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Abstract. This paper presents an Event-B model of a
speed control system, a part of the case study provided in
the ABZ2020 conference. The case study describes how
the system regulates the current speed of a car accord-
ing to a set of criteria like the driver’s desired speed, the
position of a possible preceding vehicle but also a given
speed limit that the driver must not exceed. For that
purpose, this controller reads different information from
the available sensors (key state, desired speed) and takes
adequate actions by acting on the actuators of the car’s
speed according to the information read. To formally
model this system, we adopt a stepwise refinement ap-
proach with the Event-B method. We consider most
of the features of the case study. All proof obligations
of the invariant properties have been discharged using
the Rodin provers. Our model has been validated us-
ing ProB by applying the different provided scenarios.
This validation has permitted us to point out and correct
some mistakes, ambiguities and oversights contained in
the first versions of the case study.

Key words: Speed control system, Event-B method,
Refinement, Verification

1 Introduction

The case study, proposed in the context of the ABZ2020
conference, is composed of two parts: Adaptive Exterior
Light and Speed Control Systems. Since the whole case
study is quite lengthy/complex and the two parts are
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only loosely coupled as stated in the description docu-
ment, we chose to handle each part in a separate paper.
The present paper deals with the speed control system
whereas a companion paper considers the adaptive ex-
terior light system [21].

The goal of the speed control system is to regulate
the current speed of a car according to a set of criteria
like the driver’s desired speed, the position of a possible
preceding vehicle but also a given speed limit that the
driver must not exceed. The system can behave accord-
ing to two options: the first one, called normal mode,
regulates the speed independently from any preceding
vehicle, the second option, called adaptive mode, takes
into account the distance of the vehicle ahead by main-
taining a safety distance. The driver has the possibility
to choose which option to activate at any given moment.
Like a controller, in both options, the system reads dif-
ferent information from the available sensors (key state,
desired speed, the preceding vehicle position) and takes
adequate actions by sending commands to the actuators
of the car’s speed according to the information read.

This paper describes the formal modeling of the speed
control system using the Event-B method and its re-
finement technique. This technique permits to master
the complexity of a system by gradually introducing its
different elements/characteristics. After discussing the
different requirements to model and the modeling strat-
egy, the Event-B models have been developed by the
first author. Her experience in the formal specification
and verification of railway interlocking systems, in col-
laboration with Thales and RATP, helped her in this
task. She has also developed the Event-B models for
the previous ABZ case studies [22,20]. The development
of the Event-B models took about one month and half
(full-time) and has been done under the Rodin platform
[3] that provides editors, provers and several other plug-
ins for various tasks like animation and model checking
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with ProB [18]. Our Event-B model considers most of
the requirements except the following ones:

– Requirements SCS-21, SCS-27 and SCS-28 (emer-
gency braking) which are not precise enough to be
formalized;

– Requirement SCS-30 is not a functional requirement,
it is related to the visual interface;

– Requirement SCS-43 is related to the light control
system, which is specified in another model [21].

We use ProB in order to animate the built mod-
els with two purposes: (1) exhibiting the problematic
sequences of events, called scenarios, that violate the in-
variant along with the expected value of each variable;
(2) validating the specification by simulating the desired
scenarios, provided in the requirement document, in or-
der to be sure that we have specified the right system.
These animation/validation phases permitted to exhibit
several ambiguous/informal descriptions and also some
errors in the specification (see Section 5.1). To fix them
and to remove such ambiguities, we have intensively ex-
changed with the authors of the requirement document
[15], Frank Houdek in particular.

Our approach to model the control speed system fol-
lows the four-variable model of Parnas and Madey [28]
that distinguishes two groups of variables environment
and controller variables (see Section 2.1). The first group
denotes the elements that are outside the controller; they
are the elements whose states are read by the sensors and
to which commands are sent through the actuators. The
second group represents the input and the outputs of
the system. In that case, the approach to model a con-
trol system in Event-B consists in modeling at each
refinement step an environment or a controller variable
in order to master the complexity of the system.

1.1 The Event-B method

Event-B [2] is the successor of the B method [1] permit-
ting to model discrete reactive systems using mathemat-
ical notations. The complexity of a system is mastered
thanks to the refinement concept that allows to grad-
ually introduce the different parts that constitute the
system, starting from an abstract model and gradually
refining it into a more concrete one.

An Event-B specification is made of two types of
elements: contexts and machines. A context describes
the static part of an Event-B specification; it consists
of sets (user-defined types) S and constants C together
with axioms A that specify their properties:

CONTEXT
Cont

Sets
S

Constants
C

Axioms
A

END

The dynamic part of an Event-B specification is in-
cluded in a machine that defines variables V and a set
of events E. The possible values that the variables are
allowed to take are specified using an invariant, denoted
Inv, written using a first-order logic formula on the state
variables:

MACHINE
Name

SEES
Cont

Variables
V

Invariants
Inv

Events
E

Each event has the following form:

ANY
X

WHERE
G

THEN
Act

END

An event can be triggered if it is enabled, i.e. the
condition G, named guard, holds. When more than one
event is enabled, only one, chosen nondeterministically,
is triggered. When an event is triggered, its actions Act
are applied over variables. In this paper, we restrict our-
selves to the becomes equal action, denoted by: x := e.

The triggering of each event must maintain the in-
variant. To this aim, proof obligations are generated. For
each event, we have to establish that [2]:

∀ S, C, V , X. (A ∧ G ∧ Inv ∧ Act ⇒ Inv ′)

where Act is the before-after predicate of the actions of
an event and Inv′ is the invariant applied to the after
values.
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Refinement is a process of enriching or modifying a
model in order to augment the functionality being mod-
eled, and/or explain how some purposes are achieved.
Both Event-B elements context and machine can be
refined. A context can be extended by defining new sets
Sr and/or constants Cr together with new axioms Ar.
A machine is refined by adding new variables and/or re-
placing existing variables by new ones Vr that are typed
with an additional invariant Invr called gluing invariant
that permits to link both the variables V and Vr. New
events can also be introduced to implicitly refine a skip
event, which means that a new event cannot modify ex-
isting variables, but only new variables. In this paper,
the refined events have the same form:

ANY
Xr

WHERE
Gr

THEN
Actr

END

To prove that a refinement is correct, we have to
establish the following two proof obligations [2]:

– guard refinement: the guard of the refined event must
be stronger than the guard of the abstract one:

∀(S,C, Sr, Cr, V, Vr, X,Xr).
(A ∧Ar ∧ Inv ∧ Invr ⇒ (Gr ⇒ G))

– simulation: the effect of the refining action must sim-
ulate the effect of the abstract one. In other words,
the effect of the refining action must be included in
that of the abstract one:

∀ (S, C, Sr, Cr, V , Vr, X, Xr).
(A ∧ Ar ∧ Gr ∧ Inv ∧ Invr ∧ Actr ⇒

Act ∧ Inv ′
r)

To discharge the different proof obligations, Rodin
[26] offers an automatic prover but also the possibility
to plug in additional external provers like the SMT [11]
and AtelierB provers [10] that we use in this work.
Both provers offer automatic and interactive modes to
discharge the proof obligations.

