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Abstract 

In the current context of sustainability, the selective electrocatalytic transformation of biomass-

derived organic substances into value-added products should offer vast design possibilities for 

power generation or the electrosynthesis of fuels and commodity chemicals. In this 

contribution, we have examined a number of concepts concerning the electrocatalysis of 

organic molecules for which noble metals cannot be excluded from the electrocatalyst 

composition without compromising the significant energy savings promised in electrolyzers 

(up to 50% for H2 co-production compared to conventional water electrolysis). The widespread 

practice of using the ratio of forward peak current to backward peak current as a measure of 

activity, anti-poison capacity or removal of adsorbed poisons or intermediates is unsuitable 

based voltammetry and spectroelectrochemical analysis. 
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Introduction 

Historically, alongside organic electrosynthesis [1,2], the study of the catalytic electrooxidation 

of organic compounds such as methanol, ethanol, formic acid, glycerol and oligosaccharides, 

was driven by demand for fuel cells (FCs), since these liquid fuels offer a handling advantage 

over H2, which is still more than 90% derived from fossil fuels [3-6]. The growth over the last 

five years is exponentially greater, because in addition to hydrogen evolution reaction (HER), 

an efficient anode is critical for other energy-intensive cathodic reactions such as CO2 reduction 

reaction (CO2RR) and N2 reduction reaction (N2RR) for the electrosynthesis of value-added 

compounds in electrolysis cells (ECs) [7-13]. In fact, the kinetics of OER being at least an order 

of magnitude slower than HER, substituting OER with organic compounds having 

thermodynamically lower oxidation potentials than water activation should enable up to 50% 

electricity savings compared to traditional water electrolysis [7-9,14-16]. For ECs, achieving 

high selectivity in the oxidation of organics at consequent current densities (0.2-2 A cm‒2) [17] 

and moderate cell voltage is challenging when noble metals (Pt, Au, Pd, etc.) are excluded from 

the electrocatalyst composition. For organic-fueled FCs (ethanol, glycerol, etc.), anode 

electrocatalysts based on the so-called “abundant and cheaper” metals (M = Ni, Ag, Fe, Mn, 

etc.) have not yet guarantee lower anode’s potential than that of the cathode (oxygen reduction 

reaction, ORR), generally operating between 0.8 and 1.0 V vs RHE (reversible hydrogen 

electrode). Hence, for both ECs and FCs purpose, a compromise in terms of the anode’s 

potential, selectivity, and current density can be provided by low noble metal(s) loading 

electrocatalysts, which may include, in addition to abundant metals, either Pt for its 

dehydrogenating properties at low potential, Au for improved stability and/or selectivity, or Pd 

which behaves as an intermediate between Pt and Au. 

Since a number of reviews have extensively dealt with the advantages and disadvantages 

of many organic electrochemical reactions [1,2,16,18,19], it seems redundant to us to repeat 

these arguments yet again. So, in this contribution, we concentrate on certain aspects of 

fundamental understanding of organic molecules’ electrocatalysis. We discuss the interesting 

open question of whether the ratio of forward peak current to backward peak current, If/Ib, can 

be used as a metric for the efficiency/poisoning of electrocatalysts, a widespread practice [20-

25]. 
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Organics electrooxidation paired to HER, NRR, CO2RR, etc. 

Before tackling the question of peak current ratios, we first discuss the scope regarding the 

electrooxidation of organics. Figure 1a suggests that the electrooxidation of organics (glycerol, 

glucose, etc.) should lower the cell voltage and thus improve the energy efficiency of 

electrolysis, since the relationship between the required electricity and the cell voltage is 

W[kWh/kg(H2)] = 26.59×Ucell[V] [14,15], wherein Ucell = E(anode) – E(cathode). Therefore, E(anode) 

should ideally be low; this is a challenge for noble-metal-free electrode materials which so far 

catalyze the oxidation of organic compounds at potentials above 1 V vs RHE. For high electrode 

potential of 1.4-1.7 V vs RHE [26-28], the carbon-carbon bond rupture is frequent, in addition 

the competition with OER, hence a small gain in energy efficiency at industrial level current 

densities of 0.2-2 A cm‒2. Under acidic media, CO2 can be the final product of the organics 

electrooxidation, provided that it is sent back to cathode [7,8,10,19], however, the situation is 

complicated in alkaline media where the carbonation and/or precipitation is detrimental to the 

electrolyzer performance [29,30]. 

