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ABSTRACT
In problems with a time to event outcome, subjects may experience competing events, which
censor the outcome of interest. Cox’s partial likelihood estimator treating competing events
as independent censoring is commonly used to examine group differences in clinical trials but
fails to adjust for omitted covariates and can bias the assessment of marginal benefit. A bivari-
ate normal linear model generating latent data with dependent censoring is used to assess this
bias. Our R-package bnc provides maximum penalized likelihood (MPL) parameter estima-
tion using a novel EM algorithm. Using bnc, we study the properties of such MPL estimation.
Simulation results for two-sample survival comparisons of time to an event of interest, with
independent censoring accompanied by censoring from a correlated competing risk, are pre-
sented. Key parameters – means, hazard ratios, and correlation – are estimated. These results
demonstrated that, despite ill-conditioning in models generating correlated competing risks,
estimates of marginal effects are reliable. Bivariate normal models were fitted in a trial of head
and neck cancer. Model fits help with clinical interpretation while also supplementing other
standard methods for follow-up that are terminated by intervening risks.

KEYWORDS
Time-to-event analysis Accelerated failure time; bivariate normal; Cox model; competing
risks; dependent censoring; EM algorithm; ill-conditioning

1. Introduction1

Competing risks data often arise in medical follow-up studies or industrial life tests when
several different types of events can end the follow-up period of a subject.

The role of covariates in competing risks is often studied modeling the cause-specific haz-
ard function (Cox, 1972) or the subdistribution hazard function (Fine and Gray, 1999). Both
these approaches assume proportionality of the hazards.

A competing risk occurring independently of the event of interest provides independent
censoring. In this case a coefficient estimated in Cox regression provides a hazard ratio (HR)
for the marginal survival of interest. However, a correlated competing risk introduces depen-
dent censoring on the event of interest.

CONTACT Valerie Gares. Email: valerie.gares@insa-rennes.fr
Email: malcolm.hudson@mq.edu.au

1Supplementary Data to be annexed to the electronic mns is here included as Appendix C. It comprizes Supplementary
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This work is motivated by a study in which 143 patients have received surgery for
metastatic melanoma. The trial compares two highly correlated events, the local relapse (event
of interest) and the regional relapse (competing event) in a group of patients receiving adju-
vant radiotherapy and in a control group (O’Brien et al., 1997). We compare findings of the
standard survival methods for competing risks with those of the methodology introduced in
this paper. As shown by Keiding et al. (1997), when the correlation of competing risks is not
effectively controlled by model variables, neglected covariates can induce unobservable cor-
relation, toward which the Cox regression model is not robust (Hougaard, 1999). The effect
is that the estimated cause-specific HR may differ from the marginal HR (Kalbfleisch and
Prentice, 2002;Emura et al., 2020).

Emura and Chen (2016) analyze this difference under copula-based dependent censoring.
They show that if the censoring probability is high, the difference is significant. Furthermore,
the difference inflates as the dependence (copula) parameter deviates from zero. The paper
of Emura et al. (2020) and book of Emura and Chen (2018) may also be consulted for a
discussion on this and other relevant approaches to dependent censoring using techniques
involving copulas. Lu et al. (2016) confirm in simulations that, in the presence of correlation,
the estimated hazard ratios for an event of interest, estimated by using the Cox model and
treating the competing risk events as independent censoring, can differ substantially from the
marginal hazard ratio of the event of interest. Thus it is important with correlated competing
risks to supplement cause-specific HR estimates by corresponding marginal estimates, which
require a joint distribution of the bivariate outcomes.

In survival analysis, a useful alternative to proportional hazards (PH) models is the AFT
model (Wei, 1992). Hougaard (1999), in a general review of survival methods, notes that para-
metric AFT models are robust in conditions where PH models are not. Klein et al. (1999) and
Lambert et al. (2004) argue for parametric accelerated failure time models involving frailty-
like terms as an effective alternative to parametric PH models. Weibull AFT models share
the PH properties assumed by the semi-parametric Cox regression model, facilitating trial
power and sample-size calculations under scenarios varying treatment effects. In the alterna-
tive lognormal AFT model the regression coefficient for the treatment indicator represents the
treatment effect and its exponential provides the median ratio (MR, the ratio of median sur-
vival with and without treatment). Hence AFT models with lognormal marginals offer readily
interpretable regression models for cause-specific median times to failure. In AFT models,
bias in estimating marginal effects from regression coefficients is again anticipated when a
correlated competing event censors follow-up.

Recently Deresa and Van Keilegom (2020b) review parametric and semi-parametric ap-
proaches to regression modelling for competing risks and introduce a multivariate normal
regression model for dependent censoring. Their model allows for different forms of censor-
ing (including loss to follow up or termination of the study) and for an initial parameterized
power transformation of survival time. Assumptions for model identifiability, including those
required by the parameterized class of power transformations, are provided. The multivari-
ate normal linear model of Deresa and Van Keilegom (2020a) (the DVK model) is a more
general formulation of the bivariate normal (BVN) censored linear model of Hudson et al.
(2018). This earlier model was applied in the simpler context of bivariate outcomes, identity
power transformation and covariates common to both causes. The implementation of the sim-
pler model in our R package bnc allows for the efficient estimation of the parameters and the
estimation of marginal hazards in the case of dependent and independent censoring.

Other recent examples of studies on correlated competing risks inducing dependent cen-
soring include Tai et al. (2008), Dignam et al. (2012), Korn et al. (2015). The BVN model
allows us to broaden the scope of these studies.

In many applications involving competing risks data, individual events within a cluster
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may be correlated due to unobserved shared factors across individuals. Many authors are then
concerned with non-parametric statistical tests for correlated competing risks data (see for
example Chen et al. (2008); Ha et al. (2016)). Following Cox (interviewed in Reid, 1994), we
argue that non-parametric and semi-parametric modeling in competing risks can lead to over-
looking the biases implicit in proportional hazards and independent censoring assumptions,
while parametric models can add biological insight. The gap between common methodology
and more highly specialized models for correlated competing risks is one we seek to bridge.

In this work, we provide the estimator of the treatment effect in two-sample time-to-event
studies and assess the effects of correlation between two competing risks on the estimation
and robustness of the regression coefficients of the BVN model and the Cox model when data
are generated under a non-PH model.

For the estimation of model parameters, the BVN model lends itself to the implementation
of a novel Expectation Maximisation (EM) algorithm generalizing a similar algorithm for
univariate survival proposed by Aitkin. Its objective can be maximum likelihood (ML) or
maximum penalized likelihood (MPL) estimation. Our approach is related to one described
for a bivariate normal stochastic censoring model example of Van Dyk et al. (1995, Section
4.1).

The paper is organized as follows. In section 2, we introduce the BVN linear model and
the penalized likelihood for two competing risks. In section 3 we describe simulation studies
conducted to: (i) assess the effect of correlation on the estimation of relative increase in sur-
vival in two-sample comparisons; and (ii) compare estimates provided by the BVN and the
Cox PH models. In section 4 the BVN model is applied to a trial on the effects of adjuvant ra-
diotherapy, as mentioned above. A summary and research questions for future work conclude
the paper in section 5.

2. Linear survival models with dependent censoring

In this section, we establish notation and introduce the multivariate normal regression model
of Deresa and Van Keilegom (the "DVK model") in the context of bivariate outcomes.

It is convenient in simulating an AFT model to measure times on a log scale, and to restrict
attention to the occurrence of an event of interest (event 1) or the occurrence of a competing
event (event 2). While more than two events might be considered, interest in many medical
trials is focused on a single primary outcome, with any competing events distracting from the
measurement of treatment effect, with few observations to individually model some causes.
Thus pooling any competing risks together is common. We restrict discussion to two event
causes.

Since a competing risk is an event whose occurrence precludes the occurrence of the pri-
mary event of interest, only the first-occurring event is observed; the observed time to an event
is the minimum of two correlated times. Follow-up of events of types 1 and 2 are both subject
to independent censoring at log-time C; both event types are subject to the same censoring.
This censoring is assumed to be non-informative.

