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Abstract. In this paper, we present a formal EVENT-B model of the Me-
chanical Lung Ventilator (MLV), the case study provided by the ABZ’24
conference. This system aims at helping patients maintain good breath-
ing by providing mechanical ventilation. For this purpose, two modes are
possible: Pressure Controlled Ventilation (PCV) and Pressure Support
Ventilation (PSV). In the former mode, respiratory cycles are completely
defined by the patient that is able to start breathing on its own. In the
latter mode, the respiratory cycle is constant and controlled by the ven-
tilator. Let us note that it is possible to move from a given mode to the
other depending on the breathing capabilities of the patient under ven-
tilation. In this paper, we illustrate the use of a correct-by-construction
approach, the EVENT-B formal method and its refinement process, for
the formal modeling and the verification of such a complex and criti-
cal system. The development of the formal models has been achieved
under the RODIN platform that provides us with automatic and interac-
tive provers used to verify the correctness of the models. We have also
validated the built EVENT-B models using the PROB animator/model
checker.

Keywords: Mechanical Lung Ventilator, System modeling, EVENT-B
method, Refinement, Verification

1 Introduction

The paper presents the formal modelling of a Mechanical Lung Ventilator (MLV),
a case study proposed in the context of the ABZ’24 conference. The goal of this
system is to offer a support for patients that are in intensive therapy and thus
need a mechanical ventilation. This system includes two ventilation modes: Pres-
sure Controlled Ventilation (PCV) and Pressure Support Ventilation (PSV).
The use of a given mode depends on the breathing capabilities of the patient.
Basically, the PCV mode is used for patients that are not capable of breathing
on their own. In this case, the breathing cycle (among others, inspiration and ex-
piration) is entirely controlled by the ventilator. The PSV mode is used for other
patients that can initiate breathing cycles. To ensure the safety of a patient, the

* This work was supported by the ANR projet DISCONT



2 A. Mammar

controller can decide to switch from PSV to PCV when it detects that the pa-
tient is not able to re-start inspiration. Similarly, the user(technician/doctor) can
ask the controller to move to the PSV mode if he/she assesses that the patient
is able to breath on its own. The MLV is composed of two main components, the
controller and the GUI (Graphical User Interface), that interact with each other
while having some independent phases/states and some synchronisation points
(see Figure : the user sends commands to the controller through the GUI, the
controller informs the user about the status of the ventilation using the GUI. Ac-
cording to the requirement document(Requirements GUIL.2 and GUI.13), any
crash that may happen on the GUI does not affect the controller that continues
accomplishing at least the activities that do not require user interactions.

abort test or runSelfTest

set param.
P rOff SelfTest Settings
)L save/goBack
new Patient T [venti 1 x
- - ilation= selftestPassed save/goBack set param
[ventilation=on]
= -
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powerOff [ventilation=on]
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|
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‘powerOn Stan P start-up ended SEMTES( or resume vemlla(lon en(l\ahonoﬂ moveToPSV
stopVentilation
powerOﬂ powerOﬁ
startPSV———>

Fig. 1. GUI/Controller state machines taken from [2]

The present paper introduces an EVENT-B formal model of the MLV system
built incrementally thanks to the refinement concept of the EVENT-B method.
The refinement technique permits to master the complexity of a system by grad-
ually introducing its components and characteristics. The obtained model has
been validated by simulating some scenarios using PROB [4] and proved under
RoDIN [3] that provides us with automatic and interactive provers like AtelierB
provers, SMT, etc.

The rest of this paper is structured as follows. A brief description the EVENT-B
method is provided in the next section, then Section [3] presents our modelling
strategy. Section [4] describes our model in more details. The validation and veri-
fication of our model are discussed in Section [p] Finally, Section [6] concludes the

paper.
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2 EVENT-B Method

Introduced by J-R.Abrial, the formal EVENT-B method [I] is a mathemati-
cal concepts-based approach to build correct-by-design discrete systems. An
EVENT-B model is made up of components, each of which can either be a con-
text or a machine. A context models the static part of a system and may define
constants and sets (user-defined types) together with axioms that specify their
properties. A context is seen by machines that model the dynamic part in terms
of variables and a number of events. The type of these variables and the prop-
erties that must be satisfied whatever the evolution of the system are specified
as invariants using first-order logic and arithmetic.