Since the electrooxidation of an organic molecule is a proton-coupled electron transfer 

process (PCET, influenced by the pKa of the organic molecule [31]), the kinetics may be slower 

than that of OER. For example, while the theoretical oxidation potential of 5-hydroxymethyl-

furfural (HMF) to 2,5-furandicarboxylic acid (FDCA) is about 0.3 V vs RHE [32], lower than 

the potential for OER (1.23 V vs RHE), an electrode potential of 1.3-1.6 V vs RHE was 

necessary to 0.36 A cm−2 at Cr-Ni(OH)2/nickel foam electrocatalysts (faradaic efficiency of 90-

98% [27,28]). Different characterization has revealed that the needed concomitant reduction of 

Ni(III) to Ni(II) as the electron acceptor to promote the HMF dehydrogenation occurs within 

the MOOH (M = Co-Fe-Mo-Cr) region of 1.3-1.5 V vs RHE [27,28,33]. This indirect 

electrooxidation is driven by the active redox center MOOH/M(OH)2 [34]. The electrochemical 

performance can be augmented by transition metals phosphides or sulfides where the electron 

density transfer from partially and positively charged metal centers Mδ+ (M = Ni, Co, etc.) to 

partially and negatively charged Xδ– (X = P, S) promote the dehydrogenation [28,35]. The three 

fundamental driving forces being the long-range geometric lattice deformation, the synergy 

(multiple metals), and the short-range electronic charge transfer effects [36]. Furthermore, the 

governing mechanism for electrode materials comprising noble metals (direct electrooxidation 

sites) and non-noble metals (indirect electrooxidation sites) remains unraveled when the anode 

potential is above 1.2-1.4 V vs RHE, where MOOH/M(OH)2 electrochemistry predominates. 
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To consider the above applications, we question in the following a common practice of basing 

the catalytic activity of electrode materials on the If/Ib ratio. 

 

Can If/Ib be used as a measure of efficiency/poisoning of electrocatalysts? 

Typically, the cyclic voltammogram (CV) of Pt in an electrolyte in the presence of methanol, 

formic acid, glycerol, etc., shows at least one peak during the forward scan and the same during 

the backward scan. We note that Pt, Pd and Au are metals for which a straightforward 

discriminating observation is possible (Figure 1b for Pd [20]). On Ni, for example, the behavior 

[33] is similar to bioelectrocatalysts [37-39], i.e. there is no clear presence of a peak during the 

backward scan. It has been claimed that [20-25], an increase of If/Ib indicates: (i) that the 

electrooxidation performance of the intermediates is enhanced (Figure 1c) as well as a better 

anti-poisoning ability [20,22], (ii) a superior electrocatalytic activity [21]. Some reports 

attributed the forward scan peak to organics electrooxidation and the backward scan peak to the 

removal of carbonaceous species generated in the forward scan [23]. Another explanation 

would be that the reduction of metal oxides during the backward scan liberates the surface that 

was oxidized during the forward scan, allowing the electrooxidation of new reactant molecules, 

thus producing an oxidation peak [3,40,41]. The two underlying questions are then, as there is 

a (main) peak during the anodic scan (forward) and a peak during the cathodic scan (backward) 

for the CV of electrooxidation of organics on a metallic electrocatalyst (for instance Pt, Au, 

Pd): (i) What exactly is electrooxidized during the backward scan? (ii) Can If/Ib be used as a 

metric of efficiency and/or does If/Ib formally assess the poisoning tolerance of electrocatalysts? 

To answer these questions, a careful analysis of the electrochemical signature is necessary 

(Figures 2a-d & 3a) together with spectroelectrochemistry (Figure 3b-d) put forward by the 

authors of the present paper. 