Therefore, we observe (Y o
j , Dj) for j = 1 . . . n, with Y o

j = min(Yj1, Yj2, Cj), and Dj

indicating event type or censoring. Here

Dj =


1 : if the event of interest is observed,
2 : if an event of a competing risk is observed,
0 : if no event is observed during follow-up.
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2.1. The DVK model for competing risks

Study of the effect of correlation between competing events presupposes the existence of a
joint distribution of latent variables. These are latent failure times of each cause. However, this
joint density is non-identifiable so estimation of parameters from competing events data is not
possible in a fully nonparametric context (see Tsiatis, 1975). While identifiability is recovered
by appropriate parametric assumptions, it remains important to evaluate the parametric model
fit to observations.

First, consider the case of two competing events. Assume latent event times are pairs
(Y1, Y2) with a bivariate Normal distribution, with a 2 × 2 covariance matrix Σ common
to all subjects. Further assume each pair has expected values specified in a linear model from
covariates X1, . . . , Xp. We refer to this as a BVN regression model for competing risks.

Specifically, assume that observations are an i.i.d. sample of size n from random vec-
tor (Y1, Y2, X1, . . . , Xp, C), with the conditional distribution of (Y1, Y2), given X1 =
x1, . . . , Xp = xp, being bivariate normal with mean vector µ = (x′ β1, x′ β2) and co-
variance matrix Σ, of dimension 2 × 2. Here Y1 denotes the log-time to the event of interest
(k = 1) and Y2 to an event of (any) other cause (k = 2), with x = (x1, . . . , xp)′. Regression
coefficients β1, β2 form the columns of a p × 2 matrix B. Last, random variable C denotes
the log-time to independent censoring. Assume hereafter that

(1) (Y1, Y2)′ and C are conditionally independent given X = (X1, . . . , Xp)′, and that
(2) Y1 − µ1, Y2 − µ2, and C are independent of X .

The DVK model extends the bivariate normal model to the multivariate case and applies a
parameterized transformation model to the log survival times of each cause. In it, covariates
are specified to be cause-specific. Thus the DVK model is

Λα(Yk) = x
′

kβk + ϵk, (1)

for causes k = 1, . . . , m, where Λα(), is a generic parametric (α) class of monotone increas-
ing transformations. The error vector (ϵ1, ϵ2) is bivariate normal, mean vector 0, covariance
matrix Σ.

In order to simplify notation we confine discussion in following sections to the BVN model
(m = 2) with all covariates for each cause in common and simple log transformation of sur-
vival times (Λ : y → y above). We use the more restrictive assumptions of the bivariate
normal model to simplify notation in later sections; this is particularly appropriate when de-
veloping the EM algorithm. We shall rely in data analysis on an R package bnc prepared for
bivariate normal censored data (Hudson et al., 2019).

2.2. Cause-specific hazards of competing events

With data on the log scale, the cause-specific hazard function to a first-occurring event of
cause 1 induced by the BVN joint distribution of Y1, Y2 is

λ1(y; B, Σ) = lim
dy→0

P [Y1 ∈ (y, y + dy)|Y1 > y, Y2 > y] /dy

= lim
dy→0

P [Y1 ∈ (y, y + dy), Y2 > y] /[P [Y1 > y, Y2 > y] dy].

Let Φ(z) denote the survival function of the univariate standard normal distribution and ϕ(z)
the standard normal density (see Appendix A). Let σ1, σ2 denote standard deviations of Y1, Y2.
Define standardized values a, b of y under the two marginals by a = (y − µ1)/σ1, b =
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(y − µ2)/σ2, where µ1 = x
′
β1 is the expectation of Y1 and µ2 = x

′
β2 is the expectation of

Y2. Then the numerator of the above expression for the hazard function becomes

lim
dy→0

P [Y1 ∈ (y, y + dy), Y2 > y] /dy = fY1(y) P [Y2 > y |Y1 = y]

= σ−1
1 ϕ(a) Φ

(
b− ρ a√

1− ρ2

)

Here fY1(y) = σ−1
1 ϕ(a) is the univariate normal density of Y1 and ρ is the correlation between

Y1 and Y2. The final equality for the numerator follows because the conditional distribution
of Y2 given Y1 is univariate normal:

[Y2|Y1 = y] ∼ N
(

µ2 + ρ
σ2

σ1
(y − µ1), σ2

2(1− ρ2)
)

.

Thus, defining the joint bivariate normal survival function as S12(y1, y2) =
P [Y1 > y1, Y2 > y2], we have

λ1(y; B, Σ) = σ−1
1 ϕ(a) Φ

(
b− ρ a√

1− ρ2

)
/S12(y, y). (2)

The corresponding hazard λ2(y; B, Σ) for time to observing the competing risk is readily
obtained by exchanging a and b. The sum of these hazards equals the hazard of time to the
first event, their ratio determines the conditional probability of event type for first events at
log time y.

2.3. Likelihood function and inference

In this section, we set notation for censoring outcomes. We then define a likelihood function
for bivariate normal observations censored by a competing risk.

In competing risks data all observations are subject to censoring, not only by end of follow-
up but also by competing events. When Dj = 1, time to event 2 is censored by an observed
event of cause 1; i.e. Yj1 = yo

j is observed and Yj2 > yo
j is censored. Similarly, when Dj = 2,

Yj2 = yo
j is observed and Yj1 > yo

j . Finally, Dj = 0 when times to both events exceed the
period of follow-up: Yj1 > yo

j , Yj2 > yo
j for observed end time of follow-up Y o

j = yo
j . The

distribution of C1, . . . , Cn need not be included in Likelihood calculations when censoring is
independent and noninformative.

Hence the Likelihood function for competing risks observations (Y o
j = yo

j , Dj = dj ; j =
1, . . . , n) is defined as:

L(B, Σ; yo, d)

=
∏

j:dj=1
fY1(yo

j ) P
[
Y2 > yo

j |Y1 = yo
j

]
×

∏
j:dj=2

fY2(yo
j ) P

[
Y1 > yo

j |Y2 = yo
j

]
×

∏
j:dj=0

S12(yo
j , yo

j ),

=
∏

j:dj=1
fY1(yo

j ) S2|1(yo
j |yo

j )
∏

j:dj=2
fY2(yo

j ) S1|2(yo
j |yo

j )
∏

j:dj=0
S12(yo

j , yo
j ), (3)
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where S1|2(a|b) = P[Y1 > a |Y2 = b], S2|1(a|b) = P[Y2 > a |Y1 = b], and, as before,
S12(a, b) = P[Y1 > a, Y2 > b].

These probabilities depend on the design matrix X , coefficient matrix B and covariance
matrix Σ of the bivariate normal distribution. In the linear model each observation has its
own covariate values, a row vector of the covariate matrix X . Let M = XB be the matrix of
expected values of Y = (Y1, Y2) where Yk = (Y1k, . . . , Ynk)′ for k = 1, 2 . Then mk = Xβk

is the vector containing expected times to event k. Define zk = (yo −mk)/σk, with σk =√
σkk, for cause k = 1, 2. Then (Y −M)W ∼ BVN(0, R) where the 2 × 2 weight matrix

W is diagonal with entries σ−1
1 , σ−1

2 , and R =
( 1 ρ

ρ 1
)
. Thus, given the covariate matrix X , all

likelihood terms may be expressed in terms of the standard bivariate normal distribution; the
likelihood is a function of ρ and values z1, z2, d dependent on the observed random sample.
z1, z2 are themselves functions of yo and parameters β1, β2, σ1, σ2.

The well-known separability of the likelihood by competing risk (Kalbfleisch and Prentice,
2002, Ch.8) in AFT models permits columns of B to be estimated individually after censoring
events of other causes. However, this separability depends on parameters not being common
to components of different causes. For the likelihood of the BVN model, some parameters,
specifically those of Σ, are involved in factors for each cause. Only in the case ρ = 0 will
the optimization simplify. As noted above, a correlated BVN distribution assumption can be
replaced by the lesser assumption of cause-specific hazards λ1(.), λ2(.) defined in equation (2)
in order to estimate B by Maximum Likelihood. However, in the correlated BVN distribution,
these cause-specific hazards will be functions of Σ, which we treat as unknown. Therefore,
the optimization available for ρ = 0 is not readily available with correlated competing risks
(even when the correlation is known).

