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ABSTRACT

Differentiable Digital Signal Processing is the application of dif-

ferentiable programming, whereby a computer program may be

differentiated end-to-end, to audio tasks. Coupled with gradient-

based optimisation methods, differentiable signal processors are

central to a variety of audio problems and can be incorporated into

machine learning architectures.

In this paper it is shown that, using the environment expres-

sion and pattern matching abstraction, it is possible to write FAUST

code that is differentiable end-to-end. A system for writing FAUST

programs that are automatically differentiable in the forward-mode

is developed and a parameter optimisation example presented. Dif-

ferentiable programming in FAUST could serve as a platform for

native approaches to machine learning problems in the audio do-

main.

1. INTRODUCTION

Differentiable programming is a programming paradigm whereby

a computer program can be differentiated end-to-end [1]. The

sensitivity of a differentiable program’s outputs to perturbations

of its parameters can be computed via automatic differentiation

(AD, autodiff) [2, 3], producing a partial derivative with respect

to each input parameter. End-to-end differentiability is a desirable

quality in the creation of computer programs that perform gradient-

based optimisation, and differentiable programming via automatic

differentiation is the foundation for contemporary approaches to

machine learning [4].

Differentiable Digital Signal Processing (DDSP) is the appli-

cation of differentiable programming to DSP operations [5]. The

acronym DDSP was coined by Engel et al. [6], who used it to refer

to the specific case of combining differentiable signal processors

with a neural network architecture, but in principle any DSP system

featuring recursive optimisation using gradients found as partial

derivatives of a loss function fits this label [5], including work dat-

ing as far back as the late 1980’s [7]. In addition to Engel et al.’s

timbre transfer implementation via a differentiable spectral mod-

elling synthesiser, DDSP has been applied to audio tasks such as

source separation [8], filter optimisation [9], and echo cancellation

[10] — see [5] for a comprehensive review.

This paper introduces the concept of a differentiation arith-

metic [2] to FAUST, facilitating the creation of differentiable audio

algorithms in the FAUST language. A framework for forward mode

automatic differentiation is outlined and applied to a simple, but

illustrative, parameter optimisation problem. The possibility of

writing differentiable code in an audio domain specific language

paves the way for novel approaches to problems at the intersection

of DSP and machine learning.

2. ALGORITHMIC DIFFERENTIATION

Methods for computational differentiation are typically charac-

terised as falling into one of three camps: numerical, symbolic, and

automatic. Numerical differentiation produces numerical values for

derivatives via approximation by finite differences, and will be fa-

miliar to those acquainted with finite-difference time-domain audio

synthesis methods [11]. Symbolic differentiation takes a computa-

tional expression and generates the corresponding expression for

its derivative; this approach may resonate with users of MATLAB’s

Symbolic Math Toolbox [12] or the Maple programming language

[13]. Automatic differentiation describes an arithmetic for accu-

mulating both the numerical output of a computational expression

and the numerical value of its derivative; it is an arithmetic of this

kind that underpins the current crop of Python libraries for machine

learning [4].

A certain ambiguity abounds with regard to how automatic

and symbolic differentiation relate to each other [14], and partisan

views have been expressed over which is more efficient [15]. The

ambiguity may be ascribed in part to the former’s nature as “partly

symbolic and partly numerical” [4], and perhaps also to the fact that

programs composed symbolically may be differentiated automati-

cally [16]. For our purposes, we shall defer to Rall, who, writing

in the mid-1980’s, before the waters were muddied by legions

of machine learning researchers, observed (to paraphrase): sym-

bolic approaches produce formulas whereas automatic approaches

produce numerical outputs [2]. The latter do so, however, by im-

plementing differentiation rules, symbolically, at the level, as we

will see, of the primitive operations of the programming language

upon which they are based.

