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Abstract. We consider the scattering of waves by a penetrable inclusion embedded in some reference
medium. We exhibit examples of materials and geometries for which non-scattering frequencies exist,
i.e., for which at some frequencies there are incident fields which produce null scattered fields outside
of the inhomogeneity. We show in particular that certain domains with corners or even cusps can
support non-scattering frequencies. We relate the latter, for some inclusions, to resonance frequencies
for Dirichlet or Neumann cavities. We also find situations where incident non-scattering fields solve the
Helmholtz equation in a neighbourhood of the inhomogeneity and not in the whole space. In relation
with invisibility, we give examples of inclusions of anisotropic materials which are non-scattering for
all real frequencies. We prove that corresponding material indices must have a special structure on
the boundary.
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1 Introduction

The so-called transmission eigenvalues play an important role in the study of inverse scattering from
inhomogeneous media. They can be helpful in addressing theoretical questions such as uniqueness of
the perturbation or in the justification of some reconstruction methods such as the Linear Sampling
Method [13, 7]. These special frequencies can also be exploited in imaging algorithms for highly
cluttered media [1, 2]. In general, transmission eigenvalues are associated with eigenfunctions that
cannot be exactly represented as solutions to the Helmholtz equation in the whole space. In that
case, exact non-scattering does not occur. Proving that incident fields always scatter in certain
configurations has been the subject of several works and is usually associated with the presence of
some geometric singularities such as corners in the boundary of the inhomogeneity. The techniques
and results differ according to the considered model for the propagation of waves inside the inclusion,
namely

∆u+ k2qu = 0 (1)

or
div(A∇u) + k2qu = 0. (2)

Here k denotes the frequency1 and A, q are functions characterizing the physical properties of the
materials. We refer the reader respectively to [3, 27, 17, 10, 30, 20] and [4, 12, 31, 11, 21] for studies

1We note that k is generally referred to as the wavenumber or spatial frequency, which is proportional to the (time)
frequency in the time-harmonic case.
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concerning cases (1) and (2). In particular, it is proven for model (1) that if there is a corner in the
boundary of the support of q − 1, then at any frequency an incident wave will always produce a non
zero scattered field outside the inhomogeneity, provided that q is sufficiently regular and different
from the background coefficient 1 near the corner. However, things can be different for model (2)
especially when A is different from the background coefficient Id near the boundary of the support
of the inhomogeneity. The main goal of the present article is to provide examples for which non-
scattering occur for model (2) when A ̸≡ Id in the inhomogeneous medium. We show that this can
happen even when the domain has singularities like corners or cusps. This analysis can be helpful
in better understanding the optimality of some results concerning the absence of non-scattering fre-
quencies in the literature, and provide some insight on the difference between cases (1) and (2). We
also give examples of situations where non-scattering incident fields have some singularities outside
the inhomogeneity. This motivates the definition of non-scattering frequencies adopted below.

Let us first describe the scattering problem we are considering. It is associated with the scalar
acoustic wave equation in Rd, d ≥ 2. We assume that some inclusion is located in a bounded domain
Ω with Lipschitz boundary ∂Ω such that Rd \ Ω is connected. In accordance with (2), the inclusion
is characterized by some material properties A ∈ L∞(Ω,Rd×d), q ∈ L∞(Ω,R) such that

A = Id, q = 1 in Rd \ Ω; ess inf
x∈Ω

inf
ξ∈Cd,|ξ|=1

(ξ ·A(x)ξ) > 0; ess inf
x∈Ω

q(x) > 0. (3)

We also assume that A ̸≡ Id in Ω. Below, we refer without distinction to (A, q; Ω) as the inclusion or
the inhomogeneity. Consider some incident field ui satisfying

∆ui + k2ui = 0 in Ω̃, (4)

where Ω̃ is an open neighbourhood of Ω, more precisely a domain such that Ω ⊂ Ω̃. Note that we
do not assume ui be defined and smooth in the whole Rd. This allows us to take into account the
possibility of illuminating the inclusion for example by incident fields due to point sources. The
scattering of ui due to the inhomogeneity is governed by the following time-harmonic problem where
us denotes the scattered field,

div(A∇us) + k2qus = −div((A− Id)∇ui)− k2(q − 1)ui in Rd

lim
R→+∞

∫
|x|=R

∣∣∣∣∂us∂r
− ikus

∣∣∣∣2 ds(x) = 0.
(5)

The derivatives in the first line of (5) are to be understood in the weak sense where ui is extended by
zero outside Ω̃. The last line of (5) is the so-called Sommerfeld radiation condition. As a consequence
to this radiation condition, us admits the following asymptotic expansion

us(x) =
eik|x|

|x|
d−1
2

(
u∞(x̂) +O(

1

|x|
)
)
, as |x| → ∞,

where x̂ := x/|x|. The term u∞ is referred to as the far-field pattern. By Rellich’s lemma, us in Rd \Ω
and u∞ have one-to-one correspondence. In other words, u∞ = 0 if and only if us = 0 in Rd \ Ω.
The function u := ui + us is usually referred to as the total field. For all k > 0, Problem (5) has a
unique solution us belonging to H1(O) for all bounded domains O ⊂ Rd if d = 2. When d = 3, the
existence of solutions can be established under the same assumptions. The uniqueness for d = 3 has
been proven with the additional condition that A is Lipschitz continuous in Ω, by using the unique
continuation principle, see e.g. [7].
We define in the following the so-called non-scattering frequencies.
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Definition 1.1. We say that k > 0 is a non-scattering frequency if there is a domain Ω̃ such that
Ω ⊂ Ω̃ and ui solving (4) for which the corresponding scattered field satisfies us = 0 in Rd \ Ω.
Such ui is referred to as a non-scattering incident field. We denote by SNS the set of non-scattering
frequencies of (5).

Notice if ui is a non-scattering incident field, then the inhomogeneity (A, q; Ω) is invisible from the
exterior under the probing wave ui. In addition, by setting v = ui, we see that (u, v) ∈ H1(Ω)×H1(Ω)
solves the interior transmission eigenvalue problem

div(A∇u) + k2qu = 0 in Ω

∆v + k2v = 0 in Ω

u− v = 0 on ∂Ω

ν ·A∇u− ν · ∇v = 0 on ∂Ω.

(6)

Here ν stands for the unit outward normal vector to ∂Ω.

Definition 1.2. We say that k > 0 is a transmission eigenvalue if there is a non-zero solution
(u, v) ∈ H1(Ω)×H1(Ω) to (6). We denote by STE the set of transmission eigenvalues.

We note that if A−Id is either positive definite or negative definite in Ω near ∂Ω, the natural regularity
of transmission eigenfunction (u, v) is H1(Ω) × H1(Ω). However when A − Id changes sign on ∂Ω,
Fredholmness can be lost in H1(Ω)×H1(Ω) due to the appearance of strongly oscillating singularities.
In this case, the wellposedness of (6) can be restored in weighted Sobolev spaces; see [5]. On the
other hand if A = Id near ∂Ω, a transmission eigenfunction (u, v) is usually defined in L2(Ω)×L2(Ω)
with u − v ∈ H2

0(Ω). For more details on transmission eigenvalue problems, we refer the readers to
[7].
The discussion before Definition 1.2 shows that SNS ⊂ STE. However the converse does not hold in
general. More precisely, we have the following characterization result whose proof is straightforward.