2.4. Expectation Maximization algorithm

An EM algorithm may be employed to fit the BVN linear model parameters B, Σ. EM algo-
rithms provide a steady assured convergence to ML or MPL solutions. In each iteration, an
EM algorithm imputes sufficient statistics of missing data (latent times of each unobserved
event), substituting expected values of sufficient statistics conditional on observed data and
current parameter estimates (E step). New parameter estimates are then obtained from these
imputed sufficient statistics as though they originated from a complete sample (the M-step,
Dempster et al. (1977)).

An EM algorithm for the likelihood function of survival Y1, not subject to censoring by
a competing risk, is described by Aitkin op.cit. For the likelihood function (3) for bivariate
observations (Y o, D), we introduce a new EM algorithm summarised below as Algorithm 1:

Here, current estimates of the model parameters in iteration i are θ(i) =
(
B(i), Σ(i)

)
. The

new estimate B(i+1) of B is obtained as B̂ = (X ′X)−1X ′Y with imputed Y . For this
estimation, when Dj = 2, so that Yj1 is censored by the event of cause 2 at yo

j , the censored
observation Yj1 is imputed by E[Y1|Y1 > yo

j , Y2 = yo
j ], where M (i) = XB(i). When Dj = 0,

Yj1 is imputed by E[Y1|Y1 > yo
j , Y2 > yo

j ; θ(i)], with a similar expression for the imputation
of Yj2. The expected values are calculated in each case by using the current iteration’s matrix
of means M (i) and covariance matrix Σ(i), and the conditional expectations of Appendix A.

A complete data sufficient statistic for the covariance matrix Σ is V = (Y −XB̂)′(Y −
XB̂) = Y ′QY for known projection matrix Q = I −X(X ′X)−1X ′. The EM update to
Σ therefore includes imputation of quadratic terms (squares and cross-products) in (Y1, Y2).
The new estimate is obtained using the censored observation yo

j by replacing linear terms as
above and quadratic terms using appropriate conditional distributions. For j′ ̸= j the statisti-
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Algorithm 1: EM algorithm for BVN model

1 Initialisation: θ0 = (B0, Σ0). We used initial values: ρ(0) = 0; β
(0)
k = 0, σ

(0)
k = 1, for

k = 1, 2. Let Q = I −X(X ′X)−1X ′.
2 for i = 0,1,2, . . . do
3 E-step : replace the unobserved variables by their conditional expectations given

Y o, D, X, C at θ(i):
4 if Dj = 2, Yj1 ← E[Yj1 |Yj1 > yo

j , Y2 = yo
j ; θ(i)],

Y 2
j1 ← E[Y 2

j1 |Yj1 > yo
j , Yj2 = yo

j ; θ(i)],
5 if Dj = 1, Yj2 ← E[Y2 |Y1 = yo

j , Y2 > yo
j ; θ(i)],

Y 2
j2 ← E[Y 2

j2 |Yj1 = yo
j , Yj2 > yo

j ; θ(i)],
6 if Dj = 0, Yj1 ← E[Y1 |Y1 > yo

j , Y2 > yo
j ; θ(i)],

Y 2
j1 ← E[Y1 |Y1 > yo

j , Y2 > yo
j ; θ(i)], Y 2

j2 ← E[Y2 |Y1 > yo
j , Y2 > yo

j ; θ(i)],
Yj1Yj2 ← E[Yj1Yj2 |Yj1 > yo

j , Yj2 > yo
j ; θ(i)]

7 M-step : Maximize the likelihood of sufficient statistics X ′Y and Y ′Y of
equations (B2), (B3) of Appendix B. Calculate B(i+1), Σ(i+1) using equations
(B1), (B4), (B5) to define Y (i), then equations (B6) and (B7):

8 Y (i) ← E[Y |Y o, D, X, C; θ(i)]
9 B(i+1) ← (X ′X)−1X ′Y (i)

10 nΣ(i+1) ← E [Y ′Y |Y o, D, X, C; θ(i)]− Y (i)′ Y (i) + Y (i)′ Q Y (i)

cal independence of observations reduces calculations to imputation of linear statistics, but for
j′ = j more complex conditional expectations must be evaluated. For example, when Dj = 1,
the quadratic term Y 2

j1 is a known quantity. But, when Dj = 2, a quadratic term Y 2
j1 is im-

puted using E[Y 2
j1|Yj1 > yo

j , Yj2 = yo
j ]. Similarly, when Dj = 0, the same term is imputed as

E[Y 2
j1|Yj1 > yo

j , Yj2 > yo
j ]. When Dj = 0, we further require E[Yj1Yj2|Yj1 > yo

j , Yj2 > yo
j ].

Again these conditional expectations are calculated assuming current parameter values
B(i), Σ(i), which provide the mean vector (m(i)

j1 , m
(i)
j2 )′, and then applying results of Ap-

pendix A. We provide all required moment results for the EM algorithm in a bivariate normal
censored linear model in this Appendix, and include the corresponding R-code in the package
bnc. Further details of the EM algorithm are given in Appendix B. Both the EM algorithm
and these results for the bivariate normal distribution appear to be new and may prove useful
in other contexts.

Standard errors of the EM algorithm solution are available using the numerical differen-
tiation of Fisher scores (NDS) method of Jamshidian and Jennrich (2000) and implemented
in the R package turboEM (Bobb and Varadhan, 2018). The score statistic is derived from
evaluations of the score function Q(θ, θ̃) which is accessible for computation using our prob-
ability results for the BVN complete data.

2.5. Mildly Penalize Likelihood

Convergence to a boundary point of the parameter space can introduce issues for optimization
methods. Optimizers such as Newton’s method break down near boundaries when iterations
take them outside a constrained domain (such as |ρ| ≤ 1). Specialized methods are available
for constrained domains, but may affect speed of convergence of the algorithm. In particular,
the EM algorithm’s rate of convergence is reduced when θ lies on or near a boundary (Ng and
McLachlan, 2003). This is problematic when conducting large numbers of simulations.
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To accelerate EM’s convergence Bobb and Varadhan introduced the squareEM option in
R package turboEM.

Rate of convergence is particularly affected in regions of flat likelihood. It is common to
observe improvement after introducing a penalty term in the likelihood (Green, 1990;Cole
et al., 2013).

Therefore, we regularize by penalizing log-Likelihood log L = log L(B, Σ ; yo, d) as:

log L← log L− (ν + 3)× log(det(Σ)/2− κ tr(Σ−1)/2

where
ν is a positive integer, the degrees of freedom parameter of the inverse-Wishart prior, Σ ∼

IW(ν, κI), whose posterior distribution provides the penalty term (Zhang, 2021). Higher
degrees of freedom increasingly encourage a solution consistent with the prior mean, for
which we specify a multiple (default κ = 1) of the identity matrix.

We then utilize the turboEM algorithm for this MPL, using an accelerated EM form
(method squareEM). The resulting algorithm for bivariate normal maximum penalized
likelihood (MPL) estimation is implemented in our R fit to censored data using function
bnc::bnc().

3. Simulation studies

In this section, we study the parametric estimation of first-event data from correlated bivariate-
normal competing risks. Goals of the simulation are as described in the final paragraph of
the Introduction. Performance criteria are sampling distribution (density plots and boxplots
displaying quantiles) of marginal treatment effect for cause 1. In two-sample data sets of first-
event times, we evaluate the estimation of the treatment effect, the mean difference in log time
to event 1 between treated and control subjects.

3.1. Simulation design

We generated censored data using the latent variable approach for a BVN linear model. The
latent log-survival-times (Y1, Y2) were a random sample of n bivariate normally distributed
observations with means M = XB determined by the two-sample design, and fixed covari-
ance matrix Σ specified by choices σ1, σ2, and ρ.

The parameter τ denotes the maximum length of follow-up and is chosen to fix the cen-
soring proportion S1(τ) of events of interest not occurring before end of follow-up, or equiv-
alently the marginal cumulative incidence P1(τ) = 1 − S1(τ) of events of interest. This
proportion does not include the censoring of the event of interest by the competing event.
Marginal cumulative incidence matches the observed CIF only when the competing event is
absent or very late occurring.