2.1. The Arithmetic of Automatic Differentiation

Two principal modes of automatic differentiation are alluded to

in scholarly works on the topic: forward (or tangent) mode, and

reverse (or adjoint) mode [1, 3, 4]. These modes describe, in effect,

two directions of derivative propagation through a computation

graph; in forward mode, the computation of the undifferentiated,

or primal output is accompanied by a tangent computation, with

derivatives accumulated from inputs to outputs; in reverse mode,

a forward primal pass is complemented by a reverse adjoint pass,

during which derivatives accumulate from outputs to inputs (consult

[3] for a detailed mathematical treatment of both). For a graph,

f : RN → R
M , with input variables, xi, and output variables, yj ,

forward mode requires N passes to compute the Jacobian matrix

Jf =









∂y1
∂x1

· · · ∂y1
∂xN

...
. . .

...
∂yM
∂x1

· · · ∂yM
∂xN









, (1)
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whereas reverse mode calls for M passes. Viewed through the

lens of computational parsimony, this points at reverse mode be-

ing preferable for differentiating programs where input variables

outnumber output variables, such as a digital audio synthesiser

with many parameters and perhaps one or two output channels. In

practice, reverse mode demands a bookkeeping strategy such as a

“tape” mechanism [17, 18] to take account of the dependencies of

each node in the graph during the forward pass, and thus ensure

accurate derivative accumulation during the reverse pass. This need

for a structured overview of the computational graph introduces a

degree of complexity that forward mode does not impose.

2.1.1. Dual Number Arithmetic

An interesting property of forward mode automatic differentiation

lies in the possibility of formulating differentiation in a manner

similar to the complex numbers [2, 19]. Where complex arithmetic

uses the imaginary unit i to designate the imaginary part of a com-

plex number z = x+ iy, with i2 = −1, differentiation arithmetic

uses the nilpotent symbol, ε, for which ε2 = 0, and ε ̸= 0 [19, 3]:

U = u+ εu′ , (2)

where u′ = du
dx

is the derivative of u with respect to some input

variable x.

Using this arithmetic, the sum of two functions, and the addi-

tion rule of differentiation, emerge quite naturally as the sum of U
and V = v + εv′,

(u+ εu′) + (v + εv′) = u+ v + ε(u′ + v′) . (3)

Similarly, the product rule, via simple polynomial expansion

(u+ εu′)(v + εv′) = uv + uεv′ + vεu′ + ε2u′v′

= uv + ε(uv′ + vu′) , (4)

the final term cancelling due to the presence of ε2.

This arithmetic may be more conveniently expressed, for com-

putational purposes, as one of ordered pairs [2, 20] or dual numbers

[19, 21, 22],

U = ⟨u, u′⟩ . (5)

The addition and product rules now take the following forms:

U + V = ⟨u, u′⟩+ ⟨v, v′⟩ = ⟨u+ v, u′ + v′⟩ (6)

UV = ⟨u, u′⟩⟨v, v′⟩ = ⟨uv, uv′ + vu′⟩ . (7)

The first component of each dual number is the rule for evaluation

of the operation, the second is the rule for differentiation [2]; these

are the primal and tangent respectively [3, 18]. In dual number

differentiation arithmetic, an independent variable can be expressed

as X = ⟨x, dx
dx

⟩ = ⟨x, 1⟩, and a constant C = ⟨c, dc
dx

⟩ = ⟨c, 0⟩.
If we wish, for example, to compute the numerical values for the

primal and tangent of a polynomial (x+ 1)(x− 2) at x = 2, we

set X = ⟨2, 1⟩ and supply appropriate values for the constants:

(⟨2, 1⟩+ ⟨1, 0⟩)(⟨2, 1⟩ − ⟨2, 0⟩) = ⟨3, 1⟩⟨0, 1⟩ = ⟨0, 3⟩ .

We find that our arithmetic produces the expected numerical re-

sults automatically via composition of the fundamental operations

characterised by equations (6) and (7).

Differentiation arithmetic of this sort is a special case of a

more general gradient arithmetic [2], which comes into effect when

multiple variables are present, and thus multiple partial derivatives

must be calculated:

U = ⟨u,∇u⟩, ∇u =
∂u

∂x
=









∂u
∂x1

...
∂u

∂xN









. (8)

2.2. Extending FAUST’s Arithmetic

One quality generally possessed by automatic differentiation im-

plementations is that of allowing the programmer to write differen-

tiable programs with minimal changes to the syntax of their code.