A comparative analysis of CVs in the absence and presence of the reactive organic molecule 

provides the first tentative answers, Figure 2a (Au) and Figure 2b (Pt) for the electrooxidation 

of formic acid [3]. Firstly, the peak during the anodic scan in the presence of the substrate 

begins to decrease when reaching the region of metal oxide formation. Secondly, the onset of 

the cathodic scan peak in the presence of the substrate coincides with the start of the reduction 

of metal oxides to metal in the absence of the substrate. So, intuitively, the simplest explanation 

would be to postulate that the new voltammetric wave during cathodic scanning results from 

the electrooxidation of new substrate molecules on the freshly released active sites. This 
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hypothesis seems logical, given that the CV joins the blank one at low potential range. We note 

that the I(E) response to an excitation E(t) being the sum of all current contributions, an 

oxidation current does not mean that there is no concomitant reduction. The CV profile on bio-

electrocatalysts (Figure 3a) does not show any significant difference because the nature of the 

active sites does not change like PGMs-based electrodes. So, one can conclude that the origin 

of the cathodic scan peak depends on the kinetics of the metal oxides reduction, which is in 

agreement with similar observations during the ORR [42,43]. 

The CV and first-principles density functional theory (DFT) results in Figure 2c-d show 

that the cathodic direction starts in the region where the electrocatalyst surface is covered by 

PdO species, which d-band center (d, relative to the Fermi level) is shifted away from the Fermi 

level compared to Pd(OH)x and Pd surfaces [42]. This results into lower activity according to 

Nørskov theory [44], the closer the position of d toward the Fermi level, the stronger the 

interactions with adsorbates. So, the kinetics of noble metal-based oxides reduction, the surface 

coverage with hydroxyl species as well as the concentration of the reactant might be the driving 

force behind the second wave of oxidation during the backward scan. Assuming that the theory 

of “strongly adsorbed poisons” is true, and reasoning by the absurd, we have hypothesized that 

[41], using spectroelectrochemistry in single potential alteration infrared reflectance 

spectroscopy (SPAIRS, CV coupled to FTIRS), the bands characteristic of the oxidation 

products of the anodic scan will be absent when doing the opposite (Figure 3b). For the forward 

scan from 0.05 to 1.40 V vs RHE (Figure 3c), the increase in current is accompanied by the 

synchronous appearance of IR bands (upwards for reactant consumption and downwards for 

product formation, mainly gluconate, detailed assignment in ref. [41]). Now, going from 1.40 

to 0.05 V vs RHE (Figure 3d) to unequivocally determine the nature of the process that marks 

the return peak, we can see that the SPAIRS shows the appearance of the same bands. The 

increase in band intensity is therefore indicative of increasing gluconate production, in phase 

with the increase in current. These results therefore invalidate the widespread explanation that 

the backward peak (Figure 2b) is essentially due to the oxidation of “poisons formed during the 

forward (strongly adsorbed intermediates)”. Conclusively, the origin of the peak observed in 

the reverse voltammetric wave during the oxidation of an organic molecule on a noble metal-

based electrocatalyst is not only the result of the oxidation of “possible poisons formed during 

the forward scan” but also the oxidation of substrate molecules on the active sites released by 

the reduction of metal oxides and the elimination of other organic intermediates. 
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It is worth pointing out that using fast-scan CVs (except in molecular electrochemistry 

to mitigate irreversibility situations) to probe the organics oxidation kinetics should be used 

with caution and not straightforwardly to conclude on steady-state faradaic processes because 

of the significant capacitive response. Potential, catalyst, electrolyte, coverage, etc. dictate the 

steps of PCET, i.e. the nature of the bond that breaks first [28,45-50]. Whereas this knowledge 

is essential to guide the design of efficient electrode materials, existing studies are divergent, 

some proposing that the organic molecule approaches the catalytic surface via the OH group 

[28,45-47] while others [48,49] suggest that among C-H, O-H and C-C bonds, the C-H bond is 

the easiest to break. For gold, we have shown that the increased population of hydroxylated 

species at high potentials favors C-H dehydrogenation while the metallic surface favors O-H 

dehydrogenation at lower potentials together resulting in an oxide-like gold surface [50]. 

