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Abstract. This paper introduces an Event-B formal
model of the adaptive exterior light system for cars,
a case study proposed in the context of the ABZ2020
conference. The system describes the different provided
lights and the conditions under which they are switched
on/off in order to improve the visibility of the driver
without dazzling the oncoming ones. The system can be
viewed as a lights controller that reads different infor-
mation form the available sensors (key state, exterior
luminosity, etc.) and takes the adequate actions by act-
ing on the actuators of the lights in order to ensure a
good visibility for the driver according to the informa-
tion read. Our model is built using stepwise refinement
with the Event-B method. We consider all the features
of the case study, all proof obligations have been dis-
charged using the Rodin provers. Our model has been
validated using ProB by applying the different provided
scenarios. This validation has permitted us to point out
and correct some mistakes, ambiguities and oversights in
the first versions of the case study description document.

Key words: Adaptive Exterior Light System, Event-B
method, Refinement, Verification

1 Introduction

This paper presents a formal model of an adaptive exte-
rior light system (ELS) for a car. This system has been
proposed as a case study for the ABZ2020 conference.
We use Event-B to construct and represent this formal
model.

Send offprint requests to: Amel Mammar, E-mail:
amel.mammar@telecom-SudParis.eu
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The objective of the exterior light system subject is
to adapt the brightness of the different lights with re-
spect to the status of the car but also the oncoming
ones. For that purpose, the cars are equipped with dif-
ferent lights that can be switched on/off under specific
conditions. In this paper, we stress more on the mod-
eling of low beams, tail lamps and direction indicators.
Roughly speaking, the low beams illuminate the road
when the vehicle is running or vehicle surrounding while
leaving the car during darkness; tail lamps permit to illu-
minate the vehicle if it is parked on a dark road at night,
whereas the direction indicators allow to inform the fol-
lowing vehicle that the car will turn on the right/left. To
control these exterior lights, the driver acts on the dif-
ferent physical elements like the key, the hazard switch
etc. The position of the key (NoKeyInserted, KeyIn-
serted, KeyInIgnitionOnPosition) is transmitted to the
controller of the lights via the sensor keyState. Similarly,
the hazard warning switch, with two positions (On/Off),
permits to make both director indicators flashing at the
same time.

Using the Event-B method and its associated tools,
the models have been entirely developed by the first au-
thor who has been involved in the formal specification
and verification of railway interlocking systems with the
collaboration of Thales and RATP. A good experience
has also been gained from the development of the previ-
ous ABZ case studies. During the development of these
models, she very frequently exchanges with the authors
of the case study in order to clarify some ambiguous in-
formal descriptions but also to fix some errors detected
during the animation and/or the proof phases. During
the paper writing, the adopted choices/modelings have
been discussed to make them clearer.
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1.1 Event-B method

Event-B [2] is the successor of the B method [1] permit-
ting to model discrete systems using mathematical no-
tations. The complexity of a system is mastered thanks
to the refinement concept that allows to gradually intro-
duce the different parts that constitute the system start-
ing from an abstract model to a more concrete one. An
Event-B specification is made of two elements: context
and machine. A context describes the static part of an
Event-B specification; it consists of constants and sets
(user-defined types) together with axioms that specify
their properties:

CONTEXT
Cont

Sets
S

Constants
C

Axioms
A

END

The dynamic part of an Event-B specification is in-
cluded in a machine that defines variables V and a set
of events E. The possible values that the variables hold
are restricted using an invariant, denoted Inv, written
using a first-order predicate on the state variables:

MACHINE
Name

SEES
Cont

Variables
V

Invariants
Inv

Events
E

Each event has the following form:

ANY
X

WHEN
G

THEN
Act

END

This event can be triggered if it is enabled, i.e. all
the conditions G, named guards, prior to its triggering

hold. Among all enabled events, only one is triggered. In
this case, substitutions Act, called actions, are applied
over variables. In this paper, we restrict ourselves to the
becomes equal substitution, denoted by (x := e).

Refinement is a process of enriching or modifying a
model in order to augment the functionality being mod-
eled, or/and explain how some purposes are achieved.
Both Event-B elements context and machine can be
refined. A context can be extended by defining new sets
Sr and/or constants Cr together with new axioms Ar.
A machine is refined by adding new variables and/or re-
placing existing variables by new ones Vr that are typed
with an additional invariant Invr. New events can also
be introduced to implicitly refine a skip event. In this
paper, the refined events have the same form:

ANY
Xr

WHEN
Gr

THEN
Actr

END

To ensure the correctness of the specification, proof
obligations are generated for the first abstract model but
also for each refinement level. These proof obligations
aim at proving invariant preservation by each event, but
also to ensure that the guard of each refined event is
stronger than that of the abstract event. These guard
strengthening refinement proof obligations ensure that
event parameters are properly refined. More information
on proof obligations can be found in [9]. Basically:

1. For each event, we have to establish that its trigger-
ing maintains the invariant, that is :

∀S,C,X. (A ∧G ∧ Inv ⇒ [Act]Inv)

where [Act]Inv gives the weakest precondition on the
before state such that the execution of Act leads to
an after state satisfying Inv.

2. To prove that a refinement is correct, we have to
establish the following two proof obligations:
– guard strengthening: the guard of the refined event

should be stronger than the guard of the abstract
one:
∀(S,C, Sr, Cr, V, Vr, X,Xr).

(A ∧Ar ∧ Inv ∧ Invr ⇒ (Gr ⇒ G))

– Simulation: the effect of the refined action should
be stronger than the effect of the abstract one:
∀ (S, C, Sr, Cr, V , Vr, X, Xr).

(A ∧ Ar ∧ Inv ∧ Invr ⇒ [Actr]¬[Act ]¬Invr)
– Convergence: convergence of new events is op-

tional and has not been used in this case study
because it was not necessary, new events being
allowed to loop forever, according to the require-
ments.
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To discharge the proof obligations, the Rodin plat-
form1 offers an automatic prover but also the possibility
to use external provers as plugins, like the SMT and
Atelier B provers that we use in this work.