1.2 The ProB model checker

ProB [30] is, an animator and an automatic model checker,
originally developed for the verification and validation of
software development based on the B language [17]. De-
veloped at the University of Düsseldorf, Germany, start-
ing from 2003, ProB implements an automatic model-
checking technique to check LTL (Linear Temporal Logic)
[29] and CTL (Computational Tree Logic) [8] properties
against a B specification. The core of ProB is written in

Prolog. The purpose of ProB is to be a comprehensive
tool in the area of formal verification methods. Its main
functionalities can be summarized as follow:

1. ProB can find a sequence of events that, starting
from a valid initial state of the machine, moves the
machine into a state that violates its invariant.

2. Given a valid state, ProB can exhibit the event that
causes the invariant to be violated.

3. ProB supports the animation of B/Event-B speci-
fications to permit the user to simulate different sce-
narios from a given starting state that satisfies the
invariant. Through a graphical user interfaces imple-
mented in Tcl/Tk and Java UI [5], the animator pro-
vides the user with: (1) the current state, (2) the
history of the event triggering that has led to the
current state and (3) a list of all the enabled events,
along with proper argument instantiations. In this
way, the user does not have to guess the right values
for the event arguments.

1.3 Contributions

The contributions of this paper with respect to [23] are
as follows:

– a more detailed description of the modeling strategy
used (see Section 2);

– re-expression of some properties (like SCS-41) as in-
variants that can be formally proved (see Section
3.2.1);

– additional examples and explanations about the ver-
ification phase using model-checking and scenarios
(see Section 5);

– a comparison with similar solutions using different
approaches/formal languages (see Section 6).

1.4 The structure of the paper

The rest of this paper is structured as follows. Section 2
describes our modeling strategy. Section 3 introduces our
model in more details. Section 4 describes the validation
and verification of our model. Section 5 identifies the de-
fects found in the requirements document provided for
the case study [15], and the adequacy of the Event-B
method for constructing a model of this case study. Sec-
tion 6 compares our solution with other solutions of this
case study. We conclude in Section 7.

2 Requirements and modeling strategy

This section describes the principles of control systems
and the general Event-B architecture of their modeling.
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Fig. 1. The speed control system behaviour

2.1 Control abstraction

The speed control system subject of this paper can be
seen as a control system that interacts with its environ-
ment through a set of sensors, which provide it with in-
formation about the state of the physical elements, and
a set of actuators that are used to transmit the adequate
orders to these elements (see Figure 1). In this paper, we
use the concepts of controlled/monitored variables to de-
scribe the environment elements [28]. A sensor measures
the value of some environment elements m, called a mon-
itored variable (e.g., the state of the ignition key), and
provides this measure (e.g., whether the key is inserted
or not) to the software controller as an input variable
i. The software controller can influence the environment
by sending commands, called output variable o to actu-
ators. An actuator influences the value of some charac-
teristics of the environment, called a controlled variable
c. Variables m and c are called environment variables.
Variables i and o are called controller variables. Finally,
a controller has its own internal state variables to per-
form computations. In this case study, we use Event-B
state variables to represent both environment and con-
troller variables. We do not model sensor or actuator
failures.

A well-known architecture of a control system is a
control loop that reads all input variables at once, at a
given moment, and then computes all output variables
in the same iteration. But, it can be also viewed as a con-
tinuous system that can be interrupted by any change
in the environment represented by a new value sent by
a sensor. In this paper, we see the controller as a dis-
tributed system; each sub-system (environment element)
is associated to a given sensor. In that case, the system
reacts to each single modification of the sensor and to
the progression of time:

WHILE true DO
IF timer of an action is expired THEN

execute timing action
END
Read Inputs from some sensors
IF the value of a sensor changes THEN

Process the sensor modification
Send Outputs to the actuators

END
END

Our modeling approach is more abstract, as it is com-
mon in the Event-B style of system modeling. We de-

fine one event for each input variable change, which al-
lows for a more modular specification that is easier to
prove. This is closer to an interrupt-driven control sys-
tem. Our Event-B abstraction is also a reasonable ab-
straction for a control loop, considering that in most
cases, a single input variable changes between two con-
trol loop iterations. The control loop can be derived from
our specification by merging all events and defining dy-
namic priorities between events in order to avoid any
starvation problem.

2.2 Modeling structure

The Event-B project modeling the case study is com-
posed of four levels depicted by Figure 2:

– Machine M0 models the current speed of the stud-
ied car independently from any preceding vehicle and
also without giving any condition on its evolution. It
sees a context C0 that defines the allowed values for
this speed;

– Machine M1 introduces the physical elements that
are manipulated by the driver and that have an im-
pact on the current speed of the car. These elements
include gas/brake pedal, key, cruise control lever. The
description of these elements is defined in the con-
text C1 that extends the context C0. Machine M1
describes how the position of each of these elements
evolves depending on its current position;

– Machine M2 models the desired speed whose allowed
values are defined in the context C2 that extends the
context C1. In that machine, we model the activa-
tion of the normal/adaptive cruise control and also
the traffic sign detection that has an impact on the
value of the desired speed according to the require-
ments (SCS-36, SCS-39). It is worth noting that
some events, like those related to the traffic sign de-
tection, are introduced in M1 even if this aspect is
really dealt with in the machine M2. Indeed, these
events need to modify some variables that are intro-
duced in M1 and, as noted before, a new event cannot
modify a variable defined in a previous refinement
level;

– Machine M3 specifies the different aspects that de-
pend on or impact the desired/current speed, like the
safety distance from the preceding vehicle, which de-
pends on the speed of that vehicle but also the faults
that can happen on the radar system. Information
on the radar together with the safety distance are
defined in the context C3 that extends the context
C2.

3 Model details

This section describes the main modeling elements that
characterize our specification. The emphasis is put on
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Fig. 2. Structure of the Event-B model

the parts that needed effort and those illustrating the
key properties of the system: evolution of the speed and
maintaining a safety distance. The complete archive of
the Event-B project is available in [19]. Table 3 re-
lates the components of our model with the requirements
listed in [15]. As one can remark, some requirements are
modeled as invariants whereas others are dealt with in
the adequate events.

The following subsections give more details about the
modeling of some elements of the case study.

3.1 Refinement level 0 (M0+C0)

Machine M0 models the current speed of the observed
car independently from any preceding vehicle and also
without giving any condition on its evolution. To this
aim, it sees a context C0 that defines the constant range-
Speed representing the range of values for the speed1:

rangeSpeed = 0..5000

The current speed is defined by the following invariant
in the machine M0:

currentSpeed ∈ rangeSpeed

Machine M0 defines a single event updateVehicleSpeed to
set the current speed of the car as follows:

Event updateVehicleSpeed =̂
any

val
where

grd1: val ∈ rangeSpeed
then

act1: currentSpeed := val
end

1 Let us note that the upper bound stands for 500 km/h and
the resolution is 1/10 km/h

3.2 Refinement level 1 (M1+C1): physical elements

This machine refines the machine M0 by introducing the
different elements that impact the current speed of the
car. This includes the physical elements that the driver
manipulates, the radar system that gives the distance to
the nearest obstacle, the key that permits to start the
engine but also the time progression since it makes some
variables evolve, like the desired speed. For that purpose,
several variables/invariants are introduced to model how
the position of the physical elements evolves depending
on their current positions. In this level, the machine M1
defines the following variables:

– currentTime: it represents the current time of the
system. This variable is useful for modeling timed
aspects.