To master the complexity of a system, EVENT-B defines a refinement tech-
nique that allows for an incremental development. Machines are related by a
refinement relation (refines) whereas the contexts are linked by an extension
link (extends). By refinement, new variables, events and properties are intro-
duced along with guard strengthening and nondeterminism reduction. A new
event introduced in a model M’, which refines a model M, is considered to re-
fine a skip event of M. Therefore, this new event cannot modify a variable of
M. As a result, any event that needs to modify a variable v must be defined in
the same model where v is first introduced.

The EVENT-B models presented in this paper have been built, validated and
proved within the Rodin platform [3] that provides editors, provers and plugins
for various tasks like animation and model checking with PROB [4].

3 Modelling Strategy

3.1 Control Abstraction

Through the formal modeling of the different ABZ case studies [9J6I7)8] we have
carried out, the use of the concepts described by Parnas and Madey in [10] has
proved to be very suitable for the modeling of control systems. This is why we
propose to reuse the same paradigm to build the EVENT-B formal models for
the MLV.

The MLV system can be considered as a control system that uses sensors
to acquire information from the environment elements m, called monitored vari-
ables (e.g., state/value of the valves but also the different orders sent by the
user like starting/stopping ventilation, etc), and provides these measures to the
controller as an input variable ¢. Depending on the information received by the
sensors, the controller sends commands via actuators. The objective of these
commands, called output variable o, is to modify the value of some character-
istics of the environment, called a controlled variable c. In this particular case
study, the controller also sends commands to the GUI to inform the user about
the state of the system. These different elements (environment and controller
elements) are modelled as variables in EVENT-B. In this paper, we do not model
the delays of the sensors/actuators. In other words, we consider such delays are
insignificant compared to other actions.
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A control system can be viewed from two different perspectives: a control loop
that acquires all inputs at once, at a given moment, and then computes all output
commands in the same iteration. But, it can be also viewed as a continuous
system that can be interrupted by any change in the environment represented by
a new value sent by a sensor. In this paper, we adopt the second view where the
controller/GUT reacts to each modification of the environment element. From
the EVENT-B point of the view, we model each of these modifications as an
EVENT-B event.

3.2 Modeling Structure

The EVENT-B specification of the MLV is composed of 6 levels (6 machines
and 7 contexts) built iteratively using refinement. Before elaborating this final
structure, we have evaluated several alternatives which differ on the following
main points:

which component, GUI or the controller, should be modelled at first?
which level is the best to introduce time?

can the controller event error be dealt with like other events?

can the events common to the GUT and the controller (powerOn, powerOff,
start-up ended, etc.) be represented by a single EVENT-B event?

Ll S

In the following, we give and justify the choices made for each point:

1. As depicted in Figure [T} even if the first step of the controller’s behavior is
independent from that of the GUI, we model the GUI at first because the
main functionalities of the controller depend on the orders received from the
GUI. Indeed, some events of the controller’s state machine are those received
from the GUT (startPCV, stopVentilation, etc.).

2. To master the complexity of EVENT-B models, a common practice is to
introduce the time aspect as late as possible. For this particular case study,
this was not possible because when the controller is on backup battery, its
state may change (become Off) when the battery level is null. Thus, we
introduce the time aspect starting from the first level by defining the event
progress that models time progression.

3. Contrary to the other events, the controller can at any moment raise an error
and move to a safe state where no action is possible anymore. As an error
may be due to several causes (valve failure, backup battery failure, etc.), we
chose to represent this event as the refinement of the event progress that can
detect at any time malfunctions in the system.