1.2 The ProB model checker

In this section, we present the ProB [14] animator/model
checker used for animating and validating our models
in order to ensure that they are error-free and corre-
spond to the desired system. Developed at the University
of Düsseldorf starting from 2003 originally for the ver-
ification and validation of software development based
on the B language, ProB2 implements an automatic
model checking technique to check LTL (Linear Tempo-
ral Logic) [28] and CTL (Computational Tree Logic) [5]
properties against a B specification. The core of ProB
is written in Prolog; its purpose is to be a comprehensive
tool in the area of formal verification methods. Its main
functionalities can be summarized up as follows.

1. ProB can find a sequence of operations that, starting
from a valid initial state of the machine, moves the
machine into a state that violates its invariant.

2. Given a valid state, ProB can exhibit the operation
that violates the invariant,

3. ProB allows the animation of the B/Event-B spec-
ification to permit the user to play different scenarios
from a given starting state that satisfies the invari-
ant. Through a graphical user interface implemented
in Tcl/Tk, the animator provides the user with: (i)
the current state, (ii) the history of the event trig-
gering that has led to the current state and (iii) a
list of all the enabled operations, along with proper
parameters instantiations. In this way, the user does
not have to guess the right values for the operation
parameters.

4. ProB supports deadlock detection and relative dead-
lock detection.

1.3 Contributions

The development of the Event-B models provided in
[20] took about two months. Since we had already mod-
eled all the features of the case study in preparation for
the first paper published at the ABZ’20 conference [19],
this paper essentially provides a more detailed account
of our model and its development. We have slightly im-
proved our model following comments received from at-
tendees at the conference regarding the modeling of the
key/switch behaviors. The main additional contributions
of this paper are as follows:

– A detailed presentation of our modeling strategy (see
Section 2).

1 http://www.event-b.org/install.html
2 https://prob.hhu.de/

– A detailed presentation of our generic approach to
deal with conflicting requirements (see Section 3.2).

– A detailed presentation of our approach to deal with
the timed aspects (see Section 3.3).

– A detailed description of the errors and ambiguities
identified in the specification document (see Section
5.1).

– A comparison with similar approaches, presented at
the ABZ’20 conference, for the formal modeling of
the case study (see Section 6)

1.4 The structure of the paper

The rest of this paper is structured as follows. Section 2
presents our modeling strategy. Section 3 describes our
model in more details. The validation and verification of
our model are discussed in Section 4. Section 5 identifies
the weaknesses of the requirements document provided
for the case study, and the adequacy of the Event-B
method for constructing a model of this case study. Sec-
tion 6 compares our model with other solutions of this
case study. We conclude in Section 7.

2 Requirements and modeling strategy

We reuse the four-variable model of Parnas and Madey
introduced in [27] to model control systems. A control
system interacts with its environment using sensors and
actuators. Fig 1 illustrates the structure of the interac-
tion between the controller and its environment, and the
four kinds of variables used to represent them. A sensor
measures the value of an environment characteristic m,
called a monitored variable, and provides this measure
to the software controller as an input variable i. In a
perfect world, we have m = i, but a sensor may fail.
The software controller can influence the environment
by sending commands, called output variable o, to actua-
tors. An actuator influences the value of an environment
characteristic, called a controlled variable c. Variables m
and c are called environment variables; they represent
physical aspects of the environment. Variables i and o
are called controller variables and can be read and up-
dated by the control system. Finally, a controller has its
own internal state variables to perform computations.

In this case study we are interesting in modeling the
software controller, that is, we do not consider environ-
ment and we do not model sensor/actuator failures. As
a result, the monitored variables m and the controlled
variables c are ignored. That means m = i and c = o.
Examples of input variables i are the ignition key or the
pitman arm. Examples of output variables o are direction
indicators or the emergency brake light. These controller
variables are represented by Event-B state variables.

A general approach to model a software controller in
Event-B consists of two main steps:

http://www.event-b.org/install.html
https://prob.hhu.de/
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Fig. 1. Four-variable model

– Step1: modeling the behavior of output variables o,
– Step2: modeling the behavior of the input variables

and how their states affect the commands sent to the
actuators.

The application of this approach on different ABZ case
studies [18,24] showed its effectiveness. This is why we
choose to apply the same approach on the present case
study. We present how the two steps are instantiated in
Section 2.2.

2.1 Control Abstraction

A typical implementation of a control system [26] such
as the ELS is either a control loop that reads from sen-
sors all input variables and then computes all output
variables in the same iteration, or it can be driven by in-
terruption triggered when a sensor provides a new value.
A change in the value of an input variable typically de-
notes an event. The body of a control loop observes the
changes in input values and computes an appropriate
output value for actuators. In our model, we use a more
abstract approach, as it is common in the Event-B style
of system modeling. We define one event for each in-
put variable change, which allows for a more modular
specification that is easier to prove. This is closer to an
interrupt-driven control system. Our Event-B abstrac-
tion is also a reasonable abstraction for a control loop,
considering that in most cases, a single input variable
changes between two control loop iterations. The control
loop can be derived from our specification by merging all
events and defining priorities between events when mul-
tiple input variables changes are detected.

2.2 Model Structure

As depicted in Figure 2, the specification is structured
into five refinements steps (five contexts and six ma-
chines). The most abstract level (Level L0) corresponds
to the first step of the general approach. We introduce
various kinds of lights controlled by the system. They
are declared as constants in Context C0. The considered
lights are: the direction indicators (left or right), the low
beam headlights (left and right), the tail lamp (left and
right), the reverse light (that indicates that the vehicle

will move backwards), the brake lights and the corner-
ing lights (that illuminate the cornering area separately
when turning left or right). The high beam headlights
are considered in Context C4 and Machine M5 since
their behavior is different from the other lights, as it
can be adaptive. Constant LightnessLevel indicates the
high beam light range, as specified in the requirement
document [10].