In two-sample simulations with design covariates X1 = 1 (constant) and X2 with indepen-
dent Bernoulli distributed values 0 and 1 (indicating treatment), the randomized trial treatment
allocation produces mean vectors that differ only between treatment and control arms. The
linear model constant coefficient sets baseline survivals while βk2 sets treatment effects. Then
βk = (β1k, β2k)′, so M = (mjk) is an n x 2 matrix, with mjk ∈ {µC

k , µT
k } for k = 1, 2. Group

means µC
k = β1k and µT

k = β1k + β2k were specified, for k = 1, 2, as the mean log times to
event k applying to all observations in Control and Treatment groups, respectively. We fixed
the mean in the Control group to be µC

1 = 0, and σ1 = σ2 = 1. Treatment effect is defined as
the parameter ∆ = µT

1 − µC
1 = β21, the expected difference between Treated and Controls in
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log-time to the event of interest. Then exp(∆) is the median ratio (MR) on the original time
scale. By setting β22 = 0, we specified that the competing event (event 2) has the same risk
of occurrence in both arms: µT

2 = µC
2 = µ2.

3.2. Hazard ratios of the BVN linear model

Including a treatment indicator in a two-sample BVN model provides an estimator of MR, the
ratio of median survival time in treatment versus control populations. Comparisons are made
between the parametric method and standard semi-parametric methods – Cox’s proportional
cause-specific hazard models.

As is well known, proportional hazard models differ from AFT models except with Weibull
distributional assumptions. Consequently, lognormal modelling implies a time-dependent
HR, violating the proportional hazards assumption of cause-specific hazard models. The haz-
ard ratio of Treatment versus Control for time to event 1 in the case ρ = 0 is

HR1(t) = λT
1 (t)

λC
1 (t)

= λ1(t ; ∆, σ1)
λ1(t ; 0, σ1)

for hazard function

λ1(t; ∆, σ1) = 1
tσ1

Ψ
( log t−∆

σ1

)
where Ψ is the hazard function of the (univariate) standard normal distribution (see Appendix
A). So, for independent competing causes,

HR1(t) = Ψ((log t−∆)/σ1)
Ψ(log t/σ1)

Note this HR is independent of β12 only when ρ = 0.
For dependent competing risks, the same HR depends also on parameters ρ, µ2 and σ2. It

is computed from the cause-specific hazard function for the event of interest in the bivariate
normal model, as the ratio of its evaluation, at a given time, in case and control subjects. This
cause-specific hazard function (referred to as a sub-density) is explicit in the Supplement
to Deresa and Van Keilegom (2020a) and as R function bnc::bnc_lambda(). Figure 1
displays the hazard ratio of the lognormal distribution and its dependence on ρ in a two-
sample comparison with two competing causes. The mean log times to the event of interest
and competing event in the Control group are β11 = β12 = 0; the mean log time to the event
of interest on treatment is ∆ = β21 = 0.5. The mean log time to the competing event is
unaffected by treatment (β22 = 0) and σ1 = σ2 = 1. In this case (a strongly competitive
competing risk unaffected by treatment) the hazard ratio is time-dependent, and smaller for
ρ = 0.5 than for the other two choices, meaning that treatment benefit is greater.

3.3. Estimation of marginal treatment effect.

In a two-sample comparison, where subjects are randomized equally to treatment and con-
trol arms, we focus on estimating the treatment effect. Varying the correlation allows us to
assess its influence on the estimated treatment-benefit using the BVN linear model or using
a standard approach (Cox proportional hazard model).
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Figure 1.: Hazard ratio of two-sample model with log normal error distribution varying ρ ∈
{−0.5, 0, 0.5}. Hazard ratio is for treatment versus control group with treatment benefit β21 =
∆ = 0.5, with σ11 = σ22 = 1. Other parameters are β11 = β21 = β22 = 0.

We simulated data from a clinical trial with two arms as above, imposing a balanced
design with equal numbers n/2 of patients in treatment and control groups. The generated
data follows an AFT model with expected log-survival-time mjk = β1k + β2k Xj , for event
cause k = 1, 2, subject j = 1, . . . , n, with covariate Xj the indicator of the randomized
allocation of subject j to a treatment group. A lognormal distribution has expected value
exp(µ + σ2/2), so the AFT assumption implies the ratio of median survivals for cause 1,
MR1 = E[exp(Yj1|Xj = 1]/E[exp(Yj1|Xj = 0] = exp(β21) when variances σ2

k are inde-
pendent of treatment allocation.

The estimation methods considered were:

1. HR estimates from Cox’s partial likelihood estimator ("Cox model") treating competing
events as independent censoring. We fitted hazard ratio estimates of event 1 with the
function survival::coxph().

2. Regression coefficient estimates in the Generalized Estimating Equations (GEEs) fixing
correlation: the Likelihood scores fix correlation ρ = 0. We assume the competing event
is an (additional) independent censoring. We fitted regression coefficients of event 1
with the function survival::survreg() which implements MPL solution with ρ
fixed, in the particular case ρ = 0. To fix ρ to other values, refer to Anderson and Olkin
(1985).

3. Regression coefficient estimates in the BVN linear model using a squareEM algo-
rithm. Estimation is implemented within our bnc package.

The Cox model estimates a time-averaged cause-specific hazard ratio (Kalbfleisch and
Prentice, 1981). For graphical displays and comparisons, we estimated parameters of the
proportional hazards models related to treatment effect ∆. If the hazard functions of time
to event 1 in Treatment and Control arms are each constant, λT

1 and λC
1 respectively, then

the median ratio is MR = (1/λT
1 )/(1/λC

1 ), the reciprocal of the HR for such data. As
1/ MR = exp(−∆), the corresponding estimate of ∆ from the Cox model is the negative
log of the HR. For comparability of HR and median ratio estimates, we therefore display the
estimates of the negative logarithm of the hazard ratio (for Cox models) and of the treatment
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effect ∆ = E[Yjk|Xj = 1]− E[Yjk|Xj = 0] = β21 (for BVN models and survfit models
fixing ρ = 0).

We varied parameters n = 100, P1(τ) ∈ {1.0, 0.8, 0.6}, ∆, β12 ∈ {0, 0.5, 1} and ρ ∈
{−0.5,−0.25, 0, 0.25, 0.5}. Convergence of EM slows down considerably as ρ → 1. This
was a consideration when running large numbers of repeat simulations (remembering the need
to vary treatment effects, differences in mean times to events of two causes and censoring
fractions as well).

Simulation estimates from fitting the Cox model provide Figure 2. The Figure displays
Cox model estimates of negative log(HR), a measure of treatment benefit, which increasingly
depart from the true difference ∆ in median survival (of log times) as the treatment benefit
grows, or censoring increases.

Figure 3 shows that estimates of ∆ obtained under a parametric univariate AFT model –
under marginal normality assumption fixing ρ = 0 – from use of R package survreg are
not robust for other ρ. The panels, for sample size n = 100, show the increasing bias of this
GEE-like estimator as |ρ| grows.

Supplementary Table 2 shows bivariate normal MPL estimates ∆̂ of log MR for samples
of size n = 1000. Medians of these treatment effect estimates deviate little from the target
parameter ∆. The BVN model improves estimation of treatment benefit (Figure 4) over that
of a particular GEE solution fixing correlation.

The matrix plot (mayplot) Figure 4 is a graphical display containing boxplots of MPL
estimates of ∆ for simulated data sets generated with parameters as shown. From it, we can
assess variability in individual simulated data sets, in this case for the smaller sample size
n = 100. Again observe that medians of treatment effect estimates ∆̂ differ little from true
values ∆. The variability (measured by the inter-quartile range) is consistently small.

Alternative displays by density plots of corresponding estimates, Supplementary Figure
2, for n = 1000, confirm this finding and suggest that the sampling distributions of ∆̂ are
approaching normality, particularly as P1(τ) increases, and as β12 decreases.

These simulations demonstrate the influence of a correlated competing risk on the estima-
tion of the treatment effect in BVN data. We found superior robustness of BVN estimation
of marginal treatment effect to correlation when compared with fitting Cox PH models or a
GEE approach using a marginal AFT after prespecifying ρ.