– keyState (resp. keyStateP): it denotes the current
(resp. previous) position of the key.

– SCSLeverUD (resp. SCSLeverUDP): it models the
current (resp. previous) position (Upward/ Down-
ward) of the cruise lever.

– SCSLeverFB (resp. SCSLeverFBP): it models the
current (resp. previous) position (Forward/ Back-
ward) of the cruise lever.

– brakePedal : it denotes the deflection of the brake
pedal.

– gasPedal : it denotes the deflection of the gas pedal
from the neutral position.

– speedLimiterSwitchOn: it denotes the position of a
button that when it is pushed indicates that the
cruise control lever is used as as speed limiting lever.

– rangeRadarState: it denotes the state of the radar
sensor which can be Ready, Dirty or NotReady. As
stated in the case study description, the behavior
of the radar is the same in both states Dirty and
NotReady, thus we model this state by a Boolean
variable: TRUE for Ready and FALSE for both
states Dirty and NotReady.
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Requirements [15] Component Invariant/Event
SCS-1, SCS-31, SCS-38 M2 inv3
SCS-2, SCS-31, SCS-38 M2 inv4
SCS-3, SCS-12, SCS-13,
SCS-16, SCS-17, SCS-31, SCS-38 M2 inv5 and inv6
SCS-4, SCS-19, SCS-31, SCS-38 M2 inv7
SCS-5, SCS-19, SCS-31, SCS-38 M2 inv8
SCS-6, SCS-19, SCS-31, SCS-38 M2 inv9 and inv10
SCS-7, SCS-19, SCS-31, SCS-38 M2 inv11
SCS-8, SCS-19, SCS-31, SCS-38 M2 inv12
SCS-9, SCS-31, SCS-38 M2 inv13
SCS-10, SCS-31, SCS-38 M2 inv14
SCS-11, SCS-31, SCS-38 M2 inv15
SCS-14 M3 inv17 and inv18
SCS-15 M3 inv19
SCS-18 M3 inv8
SCS-21 not covered
SCS-22 M3 inv7
SCS-23 M3 inv9, inv10 and inv11
SCS-24 M3 inv12
SCS-25 M3 inv14
SCS-26 M3 inv15
SCS-27-SCS-28 not covered
SCS-29 M1 inv9
SCS-30 not covered since it is related

to the graphical user interface
SCS-32, SCS-33, SCS-34 M2 inv20
SCS-35 M1 inv8
SCS-36, SCS-37, SCS-39 M2 inv22, inv26, inv25
SCS-40 and SCS-41 M2 Event moveKey and progress
SCS-42 M3 inv19
SCS-43 not covered since the light system

is not included

Table 1. Cross-reference between the components of our model and the requirements of [15]

– nextTest : it memorises the time of the next radar
testing. As stated in the requirements document, the
self-test of the radar is performed every 10 minutes.

– lastTest : it memorises the time when the previous
test has been performed. This variable is reset to 0
when the key is not in the ignition.

In the following, we give details about the key, the
radar system, the time progression and also the cruise
control lever. We model these elements in the same re-
finement level since the behaviour of the radar depends
on time progression and the position of the key.

3.2.1 Modeling the key and the radar

To model the key, we have defined in the context C1, a
set keyStates to describe all the states of the key2:

2

partition(A, A1, . . . , An) ⇔

 A = A1 ∪ . . . ∪An

∧
∀Ai, Aj .(Ai ̸= Aj ⇒ Ai ∩Aj = ∅)



partition(keyStates,
{NoKeyInserted}, {KeyInserted},
{KeyInIgnitionOnPosition})

We also define a constant KeyMoves to denote the au-
thorized transitions for a key:

KeyMoves={ NoKeyInserted 7→ KeyInserted,
KeyInserted 7→ KeyInIgnitionOnPosition,
KeyInIgnitionOnPosition 7→ KeyInserted,
KeyInserted 7→ NoKeyInserted }

In the machine M1, the variable keyState represents
the current state of the key, the variable keyStateP con-
tains the previous state of the key and the authorized
transitions are specified in the invariant inv2:

keyStateP 7→ keyState ∈ KeyMoves
∨

keyStateP = keyState

Similarly, the state of the radar system is modeled by a
Boolean variable rangeRadarState. This variable is ini-
tialized to FALSE since the ignition is off at the be-
ginning; then its state is updated every 10 minutes. In
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comparison to the conference paper, we have improved
the modeling of this requirement by modeling it as an
invariant that can be formally proved. For that purpose,
we defined the following invariants in the machine M1:

– the variable lastTest is equal to the current time
when the system (re)starts and remains always less
or equal to the current time:

lastTest ≤ currentTime ∧
keyStateP ̸= KeyInIgnitionOnPosition ∧
keyState = KeyInIgnitionOnPosition
⇒
lastTest = currentTime

– the variable lastTest is reset to 0 when the system is off:

keyState ̸= KeyInIgnitionOnPosition
⇒
lastTest = 0

– Variables nextTest and lastTest are either both equal
to 0 (at the initialisation of the system) or separated
by updateDur units of time (u.t). where the constant
updateDur is defined in the context C1 as being equal
to 600 (10× 60) since the update is performed each
ten minutes. When the system (re)starts, the vari-
able nextTest is set to currentTime + updateDur to
permit testing the system. This variable is also up-
dated to currentTime + updateDur each time such
deadline is reached.

(nextTest = 0 ∧ lastTest = 0)
∨

(nextTest - lastTest = updateDur)

To guarantee that these invariants are preserved, ade-
quate actions should be added to the events that update
the variable keyState, that is, the event moveKey that
models the behavior of the key. Hereafter, we give an
excerpt of the Event-B modeling of this event:

Event moveKey =̂
any

valkey
radstate

where
grd1: keyState 7→ valkey ∈ KeyMoves
grd2: radstate∈ BOOL
grd3: . . .

then
act1: keyState := valkey
act2: keyStateP := keyState
act3: rangeRadarState := radstate
act4: nextTest :=

if (valkey = KeyInIgnitionOnPosition) then
currentTime + updateDur else nextTest

act5: lastTest :=
if (valkey = KeyInIgnitionOnPosition) then

currentTime else 0
act6: . . .

end

For readability, the actions act4 and act5 in the event
moveKey use a conditional if c then x := v1 else x := v2
construct which is not provided as a native Event-B
notation. To overcome this limitation, the models devel-
oped under Rodin use the following idiom to a condi-
tional if c then x := v1 else x := v2 construct:

x := {TRUE 7→ v1, FALSE 7→ v2}(bool(c))
where the term {TRUE 7→ v1, FALSE 7→ v2} denotes
a function, so it is evaluated at point bool(c). Operator
bool(c) evaluates formula c and returns a result of the
predefined set BOOL = {TRUE, FALSE}.

Let us note that another solution to model the be-
havior of the key would be to define a separate event for
each key state transition. However, we did not choose
this option since only the transitions from/to the state
KeyInIgnitionOnPosition affect the behavior of the sys-
tem. Moreover, grouping these two transitions in a single
event allows for the factorisation of the proof steps that
would be common to the two events.