Machine M0 in Fig. 3 contains a unique variable
headingState that associates a level of brightness to each
light declared in Context C0, and a unique event head-
LightSet that assigns an arbitrary level of brightness to
these lights. Let us note that we use a partial function
hl in the action act1 to update the lights, instead of a
total one, to identify only the lights that have changed;
lights that do not change are not in the domain of hl.
In addition, this speeds up the execution of ProB and
makes the animation of this event possible.

The second step of the general approach corresponds
to the five refinement levels (L1 to L5) in Figure 2. The
first refinement (L1), Machine M1 and Context C1, in-
troduces the elements that the car driver can control
and that can have an impact on the state of the lights
declared in Context C0, namely the ignition key, the pit-
man arm, the light rotary switch, the brake pedal and
the hazard warning light switch. For each of these ele-
ments, there is one event that refines headLightSet and
that modifies the lights impacted by this element.

Each of the subsequent refinements introduces the
behavior of a particular set of lights. The order in which
these sets of lights are introduced through refinement
is arbitrary. Machine M2 and Context C2 introduce the
direction indicators, the hazard warning light and the
emergency brake light. Machine M3 and Context C3 in-
troduce the low beam lights. Machine M4 introduces the
cornering lights and Machine M5 and Context C4 intro-
duce the high beam headlights.

2.3 Formalization of the Requirements

Table 1 relates the components of our model with the
requirements listed in [10]. As one can remark, some
requirements are specified as invariant whereas others
are only considered in the related events. Requirement
ELS-10 for instance stating the duration of a flashing
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Fig. 2. Event-B structure of the project

MACHINE M0
SEES C0
VARIABLES

headingState
INVARIANTS

inv1: headingState ∈ HeadLights
→ LightnessLevel

EVENTS
Initialisation

begin
act1: headingState := HeadLights× {0}

end
Event headLightSet =̂

any
hl

where
grd1: hl ∈ HeadLights 7→ LightnessLevel

then
act1: headingState := headingState◁− hl

end
END

Fig. 3. Machine M0

cycle does not correspond to an invariant but it is con-
sidered in the event flashingDark that makes the current
time progress by a unit of time. Specifying such require-
ments as an invariant would require the introduction of
two extra variables to store the starting and the ending
moment of the cycle to set that the difference should be
equal to a unit of time. Roughly speaking, a timed re-
quirement, an action duration more precisely, is modeled
as an event if there is no other requirement that refers to
such a duration otherwise an invariant is associated with
it. Moreover, let us note that M3 is the refinement with
the greatest invariants number because it models several
interrelated lights, that is the low beams, the tail lamps,
the parking lights etc.

2.4 Modeling of Temporal Requirements

Some properties of the requirements depend on two con-
secutive states. For example, requirement ELS-16 ap-
plies only when the rotary switch is turned to Auto while
the ignition is already Off. This requirement can be ex-
pressed using an LTL formula as follows:

G ((keyState ̸= KeyInIgnitionOnPosition ∧
lightSwitch ̸= Auto)

⇒
X (lightSwitch = Auto

⇒ headingState[LowBeams] = 0))

Unfortunately Event-B does not support the expres-
sion of LTL formula as part of the specification even if
the ProB model checker can check LTL formulas on an
Event-B specification with a finite state space, but it
does not terminate for our model on such properties, be-
cause of the size of the state space. On the other hand, a
proof-based approach for temporal formulas is proposed
in [21], but it generates a large number of proof obliga-
tions for a model of this size. Thus, we have chosen to
express these properties as invariants by adding an ex-
tra variable to store the previous value of a state variable
that is needed in a two-consecutive-state property. For
example, to express ELS-16 as an invariant, we have to
say that: (1) the current and previous states of the ig-
nition are not equal to On, (2) the previous state of the
switch is different from Auto, and (3) the current state
of the switch is equal to Auto, which is represented by
the following invariant (Machine M3, Invariant inv18)

ELS16 = TRUE ∧ ELS16P = FALSE
⇒
keyState ̸= KeyInIgnitionOnPosition ∧
keyStateP ̸= KeyInIgnitionOnPosition ∧
lightSwitch = Auto ∧ lightSwitchP ̸= Auto
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Requirements [10] Component Invariant/Event
ELS-1, ELS-2, ELS-4, ELS-23 M2 inv5, inv7
ELS-3 movePitmanUD
ELS-5, ELS-23 M2 inv8
ELS-6 M3 inv10
ELS-7 M2 movePitmanUD
ELS-8 M2 inv6, inv8
ELS-10 M2 flashingDark
ELS-11 to ELS-13 M2 movePitmanUD
ELS-14 M3 inv2
ELS-15 M3 inv3
ELS-16 M3 inv4
ELS-17 M3 inv5
ELS-18 M3 inv6,7,8,9
ELS-19 M3 inv10
ELS-21 M3 inv3-5, inv10,inv14
ELS-22 M3 inv11,12,13
ELS-24,25,26,27 M4 inv2-inv13
ELS-28 M3 inv14
ELS-29 all invariants defining the brightness level
ELS-30, ELS-31 M5 inv3,5
ELS-32..38 M5 inv6-11
ELS-39 M2 inv12,13
ELS-40 M2 inv14
ELS-41 M1 inv12,13
ELS-42 M5 inv4
ELS-43...49 M5 inv6-11

Table 1. Cross-reference between the components of our model and the requirements of [10]

Variable ELS16 represents the satisfaction of the condi-
tions of ELS-16 and it is maintained by the event move-
SwitchAuto representing the state change of the rotary
switch to the position Auto. Variable ELS16P repre-
sents its previous value.

These extra variables storing previous values must
obviously be maintained in the events that change the
value of the corresponding variable, but also in events
that rely on the previous value for making a decision,
even if they do not modify the corresponding variable.

3 Description of Event-B Models

In this section, we describe some specific ways of mod-
eling that characterize our specification. The complete
archive of the Event-B project is available in [20].