3.4. Stability of BVN estimation of correlation

While the BVN estimation of treatment effects is reliable and consistent, we considerable in-
stability in MPL estimation of correlation ρ occurred. Supplementary Figure 1 shows density
plots of ρ̂ in samples of size n = 1000. For all cases examined there is large variability in es-
timates; more so when there is no correlation or small correlation between competing events.
More consistent estimation of ρ is not achieved even in samples of size n = 5000.

3.5. Robustness to bivariate non-normality

We simulated two-sample estimates of treatment effect with Frank-copula-generated data.
Here (Y1, Y2) has a non-normal bivariate distribution but normal marginals. The level of
association is controlled by the Frank parameter (θF ) which is linked to Kendall and Pear-
son correlation coefficients Escarela and Carriere (2003). We varied parameters n = 100,
P1(τ) ∈ {1.0, 0.8, 0.6}, ∆, β12 ∈ {0, 0.5, 1} and θF ∈ {−3.31,−1.48, 0, 1.48, 3.31} (linked
respectively to ρ ∈ {−0.5,−0.25, 0, 0.25, 0.5}).

Supplementary Figure 5 displays the boxplot of simulations estimates of ∆ for those dif-
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ferent parameters. For two-sample comparisons, with the small sample size n = 100 and non-
normal bivariate distribution, BVN regression estimates of the treatment effect ∆ show little
bias. However, in some cases, convergence was not established even with 5000 iterations, and
resets of initial values were necessary. As expected, accuracy in estimating treatment effect is
less than for data generated as bivariate normal, particularly with strong positive association
(θF = 3.3, corresponding to ρ = 0.5).

For copula generated data, GEE methods (Supplementary Figure 4) have worse perfor-
mance than unrestricted MPL estimates, while Cox regression methods are biased (Supple-
mentary Figures 3). All methods exhibit considerable variability in estimates.

4. Example

O’Brien et al. (1997) studied the improvement in regional control after neck dissection follow-
ing adjuvant radiotherapy in 143 patients receiving surgery at several sites for histologically
positive metastatic malignant melanoma. This nonrandomized study documented prospec-
tively a case series of cancer patients with histologically positive nodes receiving surgery.
The trial compared a group of patients receiving adjuvant radiotherapy with the remaining
patients who were not assigned adjuvant radiotherapy. The two competing risks appropriate
to the study objective are local or regional recurrence. It is very plausible to believe that corre-
lation exists between times to these two outcome types, perhaps due to common unmeasured
covariates (age, . . . ) affecting both local recurrence and regional recurrence hazards.

Some patients underwent lymphadenectomies; recurrence data were obtained for all dis-
sections (n=153). We compare n = 46 dissections with adjuvant radiotherapy (treatment
group) with the remaining n = 107 dissections (no radiotherapy, the control group). For the
outcome, time from surgery to the first event, the event of interest was a local regional re-
lapse, relapses at other sites or intercurrent death comprising competing risks. The events
were recorded as “local regional relapse only” (Event 1, local relapse) or “distant relapse or
death” (Event 2, distant relapse). Patients were censored at loss to follow-up or end-of-study.

We used the transformation y : t → log(1 + t/0.75) for the relapse times (in years)
to reduce skewness in the distribution of the observations and allow for deaths at the time of
treatment (Supplementary Figure 6). Log transformations are commonly used to reduce skew-
ness in distribution of non-negative data (Mosteller and Tukey, 1977); an offset is required for
zeros. Observe that 5 years follow up corresponds to just under 3 transformed time units. This
limit (y=3) is also close to the 90-th percentile (3.02) of recorded survivals on the transformed
time scale; y=3 is the upper limit for our x-axis. The lower quartile (LQ) of time to event is
0.75 years (y=1). We use offset 0.75 for the log transformation; the effect is initially (up to
this LQ) linear but increasingly logarithmic as t increases above 0.75 years. We conducted a
sensitivity analysis for the choice of the offset in Figures 7-9 in supplementary Appendix C.
We noted little effect on fitted cumulative incidence, when referred to the original time scale.

Cumulative incidence, shown in Figure 5, records the number of events of each type
recorded as time (from randomization) progresses. In each arm, local recurrences occur ear-
lier than non-local recurrences. Local relapses occurred less frequently following adjuvant
radiotherapy. The plots suggest longer time to local recurrence in the irradiated group but
little difference between treatment groups in non-local recurrence.

Table 1 provides HR, 95% confidence interval (CI) and p-values of the Cox model. The
95% CI for the HR of interest is [0.1057, 1.21]. The treatment difference is not significant but
approaching the level (α = 0.05) of statistical significance (p = 0.098). This suggests local
benefit of irradiation.

The BVN model was applied. Algorithm squareEM converged after 25 iterations. The es-
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(XRT=adjuvant radiotherapy). Nelson-Aalen estimates after y : t → log2(1 + t/0.75) trans-
formation of original time scale. See vignette HNexample.Rmd for code.
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Method Description Factor coef exp(coef) se(coef) z p-value
A. Cox adjuvant RT -1.03 0.36 0.62 -1.65 0.10
B. Fine-Gray adjuvant RT -1.05 0.35 0.61 -1.72 0.09

Table 1. Proportional hazard model results for local recurrence: A. Cox model; B. Fine and Gray model

Parameter Estimate Std.Error
β11 2.633 0.123
∆ 0.370 0.285
β12 2.170 0.077
β22 -0.026 0.212
σ1 1.437 0.104
σ2 1.198 0.045
ρ 0.897 -

Table 2. Estimates of BNC linear model parameters in the Head and Neck data using squareEM algorithm. The standard error
of ρ̂ is not available, because of loss of precision. With default settings squareEM converges after 25 iterations. See vignette
HNexample.Rmd for code.

timate of correlation in Table 2 was very high ρ̂ = 0.897 and the median ratio was the factor
exp(0.370) = 1.45. This estimate of treatment effect compares median times to local recur-
rence of patients undergoing adjuvant radiotherapy with those without adjuvant radiotherapy.
With adjuvant radiotherapy, the median time before recurrence is longer. However the pa-
rameter is not statistically significant (SE=0.285, z=1.298, p=0.19), the difference remaining
within the play of chance.

Confidence intervals for regression parameters can be formed using the asymptotic nor-
mality of maximum likelihood estimators – though this would not be appropriate here for
correlation, noting the large uncertainty in estimation of ρ and the estimate’s closeness to the
upper boundary ρ = 1. This uncertainty can be better evaluated using bootstrap replications
of bnc estimation to form percentile confidence intervals. The 95% confidence interval for ρ
using 400 bootstrap replications was obtained as (0.86,0.93).

Point estimates of the BVN hazard ratio can also be calculated. The BVN point estimate
HR=0.30 at time t=0 gives an estimate of the hazard ratio of local recurrence with adjuvant
radiotherapy versus local recurrence without radiotherapy immediately at the time radiother-
apy treatment was assigned. The calculations involved plugging in the fitted BVN parameter
estimates to the hazard ratio function of Section 3.2.

The estimated HR of the bivariate normal distribution, HR1(t), by its definition and as
discussed in Section 3.2, is in general time-dependent, but in this case fairly constant when
computed using the BVN model with MPL parameter estimates.

Point estimates and one-sided confidence bounds for these HRs obtained using 400 boot-
strap resamples are given in Table 3. Point estimates reduce gradually from 0.30, at y=0
(t=0), to 0.27, at y=3 (t=5 years, the 90th percentile of survival times). Thus the Cox model
PH assumption appears reasonably consistent with the BVN model fitted; parametric analysis
using bivariate normal assumptions can meaningfully be compared with semi-parametric Cox
regression findings in this study.

The BVN model HRs both at start of the study (t=0) and later (t=0.75, t=5 years) remain
slightly less (estimating greater radiotherapy benefit) than the estimate of the Cox model
(HR=0.35, 95% confidence interval (0.11,1.21)). These intervals are similar to that of the
Cox estimate provided above.