This is typically achieved either by source code transformation or

operator overloading [19, 3] — neither of which is available in the

FAUST language.1 We could take an approach similar to Wengert’s

1964 demonstration of the composition of differentiable functions in

Fortran [23] and define differentiable functions diffAdd, diffMul,

etc. each accepting and returning dual numbers; thanks to FAUST’s

pattern matching abstraction, however, we can go one better, achiev-

ing something akin to, albeit slightly more verbose than, operator

overloading.

Pattern matching has been used extensively in the FAUST li-

braries. The basics.lib library, for example, provides a function

with a recursive pattern matching definition for taking an element

from a list:

// Take the first element , the head;

take(1, (head , rest)) = head;

// Take the only element;

take(1, head) = head;

// Take the n-1th element from the rest.

take(n, (head , rest)) = take(n-1, rest);

Listing 1: Definition of the take function from FAUST’s

basics.lib library.

The physmodels.lib library provides pm.chain for creating

chains of bidirectional signal blocks [24]. chain(A) simply returns

the signal block A; chain(A:As) creates a recursive structure con-

taining A and chain(As). Similarly, wdmodels.lib facilitates the

creation of wave digital filter models via primitive elements, resis-

tors, capacitors, etc. [25], whose behaviour is defined via pattern

matching syntax. Both libraries extend FAUST’s arithmetic with

their own rules, with the aim of achieving a particular goal within

the syntax provided by FAUST.

If one’s particular goal was to be able to compose reciprocal

expressions, one could create an arithmetic of the following form,

using pattern matching to avoid division by zero:

import (" stdfaust.lib");

recip (0) = recip(ma.EPSILON);

recip (0.0) = recip (0);

recip(expr) = 1,expr : /;

a = log (1);

b = _,2 : ^;

c = -;

1Transformations are in fact possible at the level of the FAUST compiler,
and automatic differentiation could occur as a compilation step. For reasons
of scope, this paper focuses solely on the topic of automatic differentiation
in the FAUST language itself.
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process = recip(a),recip(b) : recip(c);

Listing 2: Definition of a simple scheme for computing automatic

reciprocals in FAUST via pattern-matching.

Wrapping our expressions in recip gives us automatic reciprocals

without affecting the fundamental composability of FAUST’s primi-

tives. Note that if we were to insert the expression recip(-) = +;

at the top of the program, the final operation, rather than returning

1/(a− b) would be overridden, in a manner of speaking, returning

a + b instead. An approach along these lines will form the basis

for the creation of differentiable FAUST primitives.

3. DIFFERENTIABLE PROGRAMMING IN FAUST

As described in section 2.1, in forward mode, primal and tangent

outputs are found during a forward pass through the computation

graph, which fits neatly with the left-to-right propagation of signals

through a FAUST block diagram. Reverse propagation of signals

is entirely possible in FAUST (indeed forward mode demands it as

a final, backpropagation step — see section 3.3), and it is by way

of nested recursive composition that the physmodels.lib library

accomplishes simulated bidirectional wave propagation; the struc-

tures underpinning physmodels.lib are purely linear, however,

and, at the time of writing, no general scheme for the creation of

branching bidirectional structures, such as reverse mode requires,

has been found.2

Consequently, this section is concerned with the description of

an approach to differentiable programming in FAUST based on for-

ward mode automatic differentiation. End-to-end differentiability

is predicated on the availability of derivative expressions for the

primitive operations of the language; presented in the subsections

that follow is an approach to defining FAUST primitives that are

differentiable in forward mode.

3.1. Defining a Differentiable Primitive

As a basic starting point, consider the addition primitive; in FAUST

one can write:

process = +;

which yields the diagrammatic representation:

+

process

Figure 1: Block diagram of a FAUST program consisting of a lone

addition primitive.

2Reverse mode does not entirely elude the capabilities of FAUST, but it
does not generalise easily. For a small reverse mode example, see https://
gist.github.com/hatchjaw/8b3eb17aae27e91d0927ac8cb3eba9cd#

file-reverse_multivariate-dsp.