Proposition 1.3. A real frequency k ∈ STE is also in SNS if and only if there is a non-zero
eigenpair (u, v) ∈ H1(Ω)×H1(Ω) of (6) associated with k such that v can be extended in Ω̃, an open
neighbourhood of Ω, as a function ṽ ∈ H1(Ω̃) satisfying

∆ṽ + k2ṽ = 0 in Ω̃. (7)

Concerning (6), it has first been shown that STE is discrete for rather mild conditions on the co-
efficients A and q [7]. Under a bit more restrictive hypothesis on A and q, people have been able
to prove that STE contains a countably infinite sequence of eigenvalues accumulating only at +∞
(see [28, 18, 9, 8, 29]). In contrast, the set SNS has been less studied. Certain simple examples of
geometries (rectangle, balls) where SNS ̸= ∅ have been given in [23, 11, 21]. On the other hand, it
has been established that for certain scatterers with non-smooth geometries (having corners in 2D or
conical tips/edges in 3D), there holds SNS = ∅ (see [3, 27, 17]).

We would like to note that the non-scattering phenomenon is also related to the free boundary prob-
lem. More specifically, we notice that us satisfies

div(A∇us) + k2qus = −fχΩ in Ω̃

ν ·A∇us = −g on ∂Ω

us = 0 in Ω̃ \ Ω,
(8)

where f = div((A− Id)∇ui) + k2(q − 1)ui, and g = ν · (A− Id)∇ui. If either f ̸= 0 and A = Id (and
hence g = 0) on ∂Ω, or g ̸= 0 and A ̸= Id on ∂Ω, in order for (8) to have a solution us ∈ H1(Ω̃), one
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can show that ∂Ω must satisfy certain regularity conditions, provided A and q are sufficiently regular
in Ω. The proofs are proceeded by adopting techniques for free boundary problems. For more details,
we refer the readers to [10, 30, 11, 21] and the references therein.

As indicated above, the main goal of the present article is to provide examples of configurations
where SNS ̸= ∅. We first consider the case where the material properties have the special form
A = a Id, q = a, with a > 0 (Section 2). This configuration is interesting for several reasons. For
instance, one can completely characterize in this case the set STE as the union of Dirichlet and
Neumann cavity eigenvalues. One can therefore exhibit non-scattering frequencies by considering ei-
ther Dirichlet or Neumann eigenvalues. We show in particular that some polygonal domains (convex
or not) possess non-scattering frequencies. We also exhibit examples, some inspired by and some
extracted from [16], where non-scattering incident fields are not entire solutions to the Helmholtz
equation (i.e. Ω̃ ̸= Rd). We consider separately Dirichlet and Neumann eigenvalues. While examples
for the first case are already present in the literature, the examples for Neumann eigenvalues are
harder to find analytically and seem less known. We propose a method to construct such domains
based on analyzing the characteristics for the gradient of the solutions to the Helmholtz equation.
This allows for instance to prove existence of non-scattering frequencies for certain domains with cor-
ners of arbitrary angles and even cusps. We emphasize that on the contrary, non-scattering domains
for the Dirichlet eigenvalues can only have corners of particular apertures. In Section 3, we work
with anisotropic materials and exhibit configurations where non-scattering occurs at any frequencies.
The first examples are inspired by the concept of invisibility by diffeomorphisms [19]. For associated
anisotropies we prove in particular that the matrix A has a special structure at irregular points of the
boundary as it must satisfy Aν = ν (see also [11]). We also provide other examples of anisotropies
(not associated with diffeomorphism transformations) for which non-scattering occur at any frequency
in the case of regular and non-regular domains.

Note: we say that a function is an entire solution of the Helmholtz equation if it solves the ho-
mogeneous Helmholtz equation in Rd.

2 Non-scattering in the case A = a Id, q = a, with a > 0

In this section, we make the assumption that there holds

A = a Id and q = a in Ω, (9)

where a > 0 is a constant such that a ̸= 1. In this particular situation, we first show that STE is
formed by the union of the eigenvalues of the Dirichlet and Neumann Laplacians in Ω. More precisely,
introduce the problems

∆wD + k2wD = 0 in Ω

wD = 0 on ∂Ω
and

∆wN + k2wN = 0 in Ω

∂νwN = 0 on ∂Ω.
(10)

We denote by SD (resp. SN) the values of k > 0 such that the Dirichlet (resp. Neumann) problem
(10) admits non-zero solutions in H1(Ω). We have the following result.

Lemma 2.1. When A, q satisfy (9), we have STE = SD ∪ SN.

Proof. Suppose that (u, v) is a transmission eigenpair solving (6). Define wD := u − v and wN :=
au−v. Then one readily checks that wD, wN solve respectively the Dirichlet and Neumann eigenvalue
problems (10). Moreover, at least one of the functions wD and wN must be non-trivial. Hence, we
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have STE ⊂ (SD ∪ SN).
Conversely, assume that wD is a non-zero solution of the Dirichlet problem appearing in (10). Then
(u, v) = (awD, wD) is a (non-trivial) eigenpair of (6). Similarly, if wN is a non-zero solution of
the Neumann problem appearing in (10), then (u, v) = (wN , wN ) solves (6). This guarantees that
(SD ∪ SN) ⊂ STE.

Remark 2.2. Note that the case where A, q satisfy (9) is a situation where all the k2 ∈ C such that
(6) admits a non-zero solution must be real numbers. It is not known if this can happen with other
pairs A, q.

From Lemma 2.1, when A, q satisfy (9), the question of finding non-scattering eigenvalues can be
reformulated as “are there eigenfunctions of the Dirichlet or Neumann Laplacian in Ω that can be
extended as solutions to the Helmholtz equation in a neighbourhood of Ω?”. Some positive answers
can be given in three situations:

- For certain geometries Ω, one can compute analytically the eigenfunctions of the Dirichlet/Neumann
Laplacians and observe that they are defined in larger domains than Ω;
- For certain Ω, one can use reflections to extend the eigenfunctions of the Dirichlet/Neumann Lapla-
cians in Ω to larger domains;
- Given a function ui solving the Helmholtz equation (4) in some given domain Ω̃, one can look for
Ω, with Ω ⊂ Ω̃, for which ui is an eigenfunction of the Dirichlet or Neumann Laplacian in Ω.

We present corresponding results in the following subsections.

2.1 Domains where analytic expressions can be obtained for the eigenfunctions

Assume here that Ω coincides with the unit square and consider k ∈ SD as well as wD a corresponding
eigenfunction of the Dirichlet problem appearing in (10). In an appropriate set of coordinates, wD

writes as a linear combination of the functions

sin(mπx) sin(nπy), m, n ∈ N∗ := {1, 2, 3, . . . }.

In the proof of Lemma 2.1, we have seen that (u, v) = (awD, wD) constitutes an eigenpair of (6).
Clearly v extends as a function solving the homogeneous Helmholtz equation (7) in R2. From Propo-
sition 1.3, we infer that k ∈ SNS. Interestingly, as explained in [3, 11], in that case one can exhibit
non-scattering incident fields ui which are simple combinations of plane waves. More precisely, ui
such that

ui(x, y) = 4 sin(mπx) sin(nπy)

= eiπ(mx−ny) + e−iπ(mx−ny) − eiπ(mx+ny) − e−iπ(mx+ny)

produces a scattered field which is exactly zero outside of Ω. Similarly we establish that SN ⊂ SNS.

This reasoning can be adapted to deal with other simple domains Ω where we can use separation
of variables. This allows one to state the following result.

Proposition 2.3. Assume that Ω ⊂ R2 is a rectangle, a disk, or an elliptical domain (whose boundary
is an ellipse). Then when A, q satisfy (9), we have SNS = STE = SD ∪ SN.

Note that to consider the case of elliptic domains, we work with the elliptic coordinates (µ, θ) such
that, after a rigid change of variables,

x = α coshµ cos θ, y = α sinhµ sin θ,
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where µ ≥ 0, θ ∈ R/(2π) and (±α, 0) stand for the foci of the ellipse. In particular, the curves
µ = constant > 0 are confocal ellipses. Solutions of (10) can be decomposed on functions with separate
variables in µ, θ. For the latter functions, we find that the dependences in µ, θ satisfy respectively a
modified Mathieu’s equation and a Mathieu’s equation with periodic boundary conditions, which are
both Sturm-Liouville problems. Moreover it is known that the solutions of the Mathieu’s equation
which are regular at zero can be extended in R so that all eigenfunctions of the Dirichlet and Neumann
Laplacians in a bounded elliptical domain can be extended as solutions of an Helmholtz equation in
R2. For more details, we refer the readers to [15, 25].