3.1 Modeling Complex User Interface Elements

There are elements manipulated by the car driver that
have several positions and that control several lights de-
pending on their positions. This is the case of the key and
the light rotary switch. The valid transitions for these el-
ements can be described by a state-transition diagram.
At the most abstract level, we have chosen to specify
the possible transitions into a single event because the

invariants do not depend on a specific position. Let us
take the case of the key. In Context C1, the set keyStates
describes all the states of the key:

partition(keyStates,
{NoKeyInserted}, {KeyInserted},
{KeyInIgnitionOnPosition})

In Context C1, we also define a constant KeyMoves to
represent the authorized transitions for a key:

KeyMoves = {NoKeyInserted 7→ KeyInserted,
KeyInserted 7→ KeyInIgnitionOnPosition,
KeyInIgnitionOnPosition 7→ KeyInserted,
KeyInserted 7→ NoKeyInserted}

In Machine M1, Variable keyState represents the current
state of the key, Variable keyStateP contains the previ-
ous state of the key and the authorized transitions are
specified in Invariant inv2:

keyStateP 7→ keyState ∈ KeyMoves
∨

keyStateP = keyState

Event moveKey specifies the new state of the key ac-
cording to its previous state and restricts the value of
the event parameter hl to the lights controlled by the
key.

Event moveKey =̂
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refines headLightSet
any

hl,valkey
where

grd1: hl ∈ LowBeams ∪ tailLamps ∪
directionIndicators

∪ {corneringLightLeft, corneringLightRight}
7→ LightnessLevel

grd2: (keyState 7→ valkey ∈ KeyMoves)
then

act1: headingState := headingState◁− hl

act2: keyState := valkey

act3: keyStateP := keyState

act4: pitmanArmUDP := pitmanArmUD
end

In Machine M2, Event moveKey is refined to specify
the behavior of the direction indicator and the tail lamps
according to the position of the key and the position of
the hazard warning switch.

In Machine M3, we have split Event moveKey into
four events (i.e., insertKey, insertKeyputIgnitionOn, in-
sertKeyputIgnitionOff, removeKey) to be more precise on
the state of the lights according to the position of the
key.

Let us take the two events insertKey and insertKey-
putIgnitionOn. In Event insertKey, Action act4 specifies
that if the hazard warning switch is not activated then
the direction indicator is off, otherwise it is on and the
two flashing lights are on. It uses an idiom to mimic a
conditional if c then x := v1 else x := v2 construct,
because the Event-B notation does not provide a con-
ditional statement for actions. This idiom has the form

x := {TRUE 7→ v1, FALSE 7→ v2}(bool(c))

The term {TRUE 7→ v1, FALSE 7→ v2} denotes a func-
tion, so it is evaluated at point bool(c). Operator bool(c)
evaluates formula c and returns a result of the predefined
set BOOL = {TRUE,FALSE}.

Event insertKey =̂
refines moveKey

any
hl

where
grd1: hl ∈ LowBeams ∪ tailLamps ∪

directionIndicators→ LightnessLevel

grd2: keyState = NoKeyInserted

grd3: ...
grd4: hazardWarningSwitchOn = FALSE

⇒ (directionIndicators)× {0} ⊆ hl

...
with

valkey : valkey= keyInserted
then

act1: headingState := headingState◁− hl

act2: keyState := KeyInserted

act3: keyStateP := keyState

act4: direcIndF lash :=

{TRUE 7→ {blinkRight 7→ FALSE,

blinkLeft 7→ FALSE},
FALSE 7→ directionIndicators× {TRUE}
}(bool(hazardWarningSwitchOn = FALSE))

...
end

In Event putIgnitionOn, Action act4 specifies that if
the hazard warning switch is not activated then the di-
rection indicator is activated to the left or right accord-
ing to the position of the pitman arm, otherwise it is on
and the two flashing lights are on.

Event putIgnitionOn =̂
refines moveKey

any
hl

where
grd1: hl ∈ LowBeams ∪ tailLamps ∪

directionIndicators→ LightnessLevel

...
with

valkey : valkey= KeyInIgnitionOnPosition
then

act1: headingState := headingState◁− hl

act2: keyState := KeyInIgnitionOnPosition

act3: keyStateP := keyState

act4: direcIndF lash :=

{TRUE 7→
{blinkRight 7→
bool(pitmanArmUD ∈ Upward),

blinkLeft 7→
bool(pitmanArmUD ∈ Downward)},

FALSE 7→ directionIndicators× {TRUE}
}(bool(hazardWarningSwitchOn = FALSE))

...
end

We have applied the same modeling process to the
Light Rotary Switch.

Splitting the event makes the proof obligations easier
to discharge even if more proof obligations are generated.

3.2 Managing Priorities between Requirements

Some requirements can be in conflict because they have
common system states with different transitions. This is
the case for Requirements ELS-16 and ELS-17. On one
hand, ELS-16 states that if the key state is inserted
then the low beam headlights are off. On the other
hand, ELS-17 states that if the daytime running light
is activated then the low beam headlights are activated
after starting the engine and remain activated as long as
the key is not removed, that is, either the key position
is inserted or the ignition is on. We have detected the
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conflicts when we model check the models using ProB
that exhibits the following scenario: after activating the
daytime running light with the ignition key in the Off
position, the driver turns the light rotary switch to the
position Auto, both ELS-16 and ELS-17 applied. The
solution to avoid this conflict is to prioritize the require-
ments. After discussing with the case study authors, we
have defined priorities between all conflicting require-
ments. For instance, we have set a priority for ELS-16
over ELS-17.