FAUST primitives, and block diagrams constructed from them, are

signal processors. A semantic distinction is drawn, however, be-

tween a block diagram, D, and the signal processor represented

by that block diagram, notated JDK [26]. We can think of D as a

symbolic expression, in FAUST syntax, and JDK as a processor that

acts upon a vector of input signals and, in turn, produces a vector

of output signals. A signal is a discrete function of time, and a

member of the set S of all signals; the value of a signal at time n
is analogous to a numerical output. The semantic scheme for the

addition operator is described as [26]

J+K : S2 → S

J+K(s1, s2) = (y)

y[n] = s1[n] + s2[n] .

(9)

Note that FAUST’s addition primitive has no special knowledge of

its arguments, their history, provenance, etc., it just consumes them

and returns their sum. In FAUST’s arithmetic, the addition of two

signals is simply well-defined.

Suppose that the block diagram, Y = +, is dependent on

some variable x, and that we wish to know how sensitive Y is to

perturbations in x. We can produce an analytic expression for this

sensitivity by differentiating Y with respect to x. Recall, from

equation (6), that a dual-number addition takes the form of two

additions in parallel; in FAUST, that could be expressed as:

diffAdd = +,+;

process = diffAdd;

+

+

process

Figure 2: Block diagram of a FAUST program representing a naive

implementation of a dual signal differentiable addition primitive,

consisting of two parallel additions.

We can think of this as consisting of two block diagrams in parallel;

interpreted as a signal processor, we can refer to its output as a dual

signal, ⟨y, y′⟩.
Just as the addition primitive has no special knowledge of

its input signals, nor does diffAdd, but at this stage the notion

of differentiable addition is not well-defined. In order for this

new primitive to behave as it should, it is necessary to define an

accompanying semantic scheme. First, we denote Sd to be the set

of all dual signals: Sd = S
2; differentiable addition can then be

defined as

JdiffAddK : S2
d → Sd

JdiffAddK(⟨s1, s
′

1⟩, ⟨s2, s
′

2⟩) = (⟨y, y′⟩)

⟨y[n], y′[n]⟩ = ⟨s1[n] + s2[n], s
′

1[n] + s′2[n]⟩ .

(10)

10
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In its form in figure 2, diffAdd is not consistent with the scheme

that we have just defined; this can be remedied with FAUST’s route

primitive:

diffAdd = route(4, 4,

(1, 1), (2, 3), (3, 2), (4, 4)) : +,+;

process = diffAdd;

+

+

process

Figure 3: Block diagram of a FAUST program representing a dual

signal differentiable addition primitive. Via appropriate signal

routing, valid dual signal output is produced.

diffAdd is now semantically sound, implementing equation (6),

and describing a dual-signal differentiable addition primitive. As

alluded to in section 2, this primitive implements its differentiation

rule symbolically, via appropriate signal routing, and will produce

the correct numerical output automatically; it is self-contained,

well-defined, and composable with other similarly well-defined

primitives.

3.2. Multivariate Differentiable Primitives

The above holds for single-variable differentiation arithmetic, but

what if a program features more than one dependent variable?

Consider the following (non-differentiable) example consisting of

a DC offset and a gain control applied to an input signal:

x1 = hslider ("gain", .5, 0, 1, .1);

x2 = hslider ("dc", 0, -1, 1, .1);

process = _,x1 : *,x2 : +;

Listing 3: A FAUST program that applies gain and DC offset

parameters to an input signal.

The general case of gradient arithmetic (see equation (8)) demands

a redefinition of the set of dual signals, Sd = S
N+1, where N is the

number of variables, xi, with respect to which partial derivatives

must be found. One way to implement a multivariate differen-

tiable addition primitive in FAUST could be to define diffAdd as a

function receiving N as a parameter; using FAUST’s environment

expression, however it is possible to address the problem in a more

general, and syntactically succinct fashion.