Similar to Proposition 2.3, we have the following statement in R3.

Proposition 2.4. Assume that Ω ⊂ R3 is a ball, an ellipsoid, or, in an appropriate system of
coordinates, there holds Ω = I × ω where I is a bounded open interval and ω ⊂ R2 is a rectangle, a
disk, or an elliptical domain. Then when A, q satisfy (9), we have SNS = STE = SD ∪ SN.

α

Figure 1: Sector (left), spherical wedge (center) and cylindrical wedge (right).

We now turn our attention to other geometries. Consider some constants α ∈ (0, 2π) and ℓ > 0.
Define in R2 the sector

Ω = {(r cos θ, r sin θ) | r ∈ (0, ℓ), θ ∈ (0, α)}
and in R3, the spherical wedge

Ω = {(r cosϕ sin θ, r sinϕ sin θ, r cos θ) | r ∈ (0, ℓ), θ ∈ (0, π), ϕ ∈ (0, α)}

as well as the cylindrical wedge

Ω = {(r cos θ, r sin θ, z) | r ∈ (0, ℓ), θ ∈ (0, α), z ∈ I}

(see Figure 1 for illustrations). Here I is an open bounded interval. For theses domains, depending
on the opening angle, there may exist zero or infinitely many non-scattering frequencies.

Proposition 2.5. With the notation above, assume that Ω is either a sector in R2, a spherical wedge
in R3 or a cylindrical wedge in R3, of angle α. When A, q satisfy (9), we have:

- if α ∈ (0, 2π) ∩Qπ, then SNS contains an unbounded sequence which accumulates only at +∞;

- if α ∈ (0, 2π) ∩ (Rπ \Qπ), then SNS = ∅.

Remark 2.6. In fact, we show in the proof that SNS coincides exactly with STE = SD ∪ SN if and
only if α ∈ (0, 2π) ∩ (π/N∗).

Remark 2.7. In the second item of Proposition 2.5, the fact that SNS = ∅ in that domains Ω is not
only due to the value of the opening angle α but also to the shape of the whole Ω. Indeed in §2.3.2,
we will exhibit examples of geometries in the plane supporting non-scattering frequencies with corners
of arbitrary α ∈ (0, 2π).
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Proof. Let Ω be a sector in R2. The eigenfunctions of the Dirichlet Laplacian in Ω coincide with
the functions Jmπ/α(µmr) sin(mπθ/α), with m ∈ N∗ and µm > 0 such that Jmπ/α(µmℓ) = 0. Here
Jmπ/α is the Bessel function of the first kind with order mπ/α, and (r, θ) are the polar coordinates
of x ∈ R2. Notice that the function v given by v(x) = Jmπ/α(µmr) sin(mπθ/α) is real-analytic in
an open neighbourhood of the origin if and only if mπ/α ∈ Z. Moreover, if mπ/α = l ∈ Z then
(x, y) 7→ Jl(µmr) sin(lθ) is in fact an entire solution of the Helmholtz equation. Hence we infer that
an eigenfunction can be extended as a solution of the Helmholtz equation in an open neighbourhood
of Ω if and only if α ∈ Qπ. The analysis is similar for eigenfunctions of the Neumann Laplacian.
The cases of spherical and cylindrical wedges in R3 can be dealt similarly by working, respectively,
with spherical and cylindrical coordinates.

With this approach, we could also consider 3D conical tip, i.e. domains of the form

Ω = {(r cos θ cosϕ, r cos θ sinϕ, r sin θ) | 0 < r < ℓ, 0 < θ < θ0, 0 ≤ ϕ < 2π}

with θ0 > 0. In this case, the possibility of extending eigenfunctions of the Dirichlet/Neumann Lapla-
cians in Ω depends on whether cos θ0 is a zero of the Legendre polynomial Pm

n for some integers n
and m ∈ [−n, n]. We choose not to elaborate much on this direction.

Let us mention that some of the discussions above for 2D cases can also be found in [22].

2.2 Domains where eigenfunctions can be extended by reflections

Now we present other geometries where some or all the Dirichlet/Neumann eigenfunctions of (10) can
be extended, this time by working with reflections. We start with a definition.

Definition 2.8. Let Ω be a polygon of R2 (resp. a polyhedron of R3). We say that Ω is a proper
paving unit if the following two conditions hold:

- One can find a combination of successive reflections of Ω with respect to the edges (resp. faces)
that allows one to cover an open set Ω̃ such that Ω ⊂ Ω̃, with the overlaps only on the skeleton S
consisting of the edges (resp. faces) of ∂Ω and their images by the reflections.

- If one assigns a different colour to each of the edges (resp. faces) of ∂Ω, then each element of S
may inherit two or more colours due to reflections. We require that every element of S has only one
colour under reflections.

In Figure 2, we present an example of domain Ω and covering which does not satisfy the second item
of Definition 2.8. We also note that Definition 2.8 concerning polygons and polyhedra can be easily
generalized to polytopes in Rd for any d ≥ 2. In this case, the corresponding reflections are operated
with respect to the facets.

Proposition 2.9. Assume that Ω ⊂ Rd, d ≥ 2, is a proper paving unit. Then when A, q satisfy (9),
we have SNS = STE = SD ∪ SN.

Proof. Let Ω be a proper paving unit. Consider one particular edge or face of ∂Ω and introduce
some system of coordinates x′, xd with x′ ∈ Rd−1, such that this edge or face lies in the hypersurface
{xd = 0}. Let Ω1 denote the reflection of Ω with respect to the line or plane {xd = 0}. Consider
v an eigenfunction of the Dirichlet Laplacian in Ω. Classically we can extend it to Ω1 by defining
v(x′, xd) = −v(x′,−xd) for all (x′, xd) ∈ Ω1. Similarly, Neumann eigenfunctions can be extended in Ω1

by defining v(x′, xd) = v(x′,−xd). It can be verified straightforwardly that such extended function v
satisfies ∆v+k2v = 0 in the whole interior of Ω ∪ Ω1. Repeating this reflection argument successively,
we can extend Dirichlet/Neumann eigenfunctions to an open neighbourhood of Ω as solutions to the
homogeneous Helmholtz equation. The proof is completed.

7



A

B C

(a) Domain Ω. The vertices of
the triangle are such that ∠A =
2π/5 and ∠B = ∠C = 3π/10.

A

B C

(b) By reflecting Ω, we can fill the
above pentagon.

A

B C

B2

C3

B4

C5

(c) The second item of Definition
2.8 is not satisfied because we have
two different colours on [AB].

Figure 2: A domain Ω that is not a proper paving unit.

From classical results of interior regularity, this shows that in proper paving unit, Dirichlet and Neu-
mann eigenfunctions are smooth up to the boundary because their extensions are real-analytic in an
open neighbourhood of Ω.

One can check that triangles that are equilateral (60°-60°-60°), hemiequilateral (30°-60°-90°) or isosce-
les right (45°-45°-90°) are all proper paving unit of R2. In fact, for these three types of triangles the
Dirichlet/Neumann eigenfunctions can be expressed with trigonometric functions as discovered by G.
Lamé (see [24]). Besides, observe that if ω is a proper paving unit of Rd, d ≥ 2, then Ω = I × ω is a
proper paving unit of Rd+1 for any bounded interval I.