In Event-B, to deal with such conflicting require-
ments, we proceed as follows. Let ELS-A and ELS-B
two conflicting requirements with respect to some head-
ings hl, that is, different lightness values val and val′

are associated to hl by these requirements whose con-
ditions CondELS-A and CondELS-B may be satisfied at
the same time. Let us make the assumption that ELS-A
prevails ELS-B. In that case, we define a Boolean vari-
able ELSA that is set to true when the conditions related
to the requirement ELS-A are fulfilled:

CondELS-A ⇒ ELSA=TRUE
ELSA = TRUE ⇒ headingState[hl ] = val

Since ELS-A prevails ELS-B, ELS-B must have the
additional condition to state that this requirement is
considered only if ELS-A is not applicable. Thus re-
quirement ELS-B is specified as follows:

ELSA = FALSE ∧ CondELS-B ⇒ headingState[hl ] =val ′

For instance, since the requirement ELS-16 prevails
the requirement ELS-17, we define the variable ELS16
as follows to state when ELS-16 is applicable:

keyState= KeyInserted ⇒ ELS16 = TRUE

Requirement ELS-16 is then specified by Invariant
inv4 of Machine M3 by:

ELS16 = TRUE ⇒ headingState[LowBeams] = 0

Invariant inv5 of Machine M3 that translates ELS-17
is then specified as follows:

(... ∨ dayT imeLightCont = TRUE) ∧ ...∧
ELS16 = FALSE ∧ ...

⇒
headingState[LowBeams] = 100

where Variable dayTimeLightCont is true if the daytime
running light is activated.

3.3 Modeling Timed aspects

Since Event-B method lacks a native support for time,
we have to explicitly simulate the absolute time, its pro-
gression and encode each timed requirement by intro-
ducing additional variables. In this particular case study,
timed requirements mainly denote the activation of some
lights during a period of time (e.g. Requirement ELS-18)

or a deadline for the activation/deactivation of other
lights (e.g. Requirement ELS-33). To deal with such
timed requirements, a natural variable currentTime has
been introduced in Machine M1 to model the time pro-
gression together with event progress that increments
this variable by an arbitrary positive number (Action
act2). Guard grd1 specifies the lights whose activation
or deactivation is time-dependent.

Event progress =̂
refines headLightSet

any
hl
step

where
grd1: hl ∈ LowBeams ∪ tailLamps ∪

directionIndicators ∪
{corneringLightLeft, corneringLightRight}

7→
LightnessLevel

grd2: step ∈ N1
then

act1: headingState := headingState◁− hl

act2: currentT ime := currentT ime+ step

...
end

Event progress is refined in Machines M3, M4, M5
by detailing how each kind of lights is impacted by the
time progression. For each kind of light lg whose state is
time-dependent, we add a variable tlg initialised to 0 to
denote either a duration or a deadline d. This variable
is set to be equal to (currentTime+d) (resp. 0) in each
event that may make the conditions required to its ac-
tivation (resp. deactivation) fulfilled (resp. not satisfied
any more). When Variable tlg denotes a duration, it is
also reset in Event progress when the duration is elapsed.
The timed requirement is then modeled by an invariant
of the following form with val representing the required
lightness for hl :

– for a duration:

cond ∧ tlg ̸= 0 =⇒ headingState[hl ]= {val}

– for a deadline:

cond ∧ tlg ̸= 0 ∧ tlg ≥ currentTime =⇒
headingState[hl ]= {val}

Moreover, Event progress checks if the deadline (resp.
duration) is reached in order to make the light acti-
vated/deactivated. A guard is added to Event progress to
state that time must not progress beyond the deadlines:

tlg ̸= 0 ⇒ currentTime + step ≤ tlg

For instance, to model the timed part of Require-
ment ELS-18: If the light rotary switch is in position
Auto and the ignition is On, the low beam headlights
are activated as soon as the exterior brightness is lower
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than a threshold of 200 lx. If the exterior brightness ex-
ceeds a threshold of 250 lx, .... In any case, the low beam
headlights remain active at least for 3 seconds., we have
defined the duration variable threeSecondsLater which is
updated when the following condition are fulfilled:

1. light rotary switch is in position Auto
2. the ignition is On,
3. the exterior brightness is lower than a threshold of

200

In that case, Requirement ELS-18 is modeled by the
following invariant:

daytimeLights = FALSE ∧ brightnessSensor > 250 ∧
lightSwitch = Auto ∧ keyState =

KeyInIgnitionOnPosition ∧ threeSecondsLater ̸= 0
⇒

headingState[LowBeams] = {100}

To satisfy this behavior, Event putIgnitionOn is re-
fined by adding the following action to set the deadline
variable to the desired value when the above conditions
are fulfilled:

threeSecondsLater :=
{TRUE 7→ currentT ime+ 30, FALSE 7→ 0}

(bool(brightnessSensor < 200∧
lightSwitch = Auto...))

Moreover, Event progress is refined by adding the follow-
ing elements:

– a guard to prohibit time progression beyond the dead-
line:

threeSecondsLater ̸= 0
⇒

currentT ime+ step ≤ threeSecondsLater

– an action that resets the duration threeSecondsLater
if the three seconds are elapsed:

threeSecondsLater :=
{TRUE 7→ 0, FALSE 7→ threeSecondsLater}
(bool(currentT ime+ step =

threeSecondsLater))

3.4 Model Statistics

Table 2 describes the size of the model. Since Rodin
does not use text files to store models, there are various
ways of counting the lines of code (LOC) of a model.
Moreover, code is inherited when refinement and event
extension is used. Lines of code are computed using the
Camille editor representation of the Event-B model,
which does not count inherited LOC through event ex-
tension and puts all variables on the same line. Total
LOC includes lines of code inherited from abstract events
of the refined machine; it is listed within “( )”, and com-
puted using the pretty printer of the Rodin Event-B
Machine Editor. Comments are excluded. For instance,

machine M5 introduces 416 new LOC and inherits (2 694-
416) = 2 278 LOC from machine M4. Since we do not use
data refinement (i.e., no variable is replaced through re-
finement), we provide the total number of variables for
each machine along with the number of new variables
(i.e., introduced in a refinement) enclosed by “( )”. In-
variants are specific to each machine. Since some events
are renamed by refinement, we provide the total and new
events introduced in each machine.