3.2.1. A Differentiable Environment

First, we can define a function for collecting, counting, and retriev-

ing variables and their partial derivatives:

vars(V) = environment {

// Count the variables.

N = outputs(V);

// Retrieve a variable by index i.

var(i) = ba.take(i, V),pds(N, i)

with {

// Compute partial derivatives of

// variable x_i.

pds(N, i) = par(j, N, i-1==j);

};

};

Listing 4: A FAUST function for defining an environment of

differentiable variables.

vars receives a list of variables, expressed via parallel composition,

e.g. X = vars((gain,dc));, where gain and dc are defined as

hslider instances; the ith differentiable variable is defined seman-

tically as

JX.var(i)K : S0 → Sd

JX.var(i)K() = (⟨y,∇y⟩)

⟨y[n],∇y[n]⟩ = ⟨xi[n],∇xi[n]⟩

=
〈

xi[n],
[

0 · · · 1 · · · 0
]T

〉

.

(11)

Next, we can define a function that takes the variable envi-

ronment produced by vars as its sole argument, and returns a

differentiable environment, containing a collection of multivari-

ate differentiable primitives. As a further improvement, we can

use FAUST’s pattern matching syntax to simplify the nomencla-

ture of the differentiable primitives; instead of exposing the name

diffAdd, for example, the differentiable addition primitive can be

named diff(+):

env(vars) = environment {

diff (+) = diffAdd with {

diffAdd = route(nIN , nOUT ,

(s1 , 1), (s2 , 2), // s1 + s2

par(i, vars.N,

// ds1/dx_i + ds2/dx_i

(s1+i+1, dx), (s2+i+1, dx+1)

with {

// Start of derivatives wrt x_i

dx = 2*i+3;

}

)

) with {

nIN = 2+2* vars.N;

nOUT = nIN;

s1 = 1;

s2 = s1+vars.N+1;

}

: +,par(i, vars.N, +);

};

// ... definitions of other

// differentiable primitives ...

};

Listing 5: Extract from the definition of a FAUST environment for

differentiable programming.

As before, the primal signal output of the differentiable addition

primitive is the sum of the primal inputs, s1[n] + s2[n]; now, how-

ever, the differentiable primitive produces vars.N tangent outputs,

each corresponding to a derivative with respect to xi. Once again,

11
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the route primitive ensures that incoming signals are delivered to

the parallel additions in the correct order.

Encapsulating listings 4 and 5 as a library in a file named

diff.lib, and defining a differentiable audio input, which, since it

does not depend on xi, has the semantic representation

JinputK : S → Sd

JinputK(s) = (⟨y,∇y⟩)

⟨y[n],∇y[n]⟩ = ⟨s[n],0⟩ ,

(12)

we can use vars and env to write a differentiable version of the

gain-plus-DC-offset program encountered earlier:

df = library ("diff.lib");

X = df.vars((gain ,dc)) with {

gain = hslider ("gain", .5, 0, 1, .01);

dc = hslider ("dc", 0, -1, 1, .01);

};

d = df.env(X);

process = d.input ,X.var (1)

: d.diff (*),X.var (2)

: d.diff (+);

Listing 6: Differentiable counterpart to the FAUST program

described in listing 3.

See figure 4 for the block diagram of this program. Note that while

the routing for the arithmetic primitives — particularly diff(*)

— may be quite complex (and would only become more involved

with the addition of further variables) the df library abstracts this

complexity away. Note also that partial derivatives of the program

are found automatically via application of the chain rule of dif-

ferentiation, imposed by the definition of semantically-consistent

dual-signal primitives.

3.3. Parameter Optimisation via Gradient Descent

Armed with the means to write end-to-end differentiable FAUST

programs, it is possible, with a few modifications (and additions

to diff.lib), to combine the code in listings 3 and 6, to create

a demonstrative parameter optimisation algorithm. An algorithm

of this kind consists of a target output, governed by parameters

that are hidden with respect to some estimated output, which itself

depends on parameters that we wish to optimise.