Finally, let us mention that for domains ω obtained by “properly” reflecting a given proper paving
unit Ω a finite number of times (see an illustration in 2D with Figure 3), SNS contains an unbounded
sequence. Indeed, any eigenfunction of the Dirichlet/Neumann Laplacian in Ω extended to an open
neighbourhood of ω according to the process described above is clearly an eigenfunction of the Dirich-
let/Neumann Laplacian in ω.

Figure 3: Examples of domains for which SNS contains an unbounded sequence.

2.3 Combining solutions to the homogeneous Helmholtz equation

In the previous subsections, we presented canonical examples of geometries Ω where eigenfunctions
of the Dirichlet/Neumann Laplacians can be extended as smooth solutions of the homogeneous
Helmholtz equation in a neighbourhood of Ω. Here, by working directly with solutions to the homo-
geneous Helmholtz equation, we provide examples of more general domains such that non-scattering
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frequencies exist. To keep notations simple, we work in R2 only. The ideas can be applied to generate
examples in R3.

2.3.1 Extendable Dirichlet eigenfunctions

Consider the function v0 such that
v0(x, y) = sinx sin y.

It is a particular solution of the equation

∆v + 2v = 0 in R2. (11)

Now let us, roughly speaking, rotate this function by an angle α ∈ (0, 2π) by defining vα such that

vα(x, y) = v0(cos(α)x− sin(α)y, sin(α)x+ cos(α)y).

Note that vα also solves (11). Then for λ ∈ R, set

vλα = v0 + λ vα

and define the nodal set N λ
α := {(x, y) ∈ R2 | vλα(x, y) = 0}. As classical in literature (see e.g. [14]),

we call nodal domains of vλα the maximally connected subsets of R2 for which vλα does not change
sign. From Proposition 1.3 and Lemma 2.1, we obtain the following statement.

Proposition 2.10. Any bounded nodal domain of vλα is a domain where 2 ∈ SNS.

Let us make a few comments concerning this approach. First the choice k2 = 2 is arbitrary here and
we could consider any other k2 > 0. On the other hand, we combined only two particular solutions
of (11). We could have worked similarly with any other linear combinations of functions satisfying
(11). To exhibit different solutions of (11), we can proceed to rotations of v0 as we did. We can also
translate v0 or its rotated versions. This a priori offers a large variety of functions. A natural question
then is “how rich is the family of corresponding bounded nodal domains?”. Finally, observe that we
prove only the existence of one element in SNS and not that SNS contains an unbounded sequence
as in the statements of the previous subsections.

In Figure 4, we display the nodal sets N λ
α for α = π/4 and λ ∈ {−1,−0.2, 0.5, 2}. In each situ-

ation we observe that there exist bounded nodal domains. The question of proving the existence of
bounded nodal domains would deserve to be studied in more details.

Figure 4: Nodal sets N λ
α for α = π/4 and, from left to right, λ = −1,−0.2, 0.5, 2.
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Interestingly, this technique can be exploited to exhibit domains Ω such that eigenfunctions of the
Dirichlet Laplacian in Ω can be extended only to an open neighbourhood of Ω but not to the whole
R2. This has been found by J. Eckmann and C. Pillet in [16] and we reproduce their work here.

Given L ∈ N∗ and µ ∈ R+ := (0,+∞), we define the function v such that

v(r, θ) =

L−1∑
l=0

Jµ(kρl) cos(µψl). (12)

Here, (r, θ) stand for the polar coordinates with r > 0 and θ ∈ (−π, π]2, Jµ is again the Bessel function
of the first kind with order µ, the “translated and rotated polar coordinates” ρl > 0 and ψl ∈ (−π, π]
are defined via

ρl cosψl = a+ r cos(θ + 2πl/L), ρl sinψl = r sin(θ + 2πl/L), l = 0, . . . , L− 1,

with some fixed a ∈ R. In particular, the term for l = 0 in (12) corresponds to the spherical wave
function Jµ(kr) cos(µθ) with the center translated from (0, 0) to (−a, 0). If we further rotate the
initial spherical wave function Jµ(kr) cos(µθ) clockwise by 2π/L (resp. 2πl/L), we obtain the term
in (12) for l = 1 (resp. l in general).
More generally, we can consider functions v of the form

v(r, θ) =

L−1∑
l=0

blJµl
(kρl) cos

(
µl(ψl − ϕl)

)
, (13)

with different Bessel orders µl, rotational parameters ϕl, and weights bl, for each l = 0, . . . , L−1. We
can also impose different translational and rotational effects to each term by defining

ρl cosψl = al + r cos(θ + θl) and ρl sinψl = r sin(θ + θl)

with different al and θl for each l = 0, . . . , L− 1.
In the rest of this subsection, we choose the value of k to be the first positive zero of Jµ.

The following example, taken from [16], gives a bounded and simple connected domain Ω with an-
alytic boundary where the Dirichlet Laplacian has an eigenfunction which is extendable in an open
neighbourhood of Ω but not to the whole R2.

Example 2.11. Let us consider the function v in (12) with µ = 3/2, L = 3, a = 0.6. Observe that
the singularity of the function v0 defined by v0(x) = J3/2(kr) cos(3θ/2) is located at θ = π, since the
derivative of v0 with respect to θ (or y) has different limiting value when θ → ±π. Hence the function v
defined in (13) is singular in R2 but real-analytic in R2 \Σ with Σ := {(r cos θ, r sin θ) | r ∈ [a,∞), θ =
−π + 2lπ/L, l = 0, . . . , 2}. In particular, v is real-analytic in the open ball Ba centred at the origin
and of radius a. In the following, we shall show that there is a bounded and simple-connected domain
Ω ⊂ Ba with real-analytic boundary such that v is real-analytic in (an open neighbourhood of) Ω
and v = 0 on ∂Ω.

First notice that (x, y) 7→ J3/2(kr) cos(3θ/2) is positive in D1 = {(r cos θ, r sin θ) | r ∈ (0, 1), θ ∈
(−π/3, π/3)} and negative in B1 \D1 (see Figure 5a). Using this property, we display in Figure 5b
a yellow region where the three terms in the sum defining v are all positive and a blue region where

2It is important here that we fix the domain of θ to be a specific 2π-length interval. For example, under this setup,
the singularity of the function f(x) = r1/2 sin(θ/2) is on the half axis {x = (x, y) ∈ R2;x ≤ 0}.
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these three terms are all negative. We note by Ω̃ the green region in which the sign of v is a priori
not clear. Looking at every direction θ ∈ (−π, π], with the intermediate value theorem, we can show
that there is (xθ, yθ) in Ω̃ such that v(xθ, yθ) = 0. Moreover, by exploiting that v is real-analytic in
Ω̃, we infer that there is a closed analytic curve Γ ⊂ Ω̃ such that v = 0 on Γ (see Figure 5c for a plot
of Γ). Denote by Ω the bounded open set surrounded by Γ.

Then v is an eigenfunction of the Dirichlet Laplacian in Ω which can be analytically extended to Ω̃
(actually to R2 \ Σ) as a solution to the Helmholtz equation. Because of this property, we conclude
that we have SNS ̸= ∅ for this Ω. Let us emphasize however that v can not be extended in the whole
R2 analytically because its derivative with respect to θ is not continuous on Σ.

(a) Properties of (x, y) 7→
J3/2(kr) cos(3θ/2): positive in
the yellow regions and negative
in the blue regions.

(b) Properties of v: in the yellow
(resp. blue) region, the three
terms in the sum defining v are
positive (resp. negative).

(c) Curves of constant value of the
function v.

Figure 5: Illustration of the properties of the functions involved in Example 2.11.

We can modify Example 2.11 by taking different parameters in the definition of the function v
appearing in (12). This allows us to exhibit other analytic domains Ω where the Dirichlet Laplacian
has eigenfunctions which are extendable only in a neighbourhood of Ω. In Figure 6, we display certain
of these domains.