4 Validation and Verification

To verify and validate the Event-B models presented
in the previous sections, we have proceeded into three
steps detailed hereafter.

4.1 Model checking of the specification

In this step, ProB is used as a model checker to ensure
that the specification is free of invariant violation for
trivial scenarios. From a practical point of view, ProB
can find a sequence of events that, starting from a valid
initial state of the machine, leads to a state that vio-
lates its invariant. Such scenarios (or counterexamples)
may result from a missing/incorrect guard/action, but
also from an incorrect invariant. This step permits us to
fix trivial bugs before the proof phase that can be very
long and hard. It is worth noting that even if the tool
does not find any invariant violation, it does not mean
that the specification is correct. Indeed, there may be
a scenario that the tool fails to find for different rea-
sons like a timeout on the model checking process. In
the present case study, the model checking step per-
mits us to detect missing actions, in particular those
related to the variables representing the previous state
of an element. Indeed, this makes the invariants depend-
ing on such variables violated as they should be ver-
ified only when the current and the previous values of
these variables are different. In an initial version of Event
moveKey, Action act2 was missing, causing the viola-
tion of Invariant inv2 for the trace execution depicted by
Table 3. Indeed, the values of Variables keyStateP and
keyState are different and the tuple NoKeyInserted 7→
KeyInIgnitionOnPosition does not belong to the set
KeyMoves that represents the behavior of the key.

4.2 Validation with scenarios

The goal of this phase is to be sure that the specifi-
cation satisfies the requirements. To this aim, we used
the animation capability of ProB and played the dif-
ferent scenarios provided with the case study. This step
permits us to exhibit several flaws/ambiguities in the
initial release of the description documents (see Section
5 for more details). As examples of such flaws, we can
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Component Size in LOC Constants / Axioms / Events
(Extended) Variables Invariants

Total (New) New Total (New)
C0 15 (17) 7
C1 15 (17) 7
C2 8 (2) 2
C3 10 (2) 2
C4 16 1 10
M0 21 (28) 1 (1) 1 1
M1 215 (320) 15 (14) 13 12 (11)
M2 382 (691) 25 (10) 18 14 (2)
M3 908 (1619) 37 (12) 36 19 (5)
M4 885 (2377) 50 (13) 15 20 (1)
M5 416 (2694) 61 (11) 15 23 (3)

Total 2875 126

Table 2. Model characteristics

Step Event keyStateP keyState
1 Initialisation NoKeyInserted NoKeyInserted
2 moveKey NoKeyInserted KeyInserted
3 moveKey NoKeyInserted KeyInIgnitionOnPosition

Table 3. Execution trace violating an invariant

cite the lack of prioritization between some requirements
like ELS-16 and ELS-17 that share the same activation
conditions when the daytime running light option is ac-
tivated with the ignition in the Off position and the
driver turns the switch in the Auto position. To correct
these flaws/ambiguities, we have discussed with the case
study authors because we are not specialists of the do-
main. For the above particular example, a priority is
given to ELS-16 over ELS-17. It is worth noting that
such flaws/ambiguities cannot be detected in the model
checking phase because they make the guard of some
events unsatisfied, thus the event is not enabled and the
invariant is thus not violated. Let us note that we had
some problems to animate the first version of our models
where we had defined the event parameter hl as a partial
function on the set of all the lights. The number of such
partial functions being very large, ProB could not ter-
minate in a reasonable time. To overcome this issue, we
have replaced each partial function by a more restrictive
total function on the right domain, that is, the lights
whose state actually changes after the triggering of the
event.

4.3 Proof of the specification

It is the last step, whose goal is to ensure the correctness
of the specification by discharging proof obligations gen-
erated by Rodin. These proof obligations aim at proving
invariant preservation by each event, but also to ensure
that the guard of each refined event is stronger than that
of the abstract event. These guard strengthening refine-
ment proof obligations ensure that event parameters like

hl are properly refined. For instance, hl is defined as a
partial function in the abstract event headLightSet; it
is refined using total functions by giving its value for
each refining event. So, we have to ensure that these val-
ues satisfy the initial guard. Figure 4 provides the proof
statistics of the case study: 1643 proof obligations have
been generated, of which 23% (385) were automatically
proved by the various provers. The remaining proof obli-
gations were discharged interactively since they needed
the use of external provers like the Mono Lemma prover
[7] that has shown to be very useful for arithmetic for-
mulas. In addition, we have added some theorems on
min/max operators (a min/max of a finite non empty
set is an element of the set, etc). The main difficult proof
obligations to discharge are those related to the timed
properties and also those involving the variables ELSX
that permit us to deal with requirement priorities.

Let us note that the results of this phase has es-
pecially impacted some modeling choices. For instance,
to speed up the proof phase, we have included in the
guards some properties tagged as theorems in order to
prove them only once and reuse them in all the proofs
that need them for that event. This is the case of Guards
grd9 and grd10 of insertKey in Machine M3 that state the
possible value of low beams:

grd9: lowBeamRight ∈ dom(hl)
⇒
hl(lowBeamRight) ∈ 0..100

grd10: lowBeamLeft ∈ dom(hl)
⇒
hl(lowBeamLeft) ∈ 0..100
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Fig. 4. Rodin proof statistics of the case study

5 Discussion

This section discusses several salient aspects of model-
ing the case study using Event-B. We first describe the
inconsistencies, ambiguities and omissions found in the
case study document. Next we address time modeling,
which is not native in Event-B. We then discuss the
challenges involved when selecting a refinement strat-
egy, a critical point when building an Event-B model.
Finally, we discuss how we have addressed variability,
which concerns requirements elements that depend on
the car model/type.