The algorithm in listing 3 is dependent on hidden parameters

x and produces a ground truth output signal y[n]; we assign this

algorithm to a variable named target. Its differentiable equivalent

in listing 6 is dependent on estimated parameters x̂ and produces

the dual output signal, ⟨ŷ[n],∇ŷ[n]⟩; we assign this to a variable

named estimate. The output signal produced by target and the

primal output signal of estimate can now be compared by way of

a loss function; to this end, we can employ time-domain L1-norm

loss of the form

L(y, ŷ)[n] = ||ŷ[n]− y[n]|| . (13)

Our aim is to minimise the value returned by the loss function,

i.e. to reach the point at which y[n] and ŷ[n] (and by extension x

and x̂) most closely approximate one-another. The sensitivity of

L to perturbations in x̂ can again be found by automatic differen-

tiation, subject to the provision of a differentiable absolute value

function in df.env, with the following semantic definition:

Jdiff(abs)K : Sd → Sd

Jdiff(abs)K(⟨s,∇s⟩) = (⟨y,∇y⟩)

⟨y[n],∇y[n]⟩ =

〈

|s[n]|,
s[n]∇s[n]

|s[n]|

〉

.

(14)

The loss function can then be implemented as follows:

env(vars) = environment {

// ...

lossL1(learningRate , y, yHat) =

error ,par(i, vars.N, _)

: diff(abs)

: _,scaleGrads

with {

error = yHat ,y : -;

scaleGrads = par(i, vars.N,

_,learningRate : *);

};

// ...

Listing 7: Implementation of a differentiable loss function (L1-

norm) using differentiable abs primitive.

The loss function’s partial derivatives are the gradients asso-

ciated with each variable in x̂. In our two-parameter example, L
will describe a three-dimensional surface, and ∂L

∂xi
its slope relative

to xi. Values at time n + 1 are found by scaling gradients by a

learning rate, α, and subtracting the result from values at time n:

x̂[n+ 1] = x̂[n]− α
∂L

∂x̂
[n] . (15)

In FAUST, this can be achieved via recursion, and by changing the

definition of the variables delivered to df.env. Since values will

be updated automatically via gradient descent, the sliders used in

listing 6 are no longer appropriate; instead, a bargraph instance

can be used to display the value of each variable, with a recur-

sive subtraction accumulating each parameter’s incoming scaled

gradient.

// diff.lib

var(meter) = -~_ <: attach(meter);

// gain_dc_AD.dsp

X = df.vars((gain ,dc)) with {

gain = df.var(hbargraph ("Gain", 0, 1));

dc = df.var(hbargraph ("DC", -1, 1));

};

Listing 8: Definition of differentiable variables encapsulating

recursive gradient descent.

Finally, we can create a program that takes white noise as input,

encapsulates target, estimate, and the loss function, and recurses

gradients produced by the latter back to estimate.

process = no.noise <: (

route(nvars+nInputs , nvars+nInputs ,

// Route gradients to estimate.

par(n, nvars , (n+1, n+1+ nInputs)),

12
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0

0

input

hslider(gain, 0.5f, 0.0f, 1.0f, 0.01f)

gain

1

0

pds(2)(1)

var(1)

*

*

*

+

*

*

+

diffMul

hslider(dc, 0.0f, -1.0f, 1.0f, 0.01f)

dc

0

1

pds(2)(2)

var(2)

+

+

+

diffAdd

process

Figure 4: Block diagram of a differentiable FAUST program consisting of differentiable gain and DC parameters applied to an input signal

(see listing 6).

// Route input to target & estimate.

par(n, nInputs , (nvars +1+n, n+1))

)

: target ,estimate : d.lossL1 (1e-3)

// Recurse the gradients.

) ~ (!,si.bus(nvars))

// Block the gradients , post -recursion.

: _,si.block(nvars)

with {

nvars = inputs(estimate),

inputs(target) : -;

nInputs = inputs(target) ,2 : *;

// ...

Listing 9: Excerpt from a parameter optimisation algorithm. See

listings 3, 6 and 7 respectively for definitions of target, estimate,

and d.lossL1.

This delivery of gradients from the outputs of the program back

to its inputs is commonly (and particularly in material from the field

of machine learning) referred to as backpropagation [3, 10, 27].