3.2.2 Modeling time progression

In cyber-physical systems, like the one we deal with, the
controller reads the values of the sensors and sends com-
mands to actuators on a periodical basis called a cy-
cle, whose duration affects the safety correctness of the
system. In general, the value of time progression is the
shortest time between two consecutive sensors’ updates.
For simplicity, we assume in this paper that the shortest
time between two consecutive sensors’ updates is greater
than one second.

As the speed evolves with time progression, we spec-
ify the event progress that models this progression as a
refinement of the event updateVehicleSpeed:

Event progress =̂
refines updateVehicleSpeed

any
val
radstate

where
grd1: val ∈ rangeSpeed ∧ radstate ∈ BOOL
grd2: keyState ̸= KeyInIgnitionOnPosition ∨

nextTest ̸= currentTime + 1
=⇒
radstate = rangeRadarState
...

then
act1: currentSpeed := val
act2: currentTime := currentTime +1
act3: keyStateP := keyState
act4: rangeRadarState := radstate
act5: nextTest := if (keyState = KeyInIgnitionOn-

Position ∧ nextTest = currentTime + 1) then
currentTime + 1 + updateDur else nextTest

act6: lastTest := if (keyState = KeyInIgnitionOn-
Position ∧ nextTest = currentTime+1) then cur-
rentTime + 1 else lastTest
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end

Guard grd2 specifies that the value of the state of the
radar system does not change if the there is no time
progression or the key is not in the state KeyInIgni-
tionOnPosition, otherwise it is nondeterministically cho-
sen (Guard grd1 : radstate ∈ BOOL).

As this event is guarded, we have to establish that
the conjunction of these guards is satisfiable in order to
ensure that the progression of the time is never blocked.
To this aim, we have introduced a theorem TH on this
event to ensure that there exists at least a combination
of values for the parameters that makes all the guards
are satisfied:

∃ val, radState,. . . , . (grd1 ∧ . . .∧ grdn)

From the practical point of the view, the proof of this
theorem makes the Rodin’s prover crash with a Java
heap space error since the number of cases to consider is
huge. Each case is related to a particular value of some
variables (keyState, SCSLeverUDP, etc.). To overcome
this problem, we have broken this big theorem into sev-
eral and simpler ones according to these values. These
sub-theorems are of the following form:

Pi ⇒ TH∨
i Pi

For instance to prove the theorem TH, we have in-
troduced three theorems Th1, Th2 and Th3 depending
on the position of the key:

Th1 = keyState = KeyInIgnitionOnPosition ⇒
∃ val, radState,. . . , . (grd1 ∧ . . .∧ grdn)

Th2 = keyState ̸= KeyInIgnitionOnPosition ⇒
∃ val, radState,. . . , . (grd1 ∧ . . .∧ grdn)

Th3 = keyState = KeyInIgnitionOnPosition ∨
keyState ̸= KeyInIgnitionOnPosition

Moreover, we model all the timed aspects (like speed
and the radar stated which is tested every 10 minutes) in
this event (see Section 3.3) to make them evolve together
with the time, while other aspects (like key) are modeled
in separate events.

3.2.3 Modeling the cruise control lever

The cruise control lever is modeled by the variable SC-
SLeverUD (Upward/Downward) and the following typ-
ing invariant:

SCSLeverUD ∈ SCSLeverPositions

where SCSLeverPositions is a given set defined in Con-
text C1 seen by M1:

partition(SCSLeverPositions, Upward, Downward,
{Backward}, {Forward}, {Neutral})

partition(Upward, {Upward5}, {Upward7})
partition(Downward, {Downward5}, {Downward7})

For each of these elements, invariants are defined
in the machine M1 to specify the authorized position
changes together with the event that models them. The
following invariant invPos states that the cruise control
lever cannot directly move from an Upward position to
a Downward position bypassing the Neutral position3:

SCSLeverUD ∈ Upward ⇒
SCSLeverUDP ∈ Upward ∪ {Neutral})

∧
(SCSLeverUD ∈ Downward ⇒

SCSLeverUDP ∈ Downward ∪ {Neutral})

As one can remark, the above invariant uses an extra
variable SCSLeverUDP to model the previous position
of the cruise control lever. In the next section, we show
that this kind of variables is also relevant for modeling
some requirements that need to make reference to the
current and previous states of the system.

Machine M1 defines the event moveSCSLeverUD that
models the cruise control lever movements where grd2
permits to make the invariant invPos preserved after
the execution of this event. Basically, the guard grd2 is
obtained from invPos by replacing SCSLeverUDP and
SCSLeverUD by SCSLeverUD and valSCS respectively.
The first term of the disjunction, SCSLeverUD = SC-
SLeverUDP, is not considered since the event aims at
changing the position of the lever as stated, in the guard
grd, with valSCS ̸= SCSLeverUD. The term SCSLeverUD
= SCSLeverUDP is relevant in the expression of the in-
variant since it should be fulfilled by all the events that
do not modify the position of the lever.

Event moveSCSLeverUD =̂
any

valSCS
where

grd1: valSCS ∈ Upward ∪ Downward ∪ {Neutral}
∧ valSCS ̸= SCSLeverUD

grd2: SCSLeverUD ̸= Neutral =⇒
(SCSLeverUD ∈ Upward ∧ valSCS ∈ Upward)
∨

(SCSLeverUD ∈ Downward ∧ valSCS ∈ Downward)
∨
(valSCS = Neutral)

then
act1: SCSLeverUD := valSCS
act2: SCSLeverUDP := SCSLeverUD
...: ...

end

Let us note that a similar variable SCSLeverFB is de-
fined for modeling Forward/Backward movement of the
cruise control level along with its associated events.

3 Another solution would be to define a constant SCSLeverUD-
Pos to denote the possible transitions of the cruise control lever
as we did for the key.
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3.3 Refinement level 2 (M2+C2): desired speed

This machine describes how the desired speed evolves
according to the requirements (SCS-1 to SCS-12) by
moving the cruise control lever into different positions.
We also model the activation of the normal/adaptive
cruise control as described in the document. To this aim,
these additional variables have been introduced:

– desiredSpeed (resp. desiredSpeedP): it denotes the de-
sired speed (resp. the previous one) whose value can-
not exceed 2000 (200 km/h). The null value (0) is
used to model the absence of a desired value;

– lastTimeSCSLeverUD : it denotes the time of the last
update of the variable SCSLeverUD ;

– adapContr/normContr : it denotes the adaptive/normal
mode for the cruise control; adapContrP/ normCon-
trP represent the previous values.

In the rest of this section, we describe the activation of
the cruise control and how the desired speed is calculated
by distinguishing different cases.

3.3.1 Activation of the cruise control

The activation of the cruise control mode as specified in
the requirement document [15] is modeled by the follow-
ing invariant CruiseControlKind, where value 1 (resp.
value 2) denotes the normal (resp. adaptive) cruise con-
trol mode:

Invariant CruiseControlKind

normContr = TRUE
⇔

(
(SCSLeverFB = Forward ∧
SCSLeverFBP ̸= Forward ∧
(currentSpeed ≥ speedActiv ∨ desiredSpeed ̸= 0))

∨
(normContrP = TRUE ∧
SCSLeverFB ̸= Backward)

) ∧
cruiseControlMode = 1 ∧
brakePedal = 0

This invariant states that when the normal mode is
selected for the cruise control and the brake pedal is not
activated, the normal cruise control is activated in two
cases:

1. (i) the cruise control lever moves to the Forward posi-
tion while the current speed is greater than speedAc-
tiv or the desired speed is not null. Constant speedAc-
tiv is defined in the context C2 to be equal to 200
(20 km/h),

2. (ii) it is already activated and the cruise control lever
is not put in the Backward position.