5.1 Feedback on the requirements document

The formal modeling of the requirements document [10]
lead us to identify a number of ambiguities and some
contradictions with the test scenarios provided. We have
communicated these to the authors of the requirements
document, and a number of revisions were produced, fol-
lowing our comments. Our comments induced 9 of the 17
versions produced after the publication of the initial ver-
sion of the requirements document. These modifications
impacted 18 of the 49 requirements of the Exterior Light
System. A detailed list of these elements are described
in the last version (i.e., 1.17) of the requirements docu-
ment. Table 4 gives the main modifications we made on
the first release of the requirements document. We have
mainly rephrased some requirements for which the appli-
cability conditions should hold at different time points.
For instance, in Requirement ELS-16, the condition "the
switch in position Auto" should happen after the condi-
tion "the ignition is already Off". Moreover, we have de-
fined priorities between requirements to make the speci-
fication deterministic: ELS-16 has priority over ELS-17,
ELS-19 has priority over ELS-17, etc. We have also
rephrased some sentences to clarify them. For instance
in the first version of the document, the word "released"
was used with the meaning "button pushed" in some
places and with the meaning "button not pushed" in
some others. To remove this ambiguity, we have replaced

it with the terms "active" and "not active". Finally to
make the modeling easier and after a discussion with the
case study authors, the signal pitmanArm has been split
into signals pitmanArmForthBack and pitmanArmUp-
Down with their corresponding positions (states) and
the possible transitions between them.

5.2 Modeling temporal properties

Dealing with previous values to prove temporal proper-
ties turned out to be a significant burden. To improve
and facilitate the specification of such kind of proper-
ties, which are probably very common in control sys-
tems, it would be interesting to study how they could
be handled in Rodin or in some other plugin like the
Event-B State machines plugin3. This plugin permits
to generate Event-B events from a state machine in-
cluding their guards that specify the requirements mod-
eled by the state machine but without producing the
related invariants. In that case, it becomes difficult to
trace and justify the usefulness of the generated guards.

5.3 Identifying a refinement strategy

The crux in defining the structure of the Event-B model
was to define the requirements elements to include at
each refinement level. Recall that once a variable is in-
troduced in a model, it cannot be modified by new events
of subsequent refinements. Thus, when a variable is in-
troduced, each event that needs to update it must be also
introduced. In this case study, there are several depen-
dencies between requirements elements. As many lights
mutually rely on the same sensors and are correlated
in terms of behavior, we have defined a single event, in
the first machine, to model the light state changes and
refined it according to the different actuators/sensors.
But, we think that it would be interesting to look deeper
into the existing structuring approaches for Event-B:
decomposition [29] or modularization [11], in order to

3 http://wiki.event-b.org/index.php/Event-B_State machines
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structure the specification into smaller logical units to
make the proofs easier. A refactoring tool based on the
read/update dependencies between events and state vari-
ables would be nice. It could help in finding an optimal
decomposition based on the connected components of a
dependency graph for a given machine. Building such
a graph from the requirements is not easy, as one typ-
ically needs to formalize the requirements to precisely
understand which variables are needed and where. So,
the specifier typically finds the ideal refinement struc-
ture only after creating a potentially non optimal refine-
ment structure. Often a lot of effort has been invested
in creating this first model, and there is no resource left
to do a refactoring to obtain a better model. By better,
we mean a model whose refinement decomposition would
yield easier proofs for the same set of properties.

5.4 Dealing with variable requirements

The requirements document of the case study includes
the following three variability points:

– driverPosition: it states whether the vehicle is con-
figured for left-hand or right-hand traffic.

– armoredVehicle indicates, if the current car is an ar-
mored vehicle or not.

– marketCode parameter specifies the market for which
the car is to be built(001 = USA, 002 = Canada, 003
= EU).

In this case study, these variability elements induce that
some functionalities are only available for specific val-
ues of these elements. For instance, the darkness switch
being only available on armored cars, the requirements
ELS-21 and ELS-24 make sense only for this kind of
vehicles. Similarly, tail lamps are only used as rear di-
rection indicator on USA and Canadian cars. Moreover,
from the requirements document, we have not identify
any element that would be impacted by the position
driver. This is why we did not consider that in the formal
modeling of the case study.

In Event-B, we defined two constants: armoredVe-
hicle in the context C1 (armoredVehicle∈ BOOL) and
marketCode in the context C2 (marketCode∈ {1, 2, 3}).
Then, we have expressed the invariants corresponding to
the related requirement by including conditions on the
values of these constants. For instance, to specify that
the darkness switch is only available for armored cars, we
define an invariant that makes the variable darknessMod-
eSwitchOn always false if the constant armoredVehicle is
false:

armoredV ehicle = FALSE
⇒

darknessModeSwitchOn = FALSE

Moreover, we included the guard (armoredV ehicle =
TRUE) in the event moveDarknessSwitch that models

the actions on the darkness switch. Similarly, we model
the flashing of the tail lamps as a partial function by
stating that its domain is empty for European cars:

tailLampsF lash ∈ tailLamps 7→BOOL∧
(marketCode ∈ {1, 2} ⇒ dom(tailLampsF lash) = tailLamps∧

marketCode = 3 ⇒ dom(tailLampsF lash) = ∅)

6 Comparison

In the context of the ABZ conference, this case study has
been dealt with using different approaches/techniques.

In [13], a low level modeling using MISRA C, a pro-
gramming language close to C, is presented. The require-
ment and the behavior of the system is directly coded
in MISRA C, then the verification is performed in two
steps. In a first step, simple requirements, related to sin-
gle elements, are verified as unit tests, then the CBMC
model checker[6] is used to verify complex requirements
that relate several elements. Requirements on time con-
straints are validated by test. The authors report on
some flaws/ambiguities but did not state how they dealt
with them. Moreover, even if this approach has the ad-
vantage of directly producing the executable code, its
correctness cannot be guaranteed since model checking
does not ensure the absence of bugs.

In [3], a refinement-based approach, very similar to
ours, using ASM [4] is presented. The modeling starts
with a very abstract ASM which is then gradually re-
fined by introducing more details. The validation of the
developed models is carried out by animating them with
the provided scenarios. The verification of the require-
ments is performed by applying a model checking tech-
nique, using NuSMV, on the corresponding CTL/LTL
formulas. As stated by the authors, since model check-
ing is only effective on finite state space, the domain of
values have been restricted to be finite. As for the pre-
vious approach, model checking cannot ensure that the
specification is error-free.