Whereas in reverse mode gradients arrive at the inputs inevitably

as a consequence of the reverse adjoint pass through the graph,

in forward mode a recursion such as that described in listing 9 is

required; consult figure 5 for the corresponding top-level block

diagram.

Running this program3 reveals a user interface which includes

slider elements for the parameters of the target algorithm, and

bargraphs that report the values of the parameters of estimate.

Moving a slider results in an increase in the value returned by the

3A full code example, adapted from the excerpts in this pa-
per, can be found at https://gist.github.com/hatchjaw/

59f35d0cde7aba218d785d31f26d2d83.

loss function, which is then minimised via gradient descent, the

estimated parameter values tracking the values of the target.

4. DISCUSSION

The previous section presented an approach to differentiable pro-

gramming in FAUST, but the scheme under consideration is not free

from disadvantages. Considered in the following subsections are

some limitations of the suggested automatic differentiation strategy,

plus a selection of ideas for future development.

4.1. Primitives With Poorly-Defined Derivatives

To provide comprehensive support for differentiable programming,

the formative library presented here should of course comprise dif-

ferentiable equivalents to all of FAUST’s primitives. That would in-

clude, however, the likes of floor and ceil, whose primal outputs

are discontinuous. Indeed, in implementation, the differentiable

abs function used in the loss function in listing 7 takes the liberty

of avoiding division by zero by dividing by whichever of |s[n]| and

ma.EPSILON is greater; it may prove preferable to replace abs, and

similarly problematic functions, with smooth approximations [28].

Another class of FAUST primitives not addressed here are those

relating to delays. As demonstrated by Shynk [7], IIR filters, and

thus fixed delays (including recursive delays), are differentiable in

terms of their coefficients; whether a variable delay (FAUST’s @

primitive) is differentiable with respect to the length of the delay

line, stands as a topic for future research.

4.2. Frequency-Domain Loss

The parameter optimisation example given in section 3.3 works, but

with a couple of significant caveats, the first of these being that the
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noise
target

estimate

lossL1(0.001f)

process

Figure 5: Top-level block diagram for the full FAUST program of which an excerpt appears in listing 9. target algorithm, with hidden

parameters, and estimate algorithm, with two optimisable parameters, process a noise signal. Their outputs are compared via a loss

function; scaled derivatives of the loss function are backpropagated such that estimated parameter values can be updated. Note that the

only output signal produced by this example program is the primal output signal produced by the loss function; to hear the primal signal

produced by estimate, one could perform additional signal routing prior to the loss function.

target and estimate algorithms receive identical signals as input,

and the second being that loss is calculated sample-by-sample in

the time domain. If decorrelated noise signals were used instead,

it is vanishingly unlikely that good parameter estimates would be

found. Some improvement may be achieved by comparing y and

ŷ after a short-duration application of ba.slidingMean, but not

if oscillators of different frequencies, or unaligned phase, were

employed instead.

One way to combat problems of this sort would be to calcu-

late loss in the frequency domain; indeed it is typically by way

of perceptually-informed spectral loss that optimisation is con-

ducted in a DDSP setting [5]. Various functions exist in FAUST’s

analyzers.lib library that could be used to this end; being based

on an FFT implementation that is restricted, however, to a sin-

gle sample hop-size, at the time of writing computational expense

places limits on the calculation of magnitude spectrograms, particu-

larly in a real-time setting.

4.3. Computational Efficiency

On that note, and as alluded to in section 2.1, forward mode is not,

on paper at least, the most efficient choice for automatically differ-

entiating programs with more inputs than outputs. Figure 4 shows

two sets of tangent calculations accompanying each primitive’s pri-

mal operation, and a number of zero signal paths (partial derivatives

of the input signal, for example). Not pictured in figure 4, the most

egregious proliferation of zeros is caused by differentiable numeri-

cal constants; a constant c, is, in dual-signal form, ⟨c,∇c⟩ = ⟨c,0⟩,
or in FAUST:

diff(c) = c,par(i, vars.N, 0);

Of course, a constant may well be followed, for instance, by a

trigonometric function — there is no guarantee that ∇c will not

contribute to a non-zero signal path, thus no scope for optimisation.