3.3.2 Modeling the desired speed

To model the desired speed whose evolution depends on
the time, we store the last time, lastTimeSCSLeverUD,
when the cruise control lever has been in the up/down
positions. Thus, requirements SCS-4 and SCS-7 are mod-
eled as follows. Requirement SCS-4 specifies that, while
the cruise control is activated, the desired speed increases
by 10 (1 km/h) the first time the cruise control lever is
put in position Upward5 whereas Requirement SCS-7
states that the desired speed continues to increase by
10 (1 km/h) by each second as long as the cruise control
lever stays in that position for more than 2 seconds. Vari-
able lastdesiredSpeed represents the desired speed when
the lever has been moved into a given position.

SCSLeverUDP ̸= Upward5 ∧
SCSLeverUD = Upward5 ∧
(adapContrP = TRUE ∨ normContrP = TRUE)

⇒
desiredSpeed = min({desiredSpeedMax,

desiredSpeedP + 10})

and

(normContr = TRUE ∨ adapContr = TRUE) ∧
SCSLeverUD = Upward5 ∧
currentTime - lastTimeSCSLeverUD ≥ 2

⇒
desiredSpeed = min({desiredSpeedMax,

desiredSpeedP +
(currentTime - lastTimeSCSLeverUD - 1) × 10})

Let us give more explanation about the last invariant.
Expression currentTime - lastTimeSCSLeverUD - 1 per-
mits to update the desired speed immediately after 2
seconds, this is why we subtract 1 second not 2 sec-
onds. To make these invariants preserved, we have re-
fined the moveSCSLeverUD event according to the re-
quirement SCS-4 but also the progress event with re-
spect to the requirement SCS-7. Event progress for in-
stance is refined by adding the following guards that cal-
culate the new desired speed despeed by distinguishing
different cases according to the position of the control
lever and the time elapsed since its last position change:
currentTime + 1 - lastTimeSCSLeverUD ≥ 2. This value
despeed is then assigned to the variable desiredSpeed
by the action desiredSpeed := despeed. In the following
different cases, the term currentTime + 1 denotes the
after-value of currentTime when the event progress is
observed:
1. Case 1. If the cruise control is not activated, there

is no desired speed.

normContr = FALSE ∧ adapContr =FALSE
⇒
despeed = 0

2. Case 2. If the cruise control is active with the lever
either in the neutral position or the time elapsed from
the last movement of the lever is less than 2 seconds
then, the desired speed does not change.
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(normContr = TRUE ∨ adapContr = TRUE) ∧
(SCSLeverUD = Neutral ∨
currentTime + 1 - lastTimeSCSLeverUD < 2)
⇒
despeed = desiredSpeed

3. Case 3. If the cruise control is active with the lever
in the Upward5 position for more than 2 seconds, the
desired speed increases by 10 (1 km/h) every second:
SCS-7.

(normContr = TRUE ∨ adapContr = TRUE) ∧
SCSLeverUD = Upward5 ∧
currentTime- lastTimeSCSLeverUD ≥ 2
⇒
despeed = min({desiredSpeedMax, lastdesiredSpeed +
(currentTime- lastTimeSCSLeverUD) × 10}

4. Case 4. If the cruise control is active with the lever
in the Upward7 position for more than 2 seconds, the
desired speed increases to the next ten’s place after
each 2 seconds: SCS-8.

(normContr = TRUE ∨ adapContr = TRUE) ∧
SCSLeverUD = Upward7 ∧
currentTime + 1 - lastTimeSCSLeverUD ≥ 2
⇒
despeed = min({desiredSpeedMax,

lastdesiredSpeed ÷ 100 × 100 +
((currentTime + 1 - lastTimeSCSLeverUD) ÷ 2) × 100})

5. Case 5. If the cruise control is active with the lever
in the Downward5 position for more than 2 seconds,
the desired speed decreases by 10 (1 km/h) every
second: SCS-9.

(normContr = TRUE ∨ adapContr = TRUE) ∧
SCSLeverUD = Downward5 ∧
currentTime +1- lastTimeSCSLeverUD ≥ 2
⇒
despeed = max({10, lastdesiredSpeed -

(currentTime - lastTimeSCSLeverUD) × 10})

6. Case 6. If the cruise control is active with the lever
in the Downward7 position for more than 2 seconds,
the desired speed decreases to the next ten’s place
after each 2 seconds: SCS-10.

(normContr = TRUE ∨ adapContr = TRUE) ∧
SCSLeverUD = Downward7 ∧
currentTime + 1 - lastTimeSCSLeverUD ≥ 2
⇒
despeed = max({10, (lastdesiredSpeed ÷ 100) × 100 -
((currentTime + 1 - lastTimeSCSLeverUD) ÷ 2)× 100})

3.4 Refinement level 3 (M3+C3): other elements

In this machine, we model the different aspects that de-
pend on or impact the desired/current speed, like speed-
dependent safety distance and the speed of the preceding
vehicle. Moreover, we model the faults that can happen

on the radar system as described in the requirement doc-
ument [15]. For this aim, the machine M3 introduces,
among others, the following variables:

– accVeh: it denotes the acceleration/deceleration of
the car.

– safetyDistance: it denotes the distance in seconds
that is allowed with respect to the car ahead;

– securedistanceToHead : it denotes the distance in me-
ters between the considered car and the car ahead;

– rangeRadarSensor : it denotes the distance in meters
to some obstacle detected in the travel corridor;

– speedOfHead (resp. speedOfHeadP): it denotes the
(resp. previous) speed of the car ahead.

In this machine, we model the evolution of the speed
according to its acceleration/deceleration accVeh. Let us
note that since the Event-B language does not support
real numbers, we model the current speed as an inte-
ger amount that evolves according to the usual equa-
tion V = γ × t + Vp, where γ represents the accelera-
tion/deceleration of the vehicle, t = 1 the time progres-
sion and Vp the previous speed. Another alternative to
overcome the lack of reals in the Event-B language is
to define or reuse an existing theory plugin that models
them [7]. However, this plugin does not permit to eval-
uate expressions involving real operands. For instance,
the expression (2 × 3) cannot be reduced to 6. More-
over, floating point numbers are not considered. So, at
this level, the parameter val of the event progress is made
equal to:

– if the car is decelerating:

accVeh ≤ 0 ⇒
val = max({0,
(accVeh + currentSpeed × 10 ÷ 36) × 36 ÷ 10})

– if the car is accelerating without speed limitation:

case 1: disabled cruise control

accVeh ≥ 0 ∧
speedLimiterSwitchOn = FALSE ∧
((normContr = FALSE ∧ adapContr = FALSE)

∨ desiredSpeed = 0)
⇒

val = (accVeh +
currentSpeed × 10 ÷ 36) × 36 ÷ 10

case 2: enabled cruise control

accVeh ≥ 0 ∧
speedLimiterSwitchOn = FALSE ∧
(normContr = TRUE ∨ adapContr = TRUE) ∧
desiredSpeed ̸= 0

⇒
val = min({desiredSpeed,
(accVeh + currentSpeed × 10 ÷ 36) × 36 ÷ 10})
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A similar expression is specified for the case with speed
limitation.