4. Even if two transitions of the GUI and the controller states machines are
labelled with the same event start-up ended, this event does not have the
same effect (actions to execute) on the GUI and the controller. Indeed, the
GUI may crash and require to be re-initiated from the initial state, but the
behaviour of the controller is not affected at all. This is why we defined two
different events, startUpEndedGui for the GUI and startUpEndedCont for the
controller.
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Given the above, the first level (context GuiStates + machine GuiSM) of the
EVENT-B specification models the different states and the transitions of the GUI
along with the backup/external batteries of the system. Mainly, each transition
of the GUTI’s state machine is translated into an EVENT-B event. In particular,
we modelled all the transitions ongoing/outgoing to/from the state Ventilation
with a unique event changeMode that is refined later into several events, that
is, one event per transition. At this level, we introduce the time progression by
specifying that this event can make the system move into the state Off when spe-
cific conditions are fulfilled. In the second level, we model the state machine of
the controller (context ContStates + machine ContSM). The third level (contexts
{ComParams, PCVParams, PSVParams} + machine Ventilation) models the two
ventilation modes (PSV and PCV) along with their associated parameters. The
next level (context VentilStates + machine VentilationPhases) details the differ-
ent phases of a respiratory cycle (inspiratory, expiratory, inspiratory/expiratory
pauses, etc.). In the last level (context Alarms + machine MVLWithAlarms), we
model some alarms that can be raised either by the GUI or the controller.

3.3 Considered requirements

The requirements document [2] is very large and contains a huge number of
requirements that are classified according to the related elements (GUI, con-
troller, valves, alarms, etc). Some of them are even reported in several sections
since they depend on several elements. As it will be difficult to enumerate all the
properties that have been considered, we give hereafter the main functionalities
we have considered for the development of the EVENT-B model:

— the different states of the controller and the GUI as depicted in Figure|[l} we
have considered all the states and also all the possible transitions between
them,

— the different ventilation modes (PCV and PSV) and the switching from one
to the other,

— the ventilation parameters and their update before and during the ventila-
tion,

— the position of the valves (in and out) during the ventilation and their fail-
ures,

— Alarms related to the following failures:

the valves (in and out),

e patient connection while the system is in the state StartUp,

e ventilation parameters values that can be outside the allowed values,

e the backup battery, the switchover, the FI1/FI12/oxygen sensors.

4 Model Detalils

In this section, we give some excerpts of the EVENT-B specification of the MLV
system. The complete archive of the EVENT-B project is available in [5]. Ex-
cept Section that describes the first abstract level and the first refinement, each
subsection will describe a specific refinement level.
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4.1 Machines GuiSM 4 ConSM

Machines GuiSM and ConSM model the state transition machines of the GUI
and the controller. For the GUI for instance, we create the context GuiStates
that defines a set of all its possible states ModesG and a constant possTransG
that represents the allowed transitions between these states. Even if the state
machine of the GUI considers a super state Ventilation, we split it to two
sub-states PCV and PSV (see Figure .

axml: partition( Ventilation, {PCV}, {PSV})
axm?2: partition(ModesG, {StartUp}, {Start}, {Menu}, {SelfTest},
{Settings},Ventilation, {0ff})

axm3: possTransG € BOOL — P(ModesG x ModesG)

axm4: possTransG = {TRUE — {Menu — Settings, Settings — Menu, ...} U
({Menu, Settings} x Ventilation)U ...U
(Ventilation x ({Menu,Settings}U Ventilation)),

FALSE — (ModesG x {Off})}

The set possTransG(TRUE) (resp. possTransG(FALSE)) denotes the allowed
transitions when the power is on (the user pushes power button on the ventilator
unit), the backup battery or the external power (AC) did not fail and the GUI
did not crash. This property, deduced from the state machine of the GUI, is
specified in the machine GuiSM by the following invariant:

modeGP # modeG =
modeGP— modeG €
possTransG(bool(power=TRUE A crashed = FALSE A
(onAC = TRUE V (switchover = TRUE A batLev > 0 A batFail=FALSE))))

where the variables are defined as follows:

— modeG (resp. modeGP) denotes the current (resp. previous) state of the GUI,

— power: states whether the power is on or not, that is, whether the user pushes
power button on the ventilator unit or not.

— crashed: states whether the GUT is crashed or not,

— OnAC: states whether the system is powered using the external power AC
or not,

— switchover (resp. batFail): denotes the state of the switchover (resp. backup
battery),

— batLev: denotes the level of the backup battery.