That being said, the FAUST compiler is designed with this

sort of optimisation in mind, applying various rewriting rules after

its symbolic propagation phase to simplify expressions and avoid

redundancy [29]. In effect, the compiler will attempt to produce

the most efficient possible FAUST Imperative Representation for

any given FAUST program. Nevertheless, the creation of a gen-

eralisable approach to reverse mode should be explored, and this

too would benefit from compile-time optimisations. Moreover,

forward and reverse mode can be thought of as extremes on a con-

tinuum of derivative propagation options; a combination of these

modes (dubbed cross-country mode), tailored to the structure of the

program being differentiated, would be ideal, though finding the

optimal ordering is deemed a challenge [30].

4.4. A General Pattern-Matching Syntax

Although the differentiable algorithm in listing 6 bears the same

compositional structure as its undifferentiated sibling (listing 3),4

the use of the differentiable environment, coupled with pattern

matching, inevitably leads to the necessity of wrapping primitives in

d.diff(...) notation. d.input too is an unsatisfactory solution

to the problem of there being no simple way, syntactically speaking,

of distinguishing an input signal from an identity function, which,

since they have different derivatives, is a necessity.

Ideally, an approach similar to that taken in physmodels.lib

(as described in section 2.2), whereby expressions are recursively

decomposed, with a base case to handle the desired transformations,

should be employed. In that instance, it would be possible to define

estimate in listing 9 via syntax along the lines of:

estimate = forwardAD(target);

In addition to abstracting away calls to diff(), this could permit

identifying input signals by counting the number of inputs to the

circuit passed to forwardAD. Standing in the way of this idea, how-

ever, are limitations in FAUST’s pattern matching system at the time

of writing, the principal issue being the impossibility of pattern-

matching user interface elements in the general case; i.e., to match

a hslider one needs to match its label exactly, plus the values

provided for init, min, max and step. By way of an alternative,

a strategy based on FAUST’s widget modulation syntax may help

circumvent this problem.

4This is thanks to the quality of the parallel and sequential composition
operators of having no arithmetical influence on the output of the program
— they are analogous to application of the identity function. This is not the
case for merge composition, which, having the effect of summation, would,
in a comprehensive implementation, require a differentiable transformation.
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4.5. Application to Machine Learning

Further to the caveats mentioned in 4.2, the success of the parame-

ter optimisation example presented in this paper is contingent on

the provision of deterministic input data; essentially the example

constitutes an extreme example of overfitting, solving one specific

problem, on one particular set of input data, very well, but possess-

ing no capability to generalise. Nevertheless, it shares its basis, in

the form of differentiable programming, with more sophisticated

applications of mathematical optimisation, chief amongst these

being machine learning.

Using differentiable FAUST primitives it is straightforward to

create differentiable loss functions; activation functions and ar-

tificial neurons (the latter being based on simple linear algebra

principles) could follow without much trouble. Neural network

structures, which support the training of models capable of gen-

eralising to unseen input data, would require significant effort to

implement in a composable, extensible fashion, but it is unlikely

that they lie beyond the capabilities of the language.

5. CONCLUSION

In this paper, it has been shown that differentiable programming

is possible in the FAUST language, and thus that FAUST can be

used to tackle audio problems based on principles of mathematical

optimisation. The presence of a comprehensive automatic differen-

tiation framework in FAUST would lend the language to a multitude

of DDSP problems and applications that currently lie unexplored

by FAUST programmers; in turn, the ability to tackle such problems

in a domain specific language could foster innovation in what is a

vibrant research area.

Aims for further investigation should be the implementation of

differentiation rules for all of the primitives of the language, the

development of a less intrusive syntax for automatic differentiation

transformations, and perhaps enhancements to pattern matching

at the level of the FAUST compiler. An FFT implementation of

greater efficiency, or a novel approach to perceptually-informed

loss computation, would also be of great benefit.
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