In checking model fit, fitted cumulative incidence functions may be compared with empir-
ical estimates. Figure 6, and Figure 7 in supplementary Appendix C , compare the fitted CIFs
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t 0.00 0.75 5.0
y 0.00 1.00 3.0

HR(t) estimate 0.30 0.29 0.27
lower confidence limit 0.01 0.00 0.00
upper confidence limit 1.06 1.00 0.97

Table 3. Point estimates and upper 95% two-sided confidence limits of the BVN HR at specified survival times (t=time in
years, y=transformed by log(1 + t/0.75). Each limit is a percentile of 400 bootstrap replications.

from the MPL estimates of the bivariate normal model with non-parametric Nelson-Aalen
estimates. Fitted curves for patients receiving radiotherapy are shown in red, with solid lines
indicating the study outcome, local recurrence. In Figure 6, corresponding CIFs shown in
blue and the dotted blue confidence bounds of the non-parametric CIF are for study subjects
not receiving radiotherapy.

Fitted CIFs in Figure 6 include both CIFs of the BVN model (smooth curves) and nonpara-
metric Nelson-Aalen estimates (step functions). The agreement between the BVN model CIFs
and empirical CIFs appears adequate. CIFs for both radiotherapy groups fall well within the
confidence bands (for clarity, only displayed for the control group) for the empirical functions
in this Figure.

In summary, the bivariate normal analysis supports the proportional hazards assumption of
the Cox model, while offering lesser evidence of an apparent reduction in hazard or lesser
incidence of local relapse in patients receiving adjuvant radiotherapy compared with patients
receiving surgery alone. The BVN model estimates a very high level of correlation between
log times to local and non-local recurrence.
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5. Conclusion

Multivariate survival outcomes are of importance in randomized clinical trials (Prentice and
Zhao, 2019). In this paper, we addressed the importance of the correlation between two com-
peting risks and its impact on the estimation of the ratio of median survival times to an event
of interest in a non-PH, AFT model. The BVN linear model is a parametric AFT for sim-
ulation and estimation with multivariate and competing risks. The parametric specification
as a bivariate normal distribution together with likelihood penalization better regularizes an
otherwise ill-posed problem, as demonstrated in simulations. This stabilization of parame-
ter estimation, together with the model’s ability to estimate marginal hazards and directly
introduce correlation, are strengths of the strong parametric assumption.

Employing our package bnc, we fit a BVN competing risks model using an EM algorithm
and a mildly penalized likelihood. In the presence of competing events, estimation of the
marginal hazard of a specified event is feasible. For example, the novel application of the EM
algorithm provides the reliable estimation of the MR in two-sample comparisons. The method
is valid whenever cause-specific hazards of the event of interest and competing event conform
to those of a BVN distribution. The existence of latent variables is not required for parameter
estimation; the correct likelihood function of observable multistate data bears only a formal
relationship to the latent (complete) data model. In particular, the EM algorithm does not
require an assumption of bivariate normality of (sometimes uninterpretable) latent variables.
The complete data construction is purely a device simplifying algorithmic maximization of
Prentice’s likelihood.

Furthermore, while not studied here, the EM algorithm generalizes immediately to semi-
competing risks, where the time to the competing cause (often death) is observed (e.g. Lee
et al., 2017). As these authors noted in their Section 4.1, while semi-parametric models are
flexible for large sample size, in small-sample settings a parametric specification might be
more appealing due to its parsimony and computational simplicity (see also Cole et al., 2021).
In semi-competing risks the bivariate normal correlation is fully identifiable, and the EM
algorithm immediately applies to provide a useful estimation procedure.

Current limitations of our approach include bivariate outcomes, identity transformation,
covariates common to both causes, and the use of an AFT model. The formulation of an EM
algorithm for covariates that differ between causes is the subject of current work.

As an alternative to the identity transformation, the EM algorithm also makes available a
stable estimation procedure for MPL estimation in the competing risks model of Deresa and
Van Keilegom. Given a choice of transformation Λα(Y ) in that model, our EM algorithm
is directly available. Different choices of the parameter α determining the transformation
each provide a marginal Likelihood indicating quality of fit of each choice. Furthermore, log-
Likelihood comparisons provide statistical Likelihood Ratio assessment of improved fit of
transformed versus untransformed BVN models. An important question for later study is the
effect of the chosen power transform on estimates.

In two-sample AFT comparisons, BVN regression coefficients provide estimates of the
marginal treatment-benefit of interest, ∆. We found that this benefit is estimated accurately,
even in small sample sizes (n = 100), avoiding the bias apparent in other approaches.

Alternative Cox models are based on proportional hazards assumptions, which differ from
those of AFT models. Moreover, with a positive correlation between competing risks our
results on estimating marginal treatment-benefit show that Cox models are not robust to de-
partures from ρ = 0. Thus the BVN model is a useful development for application when
strong correlation of the survival outcome with a competing risk is suspected, perhaps as a
consequence of unmeasured covariates.

The BVN linear model assumes that the time to event distribution is lognormal. While the
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parametric form of hazards is difficult to identify from data, simulations with non-normal
data suggest the model is robust. Our simulation findings concerning lack of bias in regres-
sion parameter estimation are in accord with those of a different approach, which induces
correlation between latent event times through a copula model (Chen, 2010). However, when
the degree of association is mis-specified in the copula, regression parameters estimates are
severely biased. This indicates an advantage of the use of the BVN model, which provided
reliable estimates by adapting to the level of association in the data.

Our simulations show the estimates of regression coefficients are reliable. These regression
coefficients provide means and mean differences (relative differences when survival times are
log-transformed). While the correlation estimation is unstable (even in sample size n = 1000)
it exhibits little bias; it may find use in validating external information on ρ.

The parametric model can be readily used as a sensitivity analysis for assessing the effects
of correlation induced by neglected covariates. This method can introduce external informa-
tion on the association of competing risks to assess its influence on other parameter estimates.
Because of the uncertain ability to estimate ρ, our simulations considered an alternative to
MPL estimates of treatment effect in the BVN model, fixing ρ (e.g. assuming ρ = 0) to
provide restricted estimates of other BVN model parameters. Asymptotic properties of this
GEE-like procedure warrant investigation.

In O’Brien’s study, the fitted cumulative incidences of the BVN model were similar to the
Nelson-Aalen non-parametric estimates. This supports the use of a BVN model as consistent
with the observable data. The evidence of a benefit of adjuvant radiotherapy treatment in
survival to local-recurrence was judged a little weaker by BVN fits than by Cox models,
though point estimates of the HR were nearly constant and similar to those of the Cox model.

Regression estimates of treatment effect may differ from corresponding Cox coefficients
due to different models (accelerated failure time versus proportional hazard). When dependent
censoring is present, and fitted parametric cumulative incidence functions agree with semi-
parametric estimates, the BVN model can prove useful in estimating treatment effect for
comparison with findings of alternative PH model fits.
Acknowledgement: The authors wish to thank the reviewers for their careful reading and
constructive comments.
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Appendix A. Conditional expectations of the standard BVN

The different conditional expectations used in the E-step of EM algorithm are given below.
Let Φ(z) denote the survival function (i.e. upper-tail cumulative distribution) of the uni-

variate standard normal distribution. Its density is given by ϕ(z) = exp(−z2)/
√

2π, for
−∞ < z <∞, and its hazard function Ψ is Ψ(z) = ϕ(z)/Φ(z).

Some properties of the bivariate Normal variates (Z1, Z2) with mean vector µ = (0, 0),
variance matrix Σ, with σ11 = σ22 = 1 and σ12 = ρ and density p12(z1, z2) are given below.
In particular, we provide calculations for conditional expectations used in the E-step of EM
algorithms for bivariate normal linear models.

Denote by H the Heavyside function, the step function taking values 0 or 1 indicating
whether its argument exceeds 0. Let P (a, b) = P[Z1 > a, Z2 > b] = E[H(Z1−a)H(Z2−b)].