In the machine GuiSM, we define, among others, the event saveBackAbort that
corresponds to the transition labelled save/goBack of the GUI state machine (see
Figure(l]). This event is used to store or abort the parameters update performed
by the user in the state Settings. As we can remark, this transition has one
source state Settings but two possible target states Menu and Ventilation. In
fact, the GUI has to come back to its previous state when the user asks for
the parameters setting. In the machine GuiSM, this event is specified as follows
where modeg is an event parameter that denotes the new state of the GUI after
the execution of the event:
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Event saveBackAbort =
any

modeg
where

grdl: modeG = Settings A modeg € ModesG

grd2: modeg € Ventilation U {Menu}
then

actl: modeG := modeg

act2: modeGP := modeG
end

The guard grdl states that this event is enabled when the GUI is in the state
Settings, This event makes the GUI move to a new state modeg that may
be Ventilation or Menu (Guard grd2). Indeed, from the state Settings, the
system should come back to its previous state. This state can be deduced from
the state of the controller: if the controller was ventilating, modeg is equal to
Ventilation, otherwise it is equal to Menu. This is modelled by refining the event
saveBackAbort in the machine ContSM and adding the following guards with
modeC and modec representing respectively the current and the next state of
the controller:

grdl: modeC # FailSafe
grd2: modeC' € Ventilation = modece Ventilation N modeg = modec
grd3: modeC ¢ Ventilation = modec = modeC A modeg = Menu

In order to save/abort the ventilation parameters, the controller should not be in
the state FailSafe (Guard grdl). After saving/aborting the parameters update,
we distinguish the following cases:

— if the controller is ventilating, it will still ventilating and the GUI will be
in the same state as the controller. This means that before being in the
state Settings, the GUI was in the state Ventilation and the user asks
for a parameters update during ventilation: the transition setParam from
the state Ventilation to the state Settings. Let us remark that after sav-
ing/aborting parameters setting, even if the controller is ventilating, it may
change the ventilating mode, moving from PCV to PSV, when asked by the
user. This is why the guard grd2 does not state that the current/next states
modeC and modec are equal.

— if the controller is not ventilating (state VentilationOff, the controller will
stay in the same state and the GUI will move (comes back more precisely)
to the state Menu. This means that before being in the state Settings, the
GUI was in the state Menu and triggered the transition setParam from the
state Menu to the state Settings

Machines GuiSM and ContSM also specify a generic event changeMode that
permits switching between modes Settings and Ventilation for the GUI and
between different ventilation modes (PCV and PSV) for the controller. This
event is specified as follows (parts in bold are those added by refinement in the
machine ContSM):
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Event changeMode =
refines changeMode

any

modeg, modec

where

grdi:
grd2:
grd3:

then

actl:
act2:
act3:
acté:

end

modeG € Ventilation
modeg € Ventilation U {Settings}
modeC € Ventilation A modec € Ventilation

modeG = modeg
modeGP := modeG
modeC := modec
modeCP := modeC

From the GUI point of view, the guards grd1 and grd2 state that when the MLV
is ventilating, it is possible either to move to state Settings in order to modify
the ventilating parameters or continue to ventilate. Guard grd3 specifies that
this event can be enabled when the controller is ventilating. This event makes
the controller continue the ventilation (modec € Ventilation) but possibly by
changing its ventilation mode.

Finally, we have the event progress that models time progression with the
possibility of modifying the state of both the GUI and the controller. The main
parts of this event are as follows:

Event progress =
refines progress

any

step, modec, 1, batf, ...

where

grdl:
grd2:
grda3:

grd4:

step € N1 Al € N1 A batf € BOOL

modec € {FailSafe, modeC, 0ff, StartUp}

(I =0V batf =TRUE V switchover=FALSE) A onAC = FALSE
=

modec=0ff

(batLev > 0 Al > 0) V switchover = FALSE V onAC = TRUE V

power = FALSE

then

actl:
act2:
act3:

acté:

end

=
modec € {modeC, FailSafe}

curTime := curTime + step
batLev :=1
batFail := batf

modeC := modec

Event progress makes time progress by step units of time. It stores the new level
of the backup battery (1) and its status (batf is true if the backup battery fails).
The state of the controller may change as stated by guards grd3 and grd4: if
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the system is on the backup battery whose level is null or it has a defect, the
controller moves to state 0ff. In the conditions specified by the guard grd4,
either the controller does not change its states or goes to the state failSafe (see

Section .