 

Conclusions and outlook 

In this contribution, we have reviewed some of the basic concepts of electrocatalysis of organic 

molecules on a metal surface, which have been controversially explained. The presence of an 

intense oxidation peak during the backward scan of electrooxidation of an organic compound 

on noble metal-based electrocatalysts is being considered a guarantee of efficiency (anti-

poisoning, superior electrocatalytic activity, removal of carbonaceous species generated in the 

forward scan), in contrast to the seminal models. It can be concluded that the backward peak 

(negative scanning of the electrode potential) results from the electrooxidation of substrate 

molecules on the active sites released by the reduction of metal oxides and possible adsorbed 

organic intermediates. Consequently, the ratio of forward peak current to backward peak current 

(If/Ib) should not be always used to gauge the efficiency/poisoning of electrocatalysts as it 

widespread practiced. Finally, the open question of the first electron transferred, that is, which 

of the C-H, O-H and C-C bonds breaks first, is still debated and synergetic theory-experiment 

studies could provide more realistic models. 
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Figure 1. (a) Illustrative half-cell polarization curves of different electrosynthesis scenarios 

pairing a process at the negative electrode (cathode, (‒)) with one at the positive electrode 

(anode, (+)).. (b) CVs recorded at 50 mV s‒1 in Ar-saturated 0.5 M KOH + 1 M ethanol (room 

temperature); Reprinted and adapted from Ref. [20], Copyrights 2023, Elsevier B.V. (c) Trend 

in the ratio of the forward peak current density (If) to the backward peak current density (Ib), 

If/Ib (or jf/jb), from CVs recorded at 50 mV s‒1 for different electrocatalysts in N2-saturated 1 M 

KOH + 1 M ethanol; Reprinted and adapted from Ref. [22], Copyrights 2024, The Royal 

Society of Chemistry. 

 

 

Figure 2. (a) CVs of bulk Au in 0.5 M H2SO4 (80 °C, 20 mV s‒1) in the absence (solid lines) 

and presence of 10 mM HCOOH (dotted lines) and (b) CVs of bulk Pt in 0.5 M H2SO4 (80 °C, 

20 mV s‒1) in the absence (solid lines) and presence of 10 mM HCOOH (dotted lines); 

Reprinted and adapted from Ref. [3], Copyright 1987, Elsevier Inc. (c) Impact of the 

anodic/cathodic direction on the CVs recorded at the disk and ring of a RRDE in the absence 

and in the presence of O2 (1 M KOH, 1600 rpm, 10 mV s−1). (d) First-principles Density 

Functional Theory (DFT) calculated local densities of states (LDOSs) of the Pd 4d bands in the 

three modeled systems (insets of (c)): (A) pristine Pd(111), (B) hydroxylated Pd(111), and (C) 

oxidized Pd(111); Reprinted and adapted from Ref. [40], Copyright 2022, American Chemical 

Society. 

 

 

Figure 3. (a) CVs at 10 mV s−1 of bioelectrode (broader substrate glucose oxidase, bGOx; red 

dashed line is the control bioelectrode without the redox mediator) in citrate/phosphate buffer 

(pH 6.5, 0.2 M) in the absence (dashed lines) and in the presence of 100 mM of glucose (solid 

lines); Reprinted and adapted from Ref. [35], Copyright 2022, American Chemical Society. (b-

d) Spectroelectrochemistry experiments (0.1 M NaOH, 50 mM glucose, Temperature: 22 ± 2 

°C) on Au80Pt20/C nano-electrocatalyst: (b) CV at 1 mV s−1, (c) SPAIRS in the anodic direction 

and plotted every 0.1 V (except 0.05 and 0.1 V vs RHE) for an initial electrode potential of 0.05 

V vs RHE, and (d) SPAIRS in the cathodic direction and plotted every 0.1 V (except 0.05 and 

0.1 V vs RHE) for an initial electrode potential of 1.40 V vs RHE; Reprinted and adapted from 

Ref. [39] under a CC BY-NC-ND 4.0 license, Copyright 2018, The Author(s), Published by 

ECS.  
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