bipolar oriented maps. Regarding bipolar oriented maps counted by vertices and faces,
it is known [FPS09, AP15] that Bk,j,ℓ is in bijection with noncrossing triples of lattice walks with
steps in {E,N}, starting at the origin and ending at (k+ j−2, ℓ−1), such that the upper walk ends
with NEj−2 for ℓ ≥ 2, and is equal to Ej−2 for ℓ = 1. These are classically in bijection with the set
Zk,ℓ,j of semistandard Young tableaux on λk,j with entries bounded by ℓ+ 1; Equation (6) is thus
the hook content formula (15). Furthermore, comparing λk,j with λk−1,j+1, the hook lengths differ
as above; regarding contents, they are all the same except for the unique cell of λk,j \ λk−1,j+1,
whose content is k − 3. Letting m = k + ℓ − 2, Equation (6) follows from the hook content for-
mula (15):

|Zk,ℓ,j |
|Zk−1,ℓ,j+1|

= m

∏
x∈λk−1,j+1

hx∏
x∈λk,j

hx
= m

1

k

j − 1

j + 1
.

Then the bijective proof [Kra99] of the hook content formula yields an N -to-N correspondence
between ĵ + 1× k̂ ×Zk,ℓ,j and ĵ − 1× m̂×Zk−1,ℓ,j+1, hence an N -to-N correspondence between
ĵ + 1 × k̂ × Bk,ℓ,j and ĵ − 1 × m̂ × Bk−1,ℓ,j+1, from which a (non-explicit) 1-to-1 correspondence
can be extracted via Hall’s marriage theorem as above.
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Schnyder woods. Finally, regarding Schnyder woods, the bijection in [BB09] ensures that Sk,j is
the number of noncrossing pairs of lattice walks with steps in {E,N}, starting at the origin and
ending at (k + j − 2, k + j − 2), staying above the diagonal, and such that the upper walk ends
with NEj−2. A simple application of the Lindström–Gessel–Viennot lemma then gives (4). These
correspond to semistandard Young tableaux of shape

(k + j − 2, k) =

k+j−2︷ ︸︸ ︷
··· ···
···︸ ︷︷ ︸
k

,

with entries bounded by k + j − 2 and such that the entries in column i are at least i. It would
be interesting to have a bijective proof of (7) via such tableaux as above. Alternatively, one could
also expect a bijective proof via the symplectic tableaux that are obtained by a slightly different
correspondence, as described in [KGV00, Section 4].

5.3 Random generation

For the sake of completeness, we now discuss random generators obtained by our slit-slide-sew
bijections. As we will see, the complexity, while polynomial, is quite high due to rejection induced
by the boundary-reaching constraint. We discuss in details the case of Tk,j . Let ΓTk,j be the random
sampler on Tk,j specified as follows.

⋄ If k = 0, draw a uniformly chosen random binary tree with j − 2 nodes (using e.g. Rémy’s
procedure) and return the oriented map in T0,j associated with it.

⋄ If k ≥ 1, repeat:

– m̃← ΓTk−1,j+1

– e← uniformly chosen random edge in m̃

until e is boundary-reaching. Open e into a face f of degree 2, and let ẽ be the representative
of e having f on its right. Let (m, v) = Ψ(m̃, ẽ). Return m.

It is easily checked by induction on k that ΓTk,j is a uniform random sampler on Tk,j . Let ΛTk,j

be its expected complexity. Since the cost of computing the rightmost path from a given edge e in
m̃ ∈ Tk−1,j+1 is at most k − 1, we have, for k ≥ 1 and j ≥ 2,

ΛTk,j ≤ ΛTk−1,j+1 + (k − 1) +
2

j + 1
ΛTk,j .

Hence,

ΛTk,j ≤
j + 1

j − 1

(
k − 1 + ΛTk−1,j+1

)
,

so that, after iterating,

ΛTk,j ≤
k∑

m=1

(j +m− 1)(j +m)

(j − 1)j
(k −m) +

(j + k − 1)(j + k)

(j − 1)j
ΛT0,j+k
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hence, bounding each fraction by the maximal value attained when m = k and k −m ≤ k,

ΛTk,j ≤
(j + k − 1)(j + k)

(j − 1)j

(
k2 + ΛT0,k+j

)
.

Finally, ΛTk,j = O
(
(1 + k/j)2(k2 + j)

)
. Note that the complexity is linear only in the regime

k = O(
√
j), while for j = O(1) it is of order O(k4).

Remark 4. It would be possible to avoid rejection (the repeat loop step) if we had access to a
j+1-to-j−1 correspondence between the elements of Tk−1,j+1 and the elements of T ∂

k−1,j+1. Such
a correspondence is provided by Remark 1. However, it does not seem effective as it requires
propagation of bijections starting from an external edge.

Similar uniform random samplers can be obtained forBk,ℓ,j and Sk,j , of respective complexities

O
(
(1 + k/j)2(k2 + ℓ+ j)

)
and O

(
(1 + k/j)3(k2 + j)

)
.

More efficient alternatives are provided by the recursive method of sampling, see e.g. [BM03,
BB19]. With no rejection involved, they only necessitate simple (rational in terms of the parame-
ters) formulas for the ratio of adjacent coefficients, without actually requiring a positive bijective
proof of such formulas. Also, they usually necessitate one more parameter. For instance, letting
Ya,b,c be the set of standard Young tableaux on the 3-line diagram (a, b, c), we have

Ya,b,c ≃ 1a>bYa−1,b,c ∪ 1b>cYa,b−1,c ∪ 1c>0Ya,b,c−1.

The induced recursive random sampler ΓYa,b,c thus chooses whether to call ΓYa−1,b,c or ΓYa,b−1,c

or ΓYa,b,c−1 with probabilities given by the ratios of the counting coefficients, which are simple
rational expressions in a, b, c, due to massive cancellations of the hook lengths. This gives a linear-
time random sampler for Ya,b,c and thus for Yk,j ≃ Tk,j .
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