4.2 Machine Ventilation

In this machine, we mainly model the ventilation parameters and the switch
between the PCV to PSV modes. As the parameters of the GUI and those
of the controller may be different before saving the GUI parameters, we have
defined a separate set of variables for each. The PSV parameters for instance
are modelled by the following invariants:

invl: psvParamsValC € 0..curTime + (psvParams -+ Njp)
inv2: V z. € ran(psvParamsValC) = psvParams \ {RRAP, PinspAP} C dom(x)
inv3: modeC = PSV
=
dom(psvParamsValC (max(dom(psvParamsValC))))=psvParams

Invariant invl gives the type of the variable psvParamsValC that represents
the PSV parameters stored in the controller. As one can notice, we use partial
function since these parameters may have no values at given moments (when the
controller/GUI crashes for instance). Invariant inv2 states that the parameters
that should always have values. Finally, invariant inv3 specifies that all the PSV
parameters should be valued when the PSV ventilation mode is selected. A
similar variable psvParamsValG is defined for the GUI. In this machine, we
also model the action of the user that wants to change the ventilation mode
from PCV to PSV. Thus, we have introduced a Boolean variable PCV2PSV
with the following invariant that states that when the user asks for moving from
PCV to PSV, the possibility of modifying the parameters is given for the user
(modeG = Settings); in that case the controller is either ventilating or in the
state FailSafe. We have deduced this invariant from the state machines of both
the GUI and the controller.

invl: PCV2PSV = TRUE
=
modeG = Settings A modeC €{PCV, FailSafe}

In the machine Ventilation, the event changeMode is refined by the event move-
ToPSV as follows: we state in the guards that the event is enabled when both
the GUI and the controller are in the state PCV, then the GUI moves into the
state Settings while the controller stays in the same state.

Event moveToPSV =
refines changeMode

any

modeg, modec
where
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grdl: ...
grd2: ...
grd3: ...
grd4: modeG = PCV A modeC = PCV

grd5: modeg = Settings A modec = modeC
then

actl: ...
act2: ...
act3: ...
act4:

acths: PCV2PSV := TRUE
end

Similarly, the event saveBackAbort is refined by distinguishing the cases where
the parameters are saved or not. Mainly, we introduce a new Boolean event
parameter sv with the following semantics: if sv is true, the controller parameters
become equal to those of the GUI, otherwise (the user aborts the parameters
update) the GUI parameters become equal to their previous values that are
those of the controller. Moreover, if the variable PCV2PSV is true, the controller
should move to the PSV mode. The refinement of the event saveBackAbort is
as follows where max(dom(psvParamsValG)) is used to denote the moment of
the last update of the parameters:

Event saveBackAbort =
refines saveBackAbort

any
modeg, modec, sv, psvC, psvG,...
where
grdl: ...
grdé: PCV2PSV = TRUE A modeC = PCV = modec=PSV
grd7: PCV2PSV = FALSE V modeC # PCV = modec=modeC
grds: psuG={TRUE — psvParamsValG(max(dom(psvParamsValG))),
FALSE— psvParamsValC(max(dom(psvParamsValC)))}(sv)
grd9: psvC={TRUE — psvParamsValG(max(dom(psvParamsValG))),
FALSE— psvParamsValC(max(dom(psvParamsValC)))}(sv)
grd10: modec = PSV = dom(psvC)=psvParams
then
actl: ...
act5: psvParamsValG(curTime) := psvG
act6: psvParamsValC(curTime) := psvC
act7: PCV2PSV := FALSE
end

4.3 Machine VentilationPhase

In this level, we detail the different breathing phases: inspiration, inspiration
pause, expiration, expiration pause, etc. To this end, we define a variable cycles
that denotes the set of the breathing cycles. A new breathing cycle is created
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for each new inspiration; its current phase and mode are stored in the variables
cycleMode and ventilPhase defined as follows:

axml: partition(ventSates,{inspBeg},{inspEnd},{expBeg},{expEnd},...)
invl: cycleMode € cycles— Ventilation

inv2: ventilPhase € cycles — ventSates

inv3: inspBegT € cycles — N invd: inspEndT € cycles — N

One can wonder why we have to store the mode of each cycle. We do that be-
cause the breathing mode may change during any breathing cycle ¢, but the
characteristics of this cycle should not be modified. Let us consider for instance
the requirement CONT.22 for the mode PCV: The cycle starts with the inspi-
ration phase that lasts an inspiratory time I = 60 x IEpcy + ((RRpov * (1 +
IEpcy))). A naive modeling of this requirement would be (RRpcy denotes the
Respiratory Rate, IEpcy is the ratio of inspiratory time to expiratory time):