(1) The conditional distribution of (Z1|Z2 = b) is N (ρb, 1− ρ2) with density

p1|2(z|b) = 1√
1− ρ2

ϕ
( z − ρb√

1− ρ2

)
. (A1)

(2) Conditional expectations: moments of survival time to event given observed time to a
competing event

E10
01(a, b) = E[Z1|Z1 > a, Z2 = b] (A2)

= ρb +
√

1− ρ2 Ψ
( a− ρ b√

1− ρ2

)
(A3)

E20
01(a, b) = E[Z2

1 |Z1 > a, Z2 = b] (A4)

= 1− ρ2 +
√

1− ρ2 a Ψ
( a− ρ b√

1− ρ2

)
+ ρ b E10

01 (A5)

or,

E20
01(a, b) = E[Z2

1 |Z1 > a, Z2 = b]

= 1− ρ2 +
√

1− ρ2 (a + ρb) Ψ
( a− ρ b√

1− ρ2

)
+ ρ2 b2 (A6)

(3) Conditional expectations: moments given lower bounds
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E11
00(a, b) = E[Z1Z2|Z1 > a, Z2 > b]

= ρ + (1− ρ2) p12(a, b)
P (a, b)

+ ρ
a ϕ(a) Φ

(
b− ρ a√

1−ρ2

)
+ b ϕ(b) Φ

(
a− ρ b√

1−ρ2

)
P (a, b)

E10
00(a, b) = E[Z1|Z1 > a, Z2 > b]

=
ϕ(a)Φ

(
b− ρ a√

1−ρ2

)
+ ρϕ(b)Φ

(
a− ρ b√

1−ρ2

)
P (a, b)

E20
00(a, b) = E[Z2

1 |Z1 > a, Z2 > b]

= 1 +
aϕ(a)Φ

(
b− ρ a√

1−ρ2

)
+ ρ2bϕ(b)Φ

(
a− ρ b√

1−ρ2

)
+ ρ(1− ρ2)p12(a, b)

P (a, b)
(A7)

These identities were developed by use of Stein identities (Liu, 1994). See also Tallis
(1961). Proofs are available on request.

Appendix B. Imputing complete data sufficient statistics

Consider the E-step with bivariate normal correlated latent response random variables (Y1, Y2)
providing n independent observations (row pairs) of the complete data forming the random
matrix Y = (yjk) of dimension n x 2 and covariate random variables x = (X1, . . . , Xp)′

with corresponding data matrix X , n x p, of observed values. The parameters B, Σ of the
bivariate normal regression model are the matrix whose columns are vectors of regression
coefficients of each cause, βk, k = 1, 2, and the covariance matrix common to the bivariate
normal observations. Specify initial estimates θ(0) = (B(0), Σ(0)).
Let θ(i) = (B(i), Σ(i)) be current estimates during iteration i, then M (i) = XB(i) is the
n × 2 matrix of corresponding expected values. The E-step imputes complete data sufficient
statistics X ′Y , of dimension p x 2, and Y ′Y , 2 x 2. It evaluates expectations of X ′Y and
Y ′Y at θ(i), conditional on observable (termed incomplete) data. Incomplete data here is
defined as the observable random vectors Y o, D, X1, . . . , Xp, comprising a random sam-
ple of n bivariate observations {Y o

j , Dj , X1, . . . , Xp, Cj}, the component variables denoting
survival time and event status, as well as covariates and follow-up time, with distribution
[(Y o, D)|X1, . . . , Xp] depending on parameters B = (β1, β2) and Σ. Follow-up time, Cj , is
assumed independent of all other variables (independent censoring).

Observed data is then a function, by row, of complete data Y , with Y o = min(Y1, Y2, C),
so that, for observation j, yo

j = min(yj1, yj2, cj), for j = 1, . . . , n. Here cj is log-time to end
of follow-up for subject j. The status D = (D1, . . . , Dn) for Dj ∈ {0, 1, 2} identifies the
observed event (1 or 2), or, when yo

j = cj , assigns dj = 0.
Note that, for the M-step optimisation by B̂ = (X ′X)−1X ′Y , fitted values are XB̂ =

P Y and residuals Y −XB̂ = (I − P )Y = QY , where P and Q are projection matrices.
Here P = X(X ′X)−1X ′ and Q = I − P .

In the E-step, conditional expectations are evaluated for specified parameter values θ(i).
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To reduce complexity in equations, we will the notation Eobs,(i) for expectations at θ(i) con-
ditional on Y o, D, X, C. Again, to simplify presentation, while conditioning on Y o, D, θ(i)

will be explicit, we then implicitly assume conditioning also on X and C, treating them as
known. Current estimates θ(i) are used to provide expected survival times M (i) and imputa-
tions P Y (i) and Eobs,(i)[Y ′Y ] of complete data sufficient statistics X ′Y and Y ′Y . Here

Y (i) = E[Y |Y o, D, θ(i)]. (B1)

The imputed sufficient statistics for the E-step in iteration i are:

Eobs,(i)[X ′Y ] = X
′ E[Y |Y o, D, θ(i)] = P Y (i), (B2)

and

Eobs,(i) [Y ′Y ] = E[Y ′Y |Y o, D, θ(i)]. (B3)

with the imputed complete data calculated from equation (B1). Computing Y(i) requires stan-
dardising the bivariate normal distribution of (Y1, Y2) in order to use results of A.

Define standardised variables (Z1, Z2) as Zk = (Yk − x′β
(i)
k )/σ

(i)
k , for k = 1, 2. Then the

pair (Z1, Z2) is standard bivariate normal, with means 0, standard deviations 1 and correla-
tion ρ(i) of Σ(i). The evaluation of imputed complete data for parameters set for the current
iteration (i), Y (i) utilises the formulas developed in Appendix A, noting that

E[Yjk|Y o = yo, D = d; θ(i)] = m
(i)
jk + σ

(i)
k E[Zjk|Y o

j = yo
j , Dj = dj ] (B4)

where

E[Zjk|Y o
j = yo

j , Dj = dj ] =


E[Zjk|Zj1 = zj1, Zj2 > zj2] if dj = 1,

E[Zjk|Zj1 > zj1, Zj2 = zj2] if dj = 2,

E[Zjk|Zj1 > zj1, Zj2 > zj2] if dj = 0.

(B5)

Here zjk = (yo
j − mjk)/σk, for k = 1, 2, where calculations in (B4) and (B5) utilise the

expectations and covariance matrix (M (i), Σ(i)) of the current iteration.
In this case, the unconditional expectations of sufficient statistics X ′Y and Y ′Y are B and

M
′
M + nΣ. Hence the M-step sets parameters B and Σ to the new E-step conditional ex-

pectations (imputations). The new estimates comprising θ(i+1) are B(i+1) and Σ(i+1) where:

(X ′X)B(i+1) ←X ′ Eobs,(i) [Y ] = X ′Y (i),

so that

B(i+1) = (X ′X)−1X ′Y (i), (B6)

M = M (i+1) ←XB(i+1) = P Y (i)
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and, for ML estimation,

nΣ(i+1) = Eobs,(i) [Y ′Y ]−M ′M

= Eobs,(i) [Y ′Y ]− Y (i)′ P Y (i)

= Eobs,(i) [Y ′Y ]− Y (i)′ Y (i) + Y (i)′ Q Y (i). (B7)

For penalised likelihood, the mode of an inverse Wishart posterior for Σ provides adjusted
degrees of freedom, substituting n + ν + 3 in place of n in equation (B7). The M-step then
entails a shrinkage of the unbiased estimator using complete data of Σ.

In particular, from equation (B7) the M-step estimate of the covariance matrix Σ requires
imputation of the sufficient statistic Y ′Y . This requires, besides Y (i), the evaluation of
conditional expectations of additional quadratic and cross-product terms, Eobs[Yjk Yjk′ ] =
E[Yjk Yjk′ | yo, D] for k, k′ ∈ {1, 2}. These conditional expectations are again evaluated, after
standardising for means specified in row j of M (i) and variance matrix Σ(i), using formulas
from Appendix A. Let W (i) be the diagonal matrix with elements σ

(i)
1 , σ

(i)
2 . Then

(Y −M (i))← E[Z |Y o, D, θ(i)] W (i) (B8)

and

Eobs,(i) [Y ′Y ]← W (i) E[Z ′
Z |Y o, D, θ(i)] W (i). (B9)

The required imputations for row j are those of equations similar to those of equation (B4),
evaluated using Appendix A.
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Appendix C. Supplementary data

This appendix provides a supplement to the paper submitted to Communications in Statistics
- Simulation and Computation.