(a) L = 2, µ = 5/2, a = 0.58. (b) L = 3, µ = 5/2, a = 0.6. (c) L = 4, µ = 5/2, a = 0.5

Figure 6: Curves of constant value of the function v for different parameters in (12). In the analytic
domains enclosed by the curve v = 0, the Dirichlet Laplacian has eigenfunctions which are only locally
extendable.
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Note that if we take the Bessel order µ in (12) in N∗, we can find domains Ω for which the eigen-
functions of the Dirichlet Laplacian can be extended in the whole R2. We present such examples
in Figure 7. Let us emphasize that the domains Ω may have analytic boundaries as in Figure 7a,
or Lipschitz boundaries as in Figures 7b–7c. The latter situation appears when two or more nodal
curves of the function v intersect. For example, in Figure 7b, both v and ∇v vanishes at the two
points ±(a + 1, 0), but Hv, the Hessian of v, is different from zero at ±(a + 1, 0). Hence there are
two nodal curves intersecting at ±(a + 1, 0). In Figure 7c, at (0,−

√
2/2) we have ∂αv = 0 for all

multi-indices α ∈ N2 with 0 ≤ |α| ≤ 2 but ∂3xv ̸= 0. This explains why there are three nodal curves
passing through (0,−

√
2/2).

(a) L = 2, µ = 1, a = 0.55. (b) L = 2, µ = 1,
a = k2−k

2k
3, ϕ0 = π/2 = −ϕ1.

(c) L = 2, µ = 1,
a =

√
2/2, ϕ0 = π/4, ϕ1 = 3π/4.

Figure 7: Curves of constant value of the function v for different parameters in (12). Here we get
analytic and Lipschitz domains where the Dirichlet Laplacian has eigenfunctions which extend to
solutions of the Helmholtz equation in R2.

Similarly, we can find Lipschitz domains Ω for which there exist eigenfunctions are the Dirichlet
Laplacian which can be extended in a neighbourhood of Ω but not to the whole R2 (see Figure 8).
We refer the reader to the Appendix for the justification of existence of such nodal curves as shown
in Figures 6–8.

(a) L = 2, µ = 7/2, a = cos(π/7),
b0 = 1 = −b1.

(b) L = 2, µ = 5/2, a = 1, ϕ0 =
π/5 = −ϕ1.

(c) L = 2, µ = 3/2, a =
√
2/2,

ϕ0 = π/12 = −ϕ1.

Figure 8: Curves of constant value of the function v for different parameters in (12). Here we get
Lipschitz domains where the Dirichlet Laplacian has eigenfunctions which are only locally extendable.

We conclude this paragraph with an important result which generalizes the constraint we have in

3Here k2 denotes the second positive zero of Jµ.
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Proposition 2.5 concerning the angle of a sector so that non-scattering frequencies can exist.

Let Ω be a domain such that the Dirichlet Laplacian has an eigenfunction v that

can be extended into a function ṽ satisfying ∆ṽ + k2ṽ = 0 in a neighbourhood of Ω.
(14)

First, for Ω as in (14), due to the implicit functions theorem, ∂Ω must be piecewise analytic. Addi-
tionally, we have the following statement (see also [14, Chapter V, §16]).

Proposition 2.12. If P ∈ ∂Ω is a corner point of a domain Ω satisfying (14) with opening angle α,
then necessarily α ∈ (0, 2π) ∩Qπ.

Proof. We start by observing that ∂Ω belongs to the nodal set of v, an eigenfunction of the Dirichlet
Laplacian in Ω. In an adapted system of coordinates, we can assume that P coincides with the origin
O. By the assumption that v satisfies the Helmholtz equation in an open ball around O, we obtain
that v is of the form

v(x, y) = cNJN (kr) cos(Nθ − θ0) + fN+1(x, y),

near O, where (r, θ) are the polar coordinates of (x, y). Here cN ∈ R\{0} and θ0 ∈ [0, 2π) are
constants depending on v, N ∈ N∗ is the vanishing order of v at P and fN+1 = O(rN+1) is a
real-analytic function in (x, y). As a consequence, the Taylor series of v near O is of the form

v(x, y) = c̃Nr
N cos(Nθ − θ0) + f̃N+1(x, y),

with c̃N ̸= 0 and f̃N+1 real-analytic. Hence, there are exactly N analytic nodal curves of v intersecting
at P , with tangential directions along angles in the set {(π/2+κπ+ θ0)/N |κ ∈ Z}. Therefore we see
that the angle between two tangential directions is necessarily equal to κ′π/N for some κ′ ∈ N.

2.3.2 Extendable Neumann eigenfunctions

What we did in §2.3.1 to find domains Ω where the Dirichlet Laplacian admits extendable eigen-
functions can not be directly applied for Neumann boundary conditions. Instead of looking for
nodal curves, we should consider the characteristics associated with the gradient of solutions to the
Helmholtz equation. Let us explain in the following.

Start with some non-zero real valued function v satisfying ∆v + k2v = 0 in some domain, say R2 for
simplicity, for a given k > 0. Pick some point (x0, y0) such that ∇v(x0, y0) ̸= 0. Then consider the
gradient system

X ′(t) = ∇v(X(t))

X(0) = (x0, y0).
(15)

The Cauchy-Lipschitz theorem ensures that (15) admits a unique maximal solution X defined on an
interval I ⊂ R containing 0. Set Γ := {X(t) | t ∈ I} ⊂ R2 and introduce ν a unit normal vector to
the smooth curve Γ whose orientation is arbitrarily fixed. For t ∈ I, we have

∂νv(X(t)) = ν(X(t)) · ∇v(X(t)) = ν(X(t)) ·X ′(t) = 0

because X ′(t) and ν(X(t)) are respectively tangent and normal to the orbit t 7→ X(t). Thus v
satisfies an homogeneous Neumann boundary condition on Γ. Therefore if we are able to find a
bounded domain Ω whose boundary coincides with the union of orbits of Problem (15) for different
initial conditions (x0, y0), then this shows that k belongs to the set SNS associated with Ω. Let us
illustrate the approach with some specific examples.
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Example 2.13. Consider the function

v(x, y) = −(cosx+ cos y) (16)

which satisfies ∆v + 2v = 0 in R2. For this v, (15) reads

x′(t) = sinx(t)

y′(t) = sin y(t)

(x(0), y(0)) = (x0, y0).

(17)

The stationary points of this system of ordinary differential equations are the (mπ, nπ), m,n ∈ Z.
These are constant orbits. Moreover, one can check that

{0} × (0, π), {π} × (0, π), (0, π)× {0}, (0, π)× {π}

are also orbits of (17). Now pick some (x0, y0) ∈ (0, π)2. Since different orbits cannot cross, we know
that the one passing through (x0, y0) stays inside (0, π)2 and so the associated trajectory is global,
i.e. defined for all t ∈ R. It turns out that we can compute it explicitly and we find

x(t) = 2 arctan(et tan
x0
2
), y(t) = 2 arctan(et tan

y0
2
).

After a few operations, we obtain that the corresponding orbit coincides with the curve

Γ(δ) := {(x, y(x)) = 2 arctan(δ tan(x/2))) |x ∈ (0, π)}

where δ := tan(y0/2) tan(x0/2) > 0 (see Figure 9 left for representations of different Γ(δ)). For any
0 < δ1 < δ2, denote Ω(δ1, δ2) the domain located between Γ(δ1) and Γ(δ2). Then v is an eigenfunction
of the Neumann Laplacian in Ω(δ1, δ2) (see Figure 9 right for pictures of some Ω(δ1, δ2)). Since v
satisfies ∆v + 2v = 0 in R2, we deduce that =

√
2 belongs to SNS for this domain.

Note that we also have
√
2 ∈ SNS for the domain delimited for example by the curves

{0} × (0, π), {π} × (0, π), Γ(δ), for any δ > 0.