YV c. ¢ € cycles N modeC = PCV =
inspEndT (c) - inspBegT (c)=10 % 60 x (pcvParamsValC(curTime))(IEpcv) +
((pcvParamsValC (curTime))(RRpcv )*
(1 + (pcvParamsValC (curTime))(IEpcv))) (InspDur)

where inspBegT (resp. inspEndT) gives the start (resp. end) time of a cycle. This
modeling is inadequate because during a breathing cycle both values of variables
pcvParamsValC' and modeC may change. This is why we need to define an
expression that depends on the values of the parameters taken at the beginning
of the inspiration phase. So, we propose instead the following invariant where ¢ is
used to denote the values of the parameters at the moment where the breathing
cycle ¢ starts. As one can remark, this invariant uses values pcvParamsValC(t)
and cycleMode that never change even if the PCV parameters and ventilation
mode are updated.

Ve, t. c € cycles At = max({z | ¢ € dom(pcvParamsValC) A x < inspBegT(c)}) A
cycleMode(c) = PCV
=
inspEndT (c) - inspBegT (c)=10 x 60 * (pcvParamsValC(t))(IEpcv) +
((pcvParamsValC(t))(RRpcv )*
(1 + (pcvParamsValC(t))(IEpcv)))

In the machine VentilationPhase we define two events (Start and End) for each
ventilation phase. Below, we give the specification of the event inspStart that rep-
resents the beginning of a new inspiration. Basically, the event start by creating
a new cycle cy for which a mode (modeC'), an inspiration phase (inspBeg), a be-
ginning (curTime) and end (inspT) times are assigned. This event can be enabled
when the system is ventilating (Guard grdl), all others cycles reach their end
states (grd2: ran(ventilPhase) C {expEnd,expPauseEnd}). In that case, the end
inspiration time is calculated according to the guard grd3 with the last values of
pcvParamsValC before the inspiration time (¢ = max(dom(pcvParamsValC))).
Let us remark that we cannot replace t with curTime since pcvParamsValC' is
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not updated continuously but only at some moments. Thus, pcvParamsValC' can
be not valued at curTime, this is why we take the value of the last update of
this variable.

Event inspStart =
any
cy, mspT, t
where
grdl: modeC € Ventilation cy € Cycles \ cycles
grd2: t = max(dom(pcvParamsValC)) A
ran(ventilPhase) C {expEnd,expPauseEnd}
grd3: modeC=PCV
=
inspT=curTime + 10 x 60 x (pcvParamsValC(t))(I : Epcv) +
((pcvParamsValC(t))(RRpcv )%
(1 + (pcvParamsValC(t))
then
actl: cycles := cycles U {cy}
act2: cycleMode(cy) :=modeC
act3: ventilPhase(cy):=inspBeg
act4: inspBegT (cy):= curTime
act5: inspEndT (cy):=inspT
end

4.4 Machine Valves

In the machine Valves, we model the state/position of the valves during the differ-
ent breathing phases. We define two Boolean variables in Valve and outValve for
in and out valves respectively: TRUE (resp. FALSE) for an open (resp.closed)
valve. Moreover, we define two Boolean variables in ValveF' / out ValveF' to model
the failure of these valves. For each requirement on the position of a given valve
during a breathing phase, we define a particular invariant. For instance, the re-
quirement stating that the in (resp. out) valve is open (resp. closed) during the
inspiration is modelled by the following invariant:

invl: (3 c. ¢ € cycles A ventilPhase(c)€ {inspBeg, inspEnd}) A inValveF = FALSE A
modeC = Ventilation = inValve = TRUE

inv2: (3 c. ¢ € cycles A ventilPhase(c)€ {inspBeg, inspEnd}) A outValveF = FALSE A
modeC = Ventilation = outValve = FALSE

To maintain these invariants, each event representing the beginning/end of
a breathing phase is refined by adding adequate actions that open/close a valve
if it is not defective. Event inspStart is refined by adding the following actions:

inValve :== {FALSE — TRUE, TRUE > inValve}(inValveF)
outValve := {FALSE — FALSE, TRUE — outValve}(outValveF')
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4.5 Machine MVLAlarms

Machine MVLAlarms models the different undesirable situations that may occur
on the system. The case study specifies a huge number of such undesirable states.
Roughly speaking, when an undesirable situation happens, the controller/GUI
emits an alarm and bring the system in a safe state by closing the in valve and
opening the out one. At the time of the submission of this paper, we have mainly
modelled alarms related to the valves, the backup battery failure, GUI failure
and Controller failure. To this end, we define in a new context the set of all the
possible failures we consider as follows:

axml: partition(Alarms,{guiFailure},{contFailure},
{inValveFailure},{patConnected},...)