Supplementary material related to this article will be available online. The supplementary
file contains Tables and Figures.

For the use of referees, it is reproduced below.

C.1. Estimation of correlation in BVN data

For 100 simulated samples of size n = 1000 from a BVN model Table 1 provides information
on convergence of the EM algorithm and Figure 1 density plots of correlation estimates it
provided.

P1(τ) ρ | µ2 0.0 0.5 1.0

1.0 -0.50 32 29 44
-0.25 62 104 106
0.00 67 139 205
0.25 69 152 145
0.50 75 138 268

0.8 -0.50 30 61 65
-0.25 60 104 103
0.00 92 158 148
0.25 90 139 237
0.50 123 153 266

0.6 -0.50 36 104 130
-0.25 96 127 162
0.00 112 110 294
0.25 131 175 426
0.50 139 224 396

Supplementary Table 1. Maximum number of squareEM iterations to converge, for sample size n = 1000. Iterations were
stopped after 500 iterations. The parameter µk is the mean of Yk , mean log-time to event k, for k = 1, 2. True parameters are:
µ1 = 0, σ1 = σ2 = 1. P1(τ) denotes the pre-fixed (marginal) cumulative probability that event 1 occurs before end-of-follow
up. This is the proportion of data free of independent censoring. The simulation comprised Nsim = 100 repeat samples.
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Supplementary Figure 1.: Density plots of correlation estimates ρ̂ in samples of size n =
1000. Varying BNC parameters: P1(τ) ∈ (0.6, 0.8, 1) (rows); µ2 ∈ (0, 0.5, 1) (cols). Fixed
BNC parameters: µ1 = 0, σ1 = σ2 = 1, n = 1000. The simulation comprised Nsim = 100
samples.

29



C.2. Two-sample BVN data

We provide supplementary simulation information on bias in MPL estimates of two-sample
comparison of treatment effect in Table 2, with density plots of estimates in Figure 2. Refer
to Section 3.3 of the paper for further details.

β12 0 1

P1(τ) ρ |∆ 0 0.5 0 0.5

1 -0.5 -0.00 0.50 0.00 0.51
-0.25 -0.00 0.48 -0.01 0.50
0 0.00 0.46 0.00 0.50
0.25 -0.01 0.49 0.00 0.49
0.5 -0.00 0.52 -0.00 0.49

0.8 -0.5 -0.00 0.50 0.00 0.50
-0.25 -0.00 0.48 0.01 0.49
0 0.01 0.49 0.00 0.49
0.25 -0.00 0.48 -0.01 0.48
0.5 -0.01 0.51 0.01 0.51

0.6 -0.5 0.02 0.49 -0.01 0.48
-0.25 -0.02 0.52 -0.00 0.48
0 -0.01 0.49 0.01 0.48
0.25 0.02 0.49 0.01 0.50
0.5 0.00 0.51 -0.01 0.51

Supplementary Table 2. Medians of MPL estimates ∆̂ of treatment benefit in the BNC model fitted using the squareEM
algorithm. True parameters are : µC

1 = 0, treatment benefit ∆ ∈ {0, 0.5}, event 2 delay β12 ∈ {0, 1}, σ1 = σ2 = 1,
n = 1000. The simulation comprised Nsim = 100 samples.
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P1(τ) = 0.6 , β12 = 0, Δ = 0 P1(τ) = 0.6 , β12 = 0, Δ = 0.5 P1(τ) = 0.6 , β12 = 1, Δ = 0 P1(τ) = 0.6 , β12 = 1, Δ = 0.5

P1(τ) = 0.8 , β12 = 0, Δ = 0 P1(τ) = 0.8 , β12 = 0, Δ = 0.5 P1(τ) = 0.8 , β12 = 1, Δ = 0 P1(τ) = 0.8 , β12 = 1, Δ = 0.5

P1(τ) = 1, β12 = 0, Δ = 0 P1(τ) = 1, β12 = 0, Δ = 0.5 P1(τ) = 1, β12 = 1, Δ = 0 P1(τ) = 1, β12 = 1, Δ = 0.5
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Supplementary Figure 2.: Density plots of the MPL estimator ∆̂, n = 1000. BNC model
parameters varying: P1(τ), delay β12, ∆, with µC

1 = 0, β22 = 0 and σ1 = σ2 = 1. The
simulation comprised Nsim = 100 samples.
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C.3. 2-sample comparisons in non-BVN correlated data

Robustness of model estimates of treatment benefits in two-sample randomised comparisons
are assessed. Marginal distributions are normal, with a copula model producing correlation
between causes. The three models are:

• Cox model (Figure 3);
• restricted estimation under the assumption ρ = 0 (Figure 4);
• unconstrained MPL estimation (Figure 5).

Refer to Section 3.5 of the paper for further details and findings.
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Supplementary Figure 3.: Cox model. Boxplots of simulation estimates of the β-coefficient,
i.e.negative log hazard ratio (− log HR) of the Cox model, n = 100, for different value of
∆ ∈ {0, 0.5, 1}. BNC model parameters are : P1(τ) (rows), mean difference µ2 (columns),
Frank’s association θF (x-axis), µ1 = 0, σ1 = σ2 = 1. The simulation comprised Nsim = 100
samples.
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Supplementary Figure 4.: Restricted MPL. Boxplots of restricted MPL estimates ∆̂ = β̂21
for simulated non-Normal data and sample size n = 100. Estimation was for fixed ρ = 0
using R package survreg. BNC model parameters are : P1(τ) (rows), ∆ ∈ {0, 0.5, 1},
mean difference β12 (columns), Frank’s association θF (x-axis), µC

1 = 0, σ1 = σ2 = 1. The
simulation comprised Nsim = 100 samples.
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Supplementary Figure 5.: Unresticted MPL. Boxplot of simulation estimates of Treat-
ment benefit with non-Normal data (2-sample comparison of groups of size n = 100). Vary-
ing P1(τ) (rows), mean difference β12 (columns), ∆ ∈ {0, 0.5, 1} and Frank’s association
θF ∈ {−3.31,−1.48, 0, 1.48, 3.31} (x-axis). Each boxplot summarises Nsim = 100 sample
estimates.
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C.4. Head and Neck Cancer Example

censored

local recurrence

non-local

0 1 2 3 4
y

Ev
en

t XRTstatus
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Supplementary Figure 6.: Data distributions of times to local and distant recurrence by
treatment group and outcome status. Transformation y : t → log2(1 + t/0.75) of original
time scale. See vignette HNexample.Rmd for code.
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Parameter Estimatesa Estimatesb Estimatesc

β11 2.633 1.967 3.076
∆ 0.370 0.322 0.401
β12 2.170 1.531 2.600
β22 -0.026 -0.062 0.001
σ1 1.437 1.138 1.598
σ2 1.198 0.926 1.346
ρ 0.897 0.834 0.917

Supplementary Table 3. Estimates of BNC linear model parameters in the Head and Neck data using squareEM algorithm.
Transformations are ya : t → log2(1 + t/0.75), yb : t → log2(1 + t/1.5), and yc : t → log2(1 + t/0.5) in this sensitivity
analysis.
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Supplementary Figure 7.: Cumulative incidence of local and distant recurrence by treat-
ment group (XRT=adjuvant radiotherapy). Sensitivity analysis study of BNC parametric
CIFs (smooth lines) superposed on Nelson-Aalen estimates (stepped lines) after y : t →
log2(1 + t/0.75) transformation of time scale.
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Supplementary Figure 8.: Cumulative incidence of local and distant recurrence by treatment
group (XRT=adjuvant radiotherapy). Sensitivity analysis study of BNC parametric CIFs su-
perposed on Nelson-Aalen estimates after y : t → log2(1 + t/1.5) transformation of time
scale.
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Supplementary Figure 9.: Cumulative incidence of local and distant recurrence by treatment
group (XRT=adjuvant radiotherapy). Sensitivity analysis study of BNC parametric CIFs su-
perposed on Nelson-Aalen estimates after y : t → log2(1 + t/0.5) transformation of time
scale.
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