At this stage, let us make a few comments. First, when one enlarges a bounded domain, due to
the min-max principle, the eigenvalues of the Dirichlet Laplacian decrease. This is not true for the
eigenvalues of the Neumann Laplacian, roughly speaking because one cannot extend them by zero.
This is well illustrated by the above example. We have a family of continously deformed shapes which
all have

√
2 among the eigenvalues of the Neumann Laplacian.

Second, this example shows that one can find domains where the Neumann Laplacian has eigen-
functions which extend as solutions to the Helmholtz solution in the whole space and which admit
corners with arbitrary apertures in (0, 2π). This is very different from the Dirichlet case where in
order to be able to extend the eigenfunctions of the Laplace operator, the aperture of the corners
must be in (0, 2π) ∩Qπ (see Proposition 2.12).

The reason we can have such domains Ω with corners of arbitrary aperture in Example 2.13 is
that Hv(O), the Hessian of v at the stationary point O = (0, 0), is equal to the identity matrix. As
a consequence, the linearized problem of (17) at O simply writes U ′(t) = U(t) with U = (Ux, Uy)

⊤.
Solving it, we get Ux(t) = ax e

t, Uy(t) = ay e
t for some constants ax, ay. Thus we see that the curve

{(Ux(t), Uy(t)), t ∈ (−∞; 0)} is a line which can take any direction by choosing properly ax, ay. This
explains why the orbits of (17) can leave from O asymptotically with any angle.

Let us consider a second example.
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Figure 9: Left: curves Γ(δ) for δ = 0.5, 1, 4. Right: function v defined in (16) in a few domains where
it is an eigenfunction of the Neumann Laplacian associated with the eigenvalue 2.

Example 2.14. In this example we consider a particular case when k2 = 5. Start from the function v
such that v(x, y) = cosx cos 2y. It satisfies ∆v+5v = 0 in R2. The set of stationary points associated
with (15) is {(mπ, nπ/2), (π/2 +mπ, π/4 + nπ/2) |m,n ∈ Z}. By computing the Hessian Hv, one
finds that the (π/2 +mπ, π/4 + nπ/2) are saddle points. At saddle points, orbits of (15) can meet
the equilibrium point at only two particular directions (see Figure 10b). On the other hand, for
m,n ∈ Z, we have Hv(mπ, nπ/2) = (−1)m+n−1diag(1, 4). Hence the orbits of (15) are all tangential
to the horizontal line at (0, 0) except one that is tangential to the vertical line. Indeed, for example
for m = n = 0, the linearized problem associated with (15) writes U ′(t) = −diag(1, 4) · U(t) so that
its solution is given by Ux(t) = ax e

−t, Uy(t) = ay e
−4t for some constants ax, ay. Thus we see that

except when ax = 0, the curve {(Ux(t), Uy(t)), t ∈ (0;+∞)} is tangential to the horizontal line when
t→ +∞.
We can make this more explicitly by computing the orbits. First we find that

(0, 0), (π, 0), (π/2, 0), (π/2, π), (0, π)×{0}, {π}×(0, π/2), (0, π)×{π/2}, {0}×(0, π/2)

are particular orbits of (15). Then we obtain that the (global) trajectory (x(t), y(t)) passing through
(x0, y0) ∈ (0, π)× (0, π/2) is such that

sin(2y(t)) = δ sin4 x(t)

for δ > 0. We show in Figure 10 the normalized gradient flow and some of the “Neumann curves”. The
latter enclose domains Ω for which v is a Neumann eigenfunction so that the frequency k =

√
5 ∈ SNS.

We get that Ω can be of class C 1, Lipschitz, but may also possess cusps.

Example 2.15 (Neumann eigenfunctions extendable in a neighbourhood of Ω but not to the whole
Rd). Let us define v as in (13) with L = 2, µ = 7/2, a = cos(π/7) and b0 = 1 = −b1, with k being
the first positive zero of Jµ (see Figure 8a). We can calculate the gradient ∇v explicitly, say, when
|x1| < a, as

∇v(x, y) =
1∑

l=0

(−1)l
(
kJ ′

µ(kρl) cos(µψl)∇ρl − µJµ(kρl) sin(µψl)∇ψl

)
,

with

ρl =

√
(a+ (−1)lx1)

2
+ x22, and ψl = (−1)l arcsin

x2
ρl
, l = 0, 1.
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(a) Normalized gradient ∇v/|∇v|. (b) Neumann curves.

Figure 10: Case v(x, y) = cosx cos 2y.

It can be shown that ∇v = 0 at (0,± sin(π/7)) and (±t0, 0), where t0 is the (only) solution to
J ′
µ (k(a+ t0)) + J ′

µ (k(a− t0)) = 0 in the interval (0, a). The normalized gradient flow is shown in
Figure 11a. Moreover, by (numerically) solving the system of ODEs (15), we can construct curves
on which ∂νv = 0, and some of those curves enclose bounded C 1 or Lipschitz domains (with corners
of opening angle π/2), or domains with cusps. We display some of these domains in Figure 11,
where the starting points X(0) = (x0, y0) satisfy x0 = 0 and y0 ∈ {α sin(π/7) | |α| < 1}. In the
numerics, we take ±α ∈ {0, 0.1, 0.5, 0.8, 0.9, 0.9999}. The curves on the left side of the starting points
are obtained by solving (15) and letting t → +∞. We get limt→+∞X(t) = (−t0, 0). Those on
the right side are obtained by solving the “backward” system X ′(t) = −∇v(X(t)), in which case
limt→+∞X(t) = (t0, 0). An explicit computation gives Hv(±t0, 0) = ±diag (λ1, λ2) with 0 < λ2 < λ1.
As a consequence, though this does not appear clearly in Figure 11b because here we do not zoom at
(±t0, 0), all the orbits except the horizontal one, are tangential to the vertical axis at (±t0, 0).

(a) Normalized gradient ∇v/|∇v|. (b) Neumann curves.

Figure 11: Case v as in (13) with L = 2, µ = 7/2, a = cos(π/7), b0 = 1 = −b1.

16



3 Non-scattering with anisotropic materials

In this section, we provide examples of anisotropic materials, more precisely materials for which A
in (2) is a matrix valued function, that support non-scattering frequencies. For some of them, non-
scattering occurs at all k > 0 so that in particular the set of transmission eigenvalues STE contains
(0,+∞).

3.1 Non-scattering via diffeomorphism

We first look for non-scattering waves and media by using diffeomorphisms following for example [19]
(see also [11]). Let v be an entire solution to the Helmholtz equation, i.e. such that

∆v + k2v = 0 in Rd.

Given a bounded Lipschitz domain Ω in Rd, let Ψ be a Cm(Ω), m ≥ 2, diffeomorphism satisfying
Ψ = Id on ∂Ω. Define

A =
DΨDTΨ

|detDΨ|
◦Ψ−1 and q =

1

|detDΨ|
◦Ψ−1 in Ω, (18)

where DΨ is the Jacobian matrix of Ψ. Note in particular that A is symmetric. Then the function
u := v ◦Ψ−1 satisfies u = v on ∂Ω and

div(A∇u) + k2qu = 0 in Ω, ∂Aν u = ∂νv on ∂Ω, (19)

with ∂Aν · := ν ·A∇·. As a consequence, we have the following lemma.

Lemma 3.1. Let Ω be a bounded Lipschitz domain in Rd and let Ψ be a C 2(Ω) diffeomorphism on
Ω satisfying Ψ = Id on ∂Ω. Define A, q by (18). Then A, q satisfy assumptions (3) and (A, q; Ω) is
non-scattering for any incident waves at any frequencies.

Remark 3.2. Notice for A defined in (18) we always have detA = |detDΨ|2−d ◦Ψ−1. In particular
detA = 1 in dimension two and detA = q in dimension three. This may shed light to the verification
of optimality for results on the discreteness of transmission eigenvalues; See also [23, 26].