Then, in the machine MVLAlarms, we introduce a new varaible alarmRaised
as a Boolean total function that indicates whether an given alarm is raised or
not: alarmRaised € Alarms — BOOL. For each type of alarm, we specify the
conditions under which it must be raised. For the in valve for instance, we specify
that the inValveFailure must be raised in the following two conditions:

1. the in valve is closed while there is a cycle ¢ in one of the following breathing
phase: inspiration or recruitment maneuver,

2. the in valve is open while there is a cycle ¢ in one of the following breathing
phase: expiration or inspiratory/expiratory pause.

These two conditions are modelled using the following invariant:

alarmRaised(inValveFailure)= bool(3 c. (¢ € cycles A
((((ventilPhase(c)=1inspBeg A curTime > inspBegT(c)) V
(ventilPhase(c) = rmBeg A curTime > rmBegT(c))) A
inValveP = FALSE
)V
(((ventilPhase(c) = expPauseBeg A curTime > expPauseBegT(c)) V
(ventilPhase(c) = expBeg A curTime > expBegT(c)) V
(ventilPhase(c)=inspPauseBeg A curTime >inspPauseBegT(c)) ) A
inValveP = TRUE))))

Let us remark the use of a new variable inValveP introduced in order to
express this dynamic property. It is used to store the previous state of the in
valve. Indeed, when the controller detects a defect on a valve it forces it to move
into a safe position. Therefore, it not possible to express this property using
the variable inValve as its position changes when an alarm is raised on it. To
maintain this invariant, the event progress is refined by adding the following
guards: grdl defines an event parameter to verify if the conditions to raise the
in valve alarm are fulfilled. If so, the second guard grd2 puts the controller into
the state FailSafe.

grdl: alarmInV=Dbool(3 c. (c € cycles N(
(ventilPhase(c) € {inspBeg, inspEnd, rmBeg, rmEnd} A inValve=FALSE)



14 A. Mammar

V
(ventilPhase(c) € {expPauseBeg, inspPauseBey, inspPauseEnd} A
inValve = TRUE))))
grd2: alarmInV = TRUE = modec=FailSafe

We also update the variables alarmRaised and in ValveP in the event progress
by assigning true to the alarms to raise. The variable is updated as follows:

alarmRaised = alarmRaised < {..., inValveFailure — alarmInV '}
inValveP := inValve

5 Validation and Verification

The verification and validation of the built EVENT-B specification have been
achieved in three steps detailed hereafter. It is worth noting that these steps are
performed in an iterative manner to detect bugs as soon as possible.

5.1 Model Checking of the Specification

For complex systems as the one presented in this paper, model-checking the
specification is not only useful for verifying the preservation of the invariant but
this task also helps us during the development of the models, that is, finding
the adequate invariants/guards/actions. Indeed, when the invariant depends on
several variables that are modified by the same event, determining the right ac-
tions/guards is sometimes difficult. Basically, we proceed as follows. We write
an initial specification for each event, then we use the PROB model checker to
ensure that its guards/actions are sufficient for preservation of the invariant.
Proceeding like this also avoids providing guards that are too strong. When the
invariant is violated, PROB displays a trace (sequence of events), along with the
values of each variable, that starting from the initial state of the machine, leads
to a state that violates the related invariant. Analysing such a trace allows us to
tweak the specification by revising the guards/actions of events but also some-
times the invariants itself that may be too strong. For this particular case study,
the use of PROB helps us find the invariants corresponding to the duration of
each breathing phase (InspDur). Indeed, as stated before (see Section, this
invariant must not depend on the current values of the PCV/PSV parameters
but on the last values just before the breathing cycle starts. The counterexample
in that case is as follows: (1) a breathing cycle starts with a duration fulfilling
the invariant InspDur; (2) the user updates the parameters; (3) the inspiration
phase terminates with the previous value of the parameters making the invariant
InspDur violated.