In [8], Electrum [16], a formal language close to
Alloy [12], is used for the modeling of the automotive
light. The structural aspect of the system are modeled as
signatures whereas its behavior is represented by predi-
cates setting the output element according to the inputs
of the system. The validation and the verification of the
built specification is achieved into two steps. During the
validation phase, the authors first define a number of
scenarios to check requirements related to simple behav-
iors in order to rapidly detect some obvious consisten-
cies. Then to check more complex scenarios, like those
provided in the case study description document, a val-
idator has been implemented. This validator permits to
check whether there exists a valid trace that produces
given outputs from specific values of inputs. The valida-
tor is also used to animate the model on a set of inputs
and to produce outputs that are validated by the domain
experts. In a last step, the requirements, as described in
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the document, are modeled as assertions to be checked
on the developed models. As stated by the authors, these
different validation/verification steps have permitted to
detect some flaws and ambiguities reported to the case
study chair. These flaws/ambiguities include the need
for requirement prioritisation and infeasible scenarios.
Due to limitations of Electrum (representation of con-
crete integer values and time), the time requirements
and those involving arithmetic calculation have not been
considered.

Classical B and Event-B have been used in [15] to
model a subset of the same case study (blinking lamps
and Pitman controller). Classical B is used to take ad-
vantage of its specification modularization capabilities,
and Event-B is used to take advantage of its stronger
proving environment. The proposed approach proceeds
into three steps: (1) Modeling independently the behav-
iors of the different elements with operations defined in
separate machines; (2) Defining a new machine to re-
late dependent elements; this new machine includes the
machines corresponding to these elements and defines
operations that calls that operations defined in the in-
cluded machines; (3) Manually translating the obtained
B specification into Event-B for verification purpose.
In this paper, the authors model time as we did in [25].
The approach also permitted to detect some inconsisten-
cies during the model checking of the specification using
ProB, for which the authors propose some corrections.

Table 5 gives a summary of the compared approaches
on typical criteria when using formal methods for com-
plex systems design.

The first criteria compares the strategy chosen to
model the ELS case study. We take into account the ab-
straction level of the specification and the use of mod-
ularization and/or refinement process. Using modular-
ization combined with refinement allows one to master
complexity of systems and gives more understandable
specifications.

The second criteria compares the techniques adopted
to validate and verify the specification and the require-
ments. All the approaches use validation by checking
the scenarios given in the case study document. Model
checking is also used by all the approaches. The ap-
proaches [13] and [8] use bounded model checking to
avoid state space explosion. Theorem proving is used
only by the approaches developed with B/Event-B.

The third criteria compares what requirements de-
scribed in the case study are taken into account by each
approach. Note that no approaches deal with continuous
time. Time is generally encoded by a variable or a sen-
sor and time progress by a function or an event. Then,
verifying requirements related to time is more or less
considered.

7 Conclusion

We have presented an Event-B model for the ELS case
study. Our model takes into account all of the require-
ments. The model was verified by proving a large num-
ber of properties (98 invariants) and by simulation using
ProB. Temporal properties involving two consecutive
states were proved using variables storing previous state
values. Due to the model size (61 state variables), ProB
was unable to verify invariant or temporal properties.
The proof effort was quite significant: 1258 proofs obli-
gation (76 %) had to be manually discharged. The last
Event-B machine is quite large (2 694 LOC), which
denotes that the case study was an interesting modeling
and verification challenge. The Rodin provers were less
efficient than in previous ABZ case studies, where the
manual proofs ratio was closer to 30 % [23], [22].

The formalization leads us to identify several small
ambiguities in the requirements. They have been dis-
cussed with the case study authors as they were dis-
covered, which lead to 9 out of the 17 revisions of the
case study text that were published during the model-
ing process. This shows that formalization is an effective
technique to discover defects early in the software devel-
opment process. It is well-known in the software engi-
neering literature that the earlier a defect is found, the
cheaper it is to fix it.

Determining the best refinement strategy remains a
challenge in Event-B. We fell short of time to try out
the model decomposition plugins available in Rodin.
They might have been useful in decomposing the speci-
fication into smaller, more manageable parts. This case
study is of a different nature than the previous ones
in the ABZ conference series (i.e., 2014 Landing gear,
2016 Hemodialysis, 2018 ERTMS). Its elements are more
tightly coupled, which made it more difficult to find an
appropriate refinement strategy. It contains more prop-
erties to prove than the previous ones, but they are
more localized properties (i.e., each property referring
to a small number of events on at most two consecu-
tive states) that do not depend on the relationship be-
tween monitored variables and controlled variables. For
comparison, in the ERTMS case study [17], we had to
build a relationship between the real (actual) positions
of the trains and the controller view of the train po-
sitions to prove safety properties. There were no such
issues in the ELS case study. However, we really think
that the Event-B method must include modularization
clauses as native structuring mechanisms like those of
the B method that permit to have a modular specifica-
tion right from the first phases of the development. This
will make Event-B more suitable for the development
of big and complex systems.
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Paper Methods Modeling Verification/ Requirements
reference strategy Validation coverage

[13] MISRA C Low level (code) Test + model checking All except the emergency
brake light

[3] ASM Abstract + refinement Model checking + animation No time
[8] Electrum (Alloy) Abstract Model checking + animation No time,

no arithmetic operators
[15] B, Event-B Abstract + refinement Theorem proving + model checking Subset: blinking lamps

+ modularization + animation and Pitman controller
our Event-B Abstract + refinement Theorem proving + model checking All except sensor failures

+ animation

Table 5. Comparison summary

the modeling process when questions were raised or when
ambiguities were found. The authors would also like to
thank Michael Leuschel for his quick feedback on using
ProB for this large case study.
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