As observed in [11], given any bounded Lipschitz domain Ω ⊂ Rd, one can construct infinitely many
diffeomorphisms that satisfy the conditions in Lemma 3.1. For instance, let Φ : Rd → Rd be a C 2

map such that Φ = 0 in Rd \ Ω. Then the mapping Ψ defined as

Ψ = Id + εΦ. (20)

is a C 2(Ω) diffeomorphism for ε > 0 sufficiently small that satisfies Ψ = Id on ∂Ω.

Next, we give two explicit non-scattering examples (where ε in (20) does not have to be small)
with Ω being a square and a disk, respectively.

Example 3.3 (Geometry with corners). Let Ω = (−1, 1)2 ⊂ R2. For a fixed constant α ∈ (−1/2, 1/2),
define

Ψ(x, y) =
(
x+ α(1− x2)(1− y2) , y

)
.

It can be verified that Ψ : Ω → Ω is a C∞ diffeomorphism with Ψ|∂Ω = Id. Then the medium
(A, q; (−1, 1)2) as in (18) is non-scattering for all incident waves at all frequencies. We can express A
and q in a more explicit form as

A ◦Ψ(x, y) =
1

1− 2αx(1− y2)

( (
1− 2αx(1− y2)

)2
+ 4α2y2(1− x2)2 −2αy(1− x2)

−2αy(1− x2) 1

)
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and

q ◦Ψ =
1

1− 2αx(1− y2)
.

Example 3.4 (Non-spherically stratified disk). Let f ∈ C 2
0 (R+) satisfy f(1) = 0. Define Ψ, in polar

coordinates, as
Ψ(r, θ) = (r, θ + f(r)).

Then Ψ : B1 → B1 is a C 2 diffeomorphism with Ψ|∂Ω = Id (this latter property comes from the
constraint f(1) = 0). Moreover, Ψ is orientation- and area-preserving with detDΨ = 1. As a
consequence, the inhomogeneity (A, 1;B1) with A as in (18) is non-scattering for all incident waves
at all frequencies. Note that we find

A(x, y) = Id− f ′(r)

r

(
2xy y2 − x2

y2 − x2 −2xy

)
+
(
f ′(r)

)2( y2 −xy
−xy x2

)
, r =

(
x2 + y2

)1/2
.

On the structure of the anisotropy induced by diffemorphism transforms. The following
two results reveal an interesting geometry property of diffeomorphisms satisfying the conditions in
Lemma 3.1.

Lemma 3.5. Let Ω and Ψ be as in Lemma 3.1. Then we must have( DTΨ

|detDΨ|
− Id

)
ν = 0 on ∂Ω.

Proof. Let j ∈ {1, . . . , d} be fixed. Let v(x) = xj and let u = v ◦Ψ−1. Then u, v satisfy

div(A∇u) = 0 and ∆v = 0 in Ω, u = v and ∂Aν u = ∂νv on ∂Ω,

with A defined in (18). Furthermore, by straightforward calculations we have

∂νv = νT e⃗j and ∂Aν u = νT
DΨDTΨ

|detDΨ|
(DTΨ−1) e⃗j = νT

DΨ

|detDΨ|
e⃗j on ∂Ω.

The proof is complete by taking all j ∈ {1, . . . , d}.

Combining this result with [11, Theorem 2.1], we obtain the following statement when Ω is not
smooth.

Proposition 3.6. Let Ω be a C 1,α bounded domain in Rd, and let Ψ be a Cm+2 (resp. C∞ or (real)
analytic) diffeomorphism on Ω with m ≥ 1 satisfying Ψ|∂Ω = Id. Then

(DΨ− Id) ν = 0 for x0 ∈ ∂Ω, (21)

where x0 ∈ ∂Ω is such that ∂Ω is not Cm,α (resp. C∞ or (real) analytic) in any neighbourhood of x0.

Proof. Let x0 ∈ ∂Ω be such that ∂Ω is not Cm,α (resp. C∞ or (real) analytic) in any neighbourhood
of x0. Assume by contradiction that (DΨ− Id)ν ̸= 0 at x0. Let

A =
DΨDTΨ

|detDΨ|
in Ω.

Then by Lemma 3.5 we have

(A− Id) ν = (DΨ− Id) ν on ∂Ω,

and so (A − Id)ν ̸= 0 at x0 ∈ ∂Ω. Exploiting this, we can find a solution v to the homogeneous
Helmholtz equation in Rd such that νT (A− Id)∇v ̸= 0 at x0. But from Lemma 3.1 we know that v
is non-scattering for (A, q; Ω) with A, q given in (18). Hence by [11, Theorem 2.1] we must have that
∂Ω is Cm,α (resp. C∞ or (real) analytic) near x0, which leads to a contradiction.
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Remark 3.7. In particular, we show in the proof that the matrix A defined in (18) must satisfy

Aν = ν

at the considered “non-smooth” point x0 of ∂Ω

3.2 Other explicit non-scattering examples

In this section, we are focused on non-scattering examples where the total and incident fields are
identical in the whole Rd.

Example 3.8. Let Ω = (0, π)2 and

A =

(
a1 0
0 a2

)
, q = q0 in Ω, (22)

with a1, a2, q0 ∈ R+. Assume that these coefficients satisfy one of the following assumptions:

• a1 ̸= 1, a2 ̸= 1 and there exist m,n ∈ N, with (m,n) ̸= (0, 0), such that m2(q0 − a1) = n2(a2 − q0);

• a1 = 1, a2 ̸= 1 and (q0 − 1)(a2 − 1) > 0;

• a1 ̸= 1, a2 = 1 and (q0 − 1)(a1 − 1) > 0.

Then SNS contains an unbounded sequence which accumulates at +∞.

Remark 3.9. It is known for the last two cases in Example 3.8 that STE is at most countable, and
hence such (A, q; Ω) cannot be non-scattering for all frequencies. The same is true for the first case
provided a1q0 ̸= 1 or a2q0 ̸= 1 (see [23, 26]); Otherwise if a1q0 = 1 or a2q0 = 1 but q0 ̸= 1, the
discreteness of STE is to our best knowledge still an open question.

Proof. Suppose that a1, a2, q0 satisfy the first set of assumptions. Then it can be verified straightfor-
wardly that for any κ ∈ N∗, the functions u, v such that

u(x) = v(x) = cos(κmx) cos(κny) in Ω

solve the interior transmission eigenvalue problem (ITEP) (6) with k = κ
√
m2 + n2.

Now assume that a1, a2, q0 satisfy the second set of assumptions (the third one can be dealt with
similarly). Then one can verify that for any m ∈ N∗, the functions u, v such that

u(x) = v(x) =
(
c1 cos(bx) + c2 sin(bx)

)
cos(my) in Ω,

with b =
√
k2 −m2 ∈ R+ ∪ iR+ and where c1, c2 are non zero constants, solve (6) for k =

m
√
(a2 − 1)/(q0 − 1).

By scaling and/or rigid change of coordinates, we can adapt Example 3.8 to the case of any rectangle,
with properly modified form of A(x) (not necessarily diagonal) and conditions between A and q.
Analogous arguments and results apply when Ω is a cuboid in R3.

The case in Example 3.8 but for q = aj = 1 for j = 1 or 2 can be generalized to the following situation
where q ≡ 1 and A − Id is rank deficient. In this situation we lost the discreteness of the sets SNS

and STE. A particular case of this example appears in [23, p.1170].