5.2 Proof of the Specification

The absence of invariant violation during the model-checking does not ensure
that the specification is consistent. Indeed, PROB works with a timeout that
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may prevent us from finding complex scenarios with more events. Therefore, we
need to proceed with the proof of the specification in order to verify that each
event does preserve the invariant and that the guard of each refined event is
stronger than that of the abstract one. These proof obligations are automatically
generated by RODIN: 1322 proof obligations have been generated, of which 23%
(312) were automatically proved by the various provers. The interactive proof
of the remaining proof obligations took about three weeks since they are more
complex and require several inference steps and need the use of external provers
(like the Mono Lemma prover, Dis-prove with PROB and STM provers). During
an interactive proof, users ask the internal prover to follow specific steps to
discharge a proof obligation. A proof step consists in applying a deductive rule,
adding a new hypothesis that is in turn proved or calling external provers. The
external Mono Lemma prover has been very useful for arithmetic formulas. The
more complex proofs for this particular case study have been those related to the
breathing phase duration since we have to distinguish several cases depending
on the ventilation mode.

5.3 Validation with Scenarios

In this step, we ensure that the built models does represent/prevent the de-
sired /undesirable behaviours, that is, we have built the right models that behave
as expected. Unfortunately, the requirements document does not contain enough
scenarios that can be used as oracles during this task. Indeed, the provided sce-
narios are only related to some very basic behaviors, mainly some transitions of
the state machines of the GUI and the controller. Therefore we have defined our
own scenarios based on our understanding of the system. According to the state
machines of the GUI and the controller, we have defined the scenarios that per-
mit covering the different paths. Using PROB, we have validated the following
functionalities of the system:

— The system permits to proceed with the ventilation of patient when no error
is detected by the controller and the GUI never crashes. This corresponds
to the nominal behaviour.

— The controller continues to work even if the GUI crashes. When the GUI
re-initialises, its next state is Ventilation if the controller is ventilating,
Start otherwise.

— It is possible to update the ventilation parameters during ventilation, and
this does not affect the current cycle if any.

— In case of error, the controller moves into the state FailSafe and no action
is possible anymore.

— The position of the valves are appropriate for each breathing phase and any
failure makes the controller move into the state FailSafe with the valves in
an adequate position.
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6 Conclusion

In this paper, we presented an EVENT-B formal model of the Mechanical Lung
Ventilator (MLV), the case study provided in the ABZ’2024 conference. Our
specification takes most requirements and functionalities into account even if
some alarms are not modelled. The main difficulty of this case study in the fact
that some data can be modified during the ventilation phase while ensuring that
the current breathing cycle continues with the previous values. From a practical
point of view, this is reasonable since the cycle duration is very small compared
to that of the parameters update. However as we do not model the update
duration, we got a counterexample when the parameters are updated during the
breathing cycle.

Compared to the previous ABZ case studies [7/9], the present case study is
time-dependent as the state of the GUI/controller may change by time pro-
gression when the system is powered using the backup battery. This is why we
introduced time from the first specification level along with the event progress
that makes the time evolve. Moreover, PROB fails to find counterexamples on
the last 3 refinement levels. This is due probably to the high number of invari-
ants/events to check.

We think that the requirements document should be improved on several
points. First, the document is not clear on the conditions under which the con-
troller must move to the state FailSafe. For instance, apart from emitting an
alert in case of some undesirable situations, the document does not clearly spec-
ify for which kinds of alarms the system has to move to the state FailSafe.
Second, one can wonder whether the controller continuously checks the pres-
ence of undesirable events or not. The state machine of the controller specifies
that errors may happen in any state, but it is not clear which ones can happen
in each specific state. For instance, does the controller continuously checks the
communication with the GUI or only in the state StatUp?

As future work, we plan to model more alarms to cover more error cases.
We think that is not difficult since the remaining alarms are related to values of
sensors that are independent of each other. So, we just have to add a variable
that monitors the sensor value and raise an alarm if the read value is not in the
range of the desired ones. Future improvements also include exploring the use
of decomposition plugins available in RODIN for decomposing the models into
smaller and thus more manageable units.
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