Moreover, the machine M3 introduces two new events
turnHead and VehicHeadDetect to model respectively the
selection of a safety level by turning the cruise control
lever head and the detection of a preceding vehicle by
getting its speed that is relevant for determining the
speed-dependent safety distance and also to make the
system decelerate if it is necessary. Event VehicHeadDe-
tect for instance is specified as follows:

Event VehicHeadDetect =̂
any

val stv secdis speh accv
where

grd1: val ∈ rangeRadarSensorValues
grd2: rangeRadarState = FALSE ⇔ val = 255
grd3: speh ∈ rangeSpeed
grd4: speh ≤ speedActiv ∧

speedOfHead > speh ∧ speh ̸= 0 ∧
adapContr = TRUE ∧ val /∈ {0,255}
=⇒
secdis = 25 × (currentSpeed × 10 ÷ 36)

grd5: speh = 0 ∧ currentSpeed = 0 ∧
adapContr = TRUE ∧
val /∈ {0,255}
=⇒
secdis = 2

...: ...
then

act1: rangeRadarSensor := val
act2: speedOfHead := speh
act3: securedistanceToHead := secdis
act4: . . .

end

where:

– val represents the distance between the observed car
and a possible preceding vehicle as provided by the
radar;

– stv denotes the value of the speed received as an in-
put by the system;

– brk represents the future brake pressure;
– Parameter secdis is the safety distance to the car

ahead;
– speh denotes the speed of the car ahead.

Guard grd2 states that such a value should be equal
to 255 iff the radar system is not ready. Guards grd4
and grd5 permit to calculate the new value for the speed-
dependent safety distance according to the following part
of the requirement SCS-23: If the speed of the preceding
vehicle is 20 km/h or below, the distance is set to (2.5s ×
currentSpeed), down to a standstill. When both vehicles
are standing the absolute distance is regulated to 2m.

Already existing events of M2 are refined in M3 in a
similar way by calculating the value of the different vari-
ables. For instance, the desired speed should be updated

when a traffic sign is detected, the speed-dependent safety
distance is updated when the current speed is modified
or the speed of a preceding vehicle changes. More details
can be found in [19].

4 Validation and verification

To ensure the correctness and validate the Event-B
models, we have proceeded in three steps detailed here-
after. It is worth noting that these steps are performed
in an iterative manner, that is: we first check the spec-
ification for invariant violations using (non-exhaustive)
model-checking, then we verify that the system behaves
as expected and last we discharge the generated proof
obligations. Of course, any modification to the specifica-
tion requires repeating these verification steps.

4.1 Model checking of the specification

We used ProB as a model checker to ensure that the
invariants of each machine are preserved after the ex-
ecution of each event, that is, there is no sequence of
events that violates an invariant. Basically, when an in-
variant violation is found, ProB emits a sequence of
events that, starting from a valid initial state of the ma-
chine, leads to a state that violates the related invariant.
Such specification errors can be due to a guard/action
missing, to an incorrect specification of the invariant,
but sometimes also to an incorrect requirement, that is
the intended system behavior cannot satisfy the desired
property (i.e., the requirements are inconsistent).

In this particular case study, some properties require
the use of auxiliary variables to store the previous value
of a variable (SCSLeverUDP and keyStateP for instance).
In an initial version of the event moveSCSLeverUD, the
action act2 had been omitted, causing the violation of
the invariant invPos for the trace execution depicted by
Table 2. Indeed, the last line of Table 2 states that the
cruise control lever moves from the position Upward5 to
the position Downward5 without passing by the position
Neutral.

Let us note that even if no invariant violation is found
by the tool, there may still exist scenarios violating the
invariant that the tool cannot find due to their complex-
ity (scenarios with several steps) and/or the timeout on
the model checking process. This is why a proof phase
should be performed to ensure that the specification is
invariant-preserving.

4.2 Validation with scenarios

This step aims at verifying that we have built the right
model whose behaviors conform to the desired ones as
described by the scenarios of the specification document.
For that purpose, the animation capability of ProB is



12 5 DISCUSSION

Step Event SCSLeverUDP SCSLeverUD
1 Initialisation Upward5 Upward5
2 SCSLeverUD Upward5 Neutral
3 SCSLeverUD Upward5 Downward5

Table 2. Execution trace violating an invariant

used to simulate the different scenarios provided in the
case study. Each scenario consists of a set of actions per-
formed by the user along with the expected value of each
variable after executing an action. Thus, to simulate a
scenario, we have mapped each action to an event of
our model in order to check the values of the variables
against to the desired ones. This step allows us to point
out some flaws/ambiguities in the initial release of the re-
quirements document. For instance, the initial examples
provided to illustrate the requirements SCS-5—SCS-9
were incorrect with respect to the requirements. Initially,
the requirement SCS-7 was as follows:

Current speed is 57 km/h → after holding 2 sec-
onds, desired speed is set to 58 km/h, after holding
3 seconds, desired speed is set to 59 km/h, after
holding 4 seconds, desired speed is set to 60 km/h,
. . .

It has been rephrased as follows since the desired speed
increase by 1 km/h as soon as the cruise control lever is
moved to level 2 up to the first resistance level (5°) and
the (adaptive) cruise control is activated:

Current desired speed is 57 km/h → new de-
sired speed is 58 km/h (due to Req. SCS-4),
after holding 2 seconds, desired speed is set to 59
km/h, after holding another second, desired speed
is set to 60 km/h, after holding another second,
desired speed is set to 61 km/h, . . .

In addition, in some places like SCS-7—SCS-9, the
term "target speed" is used instead of "desired speed".
Moreover during the reviewing process of this paper, one
reviewer drew our attention that SCS-10 wrongly uses
the term increases instead of decreases. All these aspects
have been discussed with the case study authors because
we are not specialists of the domain. Let us note that we
have faced some difficulties to simulate the provided sce-
narios since no information is provided on how the con-
troller calculates the acceleration at each step. So, we
have done our best to "simulate" these values without
any guidance about their suitability, reliability. More-
over, we think that more scenarios are required to help
us validate our models and also for a better understand-
ing of the system, considering that the informal descrip-
tion is imprecise on some points and that the system in-
cludes several elements whose behaviors are interrelated
and impact each other.

4.3 Proof of the specification

This last phase aims at ensuring the correctness of the
specification by discharging all the proof obligations gen-
erated by Rodin to prove that the invariants are pre-
served by each event, but also that the guard of each
refined event is stronger than that of the abstract one.
Figure 3 provides the proof statistics4 of the case study:
547 proof obligations have been generated, of which 38%
(211) were automatically proved by the various provers.
The remaining proof obligations were discharged inter-
actively, since they needed the use of external provers,
like the Mono Lemma prover, that has shown to be very
useful for arithmetic formulas, even if we had to add
some theorems on min/max operators. For instance, a
min/max of a finite set is an element of the set, and
also on the transitivity property of the comparison op-
erator (≥, ≤, . . . ). For this particular case study, the
interactive proofs were not difficult but required several
steps especially those using the min/max operators and
Boolean expressions (bool(..)) that need to distinguish
several cases; this represents about 50 proof obligations.

5 Discussion

This section reports on some points regarding the choices
made during the Event-B modeling of the speed control
system.