Example 3.10. Given any bounded Lipschitz domain Ω in Rd, suppose that A = A(x) satisfies

A(x) = U

(
1 0
0 Ad−1(x)

)
UT , x ∈ Ω,

with some (d−1)× (d−1) symmetric positive definite matrix Ad−1 and a constant orthogonal matrix
U . Importantly, note that in this case 1 is an eigenvalue of A(x) for all x ∈ Ω. Then any k > 0 is a
non-scattering frequency for (A, 1; Ω).
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Proof. For any non-zero constants c1, c2, define v0(x) = v0(x1, x
′) = c1 cos(kx1) + c2 sin(kx1). It

can be verified straightforwardly that for any bounded Lipschitz domain Ω̃ and any fixed k > 0,
(u0, v0) = (v0, v0) is a pair of eigenfunctions to the ITEP (6) for (Ã, 1; Ω̃) with Ã = diag(1, Ad−1)
(note in particular that (Ã− I)∇v0 ≡ 0). Then consider the change of coordinates y = Ux for x ∈ Rd

and define v such that v(y) := v0
(
U−1y

)
. The pair (u, v) = (v, v) satisfies (6) for (A, 1; Ω) with

Ω = {y = Ux | x ∈ Ω̃}. Moreover, v is an entire solution to the Helmholtz equation. The proof is
complete.

The following can be viewed as a generalization of Example 3.8 when q = aj ̸= 1 for j = 1 or 2.

Example 3.11. Let Ω = (b1, b2)×D ⊂ Rd with D an open interval if d = 2 or a bounded Lipschitz
domain in R2 if d = 3. Then there are infinitely many non-scattering frequencies for (A, q; Ω) with

A(x) =

(
a0 0
0 Ad−1(x)

)
and q(x) = a0, x ∈ Ω,

for some positive constant a0 and some (d− 1)× (d− 1) symmetric positive definite matrix Ad−1.

Proof. It can be verified straightforwardly that v(x) = cos(k(x1 − b1)) is a non-scattering incident
field with u = v being the total field for k = mπ/|b2 − b1|, m ∈ N∗.

Remark 3.12. We notice from Example 3.10 that if a0 = 1 in Example 3.11, the sets SNS and
hence STE coincide with R+. However, in some other cases, for example when both a0 and the
smallest eigenvalue of Ad−1(x) are larger than 1 for all x in a small neighbourhood of ∂Ω, the sets
STE and hence SNS are discrete [6, 26]. The discreteness of STE or SNS in general is unknown for
Example 3.11 especially if detA = 1 on ∂Ω.

Finally, we note for all the examples in this section that ν · (A − Id)∇v = 0 on ∂Ω, which allows
us to construct non-scattering media with Lipschitz (and even less regular) boundaries. Otherwise if
ν · (A− Id)∇v ̸= 0 on ∂Ω, we know from [11, 21] that ∂Ω must be sufficiently regular if A and q are
regular in Ω.
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Appendix

The following figures illustrate how to justify the existence of analytic nodal curves as shown in Fig-
ures 6–8. Below the corresponding functions are positive in the yellow regions and negative in the
blue regions.

As an example of such justification, let us look at the nodal set of Figure 6a. That is, when L = 2,
µ = 5/2 and a = 0.58 in (12). Based on the “generating function” Jµ(kr) cos(µθ), we can identify the
positive and negative regions of each terms l = 0, . . . , L−1 in (12). See Figure 12a for an example for
the term l = 0 in (12), where the dashed lines are the nodal curves of the terms l = 1, . . . , L−1 in (12).
Then we can find certain regions where v in (12) has to be either positive/negative, say, the domains
where every term is of the same sign (see Figure 12b). Therefore, there must be a nodal set in between
the strictly positive and the strictly negative regions. The justification for Figures 6b, 6c, and 7a is
similar.

(a) The term l = 0 in (12). (b) v in (12). (c) The nodal curves of v.

Figure 12: Justification for Figure 6a: L = 2, µ = 5/2, a = 0.58.

(a) The term l = 0 in (12). (b) v in (12). (c) The nodal curves of v.

Figure 13: Justification for Figure 6b: L = 3, µ = 5/2, a = 0.6.

The situation for the case of Figure 7b is slightly different. First, we can identify the positive and
negative regions for each term in (13) as before, and hence some one-sign regions for v in (13) (see
Figures 16a and 16b). In particular, thanks to the symmetry of the two terms in (13), we have that
v = 0 on the axis {y = 0}. Additionally, we observe that v = 0 at the two points (0,±

√
1− a2),

where in fact both terms in (13) are zero. Moreover, it can be verified straightforwardly that ∇v ̸= 0
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(a) The term l = 0 in (12). (b) v in (12). (c) The nodal curves of v.

Figure 14: Justification for Figure 6c: L = 4, µ = 5/2, a = 0.5.

(a) The term l = 0 in (12). (b) v in (12). (c) The nodal curves of v.

Figure 15: Justification for Figure 7a: L = 2, µ = 1, a = 0.55.

at (0,±
√
1− a2). So there is exactly one (real-analytic) nodal curve of v passing through the point

(0,
√
1− a2). This curve will continue, say, to the right side of (0,

√
1− a2) until it hits some point

(x1, 0) for some x1 ∈ [1− a, 1 + a]. On the other hand, using the fact that a = (k2/k − 1)/2 with k2
the second positive zero of J2, it can be verified that ∇v = 0 at the two points ±(a+1, 0) and ∇v ̸= 0
at any (x1, 0) with x1 ∈ (−a− 1, a+ 1). Therefore, the nodal curve of v generated from (0,

√
1− a2)

must also pass through (a+ 1, 0). In fact, one can also verify that the Hessian of v satisfies Hv ̸= 0
at ±(a + 1, 0). Hence there are exactly two (real-analytic) nodal curves passing at (a + 1, 0): one is
the line {y = 0} and the other is the one coming from (0,

√
1− a2). Applying analogous arguments

for the other three quadrant we can then complete the justification of a closed (real-analytic) nodal
curve of v.
In Figure 7c, we make use of the function v in (13) with µ = 1, L = 2, a =

√
2/2, ϕ1 = π/4 and

ϕ2 = 3π/4. The choice of ϕ1 and ϕ2 ensures the symmetry of v with respect to the y-axis. In
particular, v = 0 on {x = 0}. In addition, thanks to the value of a, one can verify that at the
point P0 = (0,−

√
2/2) there holds v = ∂xv = ∂yv = ∂2ijv = 0 for all i, j ∈ {x, y} but ∂3xv ̸= 0.

Hence, there are exactly three nodal curves passing through (0,−
√
2/2). Furthermore, one can verify

straightforwardly that v = 0 while ∇v ̸= 0 at the points Pj , j = 1, . . . , 9, where the coordinates of
each point can be calculated explicitly in terms of a, k and k2. Finally, based on the locations of
strictly positive and negative regions we can conclude to the existence of real-analytic nodal curves
for v that enclose some bounded Lipschitz domains, as shown Figure 17c.
The justification of the results appearing in Figure 8 is similar.
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(a) The term l = 0 in (13). (b) v in (13). (c) The nodal curves of v.

Figure 16: Justification for Figure 7b: L = 2, µ = 1, a = k2−k
2k , ϕ1 = π/2 = −ϕ2.

(a) The term l = 0 in (13). (b) v in (13). (c) The nodal curves of v.

Figure 17: Justification for Figure 7c: L = 2, µ = 1, a =
√
2/2, ϕ1 = π/4, ϕ2 = 3π/4.

(a) The term l = 0 in (13). (b) v in (13) (c) The nodal curves of v.

Figure 18: Justification for Figure 8a: L = 2, µ = 7/2, a = cos(π/7), b0 = 1 = −b1.
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(a) The term l = 0 in (13). (b) v in (13). (c) The nodal curves of v.

Figure 19: Justification for Figure 8b: L = 2, µ = 5/2, a = 1, ϕ0 = π/5 = −ϕ1.

(a) The term l = 0 in (13). (b) v in (13). (c) The nodal curves of v.

Figure 20: Justification for Figure 8c: L = 2, µ = 3/2, a =
√
2/2, ϕ0 = π/12 = −ϕ1.
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