5.1 Feedback on the requirements document

In the validation step of the formal modeling of the re-
quirements document [15] (see Section 4.2), using the dif-
ferent scenarios provided in the requirement document,
we have discovered a number of ambiguities and some
contradictions that led us to question ourselves about
the meaning of some requirements. Not being specialist
of the domain, we have communicated these to the au-
thors of the requirements document, and a number of
revisions were produced, following our comments. Our
discussion and exchange led to the modification/revision
of a set of requirements to make them clearer and consis-
tent. A detailed list of these elements are described in the
last version (i.e., 1.17) of the requirements document:

4 The reader may get different statistics when opening our
GitHub archive of the project. There is currently a problem in
Rodin when it reports proof statistics. Some manual POs are re-
ported as automatic when a project archive is imported. The Rodin
team has been notified of this problem.
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Fig. 3. Rodin proof statistics of the case study

1. Correction of the examples in SCS-7, SCS-8 and
SCS-9 since the values do not respect the require-
ments;

2. Modification of signal description setVehicleSpeed to
make its meaning clearer;

3. Replacing “target speed” by “desired speed” in re-
quirements SCS-7 and SCS-8;

4. Adjustment of the maximum acceleration and decel-
eration values in SCS-20, SCS-22;

5. Stating that SCS-23 applies when the speed is less
or equal to 20 km/h;

6. Clarification of priority between adaptive cruise con-
trol and emergency braking assistant in case of brake
activation in SCS-28;

7. The signal SCSLever has been split into signals SC-
SLeverForthBack and SCSLeverUpDown with their
corresponding positions (states) and the possible tran-
sitions between them.

As already well-known, the use of a formal method
does not only permit to built a correct system, but it also
helps to clarify the requirements document by detecting
omissions, ambiguities and errors.

It is worth noting that the requirement document de-
scribes the behavior of a car in terms of its speed and its
safety distance to the car ahead to avoid their collision.
It would be interesting to be able to verify that these
cars never collide. For that purpose, we should model
the position evolution of each car and prove that their
positions do not overlap. A similar proof has been done
by the authors [12] for train collisions in the ERTMS
case study submitted for ABZ2018 [13].

5.2 Modeling temporal properties

As stated before, a number of requirements relate a chan-
ge in some variable V to the value of some other variable
X. We model this by introducing V P , that denotes the

previous value of V , and adding an invariant IV,X of the
form V ̸= V P ⇒ Φ(X). This entails that an event that
modifies V must also update V P , but events that only
modify X must also update V P using V P := V , in or-
der to prove IV,X . This is quite cumbersome and tedious
to manage. We have also explored the modeling of such
properties using LTL formulas, however, Event-B does
not support the expression of LTL formula as part of the
specification. Moreover, the verification of these formulas
using ProB does not terminate for our model because
of the size of the state space. We think that it would be
interesting to investigate existing tools/approaches that
could help us specify this kind of properties in a sim-
pler manner. An example of such tools is the Event-B
state machines plugin [31,32] that produces Event-B
events from a state machine including their guards that
specify the requirements modeled by the state machine
but without producing the related invariants. For our
case study, this plugin would be used to ease the mod-
eling of temporal properties and automatically generate
the corresponding Event-B events. However, this plu-
gin makes it slightly more difficult to understand the
meaning of the generated guards. It would be also inter-
esting to extend the Event-B language to include the
notion of a previous value of a variable to be used in
invariants.

5.3 Dealing with variable requirements

The specification of the case study contains the follow-
ing variability aspects that impact the behavior of the
system:

– cruiseControlMode: specifies the operation mode of
the cruise control, that is, normal or adaptive.

– trafficSignDetectionOn: specifies if the traffic sign de-
tection is enabled or not.
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These variability aspects make some behaviors possible
for specific values and not enabled for others. For in-
stance, if the mode adaptive is selected by the user in
the instrument cluster settings menu, he/she can let the
adaptive cruise control adapt the desired speed without
having to use the gas/brake pedal.

To deal with these variability aspects in Event-B,
we defined two constants: cruiseControlMode ∈ {1,2}
and trafficSignDetectionOn ∈ BOOL in the context C2
(see Section 3.3) as specified in the requirement docu-
ment [15]. Then, we have expressed the invariants corre-
sponding to the related requirement by including condi-
tions on the values of these constants. For instance, the
requirement SCS-3 that describes the activation of the
adaptive cruise control is modeled by:

adapContr = TRUE
⇐⇒

(
(SCSLeverFB = Forward ∧
SCSLeverFBP ̸= Forward ∧
(currentSpeed ≥ speedActiv ∨ desiredSpeed ̸= 0)

)
∨

(adapContrP = TRUE ∧
SCSLeverFB ̸= Backward)

) ∧
cruiseControlMode = 2 ∧ brakePedal = 0

The above invariant is complementary to the invariant
CruiseControlKind specified in Section 3.3.1 that de-
scribes the activation of the normal cruise control.

6 Comparison

Few papers have dealt so far with the speed control sys-
tem case study, potentially because it is preceded in [15]
by another case study on an exterior light system (ELS)
that is quite challenging in itself, so most people may
have addressed ELS first.

MISRA C, a set of guidelines that describes a sub-
set of the C language, is used in [16] to formally model
the speed control case study. The different requirements
and the dynamics of the system is encoded within these
guidelines for the purpose of verification. The require-
ments are classified into two classes: simple and complex.
The simple requirements are verified at first since they
involve very small numbers of system elements and thus
make their verification easier. Complex requirements are
verified in a second step, using the CBMC model checker
[9], since they aim at verifying the interaction between
several components of the system. The authors report
on some flaws/ambiguities but did not state how they
dealt with them. Moreover, even if this approach has
the advantage to directly produce the executable code,
its correctness cannot be guaranteed since model check-
ing on a limited scope does not ensure the absence of
bugs.

ASM [6] are used in [4] to model this system follow-
ing a refinement-based approach, very similar to our. A
first abstract model is designed at the top of the devel-
opment to present the overall objective of the system.
This model is then refined to include more details about
different elements. The scenarios provided in the speci-
fication document are used in order to validate by ani-
mation the developed models. The NuSMV [27] tool is
also used to verify, by model-checking, some properties
expressed as CTL/LTL formulas. However, the paper
does not report on the errors/ambiguities detected in
the specification.

7 Conclusion

This paper presents a formal modeling of a speed control
system using the Event-B method. We have modeled
most of the requirements, which permitted us to point
out some ambiguities that we have discussed and clar-
ified with the case study authors by rephrasing them.
These ambiguities have been discovered during different
development phases: formalization, proof and validation
using the provided scenarios. This experience has con-
firmed that the formal modeling of a system greatly helps
the designers clarify their requirements and detect errors
early in development phases, which makes their correc-
tion cheaper. However, reading formal models in general
can be difficult and requires having some mathematical
background. We think that this point can be improved
by providing designers with a visual representation of the
models using for instance the VisB [33] component of
ProB. Such a visual representation would help design-
ers have a better understanding of their formal models
by visualizing the behavior of the system.

The main difficulty when modeling the speed con-
trol system is to determine the order in which elements
should be introduced during the refinement especially
since many elements are interdependent. Due to time
constraints, we were unfortunately not able to explore
the different decomposition plugins of Rodin that might
produce smaller specification parts that would be eas-
ier to understand and maintain [14]. We plan to ex-
plore some decomposition techniques as future work. We
strongly believe that Event-B should include modular-
ization operators as native structuring mechanisms, like
those of the B method. It would permit to have a modu-
lar specification from the early development phases, and
it would make Event-B more suitable for the develop-
ment of big and complex systems. Another point con-
cerns the ProB plugin under Rodin that unfortunately
does not permit to store an already simulated scenario,
so one has to manually re-simulate each scenario; this is
very time-consuming for long traces.

The work presented in this paper can also be ex-
tended by considering the remaining requirements that
need more clarifications. Requirement SCS-21 for in-
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stance needs more information on how the system can
deduce that a deceleration of 3 m/s2 is insufficient to
prevent a collision without having any information about
the acceleration of the preceding vehicle. Also, we think
that more information should be provided on the in-
ternal variables like setVehicleSpeed that represents the
automatic acceleration of the system in order to be able
to build a more complete system. Moreover, through the
different case studies proposed in the ABZ conference
[24,25], we are now convinced of the need to improve the
Event-B language to make it support the real numbers
as a basic type. Its prover should be also extended to
include more rules on arithmetic and set theories. Fi-
nally, it would be interesting to consider code genera-
tion from the last refinement level in order to obtain the
implementation of the controller. For that purpose, we
would need to implement all the nondeterministic sub-
stitutions, i.e. the ANY substitutions that chose values
for input parameters. Moreover, parallel substitutions
will be implemented by sequential ones by introducing
auxiliary variables if needed.
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A An excerpt of the requirements

Requirement label description
SCS-1 After engine start, there is no previous desired speed. The valid values for desired

speed are from 1 km/h to 200 km/h.
SCS-2 When pulling the cruise control lever to 1○, the desired speed is either the current

vehicle speed (if there is no previous desired speed) or the previous desired speed (if
already set).

SCS-3 If the current vehicle speed is below 20 km/h and there is no previous desired speed,
then pulling the cruise control lever to 1 does not activate the (adaptive) cruise control.

SCS-4 If the driver pushes the cruise control lever to 2○ up to the first resistance level (50)
and the (adaptive) cruise control is activated, the desired speed is increased by 1
km/h.

SCS-5 If the driver pushes the cruise control lever to 2○ above the first resistance level (70,
beyond the pressure point) and the (adaptive) cruise control is activated, the desired
speed is increased to the next ten’s place.

SCS-6 Pushing the cruise control lever to 3○ reduces the desired speed ac- cordingly to Req.
SCS-4 and Req. SCS-5. The lowest desired speed that can be set by pushing the
cruise control lever beyond the pressure point is 10 km/h.

SCS-7 If the driver pushes the cruise control lever to 2○ with activated cruise control within
the first resistance level (50, not beyond the pressure point) and holds it there for 2
seconds, the desired speed of the cruise control is increased every second by 1 km/h
until the lever is in neutral position again.

SCS-8 If the driver pushes the cruise control lever to 2○ with activated cruise control through
the first resistance level (70, beyond the pressure point) and holds it there for 2
seconds, the speed set point of the cruise control is increased every 2 seconds to the
next ten’s place until the lever is in neutral position again.

SCS-9 If the driver pushes the cruise control lever to 3○ with activated cruise control within
the first resistance level (50, not beyond the pressure point) and holds it there for 2
seconds, the desired speed of the cruise control is reduced every second by 1 km/h
until the lever is in neutral position again.

SCS-10 If the driver pushes the cruise control lever to 3○ with activated cruise control through
the first resistance level (70, beyond the pressure point) and holds it there for 2
seconds, the speed set point of the cruise control is increased every 2 seconds to the
next ten’s place until the lever is in neutral position again.

SCS-11 If the (adaptive) cruise control is deactivated and the cruise control lever is moved
up or down (either to the first or above the first resistance level, the current vehicle
speed is used as desired speed.

SCS-12 Pressing the cruise control lever to 4○ deactivates the (adaptive) cruise control. setVe-
hicleSpeed = 0 indicates to the car that there is no speed to maintain.

SCS-20 If the distance to the vehicle ahead falls below the specified speed-dependent safety
distance (see Req. SCS-24), the vehicle brakes automatically. The maximum deceler-
ation is 3 m/s2.

SCS-21 If the maximum deceleration of 3 m/s2 is insufficient to prevent a collision with the
vehicle ahead, the vehicle warns the driver by two acoustical signals (0.1 seconds long
with 0.2 seconds pause between) and by this demands to intervene.

SCS-22 If the distance to the preceding vehicle increases again above the speed-dependent
safety distance, the vehicle accelerates with a maximum of 1 m/s2 until the set speed
is reached.

SCS-23 If the speed of the preceding vehicle is 20 km/h or below, the distance is set to 2.5s
× currentSpeed, down to a standstill. When both vehicles are standing the absolute
distance is regulated to 2m. When the preceding vehicle is accelerating again, the
distance is set to 3s × currentSpeed. This distance is valid until the vehicle speed
exceeds 20 km/h, independent of the user’s input via the distance level (turning the
cruise control lever head).
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SCS-24 By turning the cruise control lever head, the distance to be maintained to the vehicle
ahead can be selected. Three levels are available: 2 seconds, 2.5 seconds and 3 seconds.
The desired level only applies within the velocity window > 20 km/h. Below this level,
the system autonomously sets the distance according to Req. SCS-23.

SCS-27 The emergency brake assistant must be available in the following speed windows:
0-60 km/h, for emergency braking to stationary obstacles, 0-120 km/h on moving
obstacles.

SCS-28 The time necessary to perform braking to standstill is determined by the value for
the maximum deceleration. If an object is ahead of the vehicle and the time until an
impact is less or equal to the time until a standstill plus 3 seconds, three acoustic
signals are given (0.1 seconds long with 0.05 seconds pause between) is issued and
the brakes are activated by 20% (i.e. 1.2 m/s2). If the time until an impact is less or
equal to the time until a standstill plus 1.5 seconds, the brake is activated by 60%
(i.e. 3.6 m/s2. If the time until an impact is less or equal to the time until standstill
then the brake is activated at 100% (i.e. 6 m/s2). In case that both adaptive cruise
control (see Req. SCS-20) and the emergency brake assistand request braking, the
higher deceleration value shall be applied.

SCS-30 An active speed limit function of the cruise lever is indicated by an orange LED
integrated in the control lever (realized in hardware).

SCS-36 Traffic sign detection is active, while adaptive cruise control is active and the driver
has activated traffic sign detection in the instrument cluster.

SCS-39 If traffic sign detection recognizes Unlimited, the new desired speed is set to (i) 120
km/h, if the previous desired speed has been lower than 120 km/h. (ii) the desired
speed dman, where dman is the last manually set desired speed that has been higher
than 120 km/h.

SCS-41 If the radar sensor self-test device reports a fault (Dirty or NotReady), all systems
depending on the distance to the vehicle must be suspended and the driver must be
warned by an appropriate light in the instrument cluster (not part of this specifica-
tion). In this case, the self-test of the radar system is restarted every 10 min.

SCS-43 If the system performs a brake action, the brake lights must be activated as if the
brake pedal has been pressed by the driver (see light system specification).

Table 3: An excerpt of the requirements from [15]
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